USB: BKL removal: rio500
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / write.c
blobd63d964a0392ed9a73e759b18c34e1ecfe2368c0
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
60 return p;
63 void nfs_commit_free(struct nfs_write_data *p)
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 if (pagecount <= ARRAY_SIZE(p->page_array))
80 p->pagevec = p->page_array;
81 else {
82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 if (!p->pagevec) {
84 mempool_free(p, nfs_wdata_mempool);
85 p = NULL;
89 return p;
92 void nfs_writedata_free(struct nfs_write_data *p)
94 if (p && (p->pagevec != &p->page_array[0]))
95 kfree(p->pagevec);
96 mempool_free(p, nfs_wdata_mempool);
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
177 static int wb_priority(struct writeback_control *wbc)
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
187 * NFS congestion control
190 int nfs_congestion_kb;
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196 static int nfs_set_page_writeback(struct page *page)
198 int ret = test_set_page_writeback(page);
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
204 if (atomic_long_inc_return(&nfss->writeback) >
205 NFS_CONGESTION_ON_THRESH) {
206 set_bdi_congested(&nfss->backing_dev_info,
207 BLK_RW_ASYNC);
210 return ret;
213 static void nfs_end_page_writeback(struct page *page)
215 struct inode *inode = page->mapping->host;
216 struct nfs_server *nfss = NFS_SERVER(inode);
218 end_page_writeback(page);
219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
225 struct inode *inode = page->mapping->host;
226 struct nfs_page *req;
227 int ret;
229 spin_lock(&inode->i_lock);
230 for (;;) {
231 req = nfs_page_find_request_locked(page);
232 if (req == NULL)
233 break;
234 if (nfs_set_page_tag_locked(req))
235 break;
236 /* Note: If we hold the page lock, as is the case in nfs_writepage,
237 * then the call to nfs_set_page_tag_locked() will always
238 * succeed provided that someone hasn't already marked the
239 * request as dirty (in which case we don't care).
241 spin_unlock(&inode->i_lock);
242 ret = nfs_wait_on_request(req);
243 nfs_release_request(req);
244 if (ret != 0)
245 return ERR_PTR(ret);
246 spin_lock(&inode->i_lock);
248 spin_unlock(&inode->i_lock);
249 return req;
253 * Find an associated nfs write request, and prepare to flush it out
254 * May return an error if the user signalled nfs_wait_on_request().
256 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
257 struct page *page)
259 struct nfs_page *req;
260 int ret = 0;
262 req = nfs_find_and_lock_request(page);
263 if (!req)
264 goto out;
265 ret = PTR_ERR(req);
266 if (IS_ERR(req))
267 goto out;
269 ret = nfs_set_page_writeback(page);
270 BUG_ON(ret != 0);
271 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
273 if (!nfs_pageio_add_request(pgio, req)) {
274 nfs_redirty_request(req);
275 ret = pgio->pg_error;
277 out:
278 return ret;
281 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
283 struct inode *inode = page->mapping->host;
285 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
286 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
288 nfs_pageio_cond_complete(pgio, page->index);
289 return nfs_page_async_flush(pgio, page);
293 * Write an mmapped page to the server.
295 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
297 struct nfs_pageio_descriptor pgio;
298 int err;
300 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
301 err = nfs_do_writepage(page, wbc, &pgio);
302 nfs_pageio_complete(&pgio);
303 if (err < 0)
304 return err;
305 if (pgio.pg_error < 0)
306 return pgio.pg_error;
307 return 0;
310 int nfs_writepage(struct page *page, struct writeback_control *wbc)
312 int ret;
314 ret = nfs_writepage_locked(page, wbc);
315 unlock_page(page);
316 return ret;
319 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
321 int ret;
323 ret = nfs_do_writepage(page, wbc, data);
324 unlock_page(page);
325 return ret;
328 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
330 struct inode *inode = mapping->host;
331 unsigned long *bitlock = &NFS_I(inode)->flags;
332 struct nfs_pageio_descriptor pgio;
333 int err;
335 /* Stop dirtying of new pages while we sync */
336 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
337 nfs_wait_bit_killable, TASK_KILLABLE);
338 if (err)
339 goto out_err;
341 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
343 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
344 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
345 nfs_pageio_complete(&pgio);
347 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
348 smp_mb__after_clear_bit();
349 wake_up_bit(bitlock, NFS_INO_FLUSHING);
351 if (err < 0)
352 goto out_err;
353 err = pgio.pg_error;
354 if (err < 0)
355 goto out_err;
356 return 0;
357 out_err:
358 return err;
362 * Insert a write request into an inode
364 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
366 struct nfs_inode *nfsi = NFS_I(inode);
367 int error;
369 error = radix_tree_preload(GFP_NOFS);
370 if (error != 0)
371 goto out;
373 /* Lock the request! */
374 nfs_lock_request_dontget(req);
376 spin_lock(&inode->i_lock);
377 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
378 BUG_ON(error);
379 if (!nfsi->npages) {
380 igrab(inode);
381 if (nfs_have_delegation(inode, FMODE_WRITE))
382 nfsi->change_attr++;
384 SetPagePrivate(req->wb_page);
385 set_page_private(req->wb_page, (unsigned long)req);
386 nfsi->npages++;
387 kref_get(&req->wb_kref);
388 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
389 NFS_PAGE_TAG_LOCKED);
390 spin_unlock(&inode->i_lock);
391 radix_tree_preload_end();
392 out:
393 return error;
397 * Remove a write request from an inode
399 static void nfs_inode_remove_request(struct nfs_page *req)
401 struct inode *inode = req->wb_context->path.dentry->d_inode;
402 struct nfs_inode *nfsi = NFS_I(inode);
404 BUG_ON (!NFS_WBACK_BUSY(req));
406 spin_lock(&inode->i_lock);
407 set_page_private(req->wb_page, 0);
408 ClearPagePrivate(req->wb_page);
409 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
410 nfsi->npages--;
411 if (!nfsi->npages) {
412 spin_unlock(&inode->i_lock);
413 iput(inode);
414 } else
415 spin_unlock(&inode->i_lock);
416 nfs_clear_request(req);
417 nfs_release_request(req);
420 static void
421 nfs_mark_request_dirty(struct nfs_page *req)
423 __set_page_dirty_nobuffers(req->wb_page);
426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
428 * Add a request to the inode's commit list.
