ACPI: thinkpad-acpi: use bitfields to hold subdriver flags
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / edac_mc.c
blob7b622300d0e58f2c4ef43fe4e6d99022688f2600
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
37 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
40 #ifdef CONFIG_EDAC_DEBUG
41 /* Values of 0 to 4 will generate output */
42 int edac_debug_level = 1;
43 EXPORT_SYMBOL_GPL(edac_debug_level);
44 #endif
46 /* EDAC Controls, setable by module parameter, and sysfs */
47 static int log_ue = 1;
48 static int log_ce = 1;
49 static int panic_on_ue;
50 static int poll_msec = 1000;
52 /* lock to memory controller's control array */
53 static DECLARE_MUTEX(mem_ctls_mutex);
54 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
56 static struct task_struct *edac_thread;
58 #ifdef CONFIG_PCI
59 static int check_pci_parity = 0; /* default YES check PCI parity */
60 static int panic_on_pci_parity; /* default no panic on PCI Parity */
61 static atomic_t pci_parity_count = ATOMIC_INIT(0);
63 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64 static struct completion edac_pci_kobj_complete;
65 #endif /* CONFIG_PCI */
67 /* START sysfs data and methods */
70 static const char *mem_types[] = {
71 [MEM_EMPTY] = "Empty",
72 [MEM_RESERVED] = "Reserved",
73 [MEM_UNKNOWN] = "Unknown",
74 [MEM_FPM] = "FPM",
75 [MEM_EDO] = "EDO",
76 [MEM_BEDO] = "BEDO",
77 [MEM_SDR] = "Unbuffered-SDR",
78 [MEM_RDR] = "Registered-SDR",
79 [MEM_DDR] = "Unbuffered-DDR",
80 [MEM_RDDR] = "Registered-DDR",
81 [MEM_RMBS] = "RMBS"
84 static const char *dev_types[] = {
85 [DEV_UNKNOWN] = "Unknown",
86 [DEV_X1] = "x1",
87 [DEV_X2] = "x2",
88 [DEV_X4] = "x4",
89 [DEV_X8] = "x8",
90 [DEV_X16] = "x16",
91 [DEV_X32] = "x32",
92 [DEV_X64] = "x64"
95 static const char *edac_caps[] = {
96 [EDAC_UNKNOWN] = "Unknown",
97 [EDAC_NONE] = "None",
98 [EDAC_RESERVED] = "Reserved",
99 [EDAC_PARITY] = "PARITY",
100 [EDAC_EC] = "EC",
101 [EDAC_SECDED] = "SECDED",
102 [EDAC_S2ECD2ED] = "S2ECD2ED",
103 [EDAC_S4ECD4ED] = "S4ECD4ED",
104 [EDAC_S8ECD8ED] = "S8ECD8ED",
105 [EDAC_S16ECD16ED] = "S16ECD16ED"
108 /* sysfs object: /sys/devices/system/edac */
109 static struct sysdev_class edac_class = {
110 set_kset_name("edac"),
113 /* sysfs object:
114 * /sys/devices/system/edac/mc
116 static struct kobject edac_memctrl_kobj;
118 /* We use these to wait for the reference counts on edac_memctrl_kobj and
119 * edac_pci_kobj to reach 0.
121 static struct completion edac_memctrl_kobj_complete;
124 * /sys/devices/system/edac/mc;
125 * data structures and methods
127 static ssize_t memctrl_int_show(void *ptr, char *buffer)
129 int *value = (int*) ptr;
130 return sprintf(buffer, "%u\n", *value);
133 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
135 int *value = (int*) ptr;
137 if (isdigit(*buffer))
138 *value = simple_strtoul(buffer, NULL, 0);
140 return count;
143 struct memctrl_dev_attribute {
144 struct attribute attr;
145 void *value;
146 ssize_t (*show)(void *,char *);
147 ssize_t (*store)(void *, const char *, size_t);
150 /* Set of show/store abstract level functions for memory control object */
151 static ssize_t memctrl_dev_show(struct kobject *kobj,
152 struct attribute *attr, char *buffer)
154 struct memctrl_dev_attribute *memctrl_dev;
155 memctrl_dev = (struct memctrl_dev_attribute*)attr;
157 if (memctrl_dev->show)
158 return memctrl_dev->show(memctrl_dev->value, buffer);
160 return -EIO;
163 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164 const char *buffer, size_t count)
166 struct memctrl_dev_attribute *memctrl_dev;
167 memctrl_dev = (struct memctrl_dev_attribute*)attr;
169 if (memctrl_dev->store)
170 return memctrl_dev->store(memctrl_dev->value, buffer, count);
172 return -EIO;
175 static struct sysfs_ops memctrlfs_ops = {
176 .show = memctrl_dev_show,
177 .store = memctrl_dev_store
180 #define MEMCTRL_ATTR(_name,_mode,_show,_store) \
181 struct memctrl_dev_attribute attr_##_name = { \
182 .attr = {.name = __stringify(_name), .mode = _mode }, \
183 .value = &_name, \
184 .show = _show, \
185 .store = _store, \
188 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
189 struct memctrl_dev_attribute attr_##_name = { \
190 .attr = {.name = __stringify(_name), .mode = _mode }, \
191 .value = _data, \
192 .show = _show, \
193 .store = _store, \
196 /* csrow<id> control files */
197 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
202 /* Base Attributes of the memory ECC object */
203 static struct memctrl_dev_attribute *memctrl_attr[] = {
204 &attr_panic_on_ue,
205 &attr_log_ue,
206 &attr_log_ce,
207 &attr_poll_msec,
208 NULL,
211 /* Main MC kobject release() function */
212 static void edac_memctrl_master_release(struct kobject *kobj)
214 debugf1("%s()\n", __func__);
215 complete(&edac_memctrl_kobj_complete);
218 static struct kobj_type ktype_memctrl = {
219 .release = edac_memctrl_master_release,
220 .sysfs_ops = &memctrlfs_ops,
221 .default_attrs = (struct attribute **) memctrl_attr,
224 /* Initialize the main sysfs entries for edac:
225 * /sys/devices/system/edac
227 * and children
229 * Return: 0 SUCCESS
230 * !0 FAILURE
232 static int edac_sysfs_memctrl_setup(void)
234 int err = 0;
236 debugf1("%s()\n", __func__);
238 /* create the /sys/devices/system/edac directory */
239 err = sysdev_class_register(&edac_class);
241 if (err) {
242 debugf1("%s() error=%d\n", __func__, err);
243 return err;
246 /* Init the MC's kobject */
247 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249 edac_memctrl_kobj.ktype = &ktype_memctrl;
251 /* generate sysfs "..../edac/mc" */
252 err = kobject_set_name(&edac_memctrl_kobj,"mc");
254 if (err)
255 goto fail;
257 /* FIXME: maybe new sysdev_create_subdir() */
258 err = kobject_register(&edac_memctrl_kobj);
260 if (err) {
261 debugf1("Failed to register '.../edac/mc'\n");
262 goto fail;
265 debugf1("Registered '.../edac/mc' kobject\n");
267 return 0;
269 fail:
270 sysdev_class_unregister(&edac_class);
271 return err;
275 * MC teardown:
276 * the '..../edac/mc' kobject followed by '..../edac' itself
278 static void edac_sysfs_memctrl_teardown(void)
280 debugf0("MC: " __FILE__ ": %s()\n", __func__);
282 /* Unregister the MC's kobject and wait for reference count to reach
283 * 0.
