2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node
);
63 EXPORT_PER_CPU_SYMBOL(numa_node
);
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
78 * Array of node states.
80 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
81 [N_POSSIBLE
] = NODE_MASK_ALL
,
82 [N_ONLINE
] = { { [0] = 1UL } },
84 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
86 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
88 [N_CPU
] = { { [0] = 1UL } },
91 EXPORT_SYMBOL(node_states
);
93 unsigned long totalram_pages __read_mostly
;
94 unsigned long totalreserve_pages __read_mostly
;
95 int percpu_pagelist_fraction
;
96 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask
;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex
));
113 if (saved_gfp_mask
) {
114 gfp_allowed_mask
= saved_gfp_mask
;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex
));
122 WARN_ON(saved_gfp_mask
);
123 saved_gfp_mask
= gfp_allowed_mask
;
124 gfp_allowed_mask
&= ~GFP_IOFS
;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly
;
132 static void __free_pages_ok(struct page
*page
, unsigned int order
);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
146 #ifdef CONFIG_ZONE_DMA
149 #ifdef CONFIG_ZONE_DMA32
152 #ifdef CONFIG_HIGHMEM
158 EXPORT_SYMBOL(totalram_pages
);
160 static char * const zone_names
[MAX_NR_ZONES
] = {
161 #ifdef CONFIG_ZONE_DMA
164 #ifdef CONFIG_ZONE_DMA32
168 #ifdef CONFIG_HIGHMEM
174 int min_free_kbytes
= 1024;
176 static unsigned long __meminitdata nr_kernel_pages
;
177 static unsigned long __meminitdata nr_all_pages
;
178 static unsigned long __meminitdata dma_reserve
;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
201 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
202 static int __meminitdata nr_nodemap_entries
;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
205 static unsigned long __initdata required_kernelcore
;
206 static unsigned long __initdata required_movablecore
;
207 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 EXPORT_SYMBOL(movable_zone
);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
215 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
216 int nr_online_nodes __read_mostly
= 1;
217 EXPORT_SYMBOL(nr_node_ids
);
218 EXPORT_SYMBOL(nr_online_nodes
);
221 int page_group_by_mobility_disabled __read_mostly
;
223 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
226 if (unlikely(page_group_by_mobility_disabled
))
227 migratetype
= MIGRATE_UNMOVABLE
;
229 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
230 PB_migrate
, PB_migrate_end
);
233 bool oom_killer_disabled __read_mostly
;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
240 unsigned long pfn
= page_to_pfn(page
);
243 seq
= zone_span_seqbegin(zone
);
244 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
246 else if (pfn
< zone
->zone_start_pfn
)
248 } while (zone_span_seqretry(zone
, seq
));
253 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
255 if (!pfn_valid_within(page_to_pfn(page
)))
257 if (zone
!= page_zone(page
))
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone
*zone
, struct page
*page
)
267 if (page_outside_zone_boundaries(zone
, page
))
269 if (!page_is_consistent(zone
, page
))
275 static inline int bad_range(struct zone
*zone
, struct page
*page
)
281 static void bad_page(struct page
*page
)
283 static unsigned long resume
;
284 static unsigned long nr_shown
;
285 static unsigned long nr_unshown
;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page
)) {
289 __ClearPageBuddy(page
);
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown
== 60) {
298 if (time_before(jiffies
, resume
)) {
304 "BUG: Bad page state: %lu messages suppressed\n",
311 resume
= jiffies
+ 60 * HZ
;
313 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
314 current
->comm
, page_to_pfn(page
));
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page
);
321 add_taint(TAINT_BAD_PAGE
);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page
*page
)
341 __free_pages_ok(page
, compound_order(page
));
344 void prep_compound_page(struct page
*page
, unsigned long order
)
347 int nr_pages
= 1 << order
;
349 set_compound_page_dtor(page
, free_compound_page
);
350 set_compound_order(page
, order
);
352 for (i
= 1; i
< nr_pages
; i
++) {
353 struct page
*p
= page
+ i
;
356 p
->first_page
= page
;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page
*page
, unsigned long order
)
364 int nr_pages
= 1 << order
;
367 if (unlikely(compound_order(page
) != order
) ||
368 unlikely(!PageHead(page
))) {
373 __ClearPageHead(page
);
375 for (i
= 1; i
< nr_pages
; i
++) {
376 struct page
*p
= page
+ i
;
378 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
388 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
397 for (i
= 0; i
< (1 << order
); i
++)
398 clear_highpage(page
+ i
);
401 static inline void set_page_order(struct page
*page
, int order
)
403 set_page_private(page
, order
);
404 __SetPageBuddy(page
);
407 static inline void rmv_page_order(struct page
*page
)
409 __ClearPageBuddy(page
);
410 set_page_private(page
, 0);
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
420 * For example, if the starting buddy (buddy2) is #8 its order
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
433 return page_idx
^ (1 << order
);
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
447 * For recording page's order, we use page_private(page).
449 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
452 if (!pfn_valid_within(page_to_pfn(buddy
)))
455 if (page_zone_id(page
) != page_zone_id(buddy
))
458 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
459 VM_BUG_ON(page_count(buddy
) != 0);
466 * Freeing function for a buddy system allocator.
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
489 static inline void __free_one_page(struct page
*page
,
490 struct zone
*zone
, unsigned int order
,
493 unsigned long page_idx
;
494 unsigned long combined_idx
;
495 unsigned long uninitialized_var(buddy_idx
);
498 if (unlikely(PageCompound(page
)))
499 if (unlikely(destroy_compound_page(page
, order
)))
502 VM_BUG_ON(migratetype
== -1);
504 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
506 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
507 VM_BUG_ON(bad_range(zone
, page
));
509 while (order
< MAX_ORDER
-1) {
510 buddy_idx
= __find_buddy_index(page_idx
, order
);
511 buddy
= page
+ (buddy_idx
- page_idx
);
512 if (!page_is_buddy(page
, buddy
, order
))
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy
->lru
);
517 zone
->free_area
[order
].nr_free
--;
518 rmv_page_order(buddy
);
519 combined_idx
= buddy_idx
& page_idx
;
520 page
= page
+ (combined_idx
- page_idx
);
521 page_idx
= combined_idx
;
524 set_page_order(page
, order
);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
535 struct page
*higher_page
, *higher_buddy
;
536 combined_idx
= buddy_idx
& page_idx
;
537 higher_page
= page
+ (combined_idx
- page_idx
);
538 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
539 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
540 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
541 list_add_tail(&page
->lru
,
542 &zone
->free_area
[order
].free_list
[migratetype
]);
547 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
549 zone
->free_area
[order
].nr_free
++;
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
557 static inline void free_page_mlock(struct page
*page
)
559 __dec_zone_page_state(page
, NR_MLOCK
);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
563 static inline int free_pages_check(struct page
*page
)
565 if (unlikely(page_mapcount(page
) |
566 (page
->mapping
!= NULL
) |
567 (atomic_read(&page
->_count
) != 0) |
568 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
572 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
573 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
588 static void free_pcppages_bulk(struct zone
*zone
, int count
,
589 struct per_cpu_pages
*pcp
)
595 spin_lock(&zone
->lock
);
596 zone
->all_unreclaimable
= 0;
597 zone
->pages_scanned
= 0;
601 struct list_head
*list
;
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
612 if (++migratetype
== MIGRATE_PCPTYPES
)
614 list
= &pcp
->lists
[migratetype
];
615 } while (list_empty(list
));
618 page
= list_entry(list
->prev
, struct page
, lru
);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page
->lru
);
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page
, zone
, 0, page_private(page
));
623 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
624 } while (--to_free
&& --batch_free
&& !list_empty(list
));
626 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
627 spin_unlock(&zone
->lock
);
630 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
633 spin_lock(&zone
->lock
);
634 zone
->all_unreclaimable
= 0;
635 zone
->pages_scanned
= 0;
637 __free_one_page(page
, zone
, order
, migratetype
);
638 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
639 spin_unlock(&zone
->lock
);
642 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
647 trace_mm_page_free_direct(page
, order
);
648 kmemcheck_free_shadow(page
, order
);
651 page
->mapping
= NULL
;
652 for (i
= 0; i
< (1 << order
); i
++)
653 bad
+= free_pages_check(page
+ i
);
657 if (!PageHighMem(page
)) {
658 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
659 debug_check_no_obj_freed(page_address(page
),
662 arch_free_page(page
, order
);
663 kernel_map_pages(page
, 1 << order
, 0);
668 static void __free_pages_ok(struct page
*page
, unsigned int order
)
671 int wasMlocked
= __TestClearPageMlocked(page
);
673 if (!free_pages_prepare(page
, order
))
676 local_irq_save(flags
);
677 if (unlikely(wasMlocked
))
678 free_page_mlock(page
);
679 __count_vm_events(PGFREE
, 1 << order
);
680 free_one_page(page_zone(page
), page
, order
,
681 get_pageblock_migratetype(page
));
682 local_irq_restore(flags
);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
691 __ClearPageReserved(page
);
692 set_page_count(page
, 0);
693 set_page_refcounted(page
);
699 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
700 struct page
*p
= &page
[loop
];
702 if (loop
+ 1 < BITS_PER_LONG
)
704 __ClearPageReserved(p
);
705 set_page_count(p
, 0);
708 set_page_refcounted(page
);
709 __free_pages(page
, order
);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
728 static inline void expand(struct zone
*zone
, struct page
*page
,
729 int low
, int high
, struct free_area
*area
,
732 unsigned long size
= 1 << high
;
738 VM_BUG_ON(bad_range(zone
, &page
[size
]));
739 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
741 set_page_order(&page
[size
], high
);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page
*page
)
750 if (unlikely(page_mapcount(page
) |
751 (page
->mapping
!= NULL
) |
752 (atomic_read(&page
->_count
) != 0) |
753 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
760 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
764 for (i
= 0; i
< (1 << order
); i
++) {
765 struct page
*p
= page
+ i
;
766 if (unlikely(check_new_page(p
)))
770 set_page_private(page
, 0);
771 set_page_refcounted(page
);
773 arch_alloc_page(page
, order
);
774 kernel_map_pages(page
, 1 << order
, 1);
776 if (gfp_flags
& __GFP_ZERO
)
777 prep_zero_page(page
, order
, gfp_flags
);
779 if (order
&& (gfp_flags
& __GFP_COMP
))
780 prep_compound_page(page
, order
);
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
790 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
793 unsigned int current_order
;
794 struct free_area
* area
;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
799 area
= &(zone
->free_area
[current_order
]);
800 if (list_empty(&area
->free_list
[migratetype
]))
803 page
= list_entry(area
->free_list
[migratetype
].next
,
805 list_del(&page
->lru
);
806 rmv_page_order(page
);
808 expand(zone
, page
, order
, current_order
, area
, migratetype
);
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
821 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
822 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
823 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
824 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone
*zone
,
833 struct page
*start_page
, struct page
*end_page
,
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
851 for (page
= start_page
; page
<= end_page
;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
855 if (!pfn_valid_within(page_to_pfn(page
))) {
860 if (!PageBuddy(page
)) {
865 order
= page_order(page
);
866 list_del(&page
->lru
);
868 &zone
->free_area
[order
].free_list
[migratetype
]);
870 pages_moved
+= 1 << order
;
876 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
879 unsigned long start_pfn
, end_pfn
;
880 struct page
*start_page
, *end_page
;
882 start_pfn
= page_to_pfn(page
);
883 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
884 start_page
= pfn_to_page(start_pfn
);
885 end_page
= start_page
+ pageblock_nr_pages
- 1;
886 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn
< zone
->zone_start_pfn
)
891 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
894 return move_freepages(zone
, start_page
, end_page
, migratetype
);
897 static void change_pageblock_range(struct page
*pageblock_page
,
898 int start_order
, int migratetype
)
900 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
902 while (nr_pageblocks
--) {
903 set_pageblock_migratetype(pageblock_page
, migratetype
);
904 pageblock_page
+= pageblock_nr_pages
;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page
*
910 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
912 struct free_area
* area
;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
920 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
921 migratetype
= fallbacks
[start_migratetype
][i
];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype
== MIGRATE_RESERVE
)
927 area
= &(zone
->free_area
[current_order
]);
928 if (list_empty(&area
->free_list
[migratetype
]))
931 page
= list_entry(area
->free_list
[migratetype
].next
,
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
942 start_migratetype
== MIGRATE_RECLAIMABLE
||
943 page_group_by_mobility_disabled
) {
945 pages
= move_freepages_block(zone
, page
,
948 /* Claim the whole block if over half of it is free */
949 if (pages
>= (1 << (pageblock_order
-1)) ||
950 page_group_by_mobility_disabled
)
951 set_pageblock_migratetype(page
,
954 migratetype
= start_migratetype
;
957 /* Remove the page from the freelists */
958 list_del(&page
->lru
);
959 rmv_page_order(page
);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order
>= pageblock_order
)
963 change_pageblock_range(page
, current_order
,
966 expand(zone
, page
, order
, current_order
, area
, migratetype
);
968 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
969 start_migratetype
, migratetype
);
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
988 page
= __rmqueue_smallest(zone
, order
, migratetype
);
990 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
991 page
= __rmqueue_fallback(zone
, order
, migratetype
);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
999 migratetype
= MIGRATE_RESERVE
;
1004 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1014 unsigned long count
, struct list_head
*list
,
1015 int migratetype
, int cold
)
1019 spin_lock(&zone
->lock
);
1020 for (i
= 0; i
< count
; ++i
) {
1021 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1022 if (unlikely(page
== NULL
))
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1034 if (likely(cold
== 0))
1035 list_add(&page
->lru
, list
);
1037 list_add_tail(&page
->lru
, list
);
1038 set_page_private(page
, migratetype
);
1041 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1042 spin_unlock(&zone
->lock
);
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1057 unsigned long flags
;
1060 local_irq_save(flags
);
1061 if (pcp
->count
>= pcp
->batch
)
1062 to_drain
= pcp
->batch
;
1064 to_drain
= pcp
->count
;
1065 free_pcppages_bulk(zone
, to_drain
, pcp
);
1066 pcp
->count
-= to_drain
;
1067 local_irq_restore(flags
);
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1078 static void drain_pages(unsigned int cpu
)
1080 unsigned long flags
;
1083 for_each_populated_zone(zone
) {
1084 struct per_cpu_pageset
*pset
;
1085 struct per_cpu_pages
*pcp
;
1087 local_irq_save(flags
);
1088 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1091 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1093 local_irq_restore(flags
);
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 void drain_local_pages(void *arg
)
1102 drain_pages(smp_processor_id());
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 void drain_all_pages(void)
1110 on_each_cpu(drain_local_pages
, NULL
, 1);
1113 #ifdef CONFIG_HIBERNATION
1115 void mark_free_pages(struct zone
*zone
)
1117 unsigned long pfn
, max_zone_pfn
;
1118 unsigned long flags
;
1120 struct list_head
*curr
;
1122 if (!zone
->spanned_pages
)
1125 spin_lock_irqsave(&zone
->lock
, flags
);
1127 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1128 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1129 if (pfn_valid(pfn
)) {
1130 struct page
*page
= pfn_to_page(pfn
);
1132 if (!swsusp_page_is_forbidden(page
))
1133 swsusp_unset_page_free(page
);
1136 for_each_migratetype_order(order
, t
) {
1137 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1140 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1141 for (i
= 0; i
< (1UL << order
); i
++)
1142 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1145 spin_unlock_irqrestore(&zone
->lock
, flags
);
1147 #endif /* CONFIG_PM */
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1153 void free_hot_cold_page(struct page
*page
, int cold
)
1155 struct zone
*zone
= page_zone(page
);
1156 struct per_cpu_pages
*pcp
;
1157 unsigned long flags
;
1159 int wasMlocked
= __TestClearPageMlocked(page
);
1161 if (!free_pages_prepare(page
, 0))
1164 migratetype
= get_pageblock_migratetype(page
);
1165 set_page_private(page
, migratetype
);
1166 local_irq_save(flags
);
1167 if (unlikely(wasMlocked
))
1168 free_page_mlock(page
);
1169 __count_vm_event(PGFREE
);
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1178 if (migratetype
>= MIGRATE_PCPTYPES
) {
1179 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1180 free_one_page(zone
, page
, 0, migratetype
);
1183 migratetype
= MIGRATE_MOVABLE
;
1186 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1188 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1190 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1192 if (pcp
->count
>= pcp
->high
) {
1193 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1194 pcp
->count
-= pcp
->batch
;
1198 local_irq_restore(flags
);
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1209 void split_page(struct page
*page
, unsigned int order
)
1213 VM_BUG_ON(PageCompound(page
));
1214 VM_BUG_ON(!page_count(page
));
1216 #ifdef CONFIG_KMEMCHECK
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1221 if (kmemcheck_page_is_tracked(page
))
1222 split_page(virt_to_page(page
[0].shadow
), order
);
1225 for (i
= 1; i
< (1 << order
); i
++)
1226 set_page_refcounted(page
+ i
);
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1239 int split_free_page(struct page
*page
)
1242 unsigned long watermark
;
1245 BUG_ON(!PageBuddy(page
));
1247 zone
= page_zone(page
);
1248 order
= page_order(page
);
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark
= low_wmark_pages(zone
) + (1 << order
);
1252 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1255 /* Remove page from free list */
1256 list_del(&page
->lru
);
1257 zone
->free_area
[order
].nr_free
--;
1258 rmv_page_order(page
);
1259 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1261 /* Split into individual pages */
1262 set_page_refcounted(page
);
1263 split_page(page
, order
);
1265 if (order
>= pageblock_order
- 1) {
1266 struct page
*endpage
= page
+ (1 << order
) - 1;
1267 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1268 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1280 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1281 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1284 unsigned long flags
;
1286 int cold
= !!(gfp_flags
& __GFP_COLD
);
1289 if (likely(order
== 0)) {
1290 struct per_cpu_pages
*pcp
;
1291 struct list_head
*list
;
1293 local_irq_save(flags
);
1294 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1295 list
= &pcp
->lists
[migratetype
];
1296 if (list_empty(list
)) {
1297 pcp
->count
+= rmqueue_bulk(zone
, 0,
1300 if (unlikely(list_empty(list
)))
1305 page
= list_entry(list
->prev
, struct page
, lru
);
1307 page
= list_entry(list
->next
, struct page
, lru
);
1309 list_del(&page
->lru
);
1312 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1314 * __GFP_NOFAIL is not to be used in new code.
