4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
61 /* Incremented by the number of inactive pages that were scanned */
62 unsigned long nr_scanned
;
64 /* Number of pages freed so far during a call to shrink_zones() */
65 unsigned long nr_reclaimed
;
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
70 unsigned long hibernation_mode
;
72 /* This context's GFP mask */
77 /* Can mapped pages be reclaimed? */
80 /* Can pages be swapped as part of reclaim? */
88 * Intend to reclaim enough continuous memory rather than reclaim
89 * enough amount of memory. i.e, mode for high order allocation.
91 enum lumpy_mode lumpy_reclaim_mode
;
93 /* Which cgroup do we reclaim from */
94 struct mem_cgroup
*mem_cgroup
;
97 * Nodemask of nodes allowed by the caller. If NULL, all nodes
100 nodemask_t
*nodemask
;
103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
105 #ifdef ARCH_HAS_PREFETCH
106 #define prefetch_prev_lru_page(_page, _base, _field) \
108 if ((_page)->lru.prev != _base) { \
111 prev = lru_to_page(&(_page->lru)); \
112 prefetch(&prev->_field); \
116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
119 #ifdef ARCH_HAS_PREFETCHW
120 #define prefetchw_prev_lru_page(_page, _base, _field) \
122 if ((_page)->lru.prev != _base) { \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetchw(&prev->_field); \
130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134 * From 0 .. 100. Higher means more swappy.
136 int vm_swappiness
= 60;
137 long vm_total_pages
; /* The total number of pages which the VM controls */
139 static LIST_HEAD(shrinker_list
);
140 static DECLARE_RWSEM(shrinker_rwsem
);
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
143 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
145 #define scanning_global_lru(sc) (1)
148 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
149 struct scan_control
*sc
)
151 if (!scanning_global_lru(sc
))
152 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
154 return &zone
->reclaim_stat
;
157 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
158 struct scan_control
*sc
, enum lru_list lru
)
160 if (!scanning_global_lru(sc
))
161 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
163 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
168 * Add a shrinker callback to be called from the vm
170 void register_shrinker(struct shrinker
*shrinker
)
173 down_write(&shrinker_rwsem
);
174 list_add_tail(&shrinker
->list
, &shrinker_list
);
175 up_write(&shrinker_rwsem
);
177 EXPORT_SYMBOL(register_shrinker
);
182 void unregister_shrinker(struct shrinker
*shrinker
)
184 down_write(&shrinker_rwsem
);
185 list_del(&shrinker
->list
);
186 up_write(&shrinker_rwsem
);
188 EXPORT_SYMBOL(unregister_shrinker
);
190 #define SHRINK_BATCH 128
192 * Call the shrink functions to age shrinkable caches
194 * Here we assume it costs one seek to replace a lru page and that it also
195 * takes a seek to recreate a cache object. With this in mind we age equal
196 * percentages of the lru and ageable caches. This should balance the seeks
197 * generated by these structures.
199 * If the vm encountered mapped pages on the LRU it increase the pressure on
200 * slab to avoid swapping.
202 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
204 * `lru_pages' represents the number of on-LRU pages in all the zones which
205 * are eligible for the caller's allocation attempt. It is used for balancing
206 * slab reclaim versus page reclaim.
208 * Returns the number of slab objects which we shrunk.
210 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
211 unsigned long lru_pages
)
213 struct shrinker
*shrinker
;
214 unsigned long ret
= 0;
217 scanned
= SWAP_CLUSTER_MAX
;
219 if (!down_read_trylock(&shrinker_rwsem
))
220 return 1; /* Assume we'll be able to shrink next time */
222 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
223 unsigned long long delta
;
224 unsigned long total_scan
;
225 unsigned long max_pass
;
227 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
228 delta
= (4 * scanned
) / shrinker
->seeks
;
230 do_div(delta
, lru_pages
+ 1);
231 shrinker
->nr
+= delta
;
232 if (shrinker
->nr
< 0) {
233 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
235 shrinker
->shrink
, shrinker
->nr
);
236 shrinker
->nr
= max_pass
;
240 * Avoid risking looping forever due to too large nr value:
241 * never try to free more than twice the estimate number of
244 if (shrinker
->nr
> max_pass
* 2)
245 shrinker
->nr
= max_pass
* 2;
247 total_scan
= shrinker
->nr
;
250 while (total_scan
>= SHRINK_BATCH
) {
251 long this_scan
= SHRINK_BATCH
;
255 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
256 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
258 if (shrink_ret
== -1)
260 if (shrink_ret
< nr_before
)
261 ret
+= nr_before
- shrink_ret
;
262 count_vm_events(SLABS_SCANNED
, this_scan
);
263 total_scan
-= this_scan
;
268 shrinker
->nr
+= total_scan
;
270 up_read(&shrinker_rwsem
);
274 static void set_lumpy_reclaim_mode(int priority
, struct scan_control
*sc
,
277 enum lumpy_mode mode
= sync
? LUMPY_MODE_SYNC
: LUMPY_MODE_ASYNC
;
280 * Some reclaim have alredy been failed. No worth to try synchronous
283 if (sync
&& sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
)
287 * If we need a large contiguous chunk of memory, or have
288 * trouble getting a small set of contiguous pages, we
289 * will reclaim both active and inactive pages.
291 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
292 sc
->lumpy_reclaim_mode
= mode
;
293 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
294 sc
->lumpy_reclaim_mode
= mode
;
296 sc
->lumpy_reclaim_mode
= LUMPY_MODE_NONE
;
299 static void disable_lumpy_reclaim_mode(struct scan_control
*sc
)
301 sc
->lumpy_reclaim_mode
= LUMPY_MODE_NONE
;
304 static inline int is_page_cache_freeable(struct page
*page
)
307 * A freeable page cache page is referenced only by the caller
308 * that isolated the page, the page cache radix tree and
309 * optional buffer heads at page->private.
311 return page_count(page
) - page_has_private(page
) == 2;
314 static int may_write_to_queue(struct backing_dev_info
*bdi
,
315 struct scan_control
*sc
)
317 if (current
->flags
& PF_SWAPWRITE
)
319 if (!bdi_write_congested(bdi
))
321 if (bdi
== current
->backing_dev_info
)
324 /* lumpy reclaim for hugepage often need a lot of write */
325 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
331 * We detected a synchronous write error writing a page out. Probably
332 * -ENOSPC. We need to propagate that into the address_space for a subsequent
333 * fsync(), msync() or close().
335 * The tricky part is that after writepage we cannot touch the mapping: nothing
336 * prevents it from being freed up. But we have a ref on the page and once
337 * that page is locked, the mapping is pinned.
339 * We're allowed to run sleeping lock_page() here because we know the caller has
342 static void handle_write_error(struct address_space
*mapping
,
343 struct page
*page
, int error
)
345 lock_page_nosync(page
);
346 if (page_mapping(page
) == mapping
)
347 mapping_set_error(mapping
, error
);
351 /* possible outcome of pageout() */
353 /* failed to write page out, page is locked */
355 /* move page to the active list, page is locked */
357 /* page has been sent to the disk successfully, page is unlocked */
359 /* page is clean and locked */
364 * pageout is called by shrink_page_list() for each dirty page.
365 * Calls ->writepage().
367 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
368 struct scan_control
*sc
)
371 * If the page is dirty, only perform writeback if that write
372 * will be non-blocking. To prevent this allocation from being
373 * stalled by pagecache activity. But note that there may be
374 * stalls if we need to run get_block(). We could test
375 * PagePrivate for that.
377 * If this process is currently in __generic_file_aio_write() against
378 * this page's queue, we can perform writeback even if that
381 * If the page is swapcache, write it back even if that would
382 * block, for some throttling. This happens by accident, because
383 * swap_backing_dev_info is bust: it doesn't reflect the
384 * congestion state of the swapdevs. Easy to fix, if needed.
386 if (!is_page_cache_freeable(page
))
390 * Some data journaling orphaned pages can have
391 * page->mapping == NULL while being dirty with clean buffers.
393 if (page_has_private(page
)) {
394 if (try_to_free_buffers(page
)) {
395 ClearPageDirty(page
);
396 printk("%s: orphaned page\n", __func__
);
402 if (mapping
->a_ops
->writepage
== NULL
)
403 return PAGE_ACTIVATE
;
404 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
407 if (clear_page_dirty_for_io(page
)) {
409 struct writeback_control wbc
= {
410 .sync_mode
= WB_SYNC_NONE
,
411 .nr_to_write
= SWAP_CLUSTER_MAX
,
413 .range_end
= LLONG_MAX
,
417 SetPageReclaim(page
);
418 res
= mapping
->a_ops
->writepage(page
, &wbc
);
420 handle_write_error(mapping
, page
, res
);
421 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
422 ClearPageReclaim(page
);
423 return PAGE_ACTIVATE
;
427 * Wait on writeback if requested to. This happens when
428 * direct reclaiming a large contiguous area and the
429 * first attempt to free a range of pages fails.