285 init_completion(&edac_memctrl_kobj_complete);
286 kobject_unregister(&edac_memctrl_kobj);
287 wait_for_completion(&edac_memctrl_kobj_complete);
289 /* Unregister the 'edac' object */
290 sysdev_class_unregister(&edac_class);
293 #ifdef CONFIG_PCI
294 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
296 int *value = ptr;
297 return sprintf(buffer,"%d\n",*value);
300 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
302 int *value = ptr;
304 if (isdigit(*buffer))
305 *value = simple_strtoul(buffer,NULL,0);
307 return count;
310 struct edac_pci_dev_attribute {
311 struct attribute attr;
312 void *value;
313 ssize_t (*show)(void *,char *);
314 ssize_t (*store)(void *, const char *,size_t);
317 /* Set of show/store abstract level functions for PCI Parity object */
318 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319 char *buffer)
321 struct edac_pci_dev_attribute *edac_pci_dev;
322 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
324 if (edac_pci_dev->show)
325 return edac_pci_dev->show(edac_pci_dev->value, buffer);
326 return -EIO;
329 static ssize_t edac_pci_dev_store(struct kobject *kobj,
330 struct attribute *attr, const char *buffer, size_t count)
332 struct edac_pci_dev_attribute *edac_pci_dev;
333 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
335 if (edac_pci_dev->show)
336 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337 return -EIO;
340 static struct sysfs_ops edac_pci_sysfs_ops = {
341 .show = edac_pci_dev_show,
342 .store = edac_pci_dev_store
345 #define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
346 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
347 .attr = {.name = __stringify(_name), .mode = _mode }, \
348 .value = &_name, \
349 .show = _show, \
350 .store = _store, \
353 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
354 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
355 .attr = {.name = __stringify(_name), .mode = _mode }, \
356 .value = _data, \
357 .show = _show, \
358 .store = _store, \
361 /* PCI Parity control files */
362 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363 edac_pci_int_store);
364 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365 edac_pci_int_store);
366 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
368 /* Base Attributes of the memory ECC object */
369 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370 &edac_pci_attr_check_pci_parity,
371 &edac_pci_attr_panic_on_pci_parity,
372 &edac_pci_attr_pci_parity_count,
373 NULL,
376 /* No memory to release */
377 static void edac_pci_release(struct kobject *kobj)
379 debugf1("%s()\n", __func__);
380 complete(&edac_pci_kobj_complete);
383 static struct kobj_type ktype_edac_pci = {
384 .release = edac_pci_release,
385 .sysfs_ops = &edac_pci_sysfs_ops,
386 .default_attrs = (struct attribute **) edac_pci_attr,
390 * edac_sysfs_pci_setup()
393 static int edac_sysfs_pci_setup(void)
395 int err;
397 debugf1("%s()\n", __func__);
399 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400 edac_pci_kobj.parent = &edac_class.kset.kobj;
401 edac_pci_kobj.ktype = &ktype_edac_pci;
402 err = kobject_set_name(&edac_pci_kobj, "pci");
404 if (!err) {
405 /* Instanstiate the csrow object */
406 /* FIXME: maybe new sysdev_create_subdir() */
407 err = kobject_register(&edac_pci_kobj);
409 if (err)
410 debugf1("Failed to register '.../edac/pci'\n");
411 else
412 debugf1("Registered '.../edac/pci' kobject\n");
415 return err;
418 static void edac_sysfs_pci_teardown(void)
420 debugf0("%s()\n", __func__);
421 init_completion(&edac_pci_kobj_complete);
422 kobject_unregister(&edac_pci_kobj);
423 wait_for_completion(&edac_pci_kobj_complete);
427 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
429 int where;
430 u16 status;
432 where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433 pci_read_config_word(dev, where, &status);
435 /* If we get back 0xFFFF then we must suspect that the card has been
436 * pulled but the Linux PCI layer has not yet finished cleaning up.