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1323 WARN_ON_ONCE(order
> 1);
1325 spin_lock_irqsave(&zone
->lock
, flags
);
1326 page
= __rmqueue(zone
, order
, migratetype
);
1327 spin_unlock(&zone
->lock
);
1330 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1333 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1334 zone_statistics(preferred_zone
, zone
);
1335 local_irq_restore(flags
);
1337 VM_BUG_ON(bad_range(zone
, page
));
1338 if (prep_new_page(page
, order
, gfp_flags
))
1343 local_irq_restore(flags
);
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 static struct fail_page_alloc_attr
{
1363 struct fault_attr attr
;
1365 u32 ignore_gfp_highmem
;
1366 u32 ignore_gfp_wait
;
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 struct dentry
*ignore_gfp_highmem_file
;
1372 struct dentry
*ignore_gfp_wait_file
;
1373 struct dentry
*min_order_file
;
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 } fail_page_alloc
= {
1378 .attr
= FAULT_ATTR_INITIALIZER
,
1379 .ignore_gfp_wait
= 1,
1380 .ignore_gfp_highmem
= 1,
1384 static int __init
setup_fail_page_alloc(char *str
)
1386 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1388 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1390 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1392 if (order
< fail_page_alloc
.min_order
)
1394 if (gfp_mask
& __GFP_NOFAIL
)
1396 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1398 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1401 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 static int __init
fail_page_alloc_debugfs(void)
1408 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1412 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1416 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1418 fail_page_alloc
.ignore_gfp_wait_file
=
1419 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1420 &fail_page_alloc
.ignore_gfp_wait
);
1422 fail_page_alloc
.ignore_gfp_highmem_file
=
1423 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1424 &fail_page_alloc
.ignore_gfp_highmem
);
1425 fail_page_alloc
.min_order_file
=
1426 debugfs_create_u32("min-order", mode
, dir
,
1427 &fail_page_alloc
.min_order
);
1429 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1430 !fail_page_alloc
.ignore_gfp_highmem_file
||
1431 !fail_page_alloc
.min_order_file
) {
1433 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1434 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1435 debugfs_remove(fail_page_alloc
.min_order_file
);
1436 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1442 late_initcall(fail_page_alloc_debugfs
);
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 * Return true if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1459 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1460 int classzone_idx
, int alloc_flags
, long free_pages
)
1462 /* free_pages my go negative - that's OK */
1466 free_pages
-= (1 << order
) + 1;
1467 if (alloc_flags
& ALLOC_HIGH
)
1469 if (alloc_flags
& ALLOC_HARDER
)
1472 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1474 for (o
= 0; o
< order
; o
++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1478 /* Require fewer higher order pages to be free */
1481 if (free_pages
<= min
)
1487 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1488 int classzone_idx
, int alloc_flags
)
1490 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1491 zone_page_state(z
, NR_FREE_PAGES
));
1494 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1495 int classzone_idx
, int alloc_flags
)
1497 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1499 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1500 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1502 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1508 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1509 * skip over zones that are not allowed by the cpuset, or that have
1510 * been recently (in last second) found to be nearly full. See further
1511 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1512 * that have to skip over a lot of full or unallowed zones.
1514 * If the zonelist cache is present in the passed in zonelist, then
1515 * returns a pointer to the allowed node mask (either the current
1516 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1518 * If the zonelist cache is not available for this zonelist, does
1519 * nothing and returns NULL.
1521 * If the fullzones BITMAP in the zonelist cache is stale (more than
1522 * a second since last zap'd) then we zap it out (clear its bits.)
1524 * We hold off even calling zlc_setup, until after we've checked the
1525 * first zone in the zonelist, on the theory that most allocations will
1526 * be satisfied from that first zone, so best to examine that zone as
1527 * quickly as we can.
1529 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1531 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1532 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1534 zlc
= zonelist
->zlcache_ptr
;
1538 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1539 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1540 zlc
->last_full_zap
= jiffies
;
1543 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1544 &cpuset_current_mems_allowed
:
1545 &node_states
[N_HIGH_MEMORY
];
1546 return allowednodes
;
1550 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1551 * if it is worth looking at further for free memory:
1552 * 1) Check that the zone isn't thought to be full (doesn't have its
1553 * bit set in the zonelist_cache fullzones BITMAP).
1554 * 2) Check that the zones node (obtained from the zonelist_cache
1555 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1556 * Return true (non-zero) if zone is worth looking at further, or
1557 * else return false (zero) if it is not.
1559 * This check -ignores- the distinction between various watermarks,
1560 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1561 * found to be full for any variation of these watermarks, it will
1562 * be considered full for up to one second by all requests, unless
1563 * we are so low on memory on all allowed nodes that we are forced
1564 * into the second scan of the zonelist.
1566 * In the second scan we ignore this zonelist cache and exactly
1567 * apply the watermarks to all zones, even it is slower to do so.
1568 * We are low on memory in the second scan, and should leave no stone
1569 * unturned looking for a free page.
1571 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1572 nodemask_t
*allowednodes
)
1574 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1575 int i
; /* index of *z in zonelist zones */
1576 int n
; /* node that zone *z is on */
1578 zlc
= zonelist
->zlcache_ptr
;
1582 i
= z
- zonelist
->_zonerefs
;
1585 /* This zone is worth trying if it is allowed but not full */
1586 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1590 * Given 'z' scanning a zonelist, set the corresponding bit in
1591 * zlc->fullzones, so that subsequent attempts to allocate a page
1592 * from that zone don't waste time re-examining it.
1594 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1596 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1597 int i
; /* index of *z in zonelist zones */
1599 zlc
= zonelist
->zlcache_ptr
;
1603 i
= z
- zonelist
->_zonerefs
;
1605 set_bit(i
, zlc
->fullzones
);
1608 #else /* CONFIG_NUMA */
1610 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1615 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1616 nodemask_t
*allowednodes
)
1621 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1624 #endif /* CONFIG_NUMA */
1627 * get_page_from_freelist goes through the zonelist trying to allocate
1630 static struct page
*
1631 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1632 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1633 struct zone
*preferred_zone
, int migratetype
)
1636 struct page
*page
= NULL
;
1639 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1640 int zlc_active
= 0; /* set if using zonelist_cache */
1641 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1643 classzone_idx
= zone_idx(preferred_zone
);
1646 * Scan zonelist, looking for a zone with enough free.
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1649 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1650 high_zoneidx
, nodemask
) {
1651 if (NUMA_BUILD
&& zlc_active
&&
1652 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1654 if ((alloc_flags
& ALLOC_CPUSET
) &&
1655 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1658 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1659 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1663 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1664 if (zone_watermark_ok(zone
, order
, mark
,
1665 classzone_idx
, alloc_flags
))
1668 if (zone_reclaim_mode
== 0)
1669 goto this_zone_full
;
1671 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1673 case ZONE_RECLAIM_NOSCAN
:
1676 case ZONE_RECLAIM_FULL
:
1677 /* scanned but unreclaimable */
1678 goto this_zone_full
;
1680 /* did we reclaim enough */
1681 if (!zone_watermark_ok(zone
, order
, mark
,
1682 classzone_idx
, alloc_flags
))
1683 goto this_zone_full
;
1688 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1689 gfp_mask
, migratetype
);
1694 zlc_mark_zone_full(zonelist
, z
);
1696 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1698 * we do zlc_setup after the first zone is tried but only
1699 * if there are multiple nodes make it worthwhile
1701 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1707 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1708 /* Disable zlc cache for second zonelist scan */
1716 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1717 unsigned long pages_reclaimed
)
1719 /* Do not loop if specifically requested */
1720 if (gfp_mask
& __GFP_NORETRY
)
1724 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1725 * means __GFP_NOFAIL, but that may not be true in other
1728 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1732 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1733 * specified, then we retry until we no longer reclaim any pages
1734 * (above), or we've reclaimed an order of pages at least as
1735 * large as the allocation's order. In both cases, if the
1736 * allocation still fails, we stop retrying.
1738 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1742 * Don't let big-order allocations loop unless the caller
1743 * explicitly requests that.
1745 if (gfp_mask
& __GFP_NOFAIL
)
1751 static inline struct page
*
1752 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1753 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1754 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1759 /* Acquire the OOM killer lock for the zones in zonelist */
1760 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1761 schedule_timeout_uninterruptible(1);
1766 * Go through the zonelist yet one more time, keep very high watermark
1767 * here, this is only to catch a parallel oom killing, we must fail if
1768 * we're still under heavy pressure.
1770 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1771 order
, zonelist
, high_zoneidx
,
1772 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1773 preferred_zone
, migratetype
);
1777 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1778 /* The OOM killer will not help higher order allocs */
1779 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1781 /* The OOM killer does not needlessly kill tasks for lowmem */
1782 if (high_zoneidx
< ZONE_NORMAL
)
1785 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1786 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1787 * The caller should handle page allocation failure by itself if
1788 * it specifies __GFP_THISNODE.
1789 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1791 if (gfp_mask
& __GFP_THISNODE
)
1794 /* Exhausted what can be done so it's blamo time */
1795 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1798 clear_zonelist_oom(zonelist
, gfp_mask
);
1802 #ifdef CONFIG_COMPACTION
1803 /* Try memory compaction for high-order allocations before reclaim */
1804 static struct page
*
1805 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1806 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1807 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1808 int migratetype
, unsigned long *did_some_progress
,
1809 bool sync_migration
)
1813 if (!order
|| compaction_deferred(preferred_zone
))
1816 current
->flags
|= PF_MEMALLOC
;
1817 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1818 nodemask
, sync_migration
);
1819 current
->flags
&= ~PF_MEMALLOC
;
1820 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1822 /* Page migration frees to the PCP lists but we want merging */
1823 drain_pages(get_cpu());
1826 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1827 order
, zonelist
, high_zoneidx
,
1828 alloc_flags
, preferred_zone
,
1831 preferred_zone
->compact_considered
= 0;
1832 preferred_zone
->compact_defer_shift
= 0;
1833 count_vm_event(COMPACTSUCCESS
);
1838 * It's bad if compaction run occurs and fails.
1839 * The most likely reason is that pages exist,
1840 * but not enough to satisfy watermarks.