431 if (PageWriteback(page
) &&
432 sc
->lumpy_reclaim_mode
== LUMPY_MODE_SYNC
)
433 wait_on_page_writeback(page
);
435 if (!PageWriteback(page
)) {
436 /* synchronous write or broken a_ops? */
437 ClearPageReclaim(page
);
439 trace_mm_vmscan_writepage(page
,
440 trace_reclaim_flags(page
, sc
->lumpy_reclaim_mode
));
441 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
452 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
454 BUG_ON(!PageLocked(page
));
455 BUG_ON(mapping
!= page_mapping(page
));
457 spin_lock_irq(&mapping
->tree_lock
);
459 * The non racy check for a busy page.
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
466 * get_user_pages(&page);
467 * [user mapping goes away]
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
472 * !page_count(page) [good, discard it]
474 * [oops, our write_to data is lost]
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
483 if (!page_freeze_refs(page
, 2))
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page
))) {
487 page_unfreeze_refs(page
, 2);
491 if (PageSwapCache(page
)) {
492 swp_entry_t swap
= { .val
= page_private(page
) };
493 __delete_from_swap_cache(page
);
494 spin_unlock_irq(&mapping
->tree_lock
);
495 swapcache_free(swap
, page
);
497 __remove_from_page_cache(page
);
498 spin_unlock_irq(&mapping
->tree_lock
);
499 mem_cgroup_uncharge_cache_page(page
);
505 spin_unlock_irq(&mapping
->tree_lock
);
510 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
511 * someone else has a ref on the page, abort and return 0. If it was
512 * successfully detached, return 1. Assumes the caller has a single ref on
515 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
517 if (__remove_mapping(mapping
, page
)) {
519 * Unfreezing the refcount with 1 rather than 2 effectively
520 * drops the pagecache ref for us without requiring another
523 page_unfreeze_refs(page
, 1);
530 * putback_lru_page - put previously isolated page onto appropriate LRU list
531 * @page: page to be put back to appropriate lru list
533 * Add previously isolated @page to appropriate LRU list.
534 * Page may still be unevictable for other reasons.
536 * lru_lock must not be held, interrupts must be enabled.
538 void putback_lru_page(struct page
*page
)
541 int active
= !!TestClearPageActive(page
);
542 int was_unevictable
= PageUnevictable(page
);
544 VM_BUG_ON(PageLRU(page
));
547 ClearPageUnevictable(page
);
549 if (page_evictable(page
, NULL
)) {
551 * For evictable pages, we can use the cache.
552 * In event of a race, worst case is we end up with an
553 * unevictable page on [in]active list.
554 * We know how to handle that.
556 lru
= active
+ page_lru_base_type(page
);
557 lru_cache_add_lru(page
, lru
);
560 * Put unevictable pages directly on zone's unevictable
563 lru
= LRU_UNEVICTABLE
;
564 add_page_to_unevictable_list(page
);
566 * When racing with an mlock clearing (page is
567 * unlocked), make sure that if the other thread does
568 * not observe our setting of PG_lru and fails
569 * isolation, we see PG_mlocked cleared below and move
570 * the page back to the evictable list.
572 * The other side is TestClearPageMlocked().
578 * page's status can change while we move it among lru. If an evictable
579 * page is on unevictable list, it never be freed. To avoid that,
580 * check after we added it to the list, again.
582 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
583 if (!isolate_lru_page(page
)) {
587 /* This means someone else dropped this page from LRU
588 * So, it will be freed or putback to LRU again. There is
589 * nothing to do here.
593 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
594 count_vm_event(UNEVICTABLE_PGRESCUED
);
595 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
596 count_vm_event(UNEVICTABLE_PGCULLED
);
598 put_page(page
); /* drop ref from isolate */
601 enum page_references
{
603 PAGEREF_RECLAIM_CLEAN
,
608 static enum page_references
page_check_references(struct page
*page
,
609 struct scan_control
*sc
)
611 int referenced_ptes
, referenced_page
;
612 unsigned long vm_flags
;
614 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
615 referenced_page
= TestClearPageReferenced(page
);
617 /* Lumpy reclaim - ignore references */
618 if (sc
->lumpy_reclaim_mode
!= LUMPY_MODE_NONE
)
619 return PAGEREF_RECLAIM
;
622 * Mlock lost the isolation race with us. Let try_to_unmap()
623 * move the page to the unevictable list.
625 if (vm_flags
& VM_LOCKED
)
626 return PAGEREF_RECLAIM
;
628 if (referenced_ptes
) {
630 return PAGEREF_ACTIVATE
;
632 * All mapped pages start out with page table
633 * references from the instantiating fault, so we need
634 * to look twice if a mapped file page is used more
637 * Mark it and spare it for another trip around the
638 * inactive list. Another page table reference will
639 * lead to its activation.
641 * Note: the mark is set for activated pages as well
642 * so that recently deactivated but used pages are
645 SetPageReferenced(page
);
648 return PAGEREF_ACTIVATE
;
653 /* Reclaim if clean, defer dirty pages to writeback */
654 if (referenced_page
&& !PageSwapBacked(page
))
655 return PAGEREF_RECLAIM_CLEAN
;
657 return PAGEREF_RECLAIM
;
660 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
662 struct pagevec freed_pvec
;
663 struct page
*page
, *tmp
;
665 pagevec_init(&freed_pvec
, 1);
667 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
668 list_del(&page
->lru
);
669 if (!pagevec_add(&freed_pvec
, page
)) {
670 __pagevec_free(&freed_pvec
);
671 pagevec_reinit(&freed_pvec
);
675 pagevec_free(&freed_pvec
);
679 * shrink_page_list() returns the number of reclaimed pages
681 static unsigned long shrink_page_list(struct list_head
*page_list
,
683 struct scan_control
*sc
)
685 LIST_HEAD(ret_pages
);
686 LIST_HEAD(free_pages
);
688 unsigned long nr_dirty
= 0;
689 unsigned long nr_congested
= 0;
690 unsigned long nr_reclaimed
= 0;
694 while (!list_empty(page_list
)) {
695 enum page_references references
;
696 struct address_space
*mapping
;
702 page
= lru_to_page(page_list
);
703 list_del(&page
->lru
);
705 if (!trylock_page(page
))
708 VM_BUG_ON(PageActive(page
));
709 VM_BUG_ON(page_zone(page
) != zone
);
713 if (unlikely(!page_evictable(page
, NULL
)))
716 if (!sc
->may_unmap
&& page_mapped(page
))
719 /* Double the slab pressure for mapped and swapcache pages */
720 if (page_mapped(page
) || PageSwapCache(page
))
723 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
724 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
726 if (PageWriteback(page
)) {
728 * Synchronous reclaim is performed in two passes,
729 * first an asynchronous pass over the list to
730 * start parallel writeback, and a second synchronous
731 * pass to wait for the IO to complete. Wait here
732 * for any page for which writeback has already
735 if (sc
->lumpy_reclaim_mode
== LUMPY_MODE_SYNC
&&
737 wait_on_page_writeback(page
);
744 references
= page_check_references(page
, sc
);
745 switch (references
) {
746 case PAGEREF_ACTIVATE
:
747 goto activate_locked
;
750 case PAGEREF_RECLAIM
:
751 case PAGEREF_RECLAIM_CLEAN
:
752 ; /* try to reclaim the page below */
756 * Anonymous process memory has backing store?
757 * Try to allocate it some swap space here.
759 if (PageAnon(page
) && !PageSwapCache(page
)) {
760 if (!(sc
->gfp_mask
& __GFP_IO
))
762 if (!add_to_swap(page
))
763 goto activate_locked
;
767 mapping
= page_mapping(page
);
770 * The page is mapped into the page tables of one or more
771 * processes. Try to unmap it here.
773 if (page_mapped(page
) && mapping
) {
774 switch (try_to_unmap(page
, TTU_UNMAP
)) {
776 goto activate_locked
;
782 ; /* try to free the page below */
786 if (PageDirty(page
)) {
789 if (references
== PAGEREF_RECLAIM_CLEAN
)
793 if (!sc
->may_writepage
)
796 /* Page is dirty, try to write it out here */
797 switch (pageout(page
, mapping
, sc
)) {
802 goto activate_locked
;
804 if (PageWriteback(page
))
810 * A synchronous write - probably a ramdisk. Go
811 * ahead and try to reclaim the page.