437 * We don't want to report on such devices
440 if (status == 0xFFFF) {
441 u32 sanity;
443 pci_read_config_dword(dev, 0, &sanity);
445 if (sanity == 0xFFFFFFFF)
446 return 0;
449 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450 PCI_STATUS_PARITY;
452 if (status)
453 /* reset only the bits we are interested in */
454 pci_write_config_word(dev, where, status);
456 return status;
459 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
461 /* Clear any PCI parity errors logged by this device. */
462 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
464 u8 header_type;
466 get_pci_parity_status(dev, 0);
468 /* read the device TYPE, looking for bridges */
469 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
471 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472 get_pci_parity_status(dev, 1);
476 * PCI Parity polling
479 static void edac_pci_dev_parity_test(struct pci_dev *dev)
481 u16 status;
482 u8 header_type;
484 /* read the STATUS register on this device
486 status = get_pci_parity_status(dev, 0);
488 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
490 /* check the status reg for errors */
491 if (status) {
492 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493 edac_printk(KERN_CRIT, EDAC_PCI,
494 "Signaled System Error on %s\n",
495 pci_name(dev));
497 if (status & (PCI_STATUS_PARITY)) {
498 edac_printk(KERN_CRIT, EDAC_PCI,
499 "Master Data Parity Error on %s\n",
500 pci_name(dev));
502 atomic_inc(&pci_parity_count);
505 if (status & (PCI_STATUS_DETECTED_PARITY)) {
506 edac_printk(KERN_CRIT, EDAC_PCI,
507 "Detected Parity Error on %s\n",
508 pci_name(dev));
510 atomic_inc(&pci_parity_count);
514 /* read the device TYPE, looking for bridges */
515 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
517 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
519 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520 /* On bridges, need to examine secondary status register */
521 status = get_pci_parity_status(dev, 1);
523 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524 status, dev->dev.bus_id );
526 /* check the secondary status reg for errors */
527 if (status) {
528 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530 "Signaled System Error on %s\n",
531 pci_name(dev));
533 if (status & (PCI_STATUS_PARITY)) {
534 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535 "Master Data Parity Error on "
536 "%s\n", pci_name(dev));
538 atomic_inc(&pci_parity_count);
541 if (status & (PCI_STATUS_DETECTED_PARITY)) {
542 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543 "Detected Parity Error on %s\n",
544 pci_name(dev));
546 atomic_inc(&pci_parity_count);
553 * pci_dev parity list iterator
554 * Scan the PCI device list for one iteration, looking for SERRORs
555 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices
557 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
559 struct pci_dev *dev = NULL;
561 /* request for kernel access to the next PCI device, if any,
562 * and while we are looking at it have its reference count
563 * bumped until we are done with it
565 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566 fn(dev);
570 static void do_pci_parity_check(void)
572 unsigned long flags;
573 int before_count;
575 debugf3("%s()\n", __func__);
577 if (!check_pci_parity)
578 return;
580 before_count = atomic_read(&pci_parity_count);
582 /* scan all PCI devices looking for a Parity Error on devices and
583 * bridges
585 local_irq_save(flags);
586 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587 local_irq_restore(flags);
589 /* Only if operator has selected panic on PCI Error */
590 if (panic_on_pci_parity) {
591 /* If the count is different 'after' from 'before' */
592 if (before_count != atomic_read(&pci_parity_count))
593 panic("EDAC: PCI Parity Error");
597 static inline void clear_pci_parity_errors(void)
599 /* Clear any PCI bus parity errors that devices initially have logged
600 * in their registers.
602 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
605 #else /* CONFIG_PCI */
607 /* pre-process these away */
608 #define do_pci_parity_check()
609 #define clear_pci_parity_errors()
610 #define edac_sysfs_pci_teardown()
611 #define edac_sysfs_pci_setup() (0)
613 #endif /* CONFIG_PCI */
615 /* EDAC sysfs CSROW data structures and methods
618 /* Set of more default csrow<id> attribute show/store functions */
619 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
621 return sprintf(data,"%u\n", csrow->ue_count);
624 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
626 return sprintf(data,"%u\n", csrow->ce_count);
629 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
631 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
634 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
636 return sprintf(data,"%s\n", mem_types[csrow->mtype]);
639 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
641 return sprintf(data,"%s\n", dev_types[csrow->dtype]);
644 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
646 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
649 /* show/store functions for DIMM Label attributes */
650 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651 char *data, int channel)
653 return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654 csrow->channels[channel].label);
657 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658 const char *data,
659 size_t count,
660 int channel)
662 ssize_t max_size = 0;
664 max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665 strncpy(csrow->channels[channel].label, data, max_size);
666 csrow->channels[channel].label[max_size] = '\0';
668 return max_size;
671 /* show function for dynamic chX_ce_count attribute */
672 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673 char *data,
674 int channel)
676 return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
679 /* csrow specific attribute structure */
680 struct csrowdev_attribute {
681 struct attribute attr;
682 ssize_t (*show)(struct csrow_info *,char *,int);
683 ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684 int private;
687 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
688 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
690 /* Set of show/store higher level functions for default csrow attributes */
691 static ssize_t csrowdev_show(struct kobject *kobj,
692 struct attribute *attr,
693 char *buffer)
695 struct csrow_info *csrow = to_csrow(kobj);
696 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
698 if (csrowdev_attr->show)
699 return csrowdev_attr->show(csrow,
700 buffer,
701 csrowdev_attr->private);
702 return -EIO;
705 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706 const char *buffer, size_t count)
708 struct csrow_info *csrow = to_csrow(kobj);
709 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
711 if (csrowdev_attr->store)
712 return csrowdev_attr->store(csrow,
713 buffer,
714 count,
715 csrowdev_attr->private);
716 return -EIO;
719 static struct sysfs_ops csrowfs_ops = {
720 .show = csrowdev_show,
721 .store = csrowdev_store
724 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
725 struct csrowdev_attribute attr_##_name = { \
726 .attr = {.name = __stringify(_name), .mode = _mode }, \
727 .show = _show, \
728 .store = _store, \
729 .private = _private, \
732 /* default cwrow<id>/attribute files */
733 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
740 /* default attributes of the CSROW<id> object */
741 static struct csrowdev_attribute *default_csrow_attr[] = {
742 &attr_dev_type,
743 &attr_mem_type,
744 &attr_edac_mode,
745 &attr_size_mb,
746 &attr_ue_count,
747 &attr_ce_count,
748 NULL,
752 /* possible dynamic channel DIMM Label attribute files */
