ACPI: Remove unnecessary from/to-void* and to-void casts in drivers/acpi
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / acpi / processor_idle.c
blob4504684671f6f664c86981a7693f911df9a807b8
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
46 #include <acpi/acpi_bus.h>
47 #include <acpi/processor.h>
49 #define ACPI_PROCESSOR_COMPONENT 0x01000000
50 #define ACPI_PROCESSOR_CLASS "processor"
51 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
52 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
53 ACPI_MODULE_NAME("acpi_processor")
54 #define ACPI_PROCESSOR_FILE_POWER "power"
55 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
56 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
58 static void (*pm_idle_save) (void) __read_mostly;
59 module_param(max_cstate, uint, 0644);
61 static unsigned int nocst __read_mostly;
62 module_param(nocst, uint, 0000);
65 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
66 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
67 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
68 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
69 * reduce history for more aggressive entry into C3
71 static unsigned int bm_history __read_mostly =
72 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
73 module_param(bm_history, uint, 0644);
74 /* --------------------------------------------------------------------------
75 Power Management
76 -------------------------------------------------------------------------- */
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
82 * To skip this limit, boot/load with a large max_cstate limit.
84 static int set_max_cstate(struct dmi_system_id *id)
86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 return 0;
89 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
90 " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93 max_cstate = (long)id->driver_data;
95 return 0;
98 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
99 callers to only run once -AK */
100 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
101 { set_max_cstate, "IBM ThinkPad R40e", {
102 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
103 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
104 { set_max_cstate, "IBM ThinkPad R40e", {
105 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
106 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
107 { set_max_cstate, "IBM ThinkPad R40e", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
109 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
110 { set_max_cstate, "IBM ThinkPad R40e", {
111 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
112 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
113 { set_max_cstate, "IBM ThinkPad R40e", {
114 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
115 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
116 { set_max_cstate, "IBM ThinkPad R40e", {
117 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
118 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
149 { set_max_cstate, "Medion 41700", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
151 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
152 { set_max_cstate, "Clevo 5600D", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
154 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
155 (void *)2},
159 static inline u32 ticks_elapsed(u32 t1, u32 t2)
161 if (t2 >= t1)
162 return (t2 - t1);
163 else if (!acpi_fadt.tmr_val_ext)
164 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
165 else
166 return ((0xFFFFFFFF - t1) + t2);
169 static void
170 acpi_processor_power_activate(struct acpi_processor *pr,
171 struct acpi_processor_cx *new)
173 struct acpi_processor_cx *old;
175 if (!pr || !new)
176 return;
178 old = pr->power.state;
180 if (old)
181 old->promotion.count = 0;
182 new->demotion.count = 0;
184 /* Cleanup from old state. */
185 if (old) {
186 switch (old->type) {
187 case ACPI_STATE_C3:
188 /* Disable bus master reload */
189 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
190 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
191 ACPI_MTX_DO_NOT_LOCK);
192 break;
196 /* Prepare to use new state. */
197 switch (new->type) {
198 case ACPI_STATE_C3:
199 /* Enable bus master reload */
200 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
202 ACPI_MTX_DO_NOT_LOCK);
203 break;
206 pr->power.state = new;
208 return;
211 static void acpi_safe_halt(void)
213 current_thread_info()->status &= ~TS_POLLING;
214 smp_mb__after_clear_bit();
215 if (!need_resched())
216 safe_halt();
217 current_thread_info()->status |= TS_POLLING;
220 static atomic_t c3_cpu_count;
222 static void acpi_processor_idle(void)
224 struct acpi_processor *pr = NULL;
225 struct acpi_processor_cx *cx = NULL;
226 struct acpi_processor_cx *next_state = NULL;
227 int sleep_ticks = 0;
228 u32 t1, t2 = 0;
230 pr = processors[smp_processor_id()];
231 if (!pr)
232 return;
235 * Interrupts must be disabled during bus mastering calculations and
236 * for C2/C3 transitions.
238 local_irq_disable();
241 * Check whether we truly need to go idle, or should
242 * reschedule:
244 if (unlikely(need_resched())) {
245 local_irq_enable();
246 return;
249 cx = pr->power.state;
250 if (!cx) {
251 if (pm_idle_save)
252 pm_idle_save();
253 else
254 acpi_safe_halt();
255 return;
259 * Check BM Activity
260 * -----------------
261 * Check for bus mastering activity (if required), record, and check
262 * for demotion.
264 if (pr->flags.bm_check) {
265 u32 bm_status = 0;
266 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
268 if (diff > 31)
269 diff = 31;
271 pr->power.bm_activity <<= diff;
273 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
274 &bm_status, ACPI_MTX_DO_NOT_LOCK);
275 if (bm_status) {
276 pr->power.bm_activity |= 0x1;
277 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
278 1, ACPI_MTX_DO_NOT_LOCK);
281 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
282 * the true state of bus mastering activity; forcing us to
283 * manually check the BMIDEA bit of each IDE channel.