430 static void
431 nfs_mark_request_commit(struct nfs_page *req)
433 struct inode *inode = req->wb_context->path.dentry->d_inode;
434 struct nfs_inode *nfsi = NFS_I(inode);
436 spin_lock(&inode->i_lock);
437 set_bit(PG_CLEAN, &(req)->wb_flags);
438 radix_tree_tag_set(&nfsi->nfs_page_tree,
439 req->wb_index,
440 NFS_PAGE_TAG_COMMIT);
441 spin_unlock(&inode->i_lock);
442 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
443 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
444 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
447 static int
448 nfs_clear_request_commit(struct nfs_page *req)
450 struct page *page = req->wb_page;
452 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
453 dec_zone_page_state(page, NR_UNSTABLE_NFS);
454 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
455 return 1;
457 return 0;
460 static inline
461 int nfs_write_need_commit(struct nfs_write_data *data)
463 return data->verf.committed != NFS_FILE_SYNC;
466 static inline
467 int nfs_reschedule_unstable_write(struct nfs_page *req)
469 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
470 nfs_mark_request_commit(req);
471 return 1;
473 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
474 nfs_mark_request_dirty(req);
475 return 1;
477 return 0;
479 #else
480 static inline void
481 nfs_mark_request_commit(struct nfs_page *req)
485 static inline int
486 nfs_clear_request_commit(struct nfs_page *req)
488 return 0;
491 static inline
492 int nfs_write_need_commit(struct nfs_write_data *data)
494 return 0;
497 static inline
498 int nfs_reschedule_unstable_write(struct nfs_page *req)
500 return 0;
502 #endif
505 * Wait for a request to complete.
507 * Interruptible by fatal signals only.
509 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
511 struct nfs_inode *nfsi = NFS_I(inode);
512 struct nfs_page *req;
513 pgoff_t idx_end, next;
514 unsigned int res = 0;
515 int error;
517 if (npages == 0)
518 idx_end = ~0;
519 else
520 idx_end = idx_start + npages - 1;
522 next = idx_start;
523 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
524 if (req->wb_index > idx_end)
525 break;
527 next = req->wb_index + 1;
528 BUG_ON(!NFS_WBACK_BUSY(req));
530 kref_get(&req->wb_kref);
531 spin_unlock(&inode->i_lock);
532 error = nfs_wait_on_request(req);
533 nfs_release_request(req);
534 spin_lock(&inode->i_lock);
535 if (error < 0)
536 return error;
537 res++;
539 return res;
542 static void nfs_cancel_commit_list(struct list_head *head)
544 struct nfs_page *req;
546 while(!list_empty(head)) {
547 req = nfs_list_entry(head->next);
548 nfs_list_remove_request(req);
549 nfs_clear_request_commit(req);
550 nfs_inode_remove_request(req);
551 nfs_unlock_request(req);
555 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
556 static int
557 nfs_need_commit(struct nfs_inode *nfsi)
559 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
563 * nfs_scan_commit - Scan an inode for commit requests
564 * @inode: NFS inode to scan
565 * @dst: destination list
566 * @idx_start: lower bound of page->index to scan.
567 * @npages: idx_start + npages sets the upper bound to scan.
569 * Moves requests from the inode's 'commit' request list.
570 * The requests are *not* checked to ensure that they form a contiguous set.
572 static int
573 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
575 struct nfs_inode *nfsi = NFS_I(inode);
577 if (!nfs_need_commit(nfsi))
578 return 0;
580 return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
582 #else
583 static inline int nfs_need_commit(struct nfs_inode *nfsi)
585 return 0;
588 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
590 return 0;
592 #endif
595 * Search for an existing write request, and attempt to update
596 * it to reflect a new dirty region on a given page.
598 * If the attempt fails, then the existing request is flushed out
599 * to disk.