1842 count_vm_event(COMPACTFAIL
);
1843 defer_compaction(preferred_zone
);
1851 static inline struct page
*
1852 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1853 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1854 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1855 int migratetype
, unsigned long *did_some_progress
,
1856 bool sync_migration
)
1860 #endif /* CONFIG_COMPACTION */
1862 /* The really slow allocator path where we enter direct reclaim */
1863 static inline struct page
*
1864 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1865 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1866 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1867 int migratetype
, unsigned long *did_some_progress
)
1869 struct page
*page
= NULL
;
1870 struct reclaim_state reclaim_state
;
1871 bool drained
= false;
1875 /* We now go into synchronous reclaim */
1876 cpuset_memory_pressure_bump();
1877 current
->flags
|= PF_MEMALLOC
;
1878 lockdep_set_current_reclaim_state(gfp_mask
);
1879 reclaim_state
.reclaimed_slab
= 0;
1880 current
->reclaim_state
= &reclaim_state
;
1882 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1884 current
->reclaim_state
= NULL
;
1885 lockdep_clear_current_reclaim_state();
1886 current
->flags
&= ~PF_MEMALLOC
;
1890 if (unlikely(!(*did_some_progress
)))
1894 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1895 zonelist
, high_zoneidx
,
1896 alloc_flags
, preferred_zone
,
1900 * If an allocation failed after direct reclaim, it could be because
1901 * pages are pinned on the per-cpu lists. Drain them and try again
1903 if (!page
&& !drained
) {
1913 * This is called in the allocator slow-path if the allocation request is of
1914 * sufficient urgency to ignore watermarks and take other desperate measures
1916 static inline struct page
*
1917 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1918 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1919 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1925 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1926 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1927 preferred_zone
, migratetype
);
1929 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1930 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1931 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1937 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1938 enum zone_type high_zoneidx
,
1939 enum zone_type classzone_idx
)
1944 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1945 wakeup_kswapd(zone
, order
, classzone_idx
);
1949 gfp_to_alloc_flags(gfp_t gfp_mask
)
1951 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1952 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1954 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1955 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1958 * The caller may dip into page reserves a bit more if the caller
1959 * cannot run direct reclaim, or if the caller has realtime scheduling
1960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1963 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1967 * Not worth trying to allocate harder for
1968 * __GFP_NOMEMALLOC even if it can't schedule.
1970 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1971 alloc_flags
|= ALLOC_HARDER
;
1973 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1974 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1976 alloc_flags
&= ~ALLOC_CPUSET
;
1977 } else if (unlikely(rt_task(current
)) && !in_interrupt())
1978 alloc_flags
|= ALLOC_HARDER
;
1980 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1981 if (!in_interrupt() &&
1982 ((current
->flags
& PF_MEMALLOC
) ||
1983 unlikely(test_thread_flag(TIF_MEMDIE
))))
1984 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1990 static inline struct page
*
1991 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1992 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1993 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1996 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1997 struct page
*page
= NULL
;
1999 unsigned long pages_reclaimed
= 0;
2000 unsigned long did_some_progress
;
2001 bool sync_migration
= false;
2004 * In the slowpath, we sanity check order to avoid ever trying to
2005 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2006 * be using allocators in order of preference for an area that is
2009 if (order
>= MAX_ORDER
) {
2010 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2015 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2016 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2017 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2018 * using a larger set of nodes after it has established that the
2019 * allowed per node queues are empty and that nodes are
2022 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2026 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2027 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2028 zone_idx(preferred_zone
));
2031 * OK, we're below the kswapd watermark and have kicked background
2032 * reclaim. Now things get more complex, so set up alloc_flags according
2033 * to how we want to proceed.
2035 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2037 /* This is the last chance, in general, before the goto nopage. */
2038 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2039 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2040 preferred_zone
, migratetype
);
2045 /* Allocate without watermarks if the context allows */
2046 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2047 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2048 zonelist
, high_zoneidx
, nodemask
,
2049 preferred_zone
, migratetype
);
2054 /* Atomic allocations - we can't balance anything */
2058 /* Avoid recursion of direct reclaim */
2059 if (current
->flags
& PF_MEMALLOC
)
2062 /* Avoid allocations with no watermarks from looping endlessly */
2063 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2067 * Try direct compaction. The first pass is asynchronous. Subsequent
2068 * attempts after direct reclaim are synchronous
2070 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2071 zonelist
, high_zoneidx
,
2073 alloc_flags
, preferred_zone
,
2074 migratetype
, &did_some_progress
,
2078 sync_migration
= true;
2080 /* Try direct reclaim and then allocating */
2081 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2082 zonelist
, high_zoneidx
,
2084 alloc_flags
, preferred_zone
,
2085 migratetype
, &did_some_progress
);
2090 * If we failed to make any progress reclaiming, then we are
2091 * running out of options and have to consider going OOM
2093 if (!did_some_progress
) {
2094 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2095 if (oom_killer_disabled
)
2097 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2098 zonelist
, high_zoneidx
,
2099 nodemask
, preferred_zone
,
2104 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2106 * The oom killer is not called for high-order
2107 * allocations that may fail, so if no progress
2108 * is being made, there are no other options and
2109 * retrying is unlikely to help.
2111 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2114 * The oom killer is not called for lowmem
2115 * allocations to prevent needlessly killing
2118 if (high_zoneidx
< ZONE_NORMAL
)
2126 /* Check if we should retry the allocation */
2127 pages_reclaimed
+= did_some_progress
;
2128 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2129 /* Wait for some write requests to complete then retry */
2130 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2134 * High-order allocations do not necessarily loop after
2135 * direct reclaim and reclaim/compaction depends on compaction
2136 * being called after reclaim so call directly if necessary
2138 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2139 zonelist
, high_zoneidx
,
2141 alloc_flags
, preferred_zone
,
2142 migratetype
, &did_some_progress
,
2149 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2150 printk(KERN_WARNING
"%s: page allocation failure."
2151 " order:%d, mode:0x%x\n",
2152 current
->comm
, order
, gfp_mask
);
2158 if (kmemcheck_enabled
)
2159 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2165 * This is the 'heart' of the zoned buddy allocator.
2168 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2169 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2171 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2172 struct zone
*preferred_zone
;
2174 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2176 gfp_mask
&= gfp_allowed_mask
;
2178 lockdep_trace_alloc(gfp_mask
);
2180 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2182 if (should_fail_alloc_page(gfp_mask
, order
))
2186 * Check the zones suitable for the gfp_mask contain at least one
2187 * valid zone. It's possible to have an empty zonelist as a result
2188 * of GFP_THISNODE and a memoryless node
2190 if (unlikely(!zonelist
->_zonerefs
->zone
))
2194 /* The preferred zone is used for statistics later */
2195 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
2196 if (!preferred_zone
) {
2201 /* First allocation attempt */
2202 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2203 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2204 preferred_zone
, migratetype
);
2205 if (unlikely(!page
))
2206 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2207 zonelist
, high_zoneidx
, nodemask
,
2208 preferred_zone
, migratetype
);
2211 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2214 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2217 * Common helper functions.
2219 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2224 * __get_free_pages() returns a 32-bit address, which cannot represent
2227 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2229 page
= alloc_pages(gfp_mask
, order
);
2232 return (unsigned long) page_address(page
);
2234 EXPORT_SYMBOL(__get_free_pages
);
2236 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2238 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2240 EXPORT_SYMBOL(get_zeroed_page
);
2242 void __pagevec_free(struct pagevec
*pvec
)
2244 int i
= pagevec_count(pvec
);
2247 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2248 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2252 void __free_pages(struct page
*page
, unsigned int order
)
2254 if (put_page_testzero(page
)) {
2256 free_hot_cold_page(page
, 0);
2258 __free_pages_ok(page
, order
);
2262 EXPORT_SYMBOL(__free_pages
);
2264 void free_pages(unsigned long addr
, unsigned int order
)
2267 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2268 __free_pages(virt_to_page((void *)addr
), order
);
2272 EXPORT_SYMBOL(free_pages
);
2275 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2276 * @size: the number of bytes to allocate
2277 * @gfp_mask: GFP flags for the allocation
2279 * This function is similar to alloc_pages(), except that it allocates the
2280 * minimum number of pages to satisfy the request. alloc_pages() can only
2281 * allocate memory in power-of-two pages.
2283 * This function is also limited by MAX_ORDER.
2285 * Memory allocated by this function must be released by free_pages_exact().
2287 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2289 unsigned int order
= get_order(size
);
2292 addr
= __get_free_pages(gfp_mask
, order
);
2294 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2295 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2297 split_page(virt_to_page((void *)addr
), order
);
2298 while (used
< alloc_end
) {
2304 return (void *)addr
;
2306 EXPORT_SYMBOL(alloc_pages_exact
);
2309 * free_pages_exact - release memory allocated via alloc_pages_exact()
2310 * @virt: the value returned by alloc_pages_exact.
2311 * @size: size of allocation, same value as passed to alloc_pages_exact().
2313 * Release the memory allocated by a previous call to alloc_pages_exact.
2315 void free_pages_exact(void *virt
, size_t size
)
2317 unsigned long addr
= (unsigned long)virt
;
2318 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2320 while (addr
< end
) {
2325 EXPORT_SYMBOL(free_pages_exact
);
2327 static unsigned int nr_free_zone_pages(int offset
)
2332 /* Just pick one node, since fallback list is circular */
2333 unsigned int sum
= 0;
2335 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2337 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2338 unsigned long size
= zone
->present_pages
;
2339 unsigned long high
= high_wmark_pages(zone
);
2348 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2350 unsigned int nr_free_buffer_pages(void)
2352 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2354 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2357 * Amount of free RAM allocatable within all zones
2359 unsigned int nr_free_pagecache_pages(void)
2361 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2364 static inline void show_node(struct zone
*zone
)
2367 printk("Node %d ", zone_to_nid(zone
));
2370 void si_meminfo(struct sysinfo
*val
)
2372 val
->totalram
= totalram_pages
;
2374 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2375 val
->bufferram
= nr_blockdev_pages();
2376 val
->totalhigh
= totalhigh_pages
;
2377 val
->freehigh
= nr_free_highpages();
2378 val
->mem_unit
= PAGE_SIZE
;
2381 EXPORT_SYMBOL(si_meminfo
);
2384 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2386 pg_data_t
*pgdat
= NODE_DATA(nid
);
2388 val
->totalram
= pgdat
->node_present_pages
;
2389 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2390 #ifdef CONFIG_HIGHMEM
2391 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2392 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2398 val
->mem_unit
= PAGE_SIZE
;
2402 #define K(x) ((x) << (PAGE_SHIFT-10))
2405 * Show free area list (used inside shift_scroll-lock stuff)
2406 * We also calculate the percentage fragmentation. We do this by counting the
2407 * memory on each free list with the exception of the first item on the list.
2409 void show_free_areas(void)
2414 for_each_populated_zone(zone
) {
2416 printk("%s per-cpu:\n", zone
->name
);
2418 for_each_online_cpu(cpu
) {
2419 struct per_cpu_pageset
*pageset
;
2421 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2423 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2424 cpu
, pageset
->pcp
.high
,
2425 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2429 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2430 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2432 " dirty:%lu writeback:%lu unstable:%lu\n"
2433 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2434 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2435 global_page_state(NR_ACTIVE_ANON
),
2436 global_page_state(NR_INACTIVE_ANON
),
2437 global_page_state(NR_ISOLATED_ANON
),
2438 global_page_state(NR_ACTIVE_FILE
),
2439 global_page_state(NR_INACTIVE_FILE
),
2440 global_page_state(NR_ISOLATED_FILE
),
2441 global_page_state(NR_UNEVICTABLE
),
2442 global_page_state(NR_FILE_DIRTY
),
2443 global_page_state(NR_WRITEBACK
),
2444 global_page_state(NR_UNSTABLE_NFS
),
2445 global_page_state(NR_FREE_PAGES
),
2446 global_page_state(NR_SLAB_RECLAIMABLE
),
2447 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2448 global_page_state(NR_FILE_MAPPED
),
2449 global_page_state(NR_SHMEM
),
2450 global_page_state(NR_PAGETABLE
),
2451 global_page_state(NR_BOUNCE
));
2453 for_each_populated_zone(zone
) {
2462 " active_anon:%lukB"
2463 " inactive_anon:%lukB"
2464 " active_file:%lukB"
2465 " inactive_file:%lukB"
2466 " unevictable:%lukB"
2467 " isolated(anon):%lukB"
2468 " isolated(file):%lukB"
2475 " slab_reclaimable:%lukB"
2476 " slab_unreclaimable:%lukB"
2477 " kernel_stack:%lukB"
2481 " writeback_tmp:%lukB"
2482 " pages_scanned:%lu"
2483 " all_unreclaimable? %s"
2486 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2487 K(min_wmark_pages(zone
)),
2488 K(low_wmark_pages(zone
)),
2489 K(high_wmark_pages(zone
)),
2490 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2491 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2492 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2493 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2494 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2495 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2496 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2497 K(zone
->present_pages
),
2498 K(zone_page_state(zone
, NR_MLOCK
)),
2499 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2500 K(zone_page_state(zone
, NR_WRITEBACK
)),
2501 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2502 K(zone_page_state(zone
, NR_SHMEM
)),
2503 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2504 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2505 zone_page_state(zone
, NR_KERNEL_STACK
) *
2507 K(zone_page_state(zone
, NR_PAGETABLE
)),
2508 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2509 K(zone_page_state(zone
, NR_BOUNCE
)),
2510 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2511 zone
->pages_scanned
,
2512 (zone
->all_unreclaimable
? "yes" : "no")
2514 printk("lowmem_reserve[]:");
2515 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2516 printk(" %lu", zone
->lowmem_reserve
[i
]);
2520 for_each_populated_zone(zone
) {
2521 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2524 printk("%s: ", zone
->name
);
2526 spin_lock_irqsave(&zone
->lock
, flags
);
2527 for (order
= 0; order
< MAX_ORDER
; order
++) {
2528 nr
[order
] = zone
->free_area
[order
].nr_free
;
2529 total
+= nr
[order
] << order
;
2531 spin_unlock_irqrestore(&zone
->lock
, flags
);
2532 for (order
= 0; order
< MAX_ORDER
; order
++)
2533 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2534 printk("= %lukB\n", K(total
));
2537 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2539 show_swap_cache_info();
2542 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2544 zoneref
->zone
= zone
;
2545 zoneref
->zone_idx
= zone_idx(zone
);
2549 * Builds allocation fallback zone lists.
2551 * Add all populated zones of a node to the zonelist.
2553 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2554 int nr_zones
, enum zone_type zone_type
)
2558 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2563 zone
= pgdat
->node_zones
+ zone_type
;
2564 if (populated_zone(zone
)) {
2565 zoneref_set_zone(zone
,
2566 &zonelist
->_zonerefs
[nr_zones
++]);
2567 check_highest_zone(zone_type
);
2570 } while (zone_type
);
2577 * 0 = automatic detection of better ordering.