813 if (!trylock_page(page
))
815 if (PageDirty(page
) || PageWriteback(page
))
817 mapping
= page_mapping(page
);
819 ; /* try to free the page below */
824 * If the page has buffers, try to free the buffer mappings
825 * associated with this page. If we succeed we try to free
828 * We do this even if the page is PageDirty().
829 * try_to_release_page() does not perform I/O, but it is
830 * possible for a page to have PageDirty set, but it is actually
831 * clean (all its buffers are clean). This happens if the
832 * buffers were written out directly, with submit_bh(). ext3
833 * will do this, as well as the blockdev mapping.
834 * try_to_release_page() will discover that cleanness and will
835 * drop the buffers and mark the page clean - it can be freed.
837 * Rarely, pages can have buffers and no ->mapping. These are
838 * the pages which were not successfully invalidated in
839 * truncate_complete_page(). We try to drop those buffers here
840 * and if that worked, and the page is no longer mapped into
841 * process address space (page_count == 1) it can be freed.
842 * Otherwise, leave the page on the LRU so it is swappable.
844 if (page_has_private(page
)) {
845 if (!try_to_release_page(page
, sc
->gfp_mask
))
846 goto activate_locked
;
847 if (!mapping
&& page_count(page
) == 1) {
849 if (put_page_testzero(page
))
853 * rare race with speculative reference.
854 * the speculative reference will free
855 * this page shortly, so we may
856 * increment nr_reclaimed here (and
857 * leave it off the LRU).
865 if (!mapping
|| !__remove_mapping(mapping
, page
))
869 * At this point, we have no other references and there is
870 * no way to pick any more up (removed from LRU, removed
871 * from pagecache). Can use non-atomic bitops now (and
872 * we obviously don't have to worry about waking up a process
873 * waiting on the page lock, because there are no references.
875 __clear_page_locked(page
);
880 * Is there need to periodically free_page_list? It would
881 * appear not as the counts should be low
883 list_add(&page
->lru
, &free_pages
);
887 if (PageSwapCache(page
))
888 try_to_free_swap(page
);
890 putback_lru_page(page
);
891 disable_lumpy_reclaim_mode(sc
);
895 /* Not a candidate for swapping, so reclaim swap space. */
896 if (PageSwapCache(page
) && vm_swap_full())
897 try_to_free_swap(page
);
898 VM_BUG_ON(PageActive(page
));
904 disable_lumpy_reclaim_mode(sc
);
906 list_add(&page
->lru
, &ret_pages
);
907 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
911 * Tag a zone as congested if all the dirty pages encountered were
912 * backed by a congested BDI. In this case, reclaimers should just
913 * back off and wait for congestion to clear because further reclaim
914 * will encounter the same problem
916 if (nr_dirty
== nr_congested
)
917 zone_set_flag(zone
, ZONE_CONGESTED
);
919 free_page_list(&free_pages
);
921 list_splice(&ret_pages
, page_list
);
922 count_vm_events(PGACTIVATE
, pgactivate
);
927 * Attempt to remove the specified page from its LRU. Only take this page
928 * if it is of the appropriate PageActive status. Pages which are being
929 * freed elsewhere are also ignored.
931 * page: page to consider
932 * mode: one of the LRU isolation modes defined above
934 * returns 0 on success, -ve errno on failure.
936 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
940 /* Only take pages on the LRU. */
945 * When checking the active state, we need to be sure we are
946 * dealing with comparible boolean values. Take the logical not
949 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
952 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
956 * When this function is being called for lumpy reclaim, we
957 * initially look into all LRU pages, active, inactive and
958 * unevictable; only give shrink_page_list evictable pages.
960 if (PageUnevictable(page
))
965 if (likely(get_page_unless_zero(page
))) {
967 * Be careful not to clear PageLRU until after we're
968 * sure the page is not being freed elsewhere -- the
969 * page release code relies on it.
979 * zone->lru_lock is heavily contended. Some of the functions that
980 * shrink the lists perform better by taking out a batch of pages
981 * and working on them outside the LRU lock.
983 * For pagecache intensive workloads, this function is the hottest
984 * spot in the kernel (apart from copy_*_user functions).
986 * Appropriate locks must be held before calling this function.
988 * @nr_to_scan: The number of pages to look through on the list.
989 * @src: The LRU list to pull pages off.
990 * @dst: The temp list to put pages on to.
991 * @scanned: The number of pages that were scanned.
992 * @order: The caller's attempted allocation order
993 * @mode: One of the LRU isolation modes
994 * @file: True [1] if isolating file [!anon] pages
996 * returns how many pages were moved onto *@dst.
998 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
999 struct list_head
*src
, struct list_head
*dst
,
1000 unsigned long *scanned
, int order
, int mode
, int file
)
1002 unsigned long nr_taken
= 0;
1003 unsigned long nr_lumpy_taken
= 0;
1004 unsigned long nr_lumpy_dirty
= 0;
1005 unsigned long nr_lumpy_failed
= 0;
1008 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1011 unsigned long end_pfn
;
1012 unsigned long page_pfn
;
1015 page
= lru_to_page(src
);
1016 prefetchw_prev_lru_page(page
, src
, flags
);
1018 VM_BUG_ON(!PageLRU(page
));
1020 switch (__isolate_lru_page(page
, mode
, file
)) {
1022 list_move(&page
->lru
, dst
);
1023 mem_cgroup_del_lru(page
);
1028 /* else it is being freed elsewhere */
1029 list_move(&page
->lru
, src
);
1030 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1041 * Attempt to take all pages in the order aligned region
1042 * surrounding the tag page. Only take those pages of
1043 * the same active state as that tag page. We may safely
1044 * round the target page pfn down to the requested order
1045 * as the mem_map is guarenteed valid out to MAX_ORDER,
1046 * where that page is in a different zone we will detect
1047 * it from its zone id and abort this block scan.
1049 zone_id
= page_zone_id(page
);
1050 page_pfn
= page_to_pfn(page
);
1051 pfn
= page_pfn
& ~((1 << order
) - 1);
1052 end_pfn
= pfn
+ (1 << order
);
1053 for (; pfn
< end_pfn
; pfn
++) {
1054 struct page
*cursor_page
;
1056 /* The target page is in the block, ignore it. */
1057 if (unlikely(pfn
== page_pfn
))
1060 /* Avoid holes within the zone. */
1061 if (unlikely(!pfn_valid_within(pfn
)))
1064 cursor_page
= pfn_to_page(pfn
);
1066 /* Check that we have not crossed a zone boundary. */
1067 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1071 * If we don't have enough swap space, reclaiming of
1072 * anon page which don't already have a swap slot is
1075 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1076 !PageSwapCache(cursor_page
))
1079 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1080 list_move(&cursor_page
->lru
, dst
);
1081 mem_cgroup_del_lru(cursor_page
);
1084 if (PageDirty(cursor_page
))
1088 /* the page is freed already. */
1089 if (!page_count(cursor_page
))
1095 /* If we break out of the loop above, lumpy reclaim failed */
1102 trace_mm_vmscan_lru_isolate(order
,
1105 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1110 static unsigned long isolate_pages_global(unsigned long nr
,
1111 struct list_head
*dst
,
1112 unsigned long *scanned
, int order
,
1113 int mode
, struct zone
*z
,
1114 int active
, int file
)
1121 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1126 * clear_active_flags() is a helper for shrink_active_list(), clearing
1127 * any active bits from the pages in the list.
1129 static unsigned long clear_active_flags(struct list_head
*page_list
,
1130 unsigned int *count
)
1136 list_for_each_entry(page
, page_list
, lru
) {
1137 lru
= page_lru_base_type(page
);
1138 if (PageActive(page
)) {
1140 ClearPageActive(page
);
1151 * isolate_lru_page - tries to isolate a page from its LRU list
1152 * @page: page to isolate from its LRU list
1154 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1155 * vmstat statistic corresponding to whatever LRU list the page was on.
1157 * Returns 0 if the page was removed from an LRU list.
1158 * Returns -EBUSY if the page was not on an LRU list.
1160 * The returned page will have PageLRU() cleared. If it was found on
1161 * the active list, it will have PageActive set. If it was found on
1162 * the unevictable list, it will have the PageUnevictable bit set. That flag
1163 * may need to be cleared by the caller before letting the page go.