601 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
602 struct page *page,
603 unsigned int offset,
604 unsigned int bytes)
606 struct nfs_page *req;
607 unsigned int rqend;
608 unsigned int end;
609 int error;
611 if (!PagePrivate(page))
612 return NULL;
614 end = offset + bytes;
615 spin_lock(&inode->i_lock);
617 for (;;) {
618 req = nfs_page_find_request_locked(page);
619 if (req == NULL)
620 goto out_unlock;
622 rqend = req->wb_offset + req->wb_bytes;
624 * Tell the caller to flush out the request if
625 * the offsets are non-contiguous.
626 * Note: nfs_flush_incompatible() will already
627 * have flushed out requests having wrong owners.
629 if (offset > rqend
630 || end < req->wb_offset)
631 goto out_flushme;
633 if (nfs_set_page_tag_locked(req))
634 break;
636 /* The request is locked, so wait and then retry */
637 spin_unlock(&inode->i_lock);
638 error = nfs_wait_on_request(req);
639 nfs_release_request(req);
640 if (error != 0)
641 goto out_err;
642 spin_lock(&inode->i_lock);
645 if (nfs_clear_request_commit(req))
646 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
647 req->wb_index, NFS_PAGE_TAG_COMMIT);
649 /* Okay, the request matches. Update the region */
650 if (offset < req->wb_offset) {
651 req->wb_offset = offset;
652 req->wb_pgbase = offset;
654 if (end > rqend)
655 req->wb_bytes = end - req->wb_offset;
656 else
657 req->wb_bytes = rqend - req->wb_offset;
658 out_unlock:
659 spin_unlock(&inode->i_lock);
660 return req;
661 out_flushme:
662 spin_unlock(&inode->i_lock);
663 nfs_release_request(req);
664 error = nfs_wb_page(inode, page);
665 out_err:
666 return ERR_PTR(error);
670 * Try to update an existing write request, or create one if there is none.
672 * Note: Should always be called with the Page Lock held to prevent races
673 * if we have to add a new request. Also assumes that the caller has
674 * already called nfs_flush_incompatible() if necessary.
676 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
677 struct page *page, unsigned int offset, unsigned int bytes)
679 struct inode *inode = page->mapping->host;
680 struct nfs_page *req;
681 int error;
683 req = nfs_try_to_update_request(inode, page, offset, bytes);
684 if (req != NULL)
685 goto out;
686 req = nfs_create_request(ctx, inode, page, offset, bytes);
687 if (IS_ERR(req))
688 goto out;
689 error = nfs_inode_add_request(inode, req);
690 if (error != 0) {
691 nfs_release_request(req);
692 req = ERR_PTR(error);
694 out:
695 return req;
698 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
699 unsigned int offset, unsigned int count)
701 struct nfs_page *req;
703 req = nfs_setup_write_request(ctx, page, offset, count);
704 if (IS_ERR(req))
705 return PTR_ERR(req);
706 /* Update file length */
707 nfs_grow_file(page, offset, count);
708 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
709 nfs_clear_page_tag_locked(req);
710 return 0;
713 int nfs_flush_incompatible(struct file *file, struct page *page)
715 struct nfs_open_context *ctx = nfs_file_open_context(file);
716 struct nfs_page *req;
717 int do_flush, status;
719 * Look for a request corresponding to this page. If there
720 * is one, and it belongs to another file, we flush it out
721 * before we try to copy anything into the page. Do this
722 * due to the lack of an ACCESS-type call in NFSv2.
723 * Also do the same if we find a request from an existing
724 * dropped page.
726 do {
727 req = nfs_page_find_request(page);
728 if (req == NULL)
729 return 0;
730 do_flush = req->wb_page != page || req->wb_context != ctx;
731 nfs_release_request(req);
732 if (!do_flush)
733 return 0;
734 status = nfs_wb_page(page->mapping->host, page);
735 } while (status == 0);
736 return status;
740 * If the page cache is marked as unsafe or invalid, then we can't rely on
741 * the PageUptodate() flag. In this case, we will need to turn off
742 * write optimisations that depend on the page contents being correct.
744 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
746 return PageUptodate(page) &&
747 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
751 * Update and possibly write a cached page of an NFS file.
753 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
754 * things with a page scheduled for an RPC call (e.g. invalidate it).
756 int nfs_updatepage(struct file *file, struct page *page,
757 unsigned int offset, unsigned int count)
759 struct nfs_open_context *ctx = nfs_file_open_context(file);
760 struct inode *inode = page->mapping->host;
761 int status = 0;
763 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
765 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
766 file->f_path.dentry->d_parent->d_name.name,
767 file->f_path.dentry->d_name.name, count,
768 (long long)(page_offset(page) + offset));
770 /* If we're not using byte range locks, and we know the page
771 * is up to date, it may be more efficient to extend the write
772 * to cover the entire page in order to avoid fragmentation
773 * inefficiencies.