2578 * 1 = order by ([node] distance, -zonetype)
2579 * 2 = order by (-zonetype, [node] distance)
2581 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2582 * the same zonelist. So only NUMA can configure this param.
2584 #define ZONELIST_ORDER_DEFAULT 0
2585 #define ZONELIST_ORDER_NODE 1
2586 #define ZONELIST_ORDER_ZONE 2
2588 /* zonelist order in the kernel.
2589 * set_zonelist_order() will set this to NODE or ZONE.
2591 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2592 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2596 /* The value user specified ....changed by config */
2597 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2598 /* string for sysctl */
2599 #define NUMA_ZONELIST_ORDER_LEN 16
2600 char numa_zonelist_order
[16] = "default";
2603 * interface for configure zonelist ordering.
2604 * command line option "numa_zonelist_order"
2605 * = "[dD]efault - default, automatic configuration.
2606 * = "[nN]ode - order by node locality, then by zone within node
2607 * = "[zZ]one - order by zone, then by locality within zone
2610 static int __parse_numa_zonelist_order(char *s
)
2612 if (*s
== 'd' || *s
== 'D') {
2613 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2614 } else if (*s
== 'n' || *s
== 'N') {
2615 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2616 } else if (*s
== 'z' || *s
== 'Z') {
2617 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2620 "Ignoring invalid numa_zonelist_order value: "
2627 static __init
int setup_numa_zonelist_order(char *s
)
2634 ret
= __parse_numa_zonelist_order(s
);
2636 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2640 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2643 * sysctl handler for numa_zonelist_order
2645 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2646 void __user
*buffer
, size_t *length
,
2649 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2651 static DEFINE_MUTEX(zl_order_mutex
);
2653 mutex_lock(&zl_order_mutex
);
2655 strcpy(saved_string
, (char*)table
->data
);
2656 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2660 int oldval
= user_zonelist_order
;
2661 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2663 * bogus value. restore saved string
2665 strncpy((char*)table
->data
, saved_string
,
2666 NUMA_ZONELIST_ORDER_LEN
);
2667 user_zonelist_order
= oldval
;
2668 } else if (oldval
!= user_zonelist_order
) {
2669 mutex_lock(&zonelists_mutex
);
2670 build_all_zonelists(NULL
);
2671 mutex_unlock(&zonelists_mutex
);
2675 mutex_unlock(&zl_order_mutex
);
2680 #define MAX_NODE_LOAD (nr_online_nodes)
2681 static int node_load
[MAX_NUMNODES
];
2684 * find_next_best_node - find the next node that should appear in a given node's fallback list
2685 * @node: node whose fallback list we're appending
2686 * @used_node_mask: nodemask_t of already used nodes
2688 * We use a number of factors to determine which is the next node that should
2689 * appear on a given node's fallback list. The node should not have appeared
2690 * already in @node's fallback list, and it should be the next closest node
2691 * according to the distance array (which contains arbitrary distance values
2692 * from each node to each node in the system), and should also prefer nodes
2693 * with no CPUs, since presumably they'll have very little allocation pressure
2694 * on them otherwise.
2695 * It returns -1 if no node is found.
2697 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2700 int min_val
= INT_MAX
;
2702 const struct cpumask
*tmp
= cpumask_of_node(0);
2704 /* Use the local node if we haven't already */
2705 if (!node_isset(node
, *used_node_mask
)) {
2706 node_set(node
, *used_node_mask
);
2710 for_each_node_state(n
, N_HIGH_MEMORY
) {
2712 /* Don't want a node to appear more than once */
2713 if (node_isset(n
, *used_node_mask
))
2716 /* Use the distance array to find the distance */
2717 val
= node_distance(node
, n
);
2719 /* Penalize nodes under us ("prefer the next node") */
2722 /* Give preference to headless and unused nodes */
2723 tmp
= cpumask_of_node(n
);
2724 if (!cpumask_empty(tmp
))
2725 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2727 /* Slight preference for less loaded node */
2728 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2729 val
+= node_load
[n
];
2731 if (val
< min_val
) {
2738 node_set(best_node
, *used_node_mask
);
2745 * Build zonelists ordered by node and zones within node.
2746 * This results in maximum locality--normal zone overflows into local
2747 * DMA zone, if any--but risks exhausting DMA zone.
2749 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2752 struct zonelist
*zonelist
;
2754 zonelist
= &pgdat
->node_zonelists
[0];
2755 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2757 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2759 zonelist
->_zonerefs
[j
].zone
= NULL
;
2760 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2764 * Build gfp_thisnode zonelists
2766 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2769 struct zonelist
*zonelist
;
2771 zonelist
= &pgdat
->node_zonelists
[1];
2772 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2773 zonelist
->_zonerefs
[j
].zone
= NULL
;
2774 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2778 * Build zonelists ordered by zone and nodes within zones.
2779 * This results in conserving DMA zone[s] until all Normal memory is
2780 * exhausted, but results in overflowing to remote node while memory
2781 * may still exist in local DMA zone.
2783 static int node_order
[MAX_NUMNODES
];
2785 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2788 int zone_type
; /* needs to be signed */
2790 struct zonelist
*zonelist
;
2792 zonelist
= &pgdat
->node_zonelists
[0];
2794 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2795 for (j
= 0; j
< nr_nodes
; j
++) {
2796 node
= node_order
[j
];
2797 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2798 if (populated_zone(z
)) {
2800 &zonelist
->_zonerefs
[pos
++]);
2801 check_highest_zone(zone_type
);
2805 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2806 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2809 static int default_zonelist_order(void)
2812 unsigned long low_kmem_size
,total_size
;
2816 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2817 * If they are really small and used heavily, the system can fall
2818 * into OOM very easily.
2819 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2821 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2824 for_each_online_node(nid
) {
2825 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2826 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2827 if (populated_zone(z
)) {
2828 if (zone_type
< ZONE_NORMAL
)
2829 low_kmem_size
+= z
->present_pages
;
2830 total_size
+= z
->present_pages
;
2831 } else if (zone_type
== ZONE_NORMAL
) {
2833 * If any node has only lowmem, then node order
2834 * is preferred to allow kernel allocations
2835 * locally; otherwise, they can easily infringe
2836 * on other nodes when there is an abundance of
2837 * lowmem available to allocate from.
2839 return ZONELIST_ORDER_NODE
;
2843 if (!low_kmem_size
|| /* there are no DMA area. */
2844 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2845 return ZONELIST_ORDER_NODE
;
2847 * look into each node's config.
2848 * If there is a node whose DMA/DMA32 memory is very big area on
2849 * local memory, NODE_ORDER may be suitable.
2851 average_size
= total_size
/
2852 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2853 for_each_online_node(nid
) {
2856 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2857 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2858 if (populated_zone(z
)) {
2859 if (zone_type
< ZONE_NORMAL
)
2860 low_kmem_size
+= z
->present_pages
;
2861 total_size
+= z
->present_pages
;
2864 if (low_kmem_size
&&
2865 total_size
> average_size
&& /* ignore small node */
2866 low_kmem_size
> total_size
* 70/100)
2867 return ZONELIST_ORDER_NODE
;
2869 return ZONELIST_ORDER_ZONE
;
2872 static void set_zonelist_order(void)
2874 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2875 current_zonelist_order
= default_zonelist_order();
2877 current_zonelist_order
= user_zonelist_order
;
2880 static void build_zonelists(pg_data_t
*pgdat
)
2884 nodemask_t used_mask
;
2885 int local_node
, prev_node
;
2886 struct zonelist
*zonelist
;
2887 int order
= current_zonelist_order
;
2889 /* initialize zonelists */
2890 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2891 zonelist
= pgdat
->node_zonelists
+ i
;
2892 zonelist
->_zonerefs
[0].zone
= NULL
;
2893 zonelist
->_zonerefs
[0].zone_idx
= 0;
2896 /* NUMA-aware ordering of nodes */
2897 local_node
= pgdat
->node_id
;
2898 load
= nr_online_nodes
;
2899 prev_node
= local_node
;
2900 nodes_clear(used_mask
);
2902 memset(node_order
, 0, sizeof(node_order
));
2905 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2906 int distance
= node_distance(local_node
, node
);
2909 * If another node is sufficiently far away then it is better
2910 * to reclaim pages in a zone before going off node.
2912 if (distance
> RECLAIM_DISTANCE
)
2913 zone_reclaim_mode
= 1;
2916 * We don't want to pressure a particular node.
2917 * So adding penalty to the first node in same
2918 * distance group to make it round-robin.
2920 if (distance
!= node_distance(local_node
, prev_node
))
2921 node_load
[node
] = load
;
2925 if (order
== ZONELIST_ORDER_NODE
)
2926 build_zonelists_in_node_order(pgdat
, node
);
2928 node_order
[j
++] = node
; /* remember order */
2931 if (order
== ZONELIST_ORDER_ZONE
) {
2932 /* calculate node order -- i.e., DMA last! */
2933 build_zonelists_in_zone_order(pgdat
, j
);
2936 build_thisnode_zonelists(pgdat
);
2939 /* Construct the zonelist performance cache - see further mmzone.h */
2940 static void build_zonelist_cache(pg_data_t
*pgdat
)
2942 struct zonelist
*zonelist
;
2943 struct zonelist_cache
*zlc
;
2946 zonelist
= &pgdat
->node_zonelists
[0];
2947 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2948 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2949 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2950 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2953 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2955 * Return node id of node used for "local" allocations.
2956 * I.e., first node id of first zone in arg node's generic zonelist.
2957 * Used for initializing percpu 'numa_mem', which is used primarily
2958 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2960 int local_memory_node(int node
)
2964 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2965 gfp_zone(GFP_KERNEL
),
2972 #else /* CONFIG_NUMA */
2974 static void set_zonelist_order(void)
2976 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2979 static void build_zonelists(pg_data_t
*pgdat
)
2981 int node
, local_node
;
2983 struct zonelist
*zonelist
;
2985 local_node
= pgdat
->node_id
;
2987 zonelist
= &pgdat
->node_zonelists
[0];
2988 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2991 * Now we build the zonelist so that it contains the zones
2992 * of all the other nodes.
2993 * We don't want to pressure a particular node, so when
2994 * building the zones for node N, we make sure that the
2995 * zones coming right after the local ones are those from
2996 * node N+1 (modulo N)
2998 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2999 if (!node_online(node
))
3001 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3004 for (node
= 0; node
< local_node
; node
++) {
3005 if (!node_online(node
))
3007 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3011 zonelist
->_zonerefs
[j
].zone
= NULL
;
3012 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3015 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3016 static void build_zonelist_cache(pg_data_t
*pgdat
)
3018 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3021 #endif /* CONFIG_NUMA */
3024 * Boot pageset table. One per cpu which is going to be used for all
3025 * zones and all nodes. The parameters will be set in such a way
3026 * that an item put on a list will immediately be handed over to
3027 * the buddy list. This is safe since pageset manipulation is done
3028 * with interrupts disabled.
3030 * The boot_pagesets must be kept even after bootup is complete for
3031 * unused processors and/or zones. They do play a role for bootstrapping
3032 * hotplugged processors.
3034 * zoneinfo_show() and maybe other functions do
3035 * not check if the processor is online before following the pageset pointer.
3036 * Other parts of the kernel may not check if the zone is available.
3038 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3039 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3040 static void setup_zone_pageset(struct zone
*zone
);
3043 * Global mutex to protect against size modification of zonelists
3044 * as well as to serialize pageset setup for the new populated zone.
3046 DEFINE_MUTEX(zonelists_mutex
);
3048 /* return values int ....just for stop_machine() */
3049 static __init_refok
int __build_all_zonelists(void *data
)
3055 memset(node_load
, 0, sizeof(node_load
));
3057 for_each_online_node(nid
) {
3058 pg_data_t
*pgdat
= NODE_DATA(nid
);
3060 build_zonelists(pgdat
);
3061 build_zonelist_cache(pgdat
);
3065 * Initialize the boot_pagesets that are going to be used
3066 * for bootstrapping processors. The real pagesets for
3067 * each zone will be allocated later when the per cpu
3068 * allocator is available.
3070 * boot_pagesets are used also for bootstrapping offline
3071 * cpus if the system is already booted because the pagesets
3072 * are needed to initialize allocators on a specific cpu too.
3073 * F.e. the percpu allocator needs the page allocator which
3074 * needs the percpu allocator in order to allocate its pagesets
3075 * (a chicken-egg dilemma).
3077 for_each_possible_cpu(cpu
) {
3078 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3080 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3082 * We now know the "local memory node" for each node--
3083 * i.e., the node of the first zone in the generic zonelist.
3084 * Set up numa_mem percpu variable for on-line cpus. During
3085 * boot, only the boot cpu should be on-line; we'll init the
3086 * secondary cpus' numa_mem as they come on-line. During
3087 * node/memory hotplug, we'll fixup all on-line cpus.
3089 if (cpu_online(cpu
))
3090 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3098 * Called with zonelists_mutex held always
3099 * unless system_state == SYSTEM_BOOTING.
3101 void build_all_zonelists(void *data
)
3103 set_zonelist_order();
3105 if (system_state
== SYSTEM_BOOTING
) {
3106 __build_all_zonelists(NULL
);
3107 mminit_verify_zonelist();
3108 cpuset_init_current_mems_allowed();
3110 /* we have to stop all cpus to guarantee there is no user
3112 #ifdef CONFIG_MEMORY_HOTPLUG
3114 setup_zone_pageset((struct zone
*)data
);
3116 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3117 /* cpuset refresh routine should be here */
3119 vm_total_pages
= nr_free_pagecache_pages();
3121 * Disable grouping by mobility if the number of pages in the
3122 * system is too low to allow the mechanism to work. It would be
3123 * more accurate, but expensive to check per-zone. This check is
3124 * made on memory-hotadd so a system can start with mobility
3125 * disabled and enable it later
3127 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3128 page_group_by_mobility_disabled
= 1;
3130 page_group_by_mobility_disabled
= 0;
3132 printk("Built %i zonelists in %s order, mobility grouping %s. "
3133 "Total pages: %ld\n",
3135 zonelist_order_name
[current_zonelist_order
],
3136 page_group_by_mobility_disabled
? "off" : "on",
3139 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3144 * Helper functions to size the waitqueue hash table.
3145 * Essentially these want to choose hash table sizes sufficiently
3146 * large so that collisions trying to wait on pages are rare.
3147 * But in fact, the number of active page waitqueues on typical
3148 * systems is ridiculously low, less than 200. So this is even
3149 * conservative, even though it seems large.