1165 * The vmstat statistic corresponding to the list on which the page was
1166 * found will be decremented.
1169 * (1) Must be called with an elevated refcount on the page. This is a
1170 * fundamentnal difference from isolate_lru_pages (which is called
1171 * without a stable reference).
1172 * (2) the lru_lock must not be held.
1173 * (3) interrupts must be enabled.
1175 int isolate_lru_page(struct page
*page
)
1179 if (PageLRU(page
)) {
1180 struct zone
*zone
= page_zone(page
);
1182 spin_lock_irq(&zone
->lru_lock
);
1183 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1184 int lru
= page_lru(page
);
1188 del_page_from_lru_list(zone
, page
, lru
);
1190 spin_unlock_irq(&zone
->lru_lock
);
1196 * Are there way too many processes in the direct reclaim path already?
1198 static int too_many_isolated(struct zone
*zone
, int file
,
1199 struct scan_control
*sc
)
1201 unsigned long inactive
, isolated
;
1203 if (current_is_kswapd())
1206 if (!scanning_global_lru(sc
))
1210 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1211 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1213 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1214 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1217 return isolated
> inactive
;
1221 * TODO: Try merging with migrations version of putback_lru_pages
1223 static noinline_for_stack
void
1224 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1225 unsigned long nr_anon
, unsigned long nr_file
,
1226 struct list_head
*page_list
)
1229 struct pagevec pvec
;
1230 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1232 pagevec_init(&pvec
, 1);
1235 * Put back any unfreeable pages.
1237 spin_lock(&zone
->lru_lock
);
1238 while (!list_empty(page_list
)) {
1240 page
= lru_to_page(page_list
);
1241 VM_BUG_ON(PageLRU(page
));
1242 list_del(&page
->lru
);
1243 if (unlikely(!page_evictable(page
, NULL
))) {
1244 spin_unlock_irq(&zone
->lru_lock
);
1245 putback_lru_page(page
);
1246 spin_lock_irq(&zone
->lru_lock
);
1250 lru
= page_lru(page
);
1251 add_page_to_lru_list(zone
, page
, lru
);
1252 if (is_active_lru(lru
)) {
1253 int file
= is_file_lru(lru
);
1254 reclaim_stat
->recent_rotated
[file
]++;
1256 if (!pagevec_add(&pvec
, page
)) {
1257 spin_unlock_irq(&zone
->lru_lock
);
1258 __pagevec_release(&pvec
);
1259 spin_lock_irq(&zone
->lru_lock
);
1262 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1263 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1265 spin_unlock_irq(&zone
->lru_lock
);
1266 pagevec_release(&pvec
);
1269 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1270 struct scan_control
*sc
,
1271 unsigned long *nr_anon
,
1272 unsigned long *nr_file
,
1273 struct list_head
*isolated_list
)
1275 unsigned long nr_active
;
1276 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1277 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1279 nr_active
= clear_active_flags(isolated_list
, count
);
1280 __count_vm_events(PGDEACTIVATE
, nr_active
);
1282 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1283 -count
[LRU_ACTIVE_FILE
]);
1284 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1285 -count
[LRU_INACTIVE_FILE
]);
1286 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1287 -count
[LRU_ACTIVE_ANON
]);
1288 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1289 -count
[LRU_INACTIVE_ANON
]);
1291 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1292 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1293 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1294 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1296 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1297 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1301 * Returns true if the caller should wait to clean dirty/writeback pages.
1303 * If we are direct reclaiming for contiguous pages and we do not reclaim
1304 * everything in the list, try again and wait for writeback IO to complete.
1305 * This will stall high-order allocations noticeably. Only do that when really
1306 * need to free the pages under high memory pressure.
1308 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1309 unsigned long nr_freed
,
1311 struct scan_control
*sc
)
1313 int lumpy_stall_priority
;
1315 /* kswapd should not stall on sync IO */
1316 if (current_is_kswapd())
1319 /* Only stall on lumpy reclaim */
1320 if (sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
)
1323 /* If we have relaimed everything on the isolated list, no stall */
1324 if (nr_freed
== nr_taken
)
1328 * For high-order allocations, there are two stall thresholds.
1329 * High-cost allocations stall immediately where as lower
1330 * order allocations such as stacks require the scanning
1331 * priority to be much higher before stalling.
1333 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1334 lumpy_stall_priority
= DEF_PRIORITY
;
1336 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1338 return priority
<= lumpy_stall_priority
;
1342 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1343 * of reclaimed pages
1345 static noinline_for_stack
unsigned long
1346 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1347 struct scan_control
*sc
, int priority
, int file
)
1349 LIST_HEAD(page_list
);
1350 unsigned long nr_scanned
;
1351 unsigned long nr_reclaimed
= 0;
1352 unsigned long nr_taken
;
1353 unsigned long nr_anon
;
1354 unsigned long nr_file
;
1356 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1357 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1359 /* We are about to die and free our memory. Return now. */
1360 if (fatal_signal_pending(current
))
1361 return SWAP_CLUSTER_MAX
;
1364 set_lumpy_reclaim_mode(priority
, sc
, false);
1366 spin_lock_irq(&zone
->lru_lock
);
1368 if (scanning_global_lru(sc
)) {
1369 nr_taken
= isolate_pages_global(nr_to_scan
,
1370 &page_list
, &nr_scanned
, sc
->order
,
1371 sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
?
1372 ISOLATE_INACTIVE
: ISOLATE_BOTH
,
1374 zone
->pages_scanned
+= nr_scanned
;
1375 if (current_is_kswapd())
1376 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1379 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1382 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1383 &page_list
, &nr_scanned
, sc
->order
,
1384 sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
?
1385 ISOLATE_INACTIVE
: ISOLATE_BOTH
,
1386 zone
, sc
->mem_cgroup
,
1389 * mem_cgroup_isolate_pages() keeps track of
1390 * scanned pages on its own.
1394 if (nr_taken
== 0) {
1395 spin_unlock_irq(&zone
->lru_lock
);
1399 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1401 spin_unlock_irq(&zone
->lru_lock
);
1403 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1405 /* Check if we should syncronously wait for writeback */
1406 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1407 set_lumpy_reclaim_mode(priority
, sc
, true);
1408 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1411 local_irq_disable();
1412 if (current_is_kswapd())
1413 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1414 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1416 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1418 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1420 nr_scanned
, nr_reclaimed
,
1422 trace_shrink_flags(file
, sc
->lumpy_reclaim_mode
));
1423 return nr_reclaimed
;
1427 * This moves pages from the active list to the inactive list.
1429 * We move them the other way if the page is referenced by one or more
1430 * processes, from rmap.
1432 * If the pages are mostly unmapped, the processing is fast and it is
1433 * appropriate to hold zone->lru_lock across the whole operation. But if
1434 * the pages are mapped, the processing is slow (page_referenced()) so we
1435 * should drop zone->lru_lock around each page. It's impossible to balance
1436 * this, so instead we remove the pages from the LRU while processing them.
1437 * It is safe to rely on PG_active against the non-LRU pages in here because
1438 * nobody will play with that bit on a non-LRU page.
1440 * The downside is that we have to touch page->_count against each page.
1441 * But we had to alter page->flags anyway.
1444 static void move_active_pages_to_lru(struct zone
*zone
,
1445 struct list_head
*list
,
1448 unsigned long pgmoved
= 0;
1449 struct pagevec pvec
;
1452 pagevec_init(&pvec
, 1);
1454 while (!list_empty(list
)) {
1455 page
= lru_to_page(list
);
1457 VM_BUG_ON(PageLRU(page
));
1460 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1461 mem_cgroup_add_lru_list(page
, lru
);
1464 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1465 spin_unlock_irq(&zone
->lru_lock
);
1466 if (buffer_heads_over_limit
)
1467 pagevec_strip(&pvec
);
1468 __pagevec_release(&pvec
);
1469 spin_lock_irq(&zone
->lru_lock
);
1472 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1473 if (!is_active_lru(lru
))
1474 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1477 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1478 struct scan_control
*sc
, int priority
, int file
)
1480 unsigned long nr_taken
;
1481 unsigned long pgscanned
;
1482 unsigned long vm_flags
;
1483 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1484 LIST_HEAD(l_active
);
1485 LIST_HEAD(l_inactive
);
1487 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1488 unsigned long nr_rotated
= 0;
1491 spin_lock_irq(&zone
->lru_lock
);
1492 if (scanning_global_lru(sc
)) {
1493 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1494 &pgscanned
, sc
->order
,
1495 ISOLATE_ACTIVE
, zone
,
1497 zone
->pages_scanned
+= pgscanned
;
1499 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1500 &pgscanned
, sc
->order
,
1501 ISOLATE_ACTIVE
, zone
,
1502 sc
->mem_cgroup
, 1, file
);
1504 * mem_cgroup_isolate_pages() keeps track of
1505 * scanned pages on its own.