753 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754 channel_dimm_label_show,
755 channel_dimm_label_store,
756 0 );
757 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758 channel_dimm_label_show,
759 channel_dimm_label_store,
760 1 );
761 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762 channel_dimm_label_show,
763 channel_dimm_label_store,
764 2 );
765 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766 channel_dimm_label_show,
767 channel_dimm_label_store,
768 3 );
769 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770 channel_dimm_label_show,
771 channel_dimm_label_store,
772 4 );
773 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774 channel_dimm_label_show,
775 channel_dimm_label_store,
776 5 );
778 /* Total possible dynamic DIMM Label attribute file table */
779 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780 &attr_ch0_dimm_label,
781 &attr_ch1_dimm_label,
782 &attr_ch2_dimm_label,
783 &attr_ch3_dimm_label,
784 &attr_ch4_dimm_label,
785 &attr_ch5_dimm_label
788 /* possible dynamic channel ce_count attribute files */
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790 channel_ce_count_show,
791 NULL,
792 0 );
793 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794 channel_ce_count_show,
795 NULL,
796 1 );
797 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798 channel_ce_count_show,
799 NULL,
800 2 );
801 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802 channel_ce_count_show,
803 NULL,
804 3 );
805 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806 channel_ce_count_show,
807 NULL,
808 4 );
809 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810 channel_ce_count_show,
811 NULL,
812 5 );
814 /* Total possible dynamic ce_count attribute file table */
815 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816 &attr_ch0_ce_count,
817 &attr_ch1_ce_count,
818 &attr_ch2_ce_count,
819 &attr_ch3_ce_count,
820 &attr_ch4_ce_count,
821 &attr_ch5_ce_count
825 #define EDAC_NR_CHANNELS 6
827 /* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
828 static int edac_create_channel_files(struct kobject *kobj, int chan)
830 int err=-ENODEV;
832 if (chan >= EDAC_NR_CHANNELS)
833 return err;
835 /* create the DIMM label attribute file */
836 err = sysfs_create_file(kobj,
837 (struct attribute *) dynamic_csrow_dimm_attr[chan]);
839 if (!err) {
840 /* create the CE Count attribute file */
841 err = sysfs_create_file(kobj,
842 (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843 } else {
844 debugf1("%s() dimm labels and ce_count files created", __func__);
847 return err;
850 /* No memory to release for this kobj */
851 static void edac_csrow_instance_release(struct kobject *kobj)
853 struct csrow_info *cs;
855 cs = container_of(kobj, struct csrow_info, kobj);
856 complete(&cs->kobj_complete);
859 /* the kobj_type instance for a CSROW */
860 static struct kobj_type ktype_csrow = {
861 .release = edac_csrow_instance_release,
862 .sysfs_ops = &csrowfs_ops,
863 .default_attrs = (struct attribute **) default_csrow_attr,
866 /* Create a CSROW object under specifed edac_mc_device */
867 static int edac_create_csrow_object(
868 struct kobject *edac_mci_kobj,
869 struct csrow_info *csrow,
870 int index)
872 int err = 0;
873 int chan;
875 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
877 /* generate ..../edac/mc/mc<id>/csrow<index> */
879 csrow->kobj.parent = edac_mci_kobj;
880 csrow->kobj.ktype = &ktype_csrow;
882 /* name this instance of csrow<id> */
883 err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884 if (err)
885 goto error_exit;
887 /* Instanstiate the csrow object */
888 err = kobject_register(&csrow->kobj);
889 if (!err) {
890 /* Create the dyanmic attribute files on this csrow,
891 * namely, the DIMM labels and the channel ce_count
893 for (chan = 0; chan < csrow->nr_channels; chan++) {
894 err = edac_create_channel_files(&csrow->kobj,chan);
895 if (err)
896 break;
900 error_exit:
901 return err;
904 /* default sysfs methods and data structures for the main MCI kobject */
906 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907 const char *data, size_t count)
909 int row, chan;
911 mci->ue_noinfo_count = 0;
912 mci->ce_noinfo_count = 0;
913 mci->ue_count = 0;
914 mci->ce_count = 0;
916 for (row = 0; row < mci->nr_csrows; row++) {
917 struct csrow_info *ri = &mci->csrows[row];
919 ri->ue_count = 0;
920 ri->ce_count = 0;
922 for (chan = 0; chan < ri->nr_channels; chan++)
923 ri->channels[chan].ce_count = 0;
926 mci->start_time = jiffies;
927 return count;
930 /* memory scrubbing */
931 static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci,
932 const char *data, size_t count)
934 u32 bandwidth = -1;
936 if (mci->set_sdram_scrub_rate) {
938 memctrl_int_store(&bandwidth, data, count);
940 if (!(*mci->set_sdram_scrub_rate)(mci, &bandwidth)) {
941 edac_printk(KERN_DEBUG, EDAC_MC,
942 "Scrub rate set successfully, applied: %d\n",
943 bandwidth);
944 } else {
945 /* FIXME: error codes maybe? */
946 edac_printk(KERN_DEBUG, EDAC_MC,
947 "Scrub rate set FAILED, could not apply: %d\n",
948 bandwidth);
950 } else {
951 /* FIXME: produce "not implemented" ERROR for user-side. */
952 edac_printk(KERN_WARNING, EDAC_MC,
953 "Memory scrubbing 'set'control is not implemented!\n");
955 return count;
958 static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data)
960 u32 bandwidth = -1;
962 if (mci->get_sdram_scrub_rate) {
963 if (!(*mci->get_sdram_scrub_rate)(mci, &bandwidth)) {
964 edac_printk(KERN_DEBUG, EDAC_MC,
965 "Scrub rate successfully, fetched: %d\n",
966 bandwidth);
967 } else {
968 /* FIXME: error codes maybe? */
969 edac_printk(KERN_DEBUG, EDAC_MC,
970 "Scrub rate fetch FAILED, got: %d\n",
971 bandwidth);
973 } else {
974 /* FIXME: produce "not implemented" ERROR for user-side. */
975 edac_printk(KERN_WARNING, EDAC_MC,
976 "Memory scrubbing 'get' control is not implemented!\n");
978 return sprintf(data, "%d\n", bandwidth);
981 /* default attribute files for the MCI object */
982 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
984 return sprintf(data,"%d\n", mci->ue_count);
987 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
989 return sprintf(data,"%d\n", mci->ce_count);
992 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
994 return sprintf(data,"%d\n", mci->ce_noinfo_count);
997 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
999 return sprintf(data,"%d\n", mci->ue_noinfo_count);
1002 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1004 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1007 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1009 return sprintf(data,"%s\n", mci->ctl_name);
1012 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1014 int total_pages, csrow_idx;
1016 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1017 csrow_idx++) {
1018 struct csrow_info *csrow = &mci->csrows[csrow_idx];
1020 if (!csrow->nr_pages)
1021 continue;
1023 total_pages += csrow->nr_pages;
1026 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1029 struct mcidev_attribute {
1030 struct attribute attr;
1031 ssize_t (*show)(struct mem_ctl_info *,char *);
1032 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1035 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1036 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1038 /* MCI show/store functions for top most object */
1039 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1040 char *buffer)
1042 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1043 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1045 if (mcidev_attr->show)
1046 return mcidev_attr->show(mem_ctl_info, buffer);
1048 return -EIO;