3151 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3152 * waitqueues, i.e. the size of the waitq table given the number of pages.
3154 #define PAGES_PER_WAITQUEUE 256
3156 #ifndef CONFIG_MEMORY_HOTPLUG
3157 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3159 unsigned long size
= 1;
3161 pages
/= PAGES_PER_WAITQUEUE
;
3163 while (size
< pages
)
3167 * Once we have dozens or even hundreds of threads sleeping
3168 * on IO we've got bigger problems than wait queue collision.
3169 * Limit the size of the wait table to a reasonable size.
3171 size
= min(size
, 4096UL);
3173 return max(size
, 4UL);
3177 * A zone's size might be changed by hot-add, so it is not possible to determine
3178 * a suitable size for its wait_table. So we use the maximum size now.
3180 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3182 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3183 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3184 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3186 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3187 * or more by the traditional way. (See above). It equals:
3189 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3190 * ia64(16K page size) : = ( 8G + 4M)byte.
3191 * powerpc (64K page size) : = (32G +16M)byte.
3193 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3200 * This is an integer logarithm so that shifts can be used later
3201 * to extract the more random high bits from the multiplicative
3202 * hash function before the remainder is taken.
3204 static inline unsigned long wait_table_bits(unsigned long size
)
3209 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3212 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3213 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3214 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3215 * higher will lead to a bigger reserve which will get freed as contiguous
3216 * blocks as reclaim kicks in
3218 static void setup_zone_migrate_reserve(struct zone
*zone
)
3220 unsigned long start_pfn
, pfn
, end_pfn
;
3222 unsigned long block_migratetype
;
3225 /* Get the start pfn, end pfn and the number of blocks to reserve */
3226 start_pfn
= zone
->zone_start_pfn
;
3227 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3228 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3232 * Reserve blocks are generally in place to help high-order atomic
3233 * allocations that are short-lived. A min_free_kbytes value that
3234 * would result in more than 2 reserve blocks for atomic allocations
3235 * is assumed to be in place to help anti-fragmentation for the
3236 * future allocation of hugepages at runtime.
3238 reserve
= min(2, reserve
);
3240 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3241 if (!pfn_valid(pfn
))
3243 page
= pfn_to_page(pfn
);
3245 /* Watch out for overlapping nodes */
3246 if (page_to_nid(page
) != zone_to_nid(zone
))
3249 /* Blocks with reserved pages will never free, skip them. */
3250 if (PageReserved(page
))
3253 block_migratetype
= get_pageblock_migratetype(page
);
3255 /* If this block is reserved, account for it */
3256 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3261 /* Suitable for reserving if this block is movable */
3262 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3263 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3264 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3270 * If the reserve is met and this is a previous reserved block,
3273 if (block_migratetype
== MIGRATE_RESERVE
) {
3274 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3275 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3281 * Initially all pages are reserved - free ones are freed
3282 * up by free_all_bootmem() once the early boot process is
3283 * done. Non-atomic initialization, single-pass.
3285 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3286 unsigned long start_pfn
, enum memmap_context context
)
3289 unsigned long end_pfn
= start_pfn
+ size
;
3293 if (highest_memmap_pfn
< end_pfn
- 1)
3294 highest_memmap_pfn
= end_pfn
- 1;
3296 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3297 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3299 * There can be holes in boot-time mem_map[]s
3300 * handed to this function. They do not
3301 * exist on hotplugged memory.
3303 if (context
== MEMMAP_EARLY
) {
3304 if (!early_pfn_valid(pfn
))
3306 if (!early_pfn_in_nid(pfn
, nid
))
3309 page
= pfn_to_page(pfn
);
3310 set_page_links(page
, zone
, nid
, pfn
);
3311 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3312 init_page_count(page
);
3313 reset_page_mapcount(page
);
3314 SetPageReserved(page
);
3316 * Mark the block movable so that blocks are reserved for
3317 * movable at startup. This will force kernel allocations
3318 * to reserve their blocks rather than leaking throughout
3319 * the address space during boot when many long-lived
3320 * kernel allocations are made. Later some blocks near
3321 * the start are marked MIGRATE_RESERVE by
3322 * setup_zone_migrate_reserve()
3324 * bitmap is created for zone's valid pfn range. but memmap
3325 * can be created for invalid pages (for alignment)
3326 * check here not to call set_pageblock_migratetype() against
3329 if ((z
->zone_start_pfn
<= pfn
)
3330 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3331 && !(pfn
& (pageblock_nr_pages
- 1)))
3332 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3334 INIT_LIST_HEAD(&page
->lru
);
3335 #ifdef WANT_PAGE_VIRTUAL
3336 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3337 if (!is_highmem_idx(zone
))
3338 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3343 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3346 for_each_migratetype_order(order
, t
) {
3347 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3348 zone
->free_area
[order
].nr_free
= 0;
3352 #ifndef __HAVE_ARCH_MEMMAP_INIT
3353 #define memmap_init(size, nid, zone, start_pfn) \
3354 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3357 static int zone_batchsize(struct zone
*zone
)
3363 * The per-cpu-pages pools are set to around 1000th of the
3364 * size of the zone. But no more than 1/2 of a meg.
3366 * OK, so we don't know how big the cache is. So guess.
3368 batch
= zone
->present_pages
/ 1024;
3369 if (batch
* PAGE_SIZE
> 512 * 1024)
3370 batch
= (512 * 1024) / PAGE_SIZE
;
3371 batch
/= 4; /* We effectively *= 4 below */
3376 * Clamp the batch to a 2^n - 1 value. Having a power
3377 * of 2 value was found to be more likely to have
3378 * suboptimal cache aliasing properties in some cases.
3380 * For example if 2 tasks are alternately allocating
3381 * batches of pages, one task can end up with a lot
3382 * of pages of one half of the possible page colors
3383 * and the other with pages of the other colors.
3385 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3390 /* The deferral and batching of frees should be suppressed under NOMMU
3393 * The problem is that NOMMU needs to be able to allocate large chunks
3394 * of contiguous memory as there's no hardware page translation to
3395 * assemble apparent contiguous memory from discontiguous pages.
3397 * Queueing large contiguous runs of pages for batching, however,
3398 * causes the pages to actually be freed in smaller chunks. As there
3399 * can be a significant delay between the individual batches being
3400 * recycled, this leads to the once large chunks of space being
3401 * fragmented and becoming unavailable for high-order allocations.
3407 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3409 struct per_cpu_pages
*pcp
;
3412 memset(p
, 0, sizeof(*p
));
3416 pcp
->high
= 6 * batch
;
3417 pcp
->batch
= max(1UL, 1 * batch
);
3418 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3419 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3423 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3424 * to the value high for the pageset p.
3427 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3430 struct per_cpu_pages
*pcp
;
3434 pcp
->batch
= max(1UL, high
/4);
3435 if ((high
/4) > (PAGE_SHIFT
* 8))
3436 pcp
->batch
= PAGE_SHIFT
* 8;
3439 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3443 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3445 for_each_possible_cpu(cpu
) {
3446 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3448 setup_pageset(pcp
, zone_batchsize(zone
));
3450 if (percpu_pagelist_fraction
)
3451 setup_pagelist_highmark(pcp
,
3452 (zone
->present_pages
/
3453 percpu_pagelist_fraction
));
3458 * Allocate per cpu pagesets and initialize them.
3459 * Before this call only boot pagesets were available.
3461 void __init
setup_per_cpu_pageset(void)
3465 for_each_populated_zone(zone
)
3466 setup_zone_pageset(zone
);
3469 static noinline __init_refok
3470 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3473 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3477 * The per-page waitqueue mechanism uses hashed waitqueues
3480 zone
->wait_table_hash_nr_entries
=
3481 wait_table_hash_nr_entries(zone_size_pages
);
3482 zone
->wait_table_bits
=
3483 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3484 alloc_size
= zone
->wait_table_hash_nr_entries
3485 * sizeof(wait_queue_head_t
);
3487 if (!slab_is_available()) {
3488 zone
->wait_table
= (wait_queue_head_t
*)
3489 alloc_bootmem_node(pgdat
, alloc_size
);
3492 * This case means that a zone whose size was 0 gets new memory
3493 * via memory hot-add.
3494 * But it may be the case that a new node was hot-added. In
3495 * this case vmalloc() will not be able to use this new node's
3496 * memory - this wait_table must be initialized to use this new
3497 * node itself as well.
3498 * To use this new node's memory, further consideration will be
3501 zone
->wait_table
= vmalloc(alloc_size
);
3503 if (!zone
->wait_table
)
3506 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3507 init_waitqueue_head(zone
->wait_table
+ i
);
3512 static int __zone_pcp_update(void *data
)
3514 struct zone
*zone
= data
;
3516 unsigned long batch
= zone_batchsize(zone
), flags
;
3518 for_each_possible_cpu(cpu
) {
3519 struct per_cpu_pageset
*pset
;
3520 struct per_cpu_pages
*pcp
;
3522 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3525 local_irq_save(flags
);
3526 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3527 setup_pageset(pset
, batch
);
3528 local_irq_restore(flags
);
3533 void zone_pcp_update(struct zone
*zone
)
3535 stop_machine(__zone_pcp_update
, zone
, NULL
);
3538 static __meminit
void zone_pcp_init(struct zone
*zone
)
3541 * per cpu subsystem is not up at this point. The following code
3542 * relies on the ability of the linker to provide the
3543 * offset of a (static) per cpu variable into the per cpu area.
3545 zone
->pageset
= &boot_pageset
;
3547 if (zone
->present_pages
)
3548 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3549 zone
->name
, zone
->present_pages
,
3550 zone_batchsize(zone
));
3553 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3554 unsigned long zone_start_pfn
,
3556 enum memmap_context context
)
3558 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3560 ret
= zone_wait_table_init(zone
, size
);
3563 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3565 zone
->zone_start_pfn
= zone_start_pfn
;
3567 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3568 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3570 (unsigned long)zone_idx(zone
),
3571 zone_start_pfn
, (zone_start_pfn
+ size
));
3573 zone_init_free_lists(zone
);
3578 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3580 * Basic iterator support. Return the first range of PFNs for a node
3581 * Note: nid == MAX_NUMNODES returns first region regardless of node
3583 static int __meminit
first_active_region_index_in_nid(int nid
)
3587 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3588 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3595 * Basic iterator support. Return the next active range of PFNs for a node
3596 * Note: nid == MAX_NUMNODES returns next region regardless of node
3598 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3600 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3601 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3607 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3609 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3610 * Architectures may implement their own version but if add_active_range()
3611 * was used and there are no special requirements, this is a convenient
3614 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3618 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3619 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3620 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3622 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3623 return early_node_map
[i
].nid
;
3625 /* This is a memory hole */
3628 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3630 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3634 nid
= __early_pfn_to_nid(pfn
);
3637 /* just returns 0 */
3641 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3642 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3646 nid
= __early_pfn_to_nid(pfn
);
3647 if (nid
>= 0 && nid
!= node
)
3653 /* Basic iterator support to walk early_node_map[] */
3654 #define for_each_active_range_index_in_nid(i, nid) \
3655 for (i = first_active_region_index_in_nid(nid); i != -1; \
3656 i = next_active_region_index_in_nid(i, nid))
3659 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3660 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3661 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3663 * If an architecture guarantees that all ranges registered with
3664 * add_active_ranges() contain no holes and may be freed, this
3665 * this function may be used instead of calling free_bootmem() manually.
3667 void __init
free_bootmem_with_active_regions(int nid
,
3668 unsigned long max_low_pfn
)
3672 for_each_active_range_index_in_nid(i
, nid
) {
3673 unsigned long size_pages
= 0;
3674 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3676 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3679 if (end_pfn
> max_low_pfn
)
3680 end_pfn
= max_low_pfn
;
3682 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3683 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3684 PFN_PHYS(early_node_map
[i
].start_pfn
),
3685 size_pages
<< PAGE_SHIFT
);
3689 #ifdef CONFIG_HAVE_MEMBLOCK
3690 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3691 u64 goal
, u64 limit
)
3695 /* Need to go over early_node_map to find out good range for node */
3696 for_each_active_range_index_in_nid(i
, nid
) {
3698 u64 ei_start
, ei_last
;
3699 u64 final_start
, final_end
;
3701 ei_last
= early_node_map
[i
].end_pfn
;
3702 ei_last
<<= PAGE_SHIFT
;
3703 ei_start
= early_node_map
[i
].start_pfn
;
3704 ei_start
<<= PAGE_SHIFT
;
3706 final_start
= max(ei_start
, goal
);
3707 final_end
= min(ei_last
, limit
);
3709 if (final_start
>= final_end
)
3712 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3714 if (addr
== MEMBLOCK_ERROR
)
3720 return MEMBLOCK_ERROR
;
3724 int __init
add_from_early_node_map(struct range
*range
, int az
,
3725 int nr_range
, int nid
)
3730 /* need to go over early_node_map to find out good range for node */
3731 for_each_active_range_index_in_nid(i
, nid
) {
3732 start
= early_node_map
[i
].start_pfn
;
3733 end
= early_node_map
[i
].end_pfn
;
3734 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3739 #ifdef CONFIG_NO_BOOTMEM
3740 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3741 u64 goal
, u64 limit
)
3746 if (limit
> memblock
.current_limit
)
3747 limit
= memblock
.current_limit
;
3749 addr
= find_memory_core_early(nid
, size
, align
, goal
, limit
);
3751 if (addr
== MEMBLOCK_ERROR
)
3754 ptr
= phys_to_virt(addr
);
3755 memset(ptr
, 0, size
);
3756 memblock_x86_reserve_range(addr
, addr
+ size
, "BOOTMEM");
3758 * The min_count is set to 0 so that bootmem allocated blocks
3759 * are never reported as leaks.
3761 kmemleak_alloc(ptr
, size
, 0, 0);
3767 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3772 for_each_active_range_index_in_nid(i
, nid
) {
3773 ret
= work_fn(early_node_map
[i
].start_pfn
,
3774 early_node_map
[i
].end_pfn
, data
);
3780 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3781 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3783 * If an architecture guarantees that all ranges registered with
3784 * add_active_ranges() contain no holes and may be freed, this
3785 * function may be used instead of calling memory_present() manually.