775 if (nfs_write_pageuptodate(page, inode) &&
776 inode->i_flock == NULL &&
777 !(file->f_flags & O_DSYNC)) {
778 count = max(count + offset, nfs_page_length(page));
779 offset = 0;
782 status = nfs_writepage_setup(ctx, page, offset, count);
783 if (status < 0)
784 nfs_set_pageerror(page);
785 else
786 __set_page_dirty_nobuffers(page);
788 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
789 status, (long long)i_size_read(inode));
790 return status;
793 static void nfs_writepage_release(struct nfs_page *req)
796 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
797 nfs_end_page_writeback(req->wb_page);
798 nfs_inode_remove_request(req);
799 } else
800 nfs_end_page_writeback(req->wb_page);
801 nfs_clear_page_tag_locked(req);
804 static int flush_task_priority(int how)
806 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
807 case FLUSH_HIGHPRI:
808 return RPC_PRIORITY_HIGH;
809 case FLUSH_LOWPRI:
810 return RPC_PRIORITY_LOW;
812 return RPC_PRIORITY_NORMAL;
816 * Set up the argument/result storage required for the RPC call.
818 static int nfs_write_rpcsetup(struct nfs_page *req,
819 struct nfs_write_data *data,
820 const struct rpc_call_ops *call_ops,
821 unsigned int count, unsigned int offset,
822 int how)
824 struct inode *inode = req->wb_context->path.dentry->d_inode;
825 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
826 int priority = flush_task_priority(how);
827 struct rpc_task *task;
828 struct rpc_message msg = {
829 .rpc_argp = &data->args,
830 .rpc_resp = &data->res,
831 .rpc_cred = req->wb_context->cred,
833 struct rpc_task_setup task_setup_data = {
834 .rpc_client = NFS_CLIENT(inode),
835 .task = &data->task,
836 .rpc_message = &msg,
837 .callback_ops = call_ops,
838 .callback_data = data,
839 .workqueue = nfsiod_workqueue,
840 .flags = flags,
841 .priority = priority,
844 /* Set up the RPC argument and reply structs
845 * NB: take care not to mess about with data->commit et al. */
847 data->req = req;
848 data->inode = inode = req->wb_context->path.dentry->d_inode;
849 data->cred = msg.rpc_cred;
851 data->args.fh = NFS_FH(inode);
852 data->args.offset = req_offset(req) + offset;
853 data->args.pgbase = req->wb_pgbase + offset;
854 data->args.pages = data->pagevec;
855 data->args.count = count;
856 data->args.context = get_nfs_open_context(req->wb_context);
857 data->args.stable = NFS_UNSTABLE;
858 if (how & FLUSH_STABLE) {
859 data->args.stable = NFS_DATA_SYNC;
860 if (!nfs_need_commit(NFS_I(inode)))
861 data->args.stable = NFS_FILE_SYNC;
864 data->res.fattr = &data->fattr;
865 data->res.count = count;
866 data->res.verf = &data->verf;
867 nfs_fattr_init(&data->fattr);
869 /* Set up the initial task struct. */
870 NFS_PROTO(inode)->write_setup(data, &msg);
872 dprintk("NFS: %5u initiated write call "
873 "(req %s/%lld, %u bytes @ offset %llu)\n",
874 data->task.tk_pid,
875 inode->i_sb->s_id,
876 (long long)NFS_FILEID(inode),
877 count,
878 (unsigned long long)data->args.offset);
880 task = rpc_run_task(&task_setup_data);
881 if (IS_ERR(task))
882 return PTR_ERR(task);
883 rpc_put_task(task);
884 return 0;
887 /* If a nfs_flush_* function fails, it should remove reqs from @head and
888 * call this on each, which will prepare them to be retried on next
889 * writeback using standard nfs.
891 static void nfs_redirty_request(struct nfs_page *req)
893 nfs_mark_request_dirty(req);
894 nfs_end_page_writeback(req->wb_page);
895 nfs_clear_page_tag_locked(req);
899 * Generate multiple small requests to write out a single
900 * contiguous dirty area on one page.
902 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
904 struct nfs_page *req = nfs_list_entry(head->next);
905 struct page *page = req->wb_page;
906 struct nfs_write_data *data;
907 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
908 unsigned int offset;
909 int requests = 0;
910 int ret = 0;
911 LIST_HEAD(list);
913 nfs_list_remove_request(req);
915 nbytes = count;
916 do {
917 size_t len = min(nbytes, wsize);
919 data = nfs_writedata_alloc(1);
920 if (!data)
921 goto out_bad;
922 list_add(&data->pages, &list);
923 requests++;
924 nbytes -= len;
925 } while (nbytes != 0);
926 atomic_set(&req->wb_complete, requests);
928 ClearPageError(page);
929 offset = 0;
930 nbytes = count;
931 do {
932 int ret2;
934 data = list_entry(list.next, struct nfs_write_data, pages);
935 list_del_init(&data->pages);
937 data->pagevec[0] = page;
939 if (nbytes < wsize)
940 wsize = nbytes;
941 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
942 wsize, offset, how);
943 if (ret == 0)
944 ret = ret2;
945 offset += wsize;
946 nbytes -= wsize;
947 } while (nbytes != 0);
949 return ret;
951 out_bad:
952 while (!list_empty(&list)) {
953 data = list_entry(list.next, struct nfs_write_data, pages);
954 list_del(&data->pages);
955 nfs_writedata_release(data);
957 nfs_redirty_request(req);
958 return -ENOMEM;
962 * Create an RPC task for the given write request and kick it.