1051 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1052 const char *buffer, size_t count)
1054 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1055 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1057 if (mcidev_attr->store)
1058 return mcidev_attr->store(mem_ctl_info, buffer, count);
1060 return -EIO;
1063 static struct sysfs_ops mci_ops = {
1064 .show = mcidev_show,
1065 .store = mcidev_store
1068 #define MCIDEV_ATTR(_name,_mode,_show,_store) \
1069 struct mcidev_attribute mci_attr_##_name = { \
1070 .attr = {.name = __stringify(_name), .mode = _mode }, \
1071 .show = _show, \
1072 .store = _store, \
1075 /* default Control file */
1076 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1078 /* default Attribute files */
1079 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1080 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1081 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1082 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1083 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1084 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1085 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1087 /* memory scrubber attribute file */
1088 MCIDEV_ATTR(sdram_scrub_rate,S_IRUGO|S_IWUSR,mci_sdram_scrub_rate_show,mci_sdram_scrub_rate_store);
1090 static struct mcidev_attribute *mci_attr[] = {
1091 &mci_attr_reset_counters,
1092 &mci_attr_mc_name,
1093 &mci_attr_size_mb,
1094 &mci_attr_seconds_since_reset,
1095 &mci_attr_ue_noinfo_count,
1096 &mci_attr_ce_noinfo_count,
1097 &mci_attr_ue_count,
1098 &mci_attr_ce_count,
1099 &mci_attr_sdram_scrub_rate,
1100 NULL
1104 * Release of a MC controlling instance
1106 static void edac_mci_instance_release(struct kobject *kobj)
1108 struct mem_ctl_info *mci;
1110 mci = to_mci(kobj);
1111 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112 complete(&mci->kobj_complete);
1115 static struct kobj_type ktype_mci = {
1116 .release = edac_mci_instance_release,
1117 .sysfs_ops = &mci_ops,
1118 .default_attrs = (struct attribute **) mci_attr,
1122 #define EDAC_DEVICE_SYMLINK "device"
1125 * Create a new Memory Controller kobject instance,
1126 * mc<id> under the 'mc' directory
1128 * Return:
1129 * 0 Success
1130 * !0 Failure
1132 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1134 int i;
1135 int err;
1136 struct csrow_info *csrow;
1137 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1139 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1140 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1142 /* set the name of the mc<id> object */
1143 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1144 if (err)
1145 return err;
1147 /* link to our parent the '..../edac/mc' object */
1148 edac_mci_kobj->parent = &edac_memctrl_kobj;
1149 edac_mci_kobj->ktype = &ktype_mci;
1151 /* register the mc<id> kobject */
1152 err = kobject_register(edac_mci_kobj);
1153 if (err)
1154 return err;
1156 /* create a symlink for the device */
1157 err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1158 EDAC_DEVICE_SYMLINK);
1159 if (err)
1160 goto fail0;
1162 /* Make directories for each CSROW object
1163 * under the mc<id> kobject
1165 for (i = 0; i < mci->nr_csrows; i++) {
1166 csrow = &mci->csrows[i];
1168 /* Only expose populated CSROWs */
1169 if (csrow->nr_pages > 0) {
1170 err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1171 if (err)
1172 goto fail1;
1176 return 0;
1178 /* CSROW error: backout what has already been registered, */
1179 fail1:
1180 for ( i--; i >= 0; i--) {
1181 if (csrow->nr_pages > 0) {
1182 init_completion(&csrow->kobj_complete);
1183 kobject_unregister(&mci->csrows[i].kobj);
1184 wait_for_completion(&csrow->kobj_complete);
1188 fail0:
1189 init_completion(&mci->kobj_complete);
1190 kobject_unregister(edac_mci_kobj);
1191 wait_for_completion(&mci->kobj_complete);
1192 return err;
1196 * remove a Memory Controller instance
1198 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1200 int i;
1202 debugf0("%s()\n", __func__);
1204 /* remove all csrow kobjects */
1205 for (i = 0; i < mci->nr_csrows; i++) {
1206 if (mci->csrows[i].nr_pages > 0) {
1207 init_completion(&mci->csrows[i].kobj_complete);
1208 kobject_unregister(&mci->csrows[i].kobj);
1209 wait_for_completion(&mci->csrows[i].kobj_complete);
1213 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1214 init_completion(&mci->kobj_complete);
1215 kobject_unregister(&mci->edac_mci_kobj);
1216 wait_for_completion(&mci->kobj_complete);
1219 /* END OF sysfs data and methods */
1221 #ifdef CONFIG_EDAC_DEBUG
1223 void edac_mc_dump_channel(struct channel_info *chan)
1225 debugf4("\tchannel = %p\n", chan);
1226 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1227 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1228 debugf4("\tchannel->label = '%s'\n", chan->label);
1229 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1231 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1233 void edac_mc_dump_csrow(struct csrow_info *csrow)
1235 debugf4("\tcsrow = %p\n", csrow);
1236 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1237 debugf4("\tcsrow->first_page = 0x%lx\n",
1238 csrow->first_page);
1239 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1240 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1241 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1242 debugf4("\tcsrow->nr_channels = %d\n",
1243 csrow->nr_channels);
1244 debugf4("\tcsrow->channels = %p\n", csrow->channels);
1245 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1247 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1249 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1251 debugf3("\tmci = %p\n", mci);
1252 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1253 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1254 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1255 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1256 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1257 mci->nr_csrows, mci->csrows);
1258 debugf3("\tdev = %p\n", mci->dev);
1259 debugf3("\tmod_name:ctl_name = %s:%s\n",
1260 mci->mod_name, mci->ctl_name);
1261 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1263 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1265 #endif /* CONFIG_EDAC_DEBUG */
1267 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1268 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1269 * compiler would provide for X and return the aligned result.
1271 * If 'size' is a constant, the compiler will optimize this whole function
1272 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1274 static inline char * align_ptr(void *ptr, unsigned size)
1276 unsigned align, r;
1278 /* Here we assume that the alignment of a "long long" is the most
1279 * stringent alignment that the compiler will ever provide by default.
1280 * As far as I know, this is a reasonable assumption.
1282 if (size > sizeof(long))
1283 align = sizeof(long long);
1284 else if (size > sizeof(int))
1285 align = sizeof(long);
1286 else if (size > sizeof(short))
1287 align = sizeof(int);
1288 else if (size > sizeof(char))
1289 align = sizeof(short);
1290 else
1291 return (char *) ptr;
1293 r = size % align;
1295 if (r == 0)
1296 return (char *) ptr;
1298 return (char *) (((unsigned long) ptr) + align - r);
1302 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1303 * @size_pvt: size of private storage needed
1304 * @nr_csrows: Number of CWROWS needed for this MC
1305 * @nr_chans: Number of channels for the MC
1307 * Everything is kmalloc'ed as one big chunk - more efficient.
1308 * Only can be used if all structures have the same lifetime - otherwise
1309 * you have to allocate and initialize your own structures.