1509 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1511 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1513 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1515 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1516 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1517 spin_unlock_irq(&zone
->lru_lock
);
1519 while (!list_empty(&l_hold
)) {
1521 page
= lru_to_page(&l_hold
);
1522 list_del(&page
->lru
);
1524 if (unlikely(!page_evictable(page
, NULL
))) {
1525 putback_lru_page(page
);
1529 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1532 * Identify referenced, file-backed active pages and
1533 * give them one more trip around the active list. So
1534 * that executable code get better chances to stay in
1535 * memory under moderate memory pressure. Anon pages
1536 * are not likely to be evicted by use-once streaming
1537 * IO, plus JVM can create lots of anon VM_EXEC pages,
1538 * so we ignore them here.
1540 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1541 list_add(&page
->lru
, &l_active
);
1546 ClearPageActive(page
); /* we are de-activating */
1547 list_add(&page
->lru
, &l_inactive
);
1551 * Move pages back to the lru list.
1553 spin_lock_irq(&zone
->lru_lock
);
1555 * Count referenced pages from currently used mappings as rotated,
1556 * even though only some of them are actually re-activated. This
1557 * helps balance scan pressure between file and anonymous pages in
1560 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1562 move_active_pages_to_lru(zone
, &l_active
,
1563 LRU_ACTIVE
+ file
* LRU_FILE
);
1564 move_active_pages_to_lru(zone
, &l_inactive
,
1565 LRU_BASE
+ file
* LRU_FILE
);
1566 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1567 spin_unlock_irq(&zone
->lru_lock
);
1571 static int inactive_anon_is_low_global(struct zone
*zone
)
1573 unsigned long active
, inactive
;
1575 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1576 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1578 if (inactive
* zone
->inactive_ratio
< active
)
1585 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1586 * @zone: zone to check
1587 * @sc: scan control of this context
1589 * Returns true if the zone does not have enough inactive anon pages,
1590 * meaning some active anon pages need to be deactivated.
1592 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1597 * If we don't have swap space, anonymous page deactivation
1600 if (!total_swap_pages
)
1603 if (scanning_global_lru(sc
))
1604 low
= inactive_anon_is_low_global(zone
);
1606 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1610 static inline int inactive_anon_is_low(struct zone
*zone
,
1611 struct scan_control
*sc
)
1617 static int inactive_file_is_low_global(struct zone
*zone
)
1619 unsigned long active
, inactive
;
1621 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1622 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1624 return (active
> inactive
);
1628 * inactive_file_is_low - check if file pages need to be deactivated
1629 * @zone: zone to check
1630 * @sc: scan control of this context
1632 * When the system is doing streaming IO, memory pressure here
1633 * ensures that active file pages get deactivated, until more
1634 * than half of the file pages are on the inactive list.
1636 * Once we get to that situation, protect the system's working
1637 * set from being evicted by disabling active file page aging.
1639 * This uses a different ratio than the anonymous pages, because
1640 * the page cache uses a use-once replacement algorithm.
1642 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1646 if (scanning_global_lru(sc
))
1647 low
= inactive_file_is_low_global(zone
);
1649 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1653 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1657 return inactive_file_is_low(zone
, sc
);
1659 return inactive_anon_is_low(zone
, sc
);
1662 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1663 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1665 int file
= is_file_lru(lru
);
1667 if (is_active_lru(lru
)) {
1668 if (inactive_list_is_low(zone
, sc
, file
))
1669 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1673 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1677 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1678 * until we collected @swap_cluster_max pages to scan.
1680 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1681 unsigned long *nr_saved_scan
)
1685 *nr_saved_scan
+= nr_to_scan
;
1686 nr
= *nr_saved_scan
;
1688 if (nr
>= SWAP_CLUSTER_MAX
)
1697 * Determine how aggressively the anon and file LRU lists should be
1698 * scanned. The relative value of each set of LRU lists is determined
1699 * by looking at the fraction of the pages scanned we did rotate back
1700 * onto the active list instead of evict.
1702 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1704 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1705 unsigned long *nr
, int priority
)
1707 unsigned long anon
, file
, free
;
1708 unsigned long anon_prio
, file_prio
;
1709 unsigned long ap
, fp
;
1710 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1711 u64 fraction
[2], denominator
;
1715 /* If we have no swap space, do not bother scanning anon pages. */
1716 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1724 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1725 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1726 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1727 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1729 if (scanning_global_lru(sc
)) {
1730 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1731 /* If we have very few page cache pages,
1732 force-scan anon pages. */
1733 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1742 * With swappiness at 100, anonymous and file have the same priority.
1743 * This scanning priority is essentially the inverse of IO cost.
1745 anon_prio
= sc
->swappiness
;
1746 file_prio
= 200 - sc
->swappiness
;
1749 * OK, so we have swap space and a fair amount of page cache
1750 * pages. We use the recently rotated / recently scanned
1751 * ratios to determine how valuable each cache is.
1753 * Because workloads change over time (and to avoid overflow)
1754 * we keep these statistics as a floating average, which ends
1755 * up weighing recent references more than old ones.
1757 * anon in [0], file in [1]
1759 spin_lock_irq(&zone
->lru_lock
);
1760 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1761 reclaim_stat
->recent_scanned
[0] /= 2;
1762 reclaim_stat
->recent_rotated
[0] /= 2;
1765 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1766 reclaim_stat
->recent_scanned
[1] /= 2;
1767 reclaim_stat
->recent_rotated
[1] /= 2;
1771 * The amount of pressure on anon vs file pages is inversely
1772 * proportional to the fraction of recently scanned pages on
1773 * each list that were recently referenced and in active use.
1775 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1776 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1778 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1779 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1780 spin_unlock_irq(&zone
->lru_lock
);
1784 denominator
= ap
+ fp
+ 1;
1786 for_each_evictable_lru(l
) {
1787 int file
= is_file_lru(l
);
1790 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1791 if (priority
|| noswap
) {
1793 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1795 nr
[l
] = nr_scan_try_batch(scan
,
1796 &reclaim_stat
->nr_saved_scan
[l
]);
1801 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1803 static void shrink_zone(int priority
, struct zone
*zone
,
1804 struct scan_control
*sc
)
1806 unsigned long nr
[NR_LRU_LISTS
];
1807 unsigned long nr_to_scan
;
1809 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1810 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1812 get_scan_count(zone
, sc
, nr
, priority
);
1814 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1815 nr
[LRU_INACTIVE_FILE
]) {
1816 for_each_evictable_lru(l
) {
1818 nr_to_scan
= min_t(unsigned long,
1819 nr
[l
], SWAP_CLUSTER_MAX
);
1820 nr
[l
] -= nr_to_scan
;
1822 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1823 zone
, sc
, priority
);
1827 * On large memory systems, scan >> priority can become
1828 * really large. This is fine for the starting priority;
1829 * we want to put equal scanning pressure on each zone.
1830 * However, if the VM has a harder time of freeing pages,
1831 * with multiple processes reclaiming pages, the total
1832 * freeing target can get unreasonably large.
1834 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1838 sc
->nr_reclaimed
= nr_reclaimed
;
1841 * Even if we did not try to evict anon pages at all, we want to
1842 * rebalance the anon lru active/inactive ratio.
1844 if (inactive_anon_is_low(zone
, sc
))
1845 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1847 throttle_vm_writeout(sc
->gfp_mask
);
1851 * This is the direct reclaim path, for page-allocating processes. We only
1852 * try to reclaim pages from zones which will satisfy the caller's allocation
1855 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1857 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1859 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1860 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1861 * zone defense algorithm.
1863 * If a zone is deemed to be full of pinned pages then just give it a light
1864 * scan then give up on it.
1866 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1867 struct scan_control
*sc
)
1872 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1873 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1874 if (!populated_zone(zone
))
1877 * Take care memory controller reclaiming has small influence
1880 if (scanning_global_lru(sc
)) {
1881 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1883 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1884 continue; /* Let kswapd poll it */
1887 shrink_zone(priority
, zone
, sc
);
1891 static bool zone_reclaimable(struct zone
*zone
)
1893 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
1897 * As hibernation is going on, kswapd is freezed so that it can't mark
1898 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1899 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1901 static bool all_unreclaimable(struct zonelist
*zonelist
,
1902 struct scan_control
*sc
)
1906 bool all_unreclaimable
= true;
1908 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1909 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1910 if (!populated_zone(zone
))
1912 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1914 if (zone_reclaimable(zone
)) {
1915 all_unreclaimable
= false;
1920 return all_unreclaimable
;
1924 * This is the main entry point to direct page reclaim.