963 * The page must have been locked by the caller.
965 * It may happen that the page we're passed is not marked dirty.
966 * This is the case if nfs_updatepage detects a conflicting request
967 * that has been written but not committed.
969 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
971 struct nfs_page *req;
972 struct page **pages;
973 struct nfs_write_data *data;
975 data = nfs_writedata_alloc(npages);
976 if (!data)
977 goto out_bad;
979 pages = data->pagevec;
980 while (!list_empty(head)) {
981 req = nfs_list_entry(head->next);
982 nfs_list_remove_request(req);
983 nfs_list_add_request(req, &data->pages);
984 ClearPageError(req->wb_page);
985 *pages++ = req->wb_page;
987 req = nfs_list_entry(data->pages.next);
989 /* Set up the argument struct */
990 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
991 out_bad:
992 while (!list_empty(head)) {
993 req = nfs_list_entry(head->next);
994 nfs_list_remove_request(req);
995 nfs_redirty_request(req);
997 return -ENOMEM;
1000 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1001 struct inode *inode, int ioflags)
1003 size_t wsize = NFS_SERVER(inode)->wsize;
1005 if (wsize < PAGE_CACHE_SIZE)
1006 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1007 else
1008 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1012 * Handle a write reply that flushed part of a page.
1014 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1016 struct nfs_write_data *data = calldata;
1018 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1019 task->tk_pid,
1020 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1021 (long long)
1022 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1023 data->req->wb_bytes, (long long)req_offset(data->req));
1025 nfs_writeback_done(task, data);
1028 static void nfs_writeback_release_partial(void *calldata)
1030 struct nfs_write_data *data = calldata;
1031 struct nfs_page *req = data->req;
1032 struct page *page = req->wb_page;
1033 int status = data->task.tk_status;
1035 if (status < 0) {
1036 nfs_set_pageerror(page);
1037 nfs_context_set_write_error(req->wb_context, status);
1038 dprintk(", error = %d\n", status);
1039 goto out;
1042 if (nfs_write_need_commit(data)) {
1043 struct inode *inode = page->mapping->host;
1045 spin_lock(&inode->i_lock);
1046 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1047 /* Do nothing we need to resend the writes */
1048 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1049 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1050 dprintk(" defer commit\n");
1051 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1052 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1053 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1054 dprintk(" server reboot detected\n");
1056 spin_unlock(&inode->i_lock);
1057 } else
1058 dprintk(" OK\n");
1060 out:
1061 if (atomic_dec_and_test(&req->wb_complete))
1062 nfs_writepage_release(req);
1063 nfs_writedata_release(calldata);
1066 #if defined(CONFIG_NFS_V4_1)
1067 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1069 struct nfs_write_data *data = calldata;
1070 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1072 if (nfs4_setup_sequence(clp, &data->args.seq_args,
1073 &data->res.seq_res, 1, task))
1074 return;
1075 rpc_call_start(task);
1077 #endif /* CONFIG_NFS_V4_1 */
1079 static const struct rpc_call_ops nfs_write_partial_ops = {
1080 #if defined(CONFIG_NFS_V4_1)
1081 .rpc_call_prepare = nfs_write_prepare,
1082 #endif /* CONFIG_NFS_V4_1 */
1083 .rpc_call_done = nfs_writeback_done_partial,
1084 .rpc_release = nfs_writeback_release_partial,
1088 * Handle a write reply that flushes a whole page.
1090 * FIXME: There is an inherent race with invalidate_inode_pages and
1091 * writebacks since the page->count is kept > 1 for as long
1092 * as the page has a write request pending.
1094 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1096 struct nfs_write_data *data = calldata;
1098 nfs_writeback_done(task, data);
1101 static void nfs_writeback_release_full(void *calldata)
1103 struct nfs_write_data *data = calldata;
1104 int status = data->task.tk_status;
1106 /* Update attributes as result of writeback. */
1107 while (!list_empty(&data->pages)) {
1108 struct nfs_page *req = nfs_list_entry(data->pages.next);
1109 struct page *page = req->wb_page;
1111 nfs_list_remove_request(req);
1113 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1114 data->task.tk_pid,
1115 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1116 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1117 req->wb_bytes,
1118 (long long)req_offset(req));
1120 if (status < 0) {
1121 nfs_set_pageerror(page);
1122 nfs_context_set_write_error(req->wb_context, status);
1123 dprintk(", error = %d\n", status);
1124 goto remove_request;
1127 if (nfs_write_need_commit(data)) {
1128 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1129 nfs_mark_request_commit(req);
1130 nfs_end_page_writeback(page);
1131 dprintk(" marked for commit\n");
1132 goto next;
1134 dprintk(" OK\n");
1135 remove_request:
1136 nfs_end_page_writeback(page);
1137 nfs_inode_remove_request(req);
1138 next:
1139 nfs_clear_page_tag_locked(req);
1141 nfs_writedata_release(calldata);
1144 static const struct rpc_call_ops nfs_write_full_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 .rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 .rpc_call_done = nfs_writeback_done_full,
1149 .rpc_release = nfs_writeback_release_full,
1154 * This function is called when the WRITE call is complete.