1311 * Use edac_mc_free() to free mc structures allocated by this function.
1313 * Returns:
1314 * NULL allocation failed
1315 * struct mem_ctl_info pointer
1317 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1318 unsigned nr_chans)
1320 struct mem_ctl_info *mci;
1321 struct csrow_info *csi, *csrow;
1322 struct channel_info *chi, *chp, *chan;
1323 void *pvt;
1324 unsigned size;
1325 int row, chn;
1327 /* Figure out the offsets of the various items from the start of an mc
1328 * structure. We want the alignment of each item to be at least as
1329 * stringent as what the compiler would provide if we could simply
1330 * hardcode everything into a single struct.
1332 mci = (struct mem_ctl_info *) 0;
1333 csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1334 chi = (struct channel_info *)
1335 align_ptr(&csi[nr_csrows], sizeof(*chi));
1336 pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1337 size = ((unsigned long) pvt) + sz_pvt;
1339 if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1340 return NULL;
1342 /* Adjust pointers so they point within the memory we just allocated
1343 * rather than an imaginary chunk of memory located at address 0.
1345 csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1346 chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1347 pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1349 memset(mci, 0, size); /* clear all fields */
1350 mci->csrows = csi;
1351 mci->pvt_info = pvt;
1352 mci->nr_csrows = nr_csrows;
1354 for (row = 0; row < nr_csrows; row++) {
1355 csrow = &csi[row];
1356 csrow->csrow_idx = row;
1357 csrow->mci = mci;
1358 csrow->nr_channels = nr_chans;
1359 chp = &chi[row * nr_chans];
1360 csrow->channels = chp;
1362 for (chn = 0; chn < nr_chans; chn++) {
1363 chan = &chp[chn];
1364 chan->chan_idx = chn;
1365 chan->csrow = csrow;
1369 return mci;
1371 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1374 * edac_mc_free: Free a previously allocated 'mci' structure
1375 * @mci: pointer to a struct mem_ctl_info structure
1377 void edac_mc_free(struct mem_ctl_info *mci)
1379 kfree(mci);
1381 EXPORT_SYMBOL_GPL(edac_mc_free);
1383 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1385 struct mem_ctl_info *mci;
1386 struct list_head *item;
1388 debugf3("%s()\n", __func__);
1390 list_for_each(item, &mc_devices) {
1391 mci = list_entry(item, struct mem_ctl_info, link);
1393 if (mci->dev == dev)
1394 return mci;
1397 return NULL;
1400 /* Return 0 on success, 1 on failure.
1401 * Before calling this function, caller must
1402 * assign a unique value to mci->mc_idx.
1404 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1406 struct list_head *item, *insert_before;
1407 struct mem_ctl_info *p;
1409 insert_before = &mc_devices;
1411 if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1412 goto fail0;
1414 list_for_each(item, &mc_devices) {
1415 p = list_entry(item, struct mem_ctl_info, link);
1417 if (p->mc_idx >= mci->mc_idx) {
1418 if (unlikely(p->mc_idx == mci->mc_idx))
1419 goto fail1;
1421 insert_before = item;
1422 break;
1426 list_add_tail_rcu(&mci->link, insert_before);
1427 return 0;
1429 fail0:
1430 edac_printk(KERN_WARNING, EDAC_MC,
1431 "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1432 dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1433 return 1;
1435 fail1:
1436 edac_printk(KERN_WARNING, EDAC_MC,
1437 "bug in low-level driver: attempt to assign\n"
1438 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1439 return 1;
1442 static void complete_mc_list_del(struct rcu_head *head)
1444 struct mem_ctl_info *mci;
1446 mci = container_of(head, struct mem_ctl_info, rcu);
1447 INIT_LIST_HEAD(&mci->link);
1448 complete(&mci->complete);
1451 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1453 list_del_rcu(&mci->link);
1454 init_completion(&mci->complete);
1455 call_rcu(&mci->rcu, complete_mc_list_del);
1456 wait_for_completion(&mci->complete);
1460 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1461 * create sysfs entries associated with mci structure
1462 * @mci: pointer to the mci structure to be added to the list
1463 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1465 * Return:
1466 * 0 Success
1467 * !0 Failure
1470 /* FIXME - should a warning be printed if no error detection? correction? */
1471 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1473 debugf0("%s()\n", __func__);
1474 mci->mc_idx = mc_idx;
1475 #ifdef CONFIG_EDAC_DEBUG
1476 if (edac_debug_level >= 3)
1477 edac_mc_dump_mci(mci);
1479 if (edac_debug_level >= 4) {
1480 int i;
1482 for (i = 0; i < mci->nr_csrows; i++) {
1483 int j;
1485 edac_mc_dump_csrow(&mci->csrows[i]);
1486 for (j = 0; j < mci->csrows[i].nr_channels; j++)
1487 edac_mc_dump_channel(
1488 &mci->csrows[i].channels[j]);
1491 #endif
1492 down(&mem_ctls_mutex);
1494 if (add_mc_to_global_list(mci))
1495 goto fail0;
1497 /* set load time so that error rate can be tracked */
1498 mci->start_time = jiffies;
1500 if (edac_create_sysfs_mci_device(mci)) {
1501 edac_mc_printk(mci, KERN_WARNING,
1502 "failed to create sysfs device\n");
1503 goto fail1;
1506 /* Report action taken */
1507 edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1508 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1510 up(&mem_ctls_mutex);
1511 return 0;
1513 fail1:
1514 del_mc_from_global_list(mci);
1516 fail0:
1517 up(&mem_ctls_mutex);
1518 return 1;
1520 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1523 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1524 * remove mci structure from global list
1525 * @pdev: Pointer to 'struct device' representing mci structure to remove.
1527 * Return pointer to removed mci structure, or NULL if device not found.