3787 void __init
sparse_memory_present_with_active_regions(int nid
)
3791 for_each_active_range_index_in_nid(i
, nid
)
3792 memory_present(early_node_map
[i
].nid
,
3793 early_node_map
[i
].start_pfn
,
3794 early_node_map
[i
].end_pfn
);
3798 * get_pfn_range_for_nid - Return the start and end page frames for a node
3799 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3800 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3801 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3803 * It returns the start and end page frame of a node based on information
3804 * provided by an arch calling add_active_range(). If called for a node
3805 * with no available memory, a warning is printed and the start and end
3808 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3809 unsigned long *start_pfn
, unsigned long *end_pfn
)
3815 for_each_active_range_index_in_nid(i
, nid
) {
3816 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3817 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3820 if (*start_pfn
== -1UL)
3825 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3826 * assumption is made that zones within a node are ordered in monotonic
3827 * increasing memory addresses so that the "highest" populated zone is used
3829 static void __init
find_usable_zone_for_movable(void)
3832 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3833 if (zone_index
== ZONE_MOVABLE
)
3836 if (arch_zone_highest_possible_pfn
[zone_index
] >
3837 arch_zone_lowest_possible_pfn
[zone_index
])
3841 VM_BUG_ON(zone_index
== -1);
3842 movable_zone
= zone_index
;
3846 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3847 * because it is sized independant of architecture. Unlike the other zones,
3848 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3849 * in each node depending on the size of each node and how evenly kernelcore
3850 * is distributed. This helper function adjusts the zone ranges
3851 * provided by the architecture for a given node by using the end of the
3852 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3853 * zones within a node are in order of monotonic increases memory addresses
3855 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3856 unsigned long zone_type
,
3857 unsigned long node_start_pfn
,
3858 unsigned long node_end_pfn
,
3859 unsigned long *zone_start_pfn
,
3860 unsigned long *zone_end_pfn
)
3862 /* Only adjust if ZONE_MOVABLE is on this node */
3863 if (zone_movable_pfn
[nid
]) {
3864 /* Size ZONE_MOVABLE */
3865 if (zone_type
== ZONE_MOVABLE
) {
3866 *zone_start_pfn
= zone_movable_pfn
[nid
];
3867 *zone_end_pfn
= min(node_end_pfn
,
3868 arch_zone_highest_possible_pfn
[movable_zone
]);
3870 /* Adjust for ZONE_MOVABLE starting within this range */
3871 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3872 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3873 *zone_end_pfn
= zone_movable_pfn
[nid
];
3875 /* Check if this whole range is within ZONE_MOVABLE */
3876 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3877 *zone_start_pfn
= *zone_end_pfn
;
3882 * Return the number of pages a zone spans in a node, including holes
3883 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3885 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3886 unsigned long zone_type
,
3887 unsigned long *ignored
)
3889 unsigned long node_start_pfn
, node_end_pfn
;
3890 unsigned long zone_start_pfn
, zone_end_pfn
;
3892 /* Get the start and end of the node and zone */
3893 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3894 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3895 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3896 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3897 node_start_pfn
, node_end_pfn
,
3898 &zone_start_pfn
, &zone_end_pfn
);
3900 /* Check that this node has pages within the zone's required range */
3901 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3904 /* Move the zone boundaries inside the node if necessary */
3905 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3906 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3908 /* Return the spanned pages */
3909 return zone_end_pfn
- zone_start_pfn
;
3913 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3914 * then all holes in the requested range will be accounted for.
3916 unsigned long __meminit
__absent_pages_in_range(int nid
,
3917 unsigned long range_start_pfn
,
3918 unsigned long range_end_pfn
)
3921 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3922 unsigned long start_pfn
;
3924 /* Find the end_pfn of the first active range of pfns in the node */
3925 i
= first_active_region_index_in_nid(nid
);
3929 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3931 /* Account for ranges before physical memory on this node */
3932 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3933 hole_pages
= prev_end_pfn
- range_start_pfn
;
3935 /* Find all holes for the zone within the node */
3936 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3938 /* No need to continue if prev_end_pfn is outside the zone */
3939 if (prev_end_pfn
>= range_end_pfn
)
3942 /* Make sure the end of the zone is not within the hole */
3943 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3944 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3946 /* Update the hole size cound and move on */
3947 if (start_pfn
> range_start_pfn
) {
3948 BUG_ON(prev_end_pfn
> start_pfn
);
3949 hole_pages
+= start_pfn
- prev_end_pfn
;
3951 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3954 /* Account for ranges past physical memory on this node */
3955 if (range_end_pfn
> prev_end_pfn
)
3956 hole_pages
+= range_end_pfn
-
3957 max(range_start_pfn
, prev_end_pfn
);
3963 * absent_pages_in_range - Return number of page frames in holes within a range
3964 * @start_pfn: The start PFN to start searching for holes
3965 * @end_pfn: The end PFN to stop searching for holes
3967 * It returns the number of pages frames in memory holes within a range.
3969 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3970 unsigned long end_pfn
)
3972 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3975 /* Return the number of page frames in holes in a zone on a node */
3976 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3977 unsigned long zone_type
,
3978 unsigned long *ignored
)
3980 unsigned long node_start_pfn
, node_end_pfn
;
3981 unsigned long zone_start_pfn
, zone_end_pfn
;
3983 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3984 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3986 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3989 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3990 node_start_pfn
, node_end_pfn
,
3991 &zone_start_pfn
, &zone_end_pfn
);
3992 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3996 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3997 unsigned long zone_type
,
3998 unsigned long *zones_size
)
4000 return zones_size
[zone_type
];
4003 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4004 unsigned long zone_type
,
4005 unsigned long *zholes_size
)
4010 return zholes_size
[zone_type
];
4015 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4016 unsigned long *zones_size
, unsigned long *zholes_size
)
4018 unsigned long realtotalpages
, totalpages
= 0;
4021 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4022 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4024 pgdat
->node_spanned_pages
= totalpages
;
4026 realtotalpages
= totalpages
;
4027 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4029 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4031 pgdat
->node_present_pages
= realtotalpages
;
4032 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4036 #ifndef CONFIG_SPARSEMEM
4038 * Calculate the size of the zone->blockflags rounded to an unsigned long
4039 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4040 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4041 * round what is now in bits to nearest long in bits, then return it in
4044 static unsigned long __init
usemap_size(unsigned long zonesize
)
4046 unsigned long usemapsize
;
4048 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4049 usemapsize
= usemapsize
>> pageblock_order
;
4050 usemapsize
*= NR_PAGEBLOCK_BITS
;
4051 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4053 return usemapsize
/ 8;
4056 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4057 struct zone
*zone
, unsigned long zonesize
)
4059 unsigned long usemapsize
= usemap_size(zonesize
);
4060 zone
->pageblock_flags
= NULL
;
4062 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4065 static inline void setup_usemap(struct pglist_data
*pgdat
,
4066 struct zone
*zone
, unsigned long zonesize
) {}
4067 #endif /* CONFIG_SPARSEMEM */
4069 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4071 /* Return a sensible default order for the pageblock size. */
4072 static inline int pageblock_default_order(void)
4074 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4075 return HUGETLB_PAGE_ORDER
;
4080 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4081 static inline void __init
set_pageblock_order(unsigned int order
)
4083 /* Check that pageblock_nr_pages has not already been setup */
4084 if (pageblock_order
)
4088 * Assume the largest contiguous order of interest is a huge page.
4089 * This value may be variable depending on boot parameters on IA64
4091 pageblock_order
= order
;
4093 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4096 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4097 * and pageblock_default_order() are unused as pageblock_order is set
4098 * at compile-time. See include/linux/pageblock-flags.h for the values of
4099 * pageblock_order based on the kernel config
4101 static inline int pageblock_default_order(unsigned int order
)
4105 #define set_pageblock_order(x) do {} while (0)
4107 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4110 * Set up the zone data structures:
4111 * - mark all pages reserved
4112 * - mark all memory queues empty
4113 * - clear the memory bitmaps
4115 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4116 unsigned long *zones_size
, unsigned long *zholes_size
)
4119 int nid
= pgdat
->node_id
;
4120 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4123 pgdat_resize_init(pgdat
);
4124 pgdat
->nr_zones
= 0;
4125 init_waitqueue_head(&pgdat
->kswapd_wait
);
4126 pgdat
->kswapd_max_order
= 0;
4127 pgdat_page_cgroup_init(pgdat
);
4129 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4130 struct zone
*zone
= pgdat
->node_zones
+ j
;
4131 unsigned long size
, realsize
, memmap_pages
;
4134 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4135 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4139 * Adjust realsize so that it accounts for how much memory
4140 * is used by this zone for memmap. This affects the watermark
4141 * and per-cpu initialisations
4144 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4145 if (realsize
>= memmap_pages
) {
4146 realsize
-= memmap_pages
;
4149 " %s zone: %lu pages used for memmap\n",
4150 zone_names
[j
], memmap_pages
);
4153 " %s zone: %lu pages exceeds realsize %lu\n",
4154 zone_names
[j
], memmap_pages
, realsize
);
4156 /* Account for reserved pages */
4157 if (j
== 0 && realsize
> dma_reserve
) {
4158 realsize
-= dma_reserve
;
4159 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4160 zone_names
[0], dma_reserve
);
4163 if (!is_highmem_idx(j
))
4164 nr_kernel_pages
+= realsize
;
4165 nr_all_pages
+= realsize
;
4167 zone
->spanned_pages
= size
;
4168 zone
->present_pages
= realsize
;
4171 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4173 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4175 zone
->name
= zone_names
[j
];
4176 spin_lock_init(&zone
->lock
);
4177 spin_lock_init(&zone
->lru_lock
);
4178 zone_seqlock_init(zone
);
4179 zone
->zone_pgdat
= pgdat
;
4181 zone_pcp_init(zone
);
4183 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4184 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4186 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4187 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4188 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4189 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4190 zap_zone_vm_stats(zone
);
4195 set_pageblock_order(pageblock_default_order());
4196 setup_usemap(pgdat
, zone
, size
);
4197 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4198 size
, MEMMAP_EARLY
);
4200 memmap_init(size
, nid
, j
, zone_start_pfn
);
4201 zone_start_pfn
+= size
;
4205 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4207 /* Skip empty nodes */
4208 if (!pgdat
->node_spanned_pages
)
4211 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4212 /* ia64 gets its own node_mem_map, before this, without bootmem */
4213 if (!pgdat
->node_mem_map
) {
4214 unsigned long size
, start
, end
;
4218 * The zone's endpoints aren't required to be MAX_ORDER
4219 * aligned but the node_mem_map endpoints must be in order
4220 * for the buddy allocator to function correctly.
4222 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4223 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4224 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4225 size
= (end
- start
) * sizeof(struct page
);
4226 map
= alloc_remap(pgdat
->node_id
, size
);
4228 map
= alloc_bootmem_node(pgdat
, size
);
4229 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4231 #ifndef CONFIG_NEED_MULTIPLE_NODES
4233 * With no DISCONTIG, the global mem_map is just set as node 0's
4235 if (pgdat
== NODE_DATA(0)) {
4236 mem_map
= NODE_DATA(0)->node_mem_map
;
4237 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4238 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4239 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4240 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4243 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4246 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4247 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4249 pg_data_t
*pgdat
= NODE_DATA(nid
);
4251 pgdat
->node_id
= nid
;
4252 pgdat
->node_start_pfn
= node_start_pfn
;
4253 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4255 alloc_node_mem_map(pgdat
);
4256 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4257 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4258 nid
, (unsigned long)pgdat
,
4259 (unsigned long)pgdat
->node_mem_map
);
4262 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4267 #if MAX_NUMNODES > 1
4269 * Figure out the number of possible node ids.
4271 static void __init
setup_nr_node_ids(void)
4274 unsigned int highest
= 0;
4276 for_each_node_mask(node
, node_possible_map
)
4278 nr_node_ids
= highest
+ 1;
4281 static inline void setup_nr_node_ids(void)
4287 * add_active_range - Register a range of PFNs backed by physical memory
4288 * @nid: The node ID the range resides on
4289 * @start_pfn: The start PFN of the available physical memory
4290 * @end_pfn: The end PFN of the available physical memory
4292 * These ranges are stored in an early_node_map[] and later used by
4293 * free_area_init_nodes() to calculate zone sizes and holes. If the
4294 * range spans a memory hole, it is up to the architecture to ensure
4295 * the memory is not freed by the bootmem allocator. If possible
4296 * the range being registered will be merged with existing ranges.
4298 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4299 unsigned long end_pfn
)
4303 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4304 "Entering add_active_range(%d, %#lx, %#lx) "
4305 "%d entries of %d used\n",
4306 nid
, start_pfn
, end_pfn
,
4307 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4309 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4311 /* Merge with existing active regions if possible */
4312 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4313 if (early_node_map
[i
].nid
!= nid
)
4316 /* Skip if an existing region covers this new one */
4317 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4318 end_pfn
<= early_node_map
[i
].end_pfn
)
4321 /* Merge forward if suitable */
4322 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4323 end_pfn
> early_node_map
[i
].end_pfn
) {
4324 early_node_map
[i
].end_pfn
= end_pfn
;
4328 /* Merge backward if suitable */
4329 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4330 end_pfn
>= early_node_map
[i
].start_pfn
) {
4331 early_node_map
[i
].start_pfn
= start_pfn
;
4336 /* Check that early_node_map is large enough */
4337 if (i
>= MAX_ACTIVE_REGIONS
) {
4338 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4339 MAX_ACTIVE_REGIONS
);
4343 early_node_map
[i
].nid
= nid
;
4344 early_node_map
[i
].start_pfn
= start_pfn
;
4345 early_node_map
[i
].end_pfn
= end_pfn
;
4346 nr_nodemap_entries
= i
+ 1;
4350 * remove_active_range - Shrink an existing registered range of PFNs
4351 * @nid: The node id the range is on that should be shrunk
4352 * @start_pfn: The new PFN of the range
4353 * @end_pfn: The new PFN of the range
4355 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4356 * The map is kept near the end physical page range that has already been
4357 * registered. This function allows an arch to shrink an existing registered
4360 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4361 unsigned long end_pfn
)
4366 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4367 nid
, start_pfn
, end_pfn
);
4369 /* Find the old active region end and shrink */
4370 for_each_active_range_index_in_nid(i
, nid
) {
4371 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4372 early_node_map
[i
].end_pfn
<= end_pfn
) {
4374 early_node_map
[i
].start_pfn
= 0;
4375 early_node_map
[i
].end_pfn
= 0;
4379 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4380 early_node_map
[i
].end_pfn
> start_pfn
) {
4381 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4382 early_node_map
[i
].end_pfn
= start_pfn
;
4383 if (temp_end_pfn
> end_pfn
)
4384 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4387 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4388 early_node_map
[i
].end_pfn
> end_pfn
&&
4389 early_node_map
[i
].start_pfn
< end_pfn
) {
4390 early_node_map
[i
].start_pfn
= end_pfn
;
4398 /* remove the blank ones */
4399 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4400 if (early_node_map
[i
].nid
!= nid
)
4402 if (early_node_map
[i
].end_pfn
)
4404 /* we found it, get rid of it */
4405 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4406 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4407 sizeof(early_node_map
[j
]));
4408 j
= nr_nodemap_entries
- 1;
4409 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4410 nr_nodemap_entries
--;
4415 * remove_all_active_ranges - Remove all currently registered regions
4417 * During discovery, it may be found that a table like SRAT is invalid
4418 * and an alternative discovery method must be used. This function removes
4419 * all currently registered regions.