1156 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1158 struct nfs_writeargs *argp = &data->args;
1159 struct nfs_writeres *resp = &data->res;
1160 struct nfs_server *server = NFS_SERVER(data->inode);
1161 int status;
1163 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1164 task->tk_pid, task->tk_status);
1167 * ->write_done will attempt to use post-op attributes to detect
1168 * conflicting writes by other clients. A strict interpretation
1169 * of close-to-open would allow us to continue caching even if
1170 * another writer had changed the file, but some applications
1171 * depend on tighter cache coherency when writing.
1173 status = NFS_PROTO(data->inode)->write_done(task, data);
1174 if (status != 0)
1175 return status;
1176 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1178 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1179 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1180 /* We tried a write call, but the server did not
1181 * commit data to stable storage even though we
1182 * requested it.
1183 * Note: There is a known bug in Tru64 < 5.0 in which
1184 * the server reports NFS_DATA_SYNC, but performs
1185 * NFS_FILE_SYNC. We therefore implement this checking
1186 * as a dprintk() in order to avoid filling syslog.
1188 static unsigned long complain;
1190 if (time_before(complain, jiffies)) {
1191 dprintk("NFS: faulty NFS server %s:"
1192 " (committed = %d) != (stable = %d)\n",
1193 server->nfs_client->cl_hostname,
1194 resp->verf->committed, argp->stable);
1195 complain = jiffies + 300 * HZ;
1198 #endif
1199 /* Is this a short write? */
1200 if (task->tk_status >= 0 && resp->count < argp->count) {
1201 static unsigned long complain;
1203 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1205 /* Has the server at least made some progress? */
1206 if (resp->count != 0) {
1207 /* Was this an NFSv2 write or an NFSv3 stable write? */
1208 if (resp->verf->committed != NFS_UNSTABLE) {
1209 /* Resend from where the server left off */
1210 argp->offset += resp->count;
1211 argp->pgbase += resp->count;
1212 argp->count -= resp->count;
1213 } else {
1214 /* Resend as a stable write in order to avoid
1215 * headaches in the case of a server crash.
1217 argp->stable = NFS_FILE_SYNC;
1219 nfs_restart_rpc(task, server->nfs_client);
1220 return -EAGAIN;
1222 if (time_before(complain, jiffies)) {
1223 printk(KERN_WARNING
1224 "NFS: Server wrote zero bytes, expected %u.\n",
1225 argp->count);
1226 complain = jiffies + 300 * HZ;
1228 /* Can't do anything about it except throw an error. */
1229 task->tk_status = -EIO;
1231 return 0;
1235 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1236 static void nfs_commitdata_release(void *data)
1238 struct nfs_write_data *wdata = data;
1240 put_nfs_open_context(wdata->args.context);
1241 nfs_commit_free(wdata);
1245 * Set up the argument/result storage required for the RPC call.
1247 static int nfs_commit_rpcsetup(struct list_head *head,
1248 struct nfs_write_data *data,
1249 int how)
1251 struct nfs_page *first = nfs_list_entry(head->next);
1252 struct inode *inode = first->wb_context->path.dentry->d_inode;
1253 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1254 int priority = flush_task_priority(how);
1255 struct rpc_task *task;
1256 struct rpc_message msg = {
1257 .rpc_argp = &data->args,
1258 .rpc_resp = &data->res,
1259 .rpc_cred = first->wb_context->cred,
1261 struct rpc_task_setup task_setup_data = {
1262 .task = &data->task,
1263 .rpc_client = NFS_CLIENT(inode),
1264 .rpc_message = &msg,
1265 .callback_ops = &nfs_commit_ops,
1266 .callback_data = data,
1267 .workqueue = nfsiod_workqueue,
1268 .flags = flags,
1269 .priority = priority,
1272 /* Set up the RPC argument and reply structs
1273 * NB: take care not to mess about with data->commit et al. */
1275 list_splice_init(head, &data->pages);
1277 data->inode = inode;
1278 data->cred = msg.rpc_cred;
1280 data->args.fh = NFS_FH(data->inode);
1281 /* Note: we always request a commit of the entire inode */
1282 data->args.offset = 0;
1283 data->args.count = 0;
1284 data->args.context = get_nfs_open_context(first->wb_context);
1285 data->res.count = 0;
1286 data->res.fattr = &data->fattr;
1287 data->res.verf = &data->verf;
1288 nfs_fattr_init(&data->fattr);
1290 /* Set up the initial task struct. */
1291 NFS_PROTO(inode)->commit_setup(data, &msg);
1293 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1295 task = rpc_run_task(&task_setup_data);
1296 if (IS_ERR(task))
1297 return PTR_ERR(task);
1298 rpc_put_task(task);
1299 return 0;
1303 * Commit dirty pages
1305 static int
1306 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1308 struct nfs_write_data *data;
1309 struct nfs_page *req;
1311 data = nfs_commitdata_alloc();
1313 if (!data)