1926 * If a full scan of the inactive list fails to free enough memory then we
1927 * are "out of memory" and something needs to be killed.
1929 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1930 * high - the zone may be full of dirty or under-writeback pages, which this
1931 * caller can't do much about. We kick the writeback threads and take explicit
1932 * naps in the hope that some of these pages can be written. But if the
1933 * allocating task holds filesystem locks which prevent writeout this might not
1934 * work, and the allocation attempt will fail.
1936 * returns: 0, if no pages reclaimed
1937 * else, the number of pages reclaimed
1939 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1940 struct scan_control
*sc
)
1943 unsigned long total_scanned
= 0;
1944 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1947 unsigned long writeback_threshold
;
1950 delayacct_freepages_start();
1952 if (scanning_global_lru(sc
))
1953 count_vm_event(ALLOCSTALL
);
1955 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1958 disable_swap_token();
1959 shrink_zones(priority
, zonelist
, sc
);
1961 * Don't shrink slabs when reclaiming memory from
1962 * over limit cgroups
1964 if (scanning_global_lru(sc
)) {
1965 unsigned long lru_pages
= 0;
1966 for_each_zone_zonelist(zone
, z
, zonelist
,
1967 gfp_zone(sc
->gfp_mask
)) {
1968 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1971 lru_pages
+= zone_reclaimable_pages(zone
);
1974 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1975 if (reclaim_state
) {
1976 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1977 reclaim_state
->reclaimed_slab
= 0;
1980 total_scanned
+= sc
->nr_scanned
;
1981 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
1985 * Try to write back as many pages as we just scanned. This
1986 * tends to cause slow streaming writers to write data to the
1987 * disk smoothly, at the dirtying rate, which is nice. But
1988 * that's undesirable in laptop mode, where we *want* lumpy
1989 * writeout. So in laptop mode, write out the whole world.
1991 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1992 if (total_scanned
> writeback_threshold
) {
1993 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
1994 sc
->may_writepage
= 1;
1997 /* Take a nap, wait for some writeback to complete */
1998 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
1999 priority
< DEF_PRIORITY
- 2) {
2000 struct zone
*preferred_zone
;
2002 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2003 NULL
, &preferred_zone
);
2004 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2009 delayacct_freepages_end();
2012 if (sc
->nr_reclaimed
)
2013 return sc
->nr_reclaimed
;
2015 /* top priority shrink_zones still had more to do? don't OOM, then */
2016 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2022 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2023 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2025 unsigned long nr_reclaimed
;
2026 struct scan_control sc
= {
2027 .gfp_mask
= gfp_mask
,
2028 .may_writepage
= !laptop_mode
,
2029 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2032 .swappiness
= vm_swappiness
,
2035 .nodemask
= nodemask
,
2038 trace_mm_vmscan_direct_reclaim_begin(order
,
2042 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2044 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2046 return nr_reclaimed
;
2049 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2051 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2052 gfp_t gfp_mask
, bool noswap
,
2053 unsigned int swappiness
,
2056 struct scan_control sc
= {
2057 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2058 .may_writepage
= !laptop_mode
,
2060 .may_swap
= !noswap
,
2061 .swappiness
= swappiness
,
2065 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2066 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2068 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2073 * NOTE: Although we can get the priority field, using it
2074 * here is not a good idea, since it limits the pages we can scan.
2075 * if we don't reclaim here, the shrink_zone from balance_pgdat
2076 * will pick up pages from other mem cgroup's as well. We hack
2077 * the priority and make it zero.
2079 shrink_zone(0, zone
, &sc
);
2081 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2083 return sc
.nr_reclaimed
;
2086 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2089 unsigned int swappiness
)
2091 struct zonelist
*zonelist
;
2092 unsigned long nr_reclaimed
;
2093 struct scan_control sc
= {
2094 .may_writepage
= !laptop_mode
,
2096 .may_swap
= !noswap
,
2097 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2098 .swappiness
= swappiness
,
2100 .mem_cgroup
= mem_cont
,
2101 .nodemask
= NULL
, /* we don't care the placement */
2104 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2105 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2106 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2108 trace_mm_vmscan_memcg_reclaim_begin(0,
2112 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2114 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2116 return nr_reclaimed
;
2120 /* is kswapd sleeping prematurely? */
2121 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
2125 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2129 /* If after HZ/10, a zone is below the high mark, it's premature */
2130 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2131 struct zone
*zone
= pgdat
->node_zones
+ i
;
2133 if (!populated_zone(zone
))
2136 if (zone
->all_unreclaimable
)
2139 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
2148 * For kswapd, balance_pgdat() will work across all this node's zones until
2149 * they are all at high_wmark_pages(zone).
2151 * Returns the number of pages which were actually freed.
2153 * There is special handling here for zones which are full of pinned pages.
2154 * This can happen if the pages are all mlocked, or if they are all used by
2155 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2156 * What we do is to detect the case where all pages in the zone have been
2157 * scanned twice and there has been zero successful reclaim. Mark the zone as
2158 * dead and from now on, only perform a short scan. Basically we're polling
2159 * the zone for when the problem goes away.
2161 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2163 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2164 * lower zones regardless of the number of free pages in the lower zones. This
2165 * interoperates with the page allocator fallback scheme to ensure that aging
2166 * of pages is balanced across the zones.
2168 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
2173 unsigned long total_scanned
;
2174 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2175 struct scan_control sc
= {
2176 .gfp_mask
= GFP_KERNEL
,
2180 * kswapd doesn't want to be bailed out while reclaim. because
2181 * we want to put equal scanning pressure on each zone.
2183 .nr_to_reclaim
= ULONG_MAX
,
2184 .swappiness
= vm_swappiness
,
2190 sc
.nr_reclaimed
= 0;
2191 sc
.may_writepage
= !laptop_mode
;
2192 count_vm_event(PAGEOUTRUN
);
2194 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2195 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2196 unsigned long lru_pages
= 0;
2197 int has_under_min_watermark_zone
= 0;
2199 /* The swap token gets in the way of swapout... */
2201 disable_swap_token();
2206 * Scan in the highmem->dma direction for the highest
2207 * zone which needs scanning
2209 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2210 struct zone
*zone
= pgdat
->node_zones
+ i
;
2212 if (!populated_zone(zone
))
2215 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2219 * Do some background aging of the anon list, to give
2220 * pages a chance to be referenced before reclaiming.
2222 if (inactive_anon_is_low(zone
, &sc
))
2223 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2226 if (!zone_watermark_ok(zone
, order
,
2227 high_wmark_pages(zone
), 0, 0)) {
2235 for (i
= 0; i
<= end_zone
; i
++) {
2236 struct zone
*zone
= pgdat
->node_zones
+ i
;
2238 lru_pages
+= zone_reclaimable_pages(zone
);
2242 * Now scan the zone in the dma->highmem direction, stopping
2243 * at the last zone which needs scanning.
2245 * We do this because the page allocator works in the opposite
2246 * direction. This prevents the page allocator from allocating
2247 * pages behind kswapd's direction of progress, which would
2248 * cause too much scanning of the lower zones.
2250 for (i
= 0; i
<= end_zone
; i
++) {
2251 struct zone
*zone
= pgdat
->node_zones
+ i
;
2254 if (!populated_zone(zone
))
2257 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2263 * Call soft limit reclaim before calling shrink_zone.
2264 * For now we ignore the return value
2266 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2269 * We put equal pressure on every zone, unless one
2270 * zone has way too many pages free already.
2272 if (!zone_watermark_ok(zone
, order
,
2273 8*high_wmark_pages(zone
), end_zone
, 0))
2274 shrink_zone(priority
, zone
, &sc
);
2275 reclaim_state
->reclaimed_slab
= 0;
2276 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2278 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2279 total_scanned
+= sc
.nr_scanned
;
2280 if (zone
->all_unreclaimable
)
2282 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2283 zone
->all_unreclaimable
= 1;
2285 * If we've done a decent amount of scanning and
2286 * the reclaim ratio is low, start doing writepage
2287 * even in laptop mode
2289 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2290 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2291 sc
.may_writepage
= 1;
2293 if (!zone_watermark_ok(zone
, order
,
2294 high_wmark_pages(zone
), end_zone
, 0)) {
2297 * We are still under min water mark. This
2298 * means that we have a GFP_ATOMIC allocation
2299 * failure risk. Hurry up!