1529 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1531 struct mem_ctl_info *mci;
1533 debugf0("MC: %s()\n", __func__);
1534 down(&mem_ctls_mutex);
1536 if ((mci = find_mci_by_dev(dev)) == NULL) {
1537 up(&mem_ctls_mutex);
1538 return NULL;
1541 edac_remove_sysfs_mci_device(mci);
1542 del_mc_from_global_list(mci);
1543 up(&mem_ctls_mutex);
1544 edac_printk(KERN_INFO, EDAC_MC,
1545 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1546 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1547 return mci;
1549 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1551 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1553 struct page *pg;
1554 void *virt_addr;
1555 unsigned long flags = 0;
1557 debugf3("%s()\n", __func__);
1559 /* ECC error page was not in our memory. Ignore it. */
1560 if(!pfn_valid(page))
1561 return;
1563 /* Find the actual page structure then map it and fix */
1564 pg = pfn_to_page(page);
1566 if (PageHighMem(pg))
1567 local_irq_save(flags);
1569 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1571 /* Perform architecture specific atomic scrub operation */
1572 atomic_scrub(virt_addr + offset, size);
1574 /* Unmap and complete */
1575 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1577 if (PageHighMem(pg))
1578 local_irq_restore(flags);
1580 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1582 /* FIXME - should return -1 */
1583 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1585 struct csrow_info *csrows = mci->csrows;
1586 int row, i;
1588 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1589 row = -1;
1591 for (i = 0; i < mci->nr_csrows; i++) {
1592 struct csrow_info *csrow = &csrows[i];
1594 if (csrow->nr_pages == 0)
1595 continue;
1597 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1598 "mask(0x%lx)\n", mci->mc_idx, __func__,
1599 csrow->first_page, page, csrow->last_page,
1600 csrow->page_mask);
1602 if ((page >= csrow->first_page) &&
1603 (page <= csrow->last_page) &&
1604 ((page & csrow->page_mask) ==
1605 (csrow->first_page & csrow->page_mask))) {
1606 row = i;
1607 break;
1611 if (row == -1)
1612 edac_mc_printk(mci, KERN_ERR,
1613 "could not look up page error address %lx\n",
1614 (unsigned long) page);
1616 return row;
1618 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1620 /* FIXME - setable log (warning/emerg) levels */
1621 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1622 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1623 unsigned long page_frame_number, unsigned long offset_in_page,
1624 unsigned long syndrome, int row, int channel, const char *msg)
1626 unsigned long remapped_page;
1628 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1630 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1631 if (row >= mci->nr_csrows || row < 0) {
1632 /* something is wrong */
1633 edac_mc_printk(mci, KERN_ERR,
1634 "INTERNAL ERROR: row out of range "
1635 "(%d >= %d)\n", row, mci->nr_csrows);
1636 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1637 return;
1640 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1641 /* something is wrong */
1642 edac_mc_printk(mci, KERN_ERR,
1643 "INTERNAL ERROR: channel out of range "
1644 "(%d >= %d)\n", channel,
1645 mci->csrows[row].nr_channels);
1646 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1647 return;
1650 if (log_ce)
1651 /* FIXME - put in DIMM location */
1652 edac_mc_printk(mci, KERN_WARNING,
1653 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1654 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1655 page_frame_number, offset_in_page,
1656 mci->csrows[row].grain, syndrome, row, channel,
1657 mci->csrows[row].channels[channel].label, msg);
1659 mci->ce_count++;
1660 mci->csrows[row].ce_count++;
1661 mci->csrows[row].channels[channel].ce_count++;
1663 if (mci->scrub_mode & SCRUB_SW_SRC) {
1665 * Some MC's can remap memory so that it is still available
1666 * at a different address when PCI devices map into memory.
1667 * MC's that can't do this lose the memory where PCI devices
1668 * are mapped. This mapping is MC dependant and so we call
1669 * back into the MC driver for it to map the MC page to
1670 * a physical (CPU) page which can then be mapped to a virtual
1671 * page - which can then be scrubbed.
1673 remapped_page = mci->ctl_page_to_phys ?
1674 mci->ctl_page_to_phys(mci, page_frame_number) :
1675 page_frame_number;
1677 edac_mc_scrub_block(remapped_page, offset_in_page,
1678 mci->csrows[row].grain);
1681 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1683 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1685 if (log_ce)
1686 edac_mc_printk(mci, KERN_WARNING,
1687 "CE - no information available: %s\n", msg);
1689 mci->ce_noinfo_count++;
1690 mci->ce_count++;
1692 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1694 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1695 unsigned long page_frame_number, unsigned long offset_in_page,
1696 int row, const char *msg)
1698 int len = EDAC_MC_LABEL_LEN * 4;
1699 char labels[len + 1];
1700 char *pos = labels;
1701 int chan;
1702 int chars;
1704 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1706 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1707 if (row >= mci->nr_csrows || row < 0) {
1708 /* something is wrong */
1709 edac_mc_printk(mci, KERN_ERR,
1710 "INTERNAL ERROR: row out of range "
1711 "(%d >= %d)\n", row, mci->nr_csrows);
1712 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1713 return;
1716 chars = snprintf(pos, len + 1, "%s",
1717 mci->csrows[row].channels[0].label);
1718 len -= chars;
1719 pos += chars;
1721 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1722 chan++) {
1723 chars = snprintf(pos, len + 1, ":%s",
1724 mci->csrows[row].channels[chan].label);
1725 len -= chars;
1726 pos += chars;
1729 if (log_ue)
1730 edac_mc_printk(mci, KERN_EMERG,
1731 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1732 "labels \"%s\": %s\n", page_frame_number,
1733 offset_in_page, mci->csrows[row].grain, row, labels,
1734 msg);
1736 if (panic_on_ue)
1737 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1738 "row %d, labels \"%s\": %s\n", mci->mc_idx,
1739 page_frame_number, offset_in_page,
1740 mci->csrows[row].grain, row, labels, msg);
1742 mci->ue_count++;
1743 mci->csrows[row].ue_count++;
1745 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1747 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1749 if (panic_on_ue)
1750 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1752 if (log_ue)
1753 edac_mc_printk(mci, KERN_WARNING,
1754 "UE - no information available: %s\n", msg);
1755 mci->ue_noinfo_count++;
1756 mci->ue_count++;
1758 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1761 /*************************************************************