1314 goto out_bad;
1316 /* Set up the argument struct */
1317 return nfs_commit_rpcsetup(head, data, how);
1318 out_bad:
1319 while (!list_empty(head)) {
1320 req = nfs_list_entry(head->next);
1321 nfs_list_remove_request(req);
1322 nfs_mark_request_commit(req);
1323 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1324 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1325 BDI_RECLAIMABLE);
1326 nfs_clear_page_tag_locked(req);
1328 return -ENOMEM;
1332 * COMMIT call returned
1334 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1336 struct nfs_write_data *data = calldata;
1338 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1339 task->tk_pid, task->tk_status);
1341 /* Call the NFS version-specific code */
1342 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1343 return;
1346 static void nfs_commit_release(void *calldata)
1348 struct nfs_write_data *data = calldata;
1349 struct nfs_page *req;
1350 int status = data->task.tk_status;
1352 while (!list_empty(&data->pages)) {
1353 req = nfs_list_entry(data->pages.next);
1354 nfs_list_remove_request(req);
1355 nfs_clear_request_commit(req);
1357 dprintk("NFS: commit (%s/%lld %d@%lld)",
1358 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1359 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1360 req->wb_bytes,
1361 (long long)req_offset(req));
1362 if (status < 0) {
1363 nfs_context_set_write_error(req->wb_context, status);
1364 nfs_inode_remove_request(req);
1365 dprintk(", error = %d\n", status);
1366 goto next;
1369 /* Okay, COMMIT succeeded, apparently. Check the verifier
1370 * returned by the server against all stored verfs. */
1371 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1372 /* We have a match */
1373 nfs_inode_remove_request(req);
1374 dprintk(" OK\n");
1375 goto next;
1377 /* We have a mismatch. Write the page again */
1378 dprintk(" mismatch\n");
1379 nfs_mark_request_dirty(req);
1380 next:
1381 nfs_clear_page_tag_locked(req);
1383 nfs_commitdata_release(calldata);
1386 static const struct rpc_call_ops nfs_commit_ops = {
1387 #if defined(CONFIG_NFS_V4_1)
1388 .rpc_call_prepare = nfs_write_prepare,
1389 #endif /* CONFIG_NFS_V4_1 */
1390 .rpc_call_done = nfs_commit_done,
1391 .rpc_release = nfs_commit_release,
1394 int nfs_commit_inode(struct inode *inode, int how)
1396 LIST_HEAD(head);
1397 int res;
1399 spin_lock(&inode->i_lock);
1400 res = nfs_scan_commit(inode, &head, 0, 0);
1401 spin_unlock(&inode->i_lock);
1402 if (res) {
1403 int error = nfs_commit_list(inode, &head, how);
1404 if (error < 0)
1405 return error;
1407 return res;
1409 #else
1410 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1412 return 0;
1414 #endif
1416 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1418 struct inode *inode = mapping->host;
1419 pgoff_t idx_start, idx_end;
1420 unsigned int npages = 0;
1421 LIST_HEAD(head);
1422 int nocommit = how & FLUSH_NOCOMMIT;
1423 long pages, ret;
1425 /* FIXME */
1426 if (wbc->range_cyclic)
1427 idx_start = 0;
1428 else {
1429 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1430 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1431 if (idx_end > idx_start) {
1432 pgoff_t l_npages = 1 + idx_end - idx_start;
1433 npages = l_npages;
1434 if (sizeof(npages) != sizeof(l_npages) &&
1435 (pgoff_t)npages != l_npages)
1436 npages = 0;
1439 how &= ~FLUSH_NOCOMMIT;
1440 spin_lock(&inode->i_lock);
1441 do {
1442 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1443 if (ret != 0)
1444 continue;
1445 if (nocommit)
1446 break;
1447 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1448 if (pages == 0)
1449 break;
1450 if (how & FLUSH_INVALIDATE) {
1451 spin_unlock(&inode->i_lock);
1452 nfs_cancel_commit_list(&head);
1453 ret = pages;
1454 spin_lock(&inode->i_lock);
1455 continue;
1457 pages += nfs_scan_commit(inode, &head, 0, 0);
1458 spin_unlock(&inode->i_lock);
1459 ret = nfs_commit_list(inode, &head, how);
1460 spin_lock(&inode->i_lock);
1462 } while (ret >= 0);
1463 spin_unlock(&inode->i_lock);
1464 return ret;
1467 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1469 int ret;
1471 ret = nfs_writepages(mapping, wbc);
1472 if (ret < 0)
1473 goto out;
1474 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1475 if (ret < 0)
1476 goto out;
1477 return 0;
1478 out:
1479 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1480 return ret;
1483 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1484 static int nfs_write_mapping(struct address_space *mapping, int how)
1486 struct writeback_control wbc = {
1487 .bdi = mapping->backing_dev_info,
1488 .sync_mode = WB_SYNC_ALL,
1489 .nr_to_write = LONG_MAX,
1490 .range_start = 0,
1491 .range_end = LLONG_MAX,
1494 return __nfs_write_mapping(mapping, &wbc, how);
1498 * flush the inode to disk.