2301 if (!zone_watermark_ok(zone
, order
,
2302 min_wmark_pages(zone
), end_zone
, 0))
2303 has_under_min_watermark_zone
= 1;
2306 * If a zone reaches its high watermark,
2307 * consider it to be no longer congested. It's
2308 * possible there are dirty pages backed by
2309 * congested BDIs but as pressure is relieved,
2310 * spectulatively avoid congestion waits
2312 zone_clear_flag(zone
, ZONE_CONGESTED
);
2317 break; /* kswapd: all done */
2319 * OK, kswapd is getting into trouble. Take a nap, then take
2320 * another pass across the zones.
2322 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2323 if (has_under_min_watermark_zone
)
2324 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2326 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2330 * We do this so kswapd doesn't build up large priorities for
2331 * example when it is freeing in parallel with allocators. It
2332 * matches the direct reclaim path behaviour in terms of impact
2333 * on zone->*_priority.
2335 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2339 if (!all_zones_ok
) {
2345 * Fragmentation may mean that the system cannot be
2346 * rebalanced for high-order allocations in all zones.
2347 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2348 * it means the zones have been fully scanned and are still
2349 * not balanced. For high-order allocations, there is
2350 * little point trying all over again as kswapd may
2353 * Instead, recheck all watermarks at order-0 as they
2354 * are the most important. If watermarks are ok, kswapd will go
2355 * back to sleep. High-order users can still perform direct
2356 * reclaim if they wish.
2358 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2359 order
= sc
.order
= 0;
2364 return sc
.nr_reclaimed
;
2368 * The background pageout daemon, started as a kernel thread
2369 * from the init process.
2371 * This basically trickles out pages so that we have _some_
2372 * free memory available even if there is no other activity
2373 * that frees anything up. This is needed for things like routing
2374 * etc, where we otherwise might have all activity going on in
2375 * asynchronous contexts that cannot page things out.
2377 * If there are applications that are active memory-allocators
2378 * (most normal use), this basically shouldn't matter.
2380 static int kswapd(void *p
)
2382 unsigned long order
;
2383 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2384 struct task_struct
*tsk
= current
;
2386 struct reclaim_state reclaim_state
= {
2387 .reclaimed_slab
= 0,
2389 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2391 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2393 if (!cpumask_empty(cpumask
))
2394 set_cpus_allowed_ptr(tsk
, cpumask
);
2395 current
->reclaim_state
= &reclaim_state
;
2398 * Tell the memory management that we're a "memory allocator",
2399 * and that if we need more memory we should get access to it
2400 * regardless (see "__alloc_pages()"). "kswapd" should
2401 * never get caught in the normal page freeing logic.
2403 * (Kswapd normally doesn't need memory anyway, but sometimes
2404 * you need a small amount of memory in order to be able to
2405 * page out something else, and this flag essentially protects
2406 * us from recursively trying to free more memory as we're
2407 * trying to free the first piece of memory in the first place).
2409 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2414 unsigned long new_order
;
2417 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2418 new_order
= pgdat
->kswapd_max_order
;
2419 pgdat
->kswapd_max_order
= 0;
2420 if (order
< new_order
) {
2422 * Don't sleep if someone wants a larger 'order'
2427 if (!freezing(current
) && !kthread_should_stop()) {
2430 /* Try to sleep for a short interval */
2431 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2432 remaining
= schedule_timeout(HZ
/10);
2433 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2434 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2438 * After a short sleep, check if it was a
2439 * premature sleep. If not, then go fully
2440 * to sleep until explicitly woken up
2442 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2443 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2447 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2449 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2453 order
= pgdat
->kswapd_max_order
;
2455 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2457 ret
= try_to_freeze();
2458 if (kthread_should_stop())
2462 * We can speed up thawing tasks if we don't call balance_pgdat
2463 * after returning from the refrigerator
2466 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2467 balance_pgdat(pgdat
, order
);
2474 * A zone is low on free memory, so wake its kswapd task to service it.
2476 void wakeup_kswapd(struct zone
*zone
, int order
)
2480 if (!populated_zone(zone
))
2483 pgdat
= zone
->zone_pgdat
;
2484 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2486 if (pgdat
->kswapd_max_order
< order
)
2487 pgdat
->kswapd_max_order
= order
;
2488 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2489 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2491 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2493 wake_up_interruptible(&pgdat
->kswapd_wait
);
2497 * The reclaimable count would be mostly accurate.
2498 * The less reclaimable pages may be
2499 * - mlocked pages, which will be moved to unevictable list when encountered
2500 * - mapped pages, which may require several travels to be reclaimed
2501 * - dirty pages, which is not "instantly" reclaimable
2503 unsigned long global_reclaimable_pages(void)
2507 nr
= global_page_state(NR_ACTIVE_FILE
) +
2508 global_page_state(NR_INACTIVE_FILE
);
2510 if (nr_swap_pages
> 0)
2511 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2512 global_page_state(NR_INACTIVE_ANON
);
2517 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2521 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2522 zone_page_state(zone
, NR_INACTIVE_FILE
);
2524 if (nr_swap_pages
> 0)
2525 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2526 zone_page_state(zone
, NR_INACTIVE_ANON
);
2531 #ifdef CONFIG_HIBERNATION
2533 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2536 * Rather than trying to age LRUs the aim is to preserve the overall
2537 * LRU order by reclaiming preferentially
2538 * inactive > active > active referenced > active mapped
2540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2542 struct reclaim_state reclaim_state
;
2543 struct scan_control sc
= {
2544 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2548 .nr_to_reclaim
= nr_to_reclaim
,
2549 .hibernation_mode
= 1,
2550 .swappiness
= vm_swappiness
,
2553 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2554 struct task_struct
*p
= current
;
2555 unsigned long nr_reclaimed
;
2557 p
->flags
|= PF_MEMALLOC
;
2558 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2559 reclaim_state
.reclaimed_slab
= 0;
2560 p
->reclaim_state
= &reclaim_state
;
2562 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2564 p
->reclaim_state
= NULL
;
2565 lockdep_clear_current_reclaim_state();
2566 p
->flags
&= ~PF_MEMALLOC
;
2568 return nr_reclaimed
;
2570 #endif /* CONFIG_HIBERNATION */
2572 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2573 not required for correctness. So if the last cpu in a node goes
2574 away, we get changed to run anywhere: as the first one comes back,
2575 restore their cpu bindings. */
2576 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2577 unsigned long action
, void *hcpu
)
2581 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2582 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2583 pg_data_t
*pgdat
= NODE_DATA(nid
);
2584 const struct cpumask
*mask
;
2586 mask
= cpumask_of_node(pgdat
->node_id
);
2588 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2589 /* One of our CPUs online: restore mask */
2590 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2597 * This kswapd start function will be called by init and node-hot-add.
2598 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2600 int kswapd_run(int nid
)
2602 pg_data_t
*pgdat
= NODE_DATA(nid
);
2608 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2609 if (IS_ERR(pgdat
->kswapd
)) {
2610 /* failure at boot is fatal */
2611 BUG_ON(system_state
== SYSTEM_BOOTING
);
2612 printk("Failed to start kswapd on node %d\n",nid
);
2619 * Called by memory hotplug when all memory in a node is offlined.
2621 void kswapd_stop(int nid
)
2623 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2626 kthread_stop(kswapd
);
2629 static int __init
kswapd_init(void)
2634 for_each_node_state(nid
, N_HIGH_MEMORY
)
2636 hotcpu_notifier(cpu_callback
, 0);
2640 module_init(kswapd_init
)
2646 * If non-zero call zone_reclaim when the number of free pages falls below
2649 int zone_reclaim_mode __read_mostly
;
2651 #define RECLAIM_OFF 0
2652 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2653 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2654 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2657 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2658 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2661 #define ZONE_RECLAIM_PRIORITY 4
2664 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2667 int sysctl_min_unmapped_ratio
= 1;
2670 * If the number of slab pages in a zone grows beyond this percentage then
2671 * slab reclaim needs to occur.