4421 void __init
remove_all_active_ranges(void)
4423 memset(early_node_map
, 0, sizeof(early_node_map
));
4424 nr_nodemap_entries
= 0;
4427 /* Compare two active node_active_regions */
4428 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4430 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4431 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4433 /* Done this way to avoid overflows */
4434 if (arange
->start_pfn
> brange
->start_pfn
)
4436 if (arange
->start_pfn
< brange
->start_pfn
)
4442 /* sort the node_map by start_pfn */
4443 void __init
sort_node_map(void)
4445 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4446 sizeof(struct node_active_region
),
4447 cmp_node_active_region
, NULL
);
4450 /* Find the lowest pfn for a node */
4451 static unsigned long __init
find_min_pfn_for_node(int nid
)
4454 unsigned long min_pfn
= ULONG_MAX
;
4456 /* Assuming a sorted map, the first range found has the starting pfn */
4457 for_each_active_range_index_in_nid(i
, nid
)
4458 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4460 if (min_pfn
== ULONG_MAX
) {
4462 "Could not find start_pfn for node %d\n", nid
);
4470 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4472 * It returns the minimum PFN based on information provided via
4473 * add_active_range().
4475 unsigned long __init
find_min_pfn_with_active_regions(void)
4477 return find_min_pfn_for_node(MAX_NUMNODES
);
4481 * early_calculate_totalpages()
4482 * Sum pages in active regions for movable zone.
4483 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4485 static unsigned long __init
early_calculate_totalpages(void)
4488 unsigned long totalpages
= 0;
4490 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4491 unsigned long pages
= early_node_map
[i
].end_pfn
-
4492 early_node_map
[i
].start_pfn
;
4493 totalpages
+= pages
;
4495 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4501 * Find the PFN the Movable zone begins in each node. Kernel memory
4502 * is spread evenly between nodes as long as the nodes have enough
4503 * memory. When they don't, some nodes will have more kernelcore than
4506 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4509 unsigned long usable_startpfn
;
4510 unsigned long kernelcore_node
, kernelcore_remaining
;
4511 /* save the state before borrow the nodemask */
4512 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4513 unsigned long totalpages
= early_calculate_totalpages();
4514 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4517 * If movablecore was specified, calculate what size of
4518 * kernelcore that corresponds so that memory usable for
4519 * any allocation type is evenly spread. If both kernelcore
4520 * and movablecore are specified, then the value of kernelcore
4521 * will be used for required_kernelcore if it's greater than
4522 * what movablecore would have allowed.
4524 if (required_movablecore
) {
4525 unsigned long corepages
;
4528 * Round-up so that ZONE_MOVABLE is at least as large as what
4529 * was requested by the user
4531 required_movablecore
=
4532 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4533 corepages
= totalpages
- required_movablecore
;
4535 required_kernelcore
= max(required_kernelcore
, corepages
);
4538 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4539 if (!required_kernelcore
)
4542 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4543 find_usable_zone_for_movable();
4544 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4547 /* Spread kernelcore memory as evenly as possible throughout nodes */
4548 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4549 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4551 * Recalculate kernelcore_node if the division per node
4552 * now exceeds what is necessary to satisfy the requested
4553 * amount of memory for the kernel
4555 if (required_kernelcore
< kernelcore_node
)
4556 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4559 * As the map is walked, we track how much memory is usable
4560 * by the kernel using kernelcore_remaining. When it is
4561 * 0, the rest of the node is usable by ZONE_MOVABLE
4563 kernelcore_remaining
= kernelcore_node
;
4565 /* Go through each range of PFNs within this node */
4566 for_each_active_range_index_in_nid(i
, nid
) {
4567 unsigned long start_pfn
, end_pfn
;
4568 unsigned long size_pages
;
4570 start_pfn
= max(early_node_map
[i
].start_pfn
,
4571 zone_movable_pfn
[nid
]);
4572 end_pfn
= early_node_map
[i
].end_pfn
;
4573 if (start_pfn
>= end_pfn
)
4576 /* Account for what is only usable for kernelcore */
4577 if (start_pfn
< usable_startpfn
) {
4578 unsigned long kernel_pages
;
4579 kernel_pages
= min(end_pfn
, usable_startpfn
)
4582 kernelcore_remaining
-= min(kernel_pages
,
4583 kernelcore_remaining
);
4584 required_kernelcore
-= min(kernel_pages
,
4585 required_kernelcore
);
4587 /* Continue if range is now fully accounted */
4588 if (end_pfn
<= usable_startpfn
) {
4591 * Push zone_movable_pfn to the end so
4592 * that if we have to rebalance
4593 * kernelcore across nodes, we will
4594 * not double account here
4596 zone_movable_pfn
[nid
] = end_pfn
;
4599 start_pfn
= usable_startpfn
;
4603 * The usable PFN range for ZONE_MOVABLE is from
4604 * start_pfn->end_pfn. Calculate size_pages as the
4605 * number of pages used as kernelcore
4607 size_pages
= end_pfn
- start_pfn
;
4608 if (size_pages
> kernelcore_remaining
)
4609 size_pages
= kernelcore_remaining
;
4610 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4613 * Some kernelcore has been met, update counts and
4614 * break if the kernelcore for this node has been
4617 required_kernelcore
-= min(required_kernelcore
,
4619 kernelcore_remaining
-= size_pages
;
4620 if (!kernelcore_remaining
)
4626 * If there is still required_kernelcore, we do another pass with one
4627 * less node in the count. This will push zone_movable_pfn[nid] further
4628 * along on the nodes that still have memory until kernelcore is
4632 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4635 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4636 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4637 zone_movable_pfn
[nid
] =
4638 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4641 /* restore the node_state */
4642 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4645 /* Any regular memory on that node ? */
4646 static void check_for_regular_memory(pg_data_t
*pgdat
)
4648 #ifdef CONFIG_HIGHMEM
4649 enum zone_type zone_type
;
4651 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4652 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4653 if (zone
->present_pages
)
4654 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4660 * free_area_init_nodes - Initialise all pg_data_t and zone data
4661 * @max_zone_pfn: an array of max PFNs for each zone
4663 * This will call free_area_init_node() for each active node in the system.
4664 * Using the page ranges provided by add_active_range(), the size of each
4665 * zone in each node and their holes is calculated. If the maximum PFN
4666 * between two adjacent zones match, it is assumed that the zone is empty.
4667 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4668 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4669 * starts where the previous one ended. For example, ZONE_DMA32 starts
4670 * at arch_max_dma_pfn.
4672 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4677 /* Sort early_node_map as initialisation assumes it is sorted */
4680 /* Record where the zone boundaries are */
4681 memset(arch_zone_lowest_possible_pfn
, 0,
4682 sizeof(arch_zone_lowest_possible_pfn
));
4683 memset(arch_zone_highest_possible_pfn
, 0,
4684 sizeof(arch_zone_highest_possible_pfn
));
4685 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4686 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4687 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4688 if (i
== ZONE_MOVABLE
)
4690 arch_zone_lowest_possible_pfn
[i
] =
4691 arch_zone_highest_possible_pfn
[i
-1];
4692 arch_zone_highest_possible_pfn
[i
] =
4693 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4695 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4696 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4698 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4699 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4700 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4702 /* Print out the zone ranges */
4703 printk("Zone PFN ranges:\n");
4704 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4705 if (i
== ZONE_MOVABLE
)
4707 printk(" %-8s ", zone_names
[i
]);
4708 if (arch_zone_lowest_possible_pfn
[i
] ==
4709 arch_zone_highest_possible_pfn
[i
])
4712 printk("%0#10lx -> %0#10lx\n",
4713 arch_zone_lowest_possible_pfn
[i
],
4714 arch_zone_highest_possible_pfn
[i
]);
4717 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4718 printk("Movable zone start PFN for each node\n");
4719 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4720 if (zone_movable_pfn
[i
])
4721 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4724 /* Print out the early_node_map[] */
4725 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4726 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4727 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4728 early_node_map
[i
].start_pfn
,
4729 early_node_map
[i
].end_pfn
);
4731 /* Initialise every node */
4732 mminit_verify_pageflags_layout();
4733 setup_nr_node_ids();
4734 for_each_online_node(nid
) {
4735 pg_data_t
*pgdat
= NODE_DATA(nid
);
4736 free_area_init_node(nid
, NULL
,
4737 find_min_pfn_for_node(nid
), NULL
);
4739 /* Any memory on that node */
4740 if (pgdat
->node_present_pages
)
4741 node_set_state(nid
, N_HIGH_MEMORY
);
4742 check_for_regular_memory(pgdat
);
4746 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4748 unsigned long long coremem
;
4752 coremem
= memparse(p
, &p
);
4753 *core
= coremem
>> PAGE_SHIFT
;
4755 /* Paranoid check that UL is enough for the coremem value */
4756 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4762 * kernelcore=size sets the amount of memory for use for allocations that
4763 * cannot be reclaimed or migrated.
4765 static int __init
cmdline_parse_kernelcore(char *p
)
4767 return cmdline_parse_core(p
, &required_kernelcore
);
4771 * movablecore=size sets the amount of memory for use for allocations that
4772 * can be reclaimed or migrated.
4774 static int __init
cmdline_parse_movablecore(char *p
)
4776 return cmdline_parse_core(p
, &required_movablecore
);
4779 early_param("kernelcore", cmdline_parse_kernelcore
);
4780 early_param("movablecore", cmdline_parse_movablecore
);
4782 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4785 * set_dma_reserve - set the specified number of pages reserved in the first zone
4786 * @new_dma_reserve: The number of pages to mark reserved
4788 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4789 * In the DMA zone, a significant percentage may be consumed by kernel image
4790 * and other unfreeable allocations which can skew the watermarks badly. This
4791 * function may optionally be used to account for unfreeable pages in the
4792 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4793 * smaller per-cpu batchsize.
4795 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4797 dma_reserve
= new_dma_reserve
;
4800 #ifndef CONFIG_NEED_MULTIPLE_NODES
4801 struct pglist_data __refdata contig_page_data
= {
4802 #ifndef CONFIG_NO_BOOTMEM
4803 .bdata
= &bootmem_node_data
[0]
4806 EXPORT_SYMBOL(contig_page_data
);
4809 void __init
free_area_init(unsigned long *zones_size
)
4811 free_area_init_node(0, zones_size
,
4812 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4815 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4816 unsigned long action
, void *hcpu
)
4818 int cpu
= (unsigned long)hcpu
;
4820 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4824 * Spill the event counters of the dead processor
4825 * into the current processors event counters.
4826 * This artificially elevates the count of the current
4829 vm_events_fold_cpu(cpu
);
4832 * Zero the differential counters of the dead processor
4833 * so that the vm statistics are consistent.
4835 * This is only okay since the processor is dead and cannot
4836 * race with what we are doing.
4838 refresh_cpu_vm_stats(cpu
);
4843 void __init
page_alloc_init(void)
4845 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4849 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4850 * or min_free_kbytes changes.
4852 static void calculate_totalreserve_pages(void)
4854 struct pglist_data
*pgdat
;
4855 unsigned long reserve_pages
= 0;
4856 enum zone_type i
, j
;
4858 for_each_online_pgdat(pgdat
) {
4859 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4860 struct zone
*zone
= pgdat
->node_zones
+ i
;
4861 unsigned long max
= 0;
4863 /* Find valid and maximum lowmem_reserve in the zone */
4864 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4865 if (zone
->lowmem_reserve
[j
] > max
)
4866 max
= zone
->lowmem_reserve
[j
];
4869 /* we treat the high watermark as reserved pages. */
4870 max
+= high_wmark_pages(zone
);
4872 if (max
> zone
->present_pages
)
4873 max
= zone
->present_pages
;
4874 reserve_pages
+= max
;
4877 totalreserve_pages
= reserve_pages
;
4881 * setup_per_zone_lowmem_reserve - called whenever
4882 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4883 * has a correct pages reserved value, so an adequate number of
4884 * pages are left in the zone after a successful __alloc_pages().
4886 static void setup_per_zone_lowmem_reserve(void)
4888 struct pglist_data
*pgdat
;
4889 enum zone_type j
, idx
;
4891 for_each_online_pgdat(pgdat
) {
4892 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4893 struct zone
*zone
= pgdat
->node_zones
+ j
;
4894 unsigned long present_pages
= zone
->present_pages
;
4896 zone
->lowmem_reserve
[j
] = 0;
4900 struct zone
*lower_zone
;
4904 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4905 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4907 lower_zone
= pgdat
->node_zones
+ idx
;
4908 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4909 sysctl_lowmem_reserve_ratio
[idx
];
4910 present_pages
+= lower_zone
->present_pages
;
4915 /* update totalreserve_pages */
4916 calculate_totalreserve_pages();
4920 * setup_per_zone_wmarks - called when min_free_kbytes changes
4921 * or when memory is hot-{added|removed}
4923 * Ensures that the watermark[min,low,high] values for each zone are set
4924 * correctly with respect to min_free_kbytes.
4926 void setup_per_zone_wmarks(void)
4928 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4929 unsigned long lowmem_pages
= 0;
4931 unsigned long flags
;
4933 /* Calculate total number of !ZONE_HIGHMEM pages */
4934 for_each_zone(zone
) {
4935 if (!is_highmem(zone
))
4936 lowmem_pages
+= zone
->present_pages
;
4939 for_each_zone(zone
) {
4942 spin_lock_irqsave(&zone
->lock
, flags
);
4943 tmp
= (u64
)pages_min
* zone
->present_pages
;
4944 do_div(tmp
, lowmem_pages
);
4945 if (is_highmem(zone
)) {
4947 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4948 * need highmem pages, so cap pages_min to a small
4951 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4952 * deltas controls asynch page reclaim, and so should
4953 * not be capped for highmem.