1500 int nfs_wb_all(struct inode *inode)
1502 return nfs_write_mapping(inode->i_mapping, 0);
1505 int nfs_wb_nocommit(struct inode *inode)
1507 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1510 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1512 struct nfs_page *req;
1513 loff_t range_start = page_offset(page);
1514 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1515 struct writeback_control wbc = {
1516 .bdi = page->mapping->backing_dev_info,
1517 .sync_mode = WB_SYNC_ALL,
1518 .nr_to_write = LONG_MAX,
1519 .range_start = range_start,
1520 .range_end = range_end,
1522 int ret = 0;
1524 BUG_ON(!PageLocked(page));
1525 for (;;) {
1526 req = nfs_page_find_request(page);
1527 if (req == NULL)
1528 goto out;
1529 if (test_bit(PG_CLEAN, &req->wb_flags)) {
1530 nfs_release_request(req);
1531 break;
1533 if (nfs_lock_request_dontget(req)) {
1534 nfs_inode_remove_request(req);
1536 * In case nfs_inode_remove_request has marked the
1537 * page as being dirty
1539 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1540 nfs_unlock_request(req);
1541 break;
1543 ret = nfs_wait_on_request(req);
1544 nfs_release_request(req);
1545 if (ret < 0)
1546 goto out;
1548 if (!PagePrivate(page))
1549 return 0;
1550 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1551 out:
1552 return ret;
1555 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1556 int how)
1558 loff_t range_start = page_offset(page);
1559 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1560 struct writeback_control wbc = {
1561 .bdi = page->mapping->backing_dev_info,
1562 .sync_mode = WB_SYNC_ALL,
1563 .nr_to_write = LONG_MAX,
1564 .range_start = range_start,
1565 .range_end = range_end,
1567 int ret;
1569 do {
1570 if (clear_page_dirty_for_io(page)) {
1571 ret = nfs_writepage_locked(page, &wbc);
1572 if (ret < 0)
1573 goto out_error;
1574 } else if (!PagePrivate(page))
1575 break;
1576 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1577 if (ret < 0)
1578 goto out_error;
1579 } while (PagePrivate(page));
1580 return 0;
1581 out_error:
1582 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1583 return ret;
1587 * Write back all requests on one page - we do this before reading it.
1589 int nfs_wb_page(struct inode *inode, struct page* page)
1591 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1594 #ifdef CONFIG_MIGRATION
1595 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1596 struct page *page)
1598 struct nfs_page *req;
1599 int ret;
1601 nfs_fscache_release_page(page, GFP_KERNEL);
1603 req = nfs_find_and_lock_request(page);
1604 ret = PTR_ERR(req);
1605 if (IS_ERR(req))
1606 goto out;
1608 ret = migrate_page(mapping, newpage, page);
1609 if (!req)
1610 goto out;
1611 if (ret)
1612 goto out_unlock;
1613 page_cache_get(newpage);
1614 spin_lock(&mapping->host->i_lock);
1615 req->wb_page = newpage;
1616 SetPagePrivate(newpage);
1617 set_page_private(newpage, (unsigned long)req);
1618 ClearPagePrivate(page);
1619 set_page_private(page, 0);
1620 spin_unlock(&mapping->host->i_lock);
1621 page_cache_release(page);
1622 out_unlock:
1623 nfs_clear_page_tag_locked(req);
1624 out:
1625 return ret;
1627 #endif
1629 int __init nfs_init_writepagecache(void)
1631 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1632 sizeof(struct nfs_write_data),
1633 0, SLAB_HWCACHE_ALIGN,
1634 NULL);
1635 if (nfs_wdata_cachep == NULL)
1636 return -ENOMEM;
1638 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1639 nfs_wdata_cachep);
1640 if (nfs_wdata_mempool == NULL)
1641 return -ENOMEM;
1643 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1644 nfs_wdata_cachep);
1645 if (nfs_commit_mempool == NULL)
1646 return -ENOMEM;
1649 * NFS congestion size, scale with available memory.
1651 * 64MB: 8192k
1652 * 128MB: 11585k
1653 * 256MB: 16384k
1654 * 512MB: 23170k
1655 * 1GB: 32768k
1656 * 2GB: 46340k
1657 * 4GB: 65536k
1658 * 8GB: 92681k
1659 * 16GB: 131072k
1661 * This allows larger machines to have larger/more transfers.
1662 * Limit the default to 256M
1664 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1665 if (nfs_congestion_kb > 256*1024)
1666 nfs_congestion_kb = 256*1024;
1668 return 0;
1671 void nfs_destroy_writepagecache(void)
1673 mempool_destroy(nfs_commit_mempool);
1674 mempool_destroy(nfs_wdata_mempool);
1675 kmem_cache_destroy(nfs_wdata_cachep);