2673 int sysctl_min_slab_ratio
= 5;
2675 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2677 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2678 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2679 zone_page_state(zone
, NR_ACTIVE_FILE
);
2682 * It's possible for there to be more file mapped pages than
2683 * accounted for by the pages on the file LRU lists because
2684 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2686 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2689 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2690 static long zone_pagecache_reclaimable(struct zone
*zone
)
2692 long nr_pagecache_reclaimable
;
2696 * If RECLAIM_SWAP is set, then all file pages are considered
2697 * potentially reclaimable. Otherwise, we have to worry about
2698 * pages like swapcache and zone_unmapped_file_pages() provides
2701 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2702 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2704 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2706 /* If we can't clean pages, remove dirty pages from consideration */
2707 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2708 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2710 /* Watch for any possible underflows due to delta */
2711 if (unlikely(delta
> nr_pagecache_reclaimable
))
2712 delta
= nr_pagecache_reclaimable
;
2714 return nr_pagecache_reclaimable
- delta
;
2718 * Try to free up some pages from this zone through reclaim.
2720 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2722 /* Minimum pages needed in order to stay on node */
2723 const unsigned long nr_pages
= 1 << order
;
2724 struct task_struct
*p
= current
;
2725 struct reclaim_state reclaim_state
;
2727 struct scan_control sc
= {
2728 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2729 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2731 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2733 .gfp_mask
= gfp_mask
,
2734 .swappiness
= vm_swappiness
,
2737 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2741 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2742 * and we also need to be able to write out pages for RECLAIM_WRITE
2745 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2746 lockdep_set_current_reclaim_state(gfp_mask
);
2747 reclaim_state
.reclaimed_slab
= 0;
2748 p
->reclaim_state
= &reclaim_state
;
2750 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2752 * Free memory by calling shrink zone with increasing
2753 * priorities until we have enough memory freed.
2755 priority
= ZONE_RECLAIM_PRIORITY
;
2757 shrink_zone(priority
, zone
, &sc
);
2759 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2762 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2763 if (nr_slab_pages0
> zone
->min_slab_pages
) {
2765 * shrink_slab() does not currently allow us to determine how
2766 * many pages were freed in this zone. So we take the current
2767 * number of slab pages and shake the slab until it is reduced
2768 * by the same nr_pages that we used for reclaiming unmapped
2771 * Note that shrink_slab will free memory on all zones and may
2775 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
2777 /* No reclaimable slab or very low memory pressure */
2778 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
2781 /* Freed enough memory */
2782 nr_slab_pages1
= zone_page_state(zone
,
2783 NR_SLAB_RECLAIMABLE
);
2784 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
2789 * Update nr_reclaimed by the number of slab pages we
2790 * reclaimed from this zone.
2792 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2793 if (nr_slab_pages1
< nr_slab_pages0
)
2794 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
2797 p
->reclaim_state
= NULL
;
2798 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2799 lockdep_clear_current_reclaim_state();
2800 return sc
.nr_reclaimed
>= nr_pages
;
2803 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2809 * Zone reclaim reclaims unmapped file backed pages and
2810 * slab pages if we are over the defined limits.
2812 * A small portion of unmapped file backed pages is needed for
2813 * file I/O otherwise pages read by file I/O will be immediately
2814 * thrown out if the zone is overallocated. So we do not reclaim
2815 * if less than a specified percentage of the zone is used by
2816 * unmapped file backed pages.
2818 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2819 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2820 return ZONE_RECLAIM_FULL
;
2822 if (zone
->all_unreclaimable
)
2823 return ZONE_RECLAIM_FULL
;
2826 * Do not scan if the allocation should not be delayed.
2828 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2829 return ZONE_RECLAIM_NOSCAN
;
2832 * Only run zone reclaim on the local zone or on zones that do not
2833 * have associated processors. This will favor the local processor
2834 * over remote processors and spread off node memory allocations
2835 * as wide as possible.
2837 node_id
= zone_to_nid(zone
);
2838 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2839 return ZONE_RECLAIM_NOSCAN
;
2841 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2842 return ZONE_RECLAIM_NOSCAN
;
2844 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2845 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2848 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2855 * page_evictable - test whether a page is evictable
2856 * @page: the page to test
2857 * @vma: the VMA in which the page is or will be mapped, may be NULL
2859 * Test whether page is evictable--i.e., should be placed on active/inactive
2860 * lists vs unevictable list. The vma argument is !NULL when called from the
2861 * fault path to determine how to instantate a new page.
2863 * Reasons page might not be evictable:
2864 * (1) page's mapping marked unevictable
2865 * (2) page is part of an mlocked VMA
2868 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2871 if (mapping_unevictable(page_mapping(page
)))
2874 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2881 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2882 * @page: page to check evictability and move to appropriate lru list
2883 * @zone: zone page is in
2885 * Checks a page for evictability and moves the page to the appropriate
2888 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2889 * have PageUnevictable set.
2891 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2893 VM_BUG_ON(PageActive(page
));
2896 ClearPageUnevictable(page
);
2897 if (page_evictable(page
, NULL
)) {
2898 enum lru_list l
= page_lru_base_type(page
);
2900 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2901 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2902 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2903 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2904 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2907 * rotate unevictable list
2909 SetPageUnevictable(page
);
2910 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2911 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2912 if (page_evictable(page
, NULL
))
2918 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2919 * @mapping: struct address_space to scan for evictable pages
2921 * Scan all pages in mapping. Check unevictable pages for
2922 * evictability and move them to the appropriate zone lru list.
2924 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2927 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2930 struct pagevec pvec
;
2932 if (mapping
->nrpages
== 0)
2935 pagevec_init(&pvec
, 0);
2936 while (next
< end
&&
2937 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2943 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2944 struct page
*page
= pvec
.pages
[i
];
2945 pgoff_t page_index
= page
->index
;
2946 struct zone
*pagezone
= page_zone(page
);
2949 if (page_index
> next
)
2953 if (pagezone
!= zone
) {
2955 spin_unlock_irq(&zone
->lru_lock
);
2957 spin_lock_irq(&zone
->lru_lock
);
2960 if (PageLRU(page
) && PageUnevictable(page
))
2961 check_move_unevictable_page(page
, zone
);
2964 spin_unlock_irq(&zone
->lru_lock
);
2965 pagevec_release(&pvec
);
2967 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2973 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2974 * @zone - zone of which to scan the unevictable list
2976 * Scan @zone's unevictable LRU lists to check for pages that have become
2977 * evictable. Move those that have to @zone's inactive list where they
2978 * become candidates for reclaim, unless shrink_inactive_zone() decides
2979 * to reactivate them. Pages that are still unevictable are rotated
2980 * back onto @zone's unevictable list.
2982 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2983 static void scan_zone_unevictable_pages(struct zone
*zone
)
2985 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2987 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2989 while (nr_to_scan
> 0) {
2990 unsigned long batch_size
= min(nr_to_scan
,
2991 SCAN_UNEVICTABLE_BATCH_SIZE
);
2993 spin_lock_irq(&zone
->lru_lock
);
2994 for (scan
= 0; scan
< batch_size
; scan
++) {
2995 struct page
*page
= lru_to_page(l_unevictable
);
2997 if (!trylock_page(page
))
3000 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3002 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3003 check_move_unevictable_page(page
, zone
);
3007 spin_unlock_irq(&zone
->lru_lock
);
3009 nr_to_scan
-= batch_size
;
3015 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3017 * A really big hammer: scan all zones' unevictable LRU lists to check for
3018 * pages that have become evictable. Move those back to the zones'
3019 * inactive list where they become candidates for reclaim.
3020 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3021 * and we add swap to the system. As such, it runs in the context of a task
3022 * that has possibly/probably made some previously unevictable pages
3025 static void scan_all_zones_unevictable_pages(void)
3029 for_each_zone(zone
) {
3030 scan_zone_unevictable_pages(zone
);
3035 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3036 * all nodes' unevictable lists for evictable pages
3038 unsigned long scan_unevictable_pages
;
3040 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3041 void __user
*buffer
,
3042 size_t *length
, loff_t
*ppos
)
3044 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3046 if (write
&& *(unsigned long *)table
->data
)
3047 scan_all_zones_unevictable_pages();
3049 scan_unevictable_pages
= 0;
3055 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3056 * a specified node's per zone unevictable lists for evictable pages.
3059 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3060 struct sysdev_attribute
*attr
,
3063 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3066 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3067 struct sysdev_attribute
*attr
,
3068 const char *buf
, size_t count
)
3070 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3073 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3076 return 1; /* zero is no-op */
3078 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3079 if (!populated_zone(zone
))
3081 scan_zone_unevictable_pages(zone
);
3087 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3088 read_scan_unevictable_node
,
3089 write_scan_unevictable_node
);
3091 int scan_unevictable_register_node(struct node
*node
)
3093 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3096 void scan_unevictable_unregister_node(struct node
*node
)
3098 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);