1762 * On Fully Buffered DIMM modules, this help function is
1763 * called to process UE events
1765 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
1766 unsigned int csrow,
1767 unsigned int channela,
1768 unsigned int channelb,
1769 char *msg)
1771 int len = EDAC_MC_LABEL_LEN * 4;
1772 char labels[len + 1];
1773 char *pos = labels;
1774 int chars;
1776 if (csrow >= mci->nr_csrows) {
1777 /* something is wrong */
1778 edac_mc_printk(mci, KERN_ERR,
1779 "INTERNAL ERROR: row out of range (%d >= %d)\n",
1780 csrow, mci->nr_csrows);
1781 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1782 return;
1785 if (channela >= mci->csrows[csrow].nr_channels) {
1786 /* something is wrong */
1787 edac_mc_printk(mci, KERN_ERR,
1788 "INTERNAL ERROR: channel-a out of range "
1789 "(%d >= %d)\n",
1790 channela, mci->csrows[csrow].nr_channels);
1791 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1792 return;
1795 if (channelb >= mci->csrows[csrow].nr_channels) {
1796 /* something is wrong */
1797 edac_mc_printk(mci, KERN_ERR,
1798 "INTERNAL ERROR: channel-b out of range "
1799 "(%d >= %d)\n",
1800 channelb, mci->csrows[csrow].nr_channels);
1801 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1802 return;
1805 mci->ue_count++;
1806 mci->csrows[csrow].ue_count++;
1808 /* Generate the DIMM labels from the specified channels */
1809 chars = snprintf(pos, len + 1, "%s",
1810 mci->csrows[csrow].channels[channela].label);
1811 len -= chars; pos += chars;
1812 chars = snprintf(pos, len + 1, "-%s",
1813 mci->csrows[csrow].channels[channelb].label);
1815 if (log_ue)
1816 edac_mc_printk(mci, KERN_EMERG,
1817 "UE row %d, channel-a= %d channel-b= %d "
1818 "labels \"%s\": %s\n", csrow, channela, channelb,
1819 labels, msg);
1821 if (panic_on_ue)
1822 panic("UE row %d, channel-a= %d channel-b= %d "
1823 "labels \"%s\": %s\n", csrow, channela,
1824 channelb, labels, msg);
1826 EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
1828 /*************************************************************
1829 * On Fully Buffered DIMM modules, this help function is
1830 * called to process CE events
1832 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
1833 unsigned int csrow,
1834 unsigned int channel,
1835 char *msg)
1838 /* Ensure boundary values */
1839 if (csrow >= mci->nr_csrows) {
1840 /* something is wrong */
1841 edac_mc_printk(mci, KERN_ERR,
1842 "INTERNAL ERROR: row out of range (%d >= %d)\n",
1843 csrow, mci->nr_csrows);
1844 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1845 return;
1847 if (channel >= mci->csrows[csrow].nr_channels) {
1848 /* something is wrong */
1849 edac_mc_printk(mci, KERN_ERR,
1850 "INTERNAL ERROR: channel out of range (%d >= %d)\n",
1851 channel, mci->csrows[csrow].nr_channels);
1852 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1853 return;
1856 if (log_ce)
1857 /* FIXME - put in DIMM location */
1858 edac_mc_printk(mci, KERN_WARNING,
1859 "CE row %d, channel %d, label \"%s\": %s\n",
1860 csrow, channel,
1861 mci->csrows[csrow].channels[channel].label,
1862 msg);
1864 mci->ce_count++;
1865 mci->csrows[csrow].ce_count++;
1866 mci->csrows[csrow].channels[channel].ce_count++;
1868 EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
1872 * Iterate over all MC instances and check for ECC, et al, errors
1874 static inline void check_mc_devices(void)
1876 struct list_head *item;
1877 struct mem_ctl_info *mci;
1879 debugf3("%s()\n", __func__);
1880 down(&mem_ctls_mutex);
1882 list_for_each(item, &mc_devices) {
1883 mci = list_entry(item, struct mem_ctl_info, link);
1885 if (mci->edac_check != NULL)
1886 mci->edac_check(mci);
1889 up(&mem_ctls_mutex);
1893 * Check MC status every poll_msec.
1894 * Check PCI status every poll_msec as well.
1896 * This where the work gets done for edac.
1898 * SMP safe, doesn't use NMI, and auto-rate-limits.
1900 static void do_edac_check(void)
1902 debugf3("%s()\n", __func__);
1903 check_mc_devices();
1904 do_pci_parity_check();
1907 static int edac_kernel_thread(void *arg)
1909 while (!kthread_should_stop()) {
1910 do_edac_check();
1912 /* goto sleep for the interval */
1913 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1914 try_to_freeze();
1917 return 0;
1921 * edac_mc_init
1922 * module initialization entry point
1924 static int __init edac_mc_init(void)
1926 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1929 * Harvest and clear any boot/initialization PCI parity errors
1931 * FIXME: This only clears errors logged by devices present at time of
1932 * module initialization. We should also do an initial clear
1933 * of each newly hotplugged device.
1935 clear_pci_parity_errors();
1937 /* Create the MC sysfs entries */
1938 if (edac_sysfs_memctrl_setup()) {
1939 edac_printk(KERN_ERR, EDAC_MC,
1940 "Error initializing sysfs code\n");
1941 return -ENODEV;
1944 /* Create the PCI parity sysfs entries */
1945 if (edac_sysfs_pci_setup()) {
1946 edac_sysfs_memctrl_teardown();
1947 edac_printk(KERN_ERR, EDAC_MC,
1948 "EDAC PCI: Error initializing sysfs code\n");
1949 return -ENODEV;
1952 /* create our kernel thread */
1953 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1955 if (IS_ERR(edac_thread)) {
1956 /* remove the sysfs entries */
1957 edac_sysfs_memctrl_teardown();
1958 edac_sysfs_pci_teardown();
1959 return PTR_ERR(edac_thread);
1962 return 0;
1966 * edac_mc_exit()
1967 * module exit/termination functioni
1969 static void __exit edac_mc_exit(void)
1971 debugf0("%s()\n", __func__);
1972 kthread_stop(edac_thread);
1974 /* tear down the sysfs device */
1975 edac_sysfs_memctrl_teardown();
1976 edac_sysfs_pci_teardown();
1979 module_init(edac_mc_init);
1980 module_exit(edac_mc_exit);
1982 MODULE_LICENSE("GPL");
1983 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1984 "Based on work by Dan Hollis et al");
1985 MODULE_DESCRIPTION("Core library routines for MC reporting");
1987 module_param(panic_on_ue, int, 0644);
1988 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1989 #ifdef CONFIG_PCI
1990 module_param(check_pci_parity, int, 0644);
1991 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1992 module_param(panic_on_pci_parity, int, 0644);
1993 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1994 #endif
1995 module_param(log_ue, int, 0644);
1996 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1997 module_param(log_ce, int, 0644);
1998 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1999 module_param(poll_msec, int, 0644);
2000 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2001 #ifdef CONFIG_EDAC_DEBUG
2002 module_param(edac_debug_level, int, 0644);
2003 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2004 #endif