4957 min_pages
= zone
->present_pages
/ 1024;
4958 if (min_pages
< SWAP_CLUSTER_MAX
)
4959 min_pages
= SWAP_CLUSTER_MAX
;
4960 if (min_pages
> 128)
4962 zone
->watermark
[WMARK_MIN
] = min_pages
;
4965 * If it's a lowmem zone, reserve a number of pages
4966 * proportionate to the zone's size.
4968 zone
->watermark
[WMARK_MIN
] = tmp
;
4971 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4972 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4973 setup_zone_migrate_reserve(zone
);
4974 spin_unlock_irqrestore(&zone
->lock
, flags
);
4977 /* update totalreserve_pages */
4978 calculate_totalreserve_pages();
4982 * The inactive anon list should be small enough that the VM never has to
4983 * do too much work, but large enough that each inactive page has a chance
4984 * to be referenced again before it is swapped out.
4986 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4987 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4988 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4989 * the anonymous pages are kept on the inactive list.
4992 * memory ratio inactive anon
4993 * -------------------------------------
5002 void calculate_zone_inactive_ratio(struct zone
*zone
)
5004 unsigned int gb
, ratio
;
5006 /* Zone size in gigabytes */
5007 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5009 ratio
= int_sqrt(10 * gb
);
5013 zone
->inactive_ratio
= ratio
;
5016 static void __init
setup_per_zone_inactive_ratio(void)
5021 calculate_zone_inactive_ratio(zone
);
5025 * Initialise min_free_kbytes.
5027 * For small machines we want it small (128k min). For large machines
5028 * we want it large (64MB max). But it is not linear, because network
5029 * bandwidth does not increase linearly with machine size. We use
5031 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5032 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5048 static int __init
init_per_zone_wmark_min(void)
5050 unsigned long lowmem_kbytes
;
5052 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5054 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5055 if (min_free_kbytes
< 128)
5056 min_free_kbytes
= 128;
5057 if (min_free_kbytes
> 65536)
5058 min_free_kbytes
= 65536;
5059 setup_per_zone_wmarks();
5060 setup_per_zone_lowmem_reserve();
5061 setup_per_zone_inactive_ratio();
5064 module_init(init_per_zone_wmark_min
)
5067 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5068 * that we can call two helper functions whenever min_free_kbytes
5071 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5072 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5074 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5076 setup_per_zone_wmarks();
5081 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5082 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5087 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5092 zone
->min_unmapped_pages
= (zone
->present_pages
*
5093 sysctl_min_unmapped_ratio
) / 100;
5097 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5098 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5103 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5108 zone
->min_slab_pages
= (zone
->present_pages
*
5109 sysctl_min_slab_ratio
) / 100;
5115 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5116 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5117 * whenever sysctl_lowmem_reserve_ratio changes.
5119 * The reserve ratio obviously has absolutely no relation with the
5120 * minimum watermarks. The lowmem reserve ratio can only make sense
5121 * if in function of the boot time zone sizes.
5123 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5124 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5126 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5127 setup_per_zone_lowmem_reserve();
5132 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5133 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5134 * can have before it gets flushed back to buddy allocator.
5137 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5138 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5144 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5145 if (!write
|| (ret
== -EINVAL
))
5147 for_each_populated_zone(zone
) {
5148 for_each_possible_cpu(cpu
) {
5150 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5151 setup_pagelist_highmark(
5152 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5158 int hashdist
= HASHDIST_DEFAULT
;
5161 static int __init
set_hashdist(char *str
)
5165 hashdist
= simple_strtoul(str
, &str
, 0);
5168 __setup("hashdist=", set_hashdist
);
5172 * allocate a large system hash table from bootmem
5173 * - it is assumed that the hash table must contain an exact power-of-2
5174 * quantity of entries
5175 * - limit is the number of hash buckets, not the total allocation size
5177 void *__init
alloc_large_system_hash(const char *tablename
,
5178 unsigned long bucketsize
,
5179 unsigned long numentries
,
5182 unsigned int *_hash_shift
,
5183 unsigned int *_hash_mask
,
5184 unsigned long limit
)
5186 unsigned long long max
= limit
;
5187 unsigned long log2qty
, size
;
5190 /* allow the kernel cmdline to have a say */
5192 /* round applicable memory size up to nearest megabyte */
5193 numentries
= nr_kernel_pages
;
5194 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5195 numentries
>>= 20 - PAGE_SHIFT
;
5196 numentries
<<= 20 - PAGE_SHIFT
;
5198 /* limit to 1 bucket per 2^scale bytes of low memory */
5199 if (scale
> PAGE_SHIFT
)
5200 numentries
>>= (scale
- PAGE_SHIFT
);
5202 numentries
<<= (PAGE_SHIFT
- scale
);
5204 /* Make sure we've got at least a 0-order allocation.. */
5205 if (unlikely(flags
& HASH_SMALL
)) {
5206 /* Makes no sense without HASH_EARLY */
5207 WARN_ON(!(flags
& HASH_EARLY
));
5208 if (!(numentries
>> *_hash_shift
)) {
5209 numentries
= 1UL << *_hash_shift
;
5210 BUG_ON(!numentries
);
5212 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5213 numentries
= PAGE_SIZE
/ bucketsize
;
5215 numentries
= roundup_pow_of_two(numentries
);
5217 /* limit allocation size to 1/16 total memory by default */
5219 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5220 do_div(max
, bucketsize
);
5223 if (numentries
> max
)
5226 log2qty
= ilog2(numentries
);
5229 size
= bucketsize
<< log2qty
;
5230 if (flags
& HASH_EARLY
)
5231 table
= alloc_bootmem_nopanic(size
);
5233 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5236 * If bucketsize is not a power-of-two, we may free
5237 * some pages at the end of hash table which
5238 * alloc_pages_exact() automatically does
5240 if (get_order(size
) < MAX_ORDER
) {
5241 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5242 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5245 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5248 panic("Failed to allocate %s hash table\n", tablename
);
5250 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5253 ilog2(size
) - PAGE_SHIFT
,
5257 *_hash_shift
= log2qty
;
5259 *_hash_mask
= (1 << log2qty
) - 1;
5264 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5265 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5268 #ifdef CONFIG_SPARSEMEM
5269 return __pfn_to_section(pfn
)->pageblock_flags
;
5271 return zone
->pageblock_flags
;
5272 #endif /* CONFIG_SPARSEMEM */
5275 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5277 #ifdef CONFIG_SPARSEMEM
5278 pfn
&= (PAGES_PER_SECTION
-1);
5279 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5281 pfn
= pfn
- zone
->zone_start_pfn
;
5282 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5283 #endif /* CONFIG_SPARSEMEM */
5287 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5288 * @page: The page within the block of interest
5289 * @start_bitidx: The first bit of interest to retrieve
5290 * @end_bitidx: The last bit of interest
5291 * returns pageblock_bits flags
5293 unsigned long get_pageblock_flags_group(struct page
*page
,
5294 int start_bitidx
, int end_bitidx
)
5297 unsigned long *bitmap
;
5298 unsigned long pfn
, bitidx
;
5299 unsigned long flags
= 0;
5300 unsigned long value
= 1;
5302 zone
= page_zone(page
);
5303 pfn
= page_to_pfn(page
);
5304 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5305 bitidx
= pfn_to_bitidx(zone
, pfn
);
5307 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5308 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5315 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5316 * @page: The page within the block of interest
5317 * @start_bitidx: The first bit of interest
5318 * @end_bitidx: The last bit of interest
5319 * @flags: The flags to set
5321 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5322 int start_bitidx
, int end_bitidx
)
5325 unsigned long *bitmap
;
5326 unsigned long pfn
, bitidx
;
5327 unsigned long value
= 1;
5329 zone
= page_zone(page
);
5330 pfn
= page_to_pfn(page
);
5331 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5332 bitidx
= pfn_to_bitidx(zone
, pfn
);
5333 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5334 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5336 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5338 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5340 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5344 * This is designed as sub function...plz see page_isolation.c also.
5345 * set/clear page block's type to be ISOLATE.
5346 * page allocater never alloc memory from ISOLATE block.
5350 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5352 unsigned long pfn
, iter
, found
;
5354 * For avoiding noise data, lru_add_drain_all() should be called
5355 * If ZONE_MOVABLE, the zone never contains immobile pages
5357 if (zone_idx(zone
) == ZONE_MOVABLE
)
5360 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5363 pfn
= page_to_pfn(page
);
5364 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5365 unsigned long check
= pfn
+ iter
;
5367 if (!pfn_valid_within(check
)) {
5371 page
= pfn_to_page(check
);
5372 if (!page_count(page
)) {
5373 if (PageBuddy(page
))
5374 iter
+= (1 << page_order(page
)) - 1;
5380 * If there are RECLAIMABLE pages, we need to check it.
5381 * But now, memory offline itself doesn't call shrink_slab()
5382 * and it still to be fixed.
5385 * If the page is not RAM, page_count()should be 0.
5386 * we don't need more check. This is an _used_ not-movable page.
5388 * The problematic thing here is PG_reserved pages. PG_reserved
5389 * is set to both of a memory hole page and a _used_ kernel
5398 bool is_pageblock_removable_nolock(struct page
*page
)
5400 struct zone
*zone
= page_zone(page
);
5401 return __count_immobile_pages(zone
, page
, 0);
5404 int set_migratetype_isolate(struct page
*page
)
5407 unsigned long flags
, pfn
;
5408 struct memory_isolate_notify arg
;
5413 zone
= page_zone(page
);
5414 zone_idx
= zone_idx(zone
);
5416 spin_lock_irqsave(&zone
->lock
, flags
);
5418 pfn
= page_to_pfn(page
);
5419 arg
.start_pfn
= pfn
;
5420 arg
.nr_pages
= pageblock_nr_pages
;
5421 arg
.pages_found
= 0;
5424 * It may be possible to isolate a pageblock even if the
5425 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5426 * notifier chain is used by balloon drivers to return the
5427 * number of pages in a range that are held by the balloon
5428 * driver to shrink memory. If all the pages are accounted for
5429 * by balloons, are free, or on the LRU, isolation can continue.
5430 * Later, for example, when memory hotplug notifier runs, these
5431 * pages reported as "can be isolated" should be isolated(freed)
5432 * by the balloon driver through the memory notifier chain.
5434 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5435 notifier_ret
= notifier_to_errno(notifier_ret
);
5439 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5440 * We just check MOVABLE pages.
5442 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5446 * immobile means "not-on-lru" paes. If immobile is larger than
5447 * removable-by-driver pages reported by notifier, we'll fail.
5452 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5453 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5456 spin_unlock_irqrestore(&zone
->lock
, flags
);
5462 void unset_migratetype_isolate(struct page
*page
)
5465 unsigned long flags
;
5466 zone
= page_zone(page
);
5467 spin_lock_irqsave(&zone
->lock
, flags
);
5468 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5470 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5471 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5473 spin_unlock_irqrestore(&zone
->lock
, flags
);
5476 #ifdef CONFIG_MEMORY_HOTREMOVE
5478 * All pages in the range must be isolated before calling this.
5481 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5487 unsigned long flags
;
5488 /* find the first valid pfn */
5489 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5494 zone
= page_zone(pfn_to_page(pfn
));
5495 spin_lock_irqsave(&zone
->lock
, flags
);
5497 while (pfn
< end_pfn
) {
5498 if (!pfn_valid(pfn
)) {
5502 page
= pfn_to_page(pfn
);
5503 BUG_ON(page_count(page
));
5504 BUG_ON(!PageBuddy(page
));
5505 order
= page_order(page
);
5506 #ifdef CONFIG_DEBUG_VM
5507 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5508 pfn
, 1 << order
, end_pfn
);
5510 list_del(&page
->lru
);
5511 rmv_page_order(page
);
5512 zone
->free_area
[order
].nr_free
--;
5513 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5515 for (i
= 0; i
< (1 << order
); i
++)
5516 SetPageReserved((page
+i
));
5517 pfn
+= (1 << order
);
5519 spin_unlock_irqrestore(&zone
->lock
, flags
);
5523 #ifdef CONFIG_MEMORY_FAILURE
5524 bool is_free_buddy_page(struct page
*page
)
5526 struct zone
*zone
= page_zone(page
);
5527 unsigned long pfn
= page_to_pfn(page
);
5528 unsigned long flags
;
5531 spin_lock_irqsave(&zone
->lock
, flags
);
5532 for (order
= 0; order
< MAX_ORDER
; order
++) {
5533 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5535 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5538 spin_unlock_irqrestore(&zone
->lock
, flags
);
5540 return order
< MAX_ORDER
;
5544 static struct trace_print_flags pageflag_names
[] = {
5545 {1UL << PG_locked
, "locked" },
5546 {1UL << PG_error
, "error" },
5547 {1UL << PG_referenced
, "referenced" },
5548 {1UL << PG_uptodate
, "uptodate" },
5549 {1UL << PG_dirty
, "dirty" },
5550 {1UL << PG_lru
, "lru" },
5551 {1UL << PG_active
, "active" },
5552 {1UL << PG_slab
, "slab" },
5553 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5554 {1UL << PG_arch_1
, "arch_1" },
5555 {1UL << PG_reserved
, "reserved" },
5556 {1UL << PG_private
, "private" },
5557 {1UL << PG_private_2
, "private_2" },
5558 {1UL << PG_writeback
, "writeback" },
5559 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5560 {1UL << PG_head
, "head" },
5561 {1UL << PG_tail
, "tail" },
5563 {1UL << PG_compound
, "compound" },
5565 {1UL << PG_swapcache
, "swapcache" },
5566 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5567 {1UL << PG_reclaim
, "reclaim" },
5568 {1UL << PG_swapbacked
, "swapbacked" },
5569 {1UL << PG_unevictable
, "unevictable" },
5571 {1UL << PG_mlocked
, "mlocked" },
5573 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5574 {1UL << PG_uncached
, "uncached" },
5576 #ifdef CONFIG_MEMORY_FAILURE
5577 {1UL << PG_hwpoison
, "hwpoison" },
5582 static void dump_page_flags(unsigned long flags
)
5584 const char *delim
= "";
5588 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5590 /* remove zone id */
5591 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5593 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5595 mask
= pageflag_names
[i
].mask
;
5596 if ((flags
& mask
) != mask
)
5600 printk("%s%s", delim
, pageflag_names
[i
].name
);
5604 /* check for left over flags */
5606 printk("%s%#lx", delim
, flags
);
5611 void dump_page(struct page
*page
)
5614 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5615 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5616 page
->mapping
, page
->index
);
5617 dump_page_flags(page
->flags
);