285 else if (errata.piix4.bmisx) {
286 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
287 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
288 pr->power.bm_activity |= 0x1;
291 pr->power.bm_check_timestamp = jiffies;
294 * If bus mastering is or was active this jiffy, demote
295 * to avoid a faulty transition. Note that the processor
296 * won't enter a low-power state during this call (to this
297 * function) but should upon the next.
299 * TBD: A better policy might be to fallback to the demotion
300 * state (use it for this quantum only) istead of
301 * demoting -- and rely on duration as our sole demotion
302 * qualification. This may, however, introduce DMA
303 * issues (e.g. floppy DMA transfer overrun/underrun).
305 if ((pr->power.bm_activity & 0x1) &&
306 cx->demotion.threshold.bm) {
307 local_irq_enable();
308 next_state = cx->demotion.state;
309 goto end;
313 #ifdef CONFIG_HOTPLUG_CPU
315 * Check for P_LVL2_UP flag before entering C2 and above on
316 * an SMP system. We do it here instead of doing it at _CST/P_LVL
317 * detection phase, to work cleanly with logical CPU hotplug.
319 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
320 !pr->flags.has_cst && !acpi_fadt.plvl2_up)
321 cx = &pr->power.states[ACPI_STATE_C1];
322 #endif
325 * Sleep:
326 * ------
327 * Invoke the current Cx state to put the processor to sleep.
329 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
330 current_thread_info()->status &= ~TS_POLLING;
331 smp_mb__after_clear_bit();
332 if (need_resched()) {
333 current_thread_info()->status |= TS_POLLING;
334 local_irq_enable();
335 return;
339 switch (cx->type) {
341 case ACPI_STATE_C1:
343 * Invoke C1.
344 * Use the appropriate idle routine, the one that would
345 * be used without acpi C-states.
347 if (pm_idle_save)
348 pm_idle_save();
349 else
350 acpi_safe_halt();
353 * TBD: Can't get time duration while in C1, as resumes
354 * go to an ISR rather than here. Need to instrument
355 * base interrupt handler.
357 sleep_ticks = 0xFFFFFFFF;
358 break;
360 case ACPI_STATE_C2:
361 /* Get start time (ticks) */
362 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
363 /* Invoke C2 */
364 inb(cx->address);
365 /* Dummy wait op - must do something useless after P_LVL2 read
366 because chipsets cannot guarantee that STPCLK# signal
367 gets asserted in time to freeze execution properly. */
368 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
369 /* Get end time (ticks) */
370 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
372 #ifdef CONFIG_GENERIC_TIME
373 /* TSC halts in C2, so notify users */
374 mark_tsc_unstable();
375 #endif
376 /* Re-enable interrupts */
377 local_irq_enable();
378 current_thread_info()->status |= TS_POLLING;
379 /* Compute time (ticks) that we were actually asleep */
380 sleep_ticks =
381 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
382 break;
384 case ACPI_STATE_C3:
386 if (pr->flags.bm_check) {
387 if (atomic_inc_return(&c3_cpu_count) ==
388 num_online_cpus()) {
390 * All CPUs are trying to go to C3
391 * Disable bus master arbitration
393 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
394 ACPI_MTX_DO_NOT_LOCK);
396 } else {
397 /* SMP with no shared cache... Invalidate cache */
398 ACPI_FLUSH_CPU_CACHE();
401 /* Get start time (ticks) */
402 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
403 /* Invoke C3 */
404 inb(cx->address);
405 /* Dummy wait op (see above) */
406 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
407 /* Get end time (ticks) */
408 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
409 if (pr->flags.bm_check) {
410 /* Enable bus master arbitration */
411 atomic_dec(&c3_cpu_count);
412 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
413 ACPI_MTX_DO_NOT_LOCK);
416 #ifdef CONFIG_GENERIC_TIME
417 /* TSC halts in C3, so notify users */
418 mark_tsc_unstable();
419 #endif
420 /* Re-enable interrupts */
421 local_irq_enable();
422 current_thread_info()->status |= TS_POLLING;
423 /* Compute time (ticks) that we were actually asleep */
424 sleep_ticks =
425 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
426 break;
428 default:
429 local_irq_enable();
430 return;
432 cx->usage++;
433 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
434 cx->time += sleep_ticks;
436 next_state = pr->power.state;
438 #ifdef CONFIG_HOTPLUG_CPU
439 /* Don't do promotion/demotion */
440 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
441 !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
442 next_state = cx;
443 goto end;
445 #endif
448 * Promotion?
449 * ----------
450 * Track the number of longs (time asleep is greater than threshold)
451 * and promote when the count threshold is reached. Note that bus
452 * mastering activity may prevent promotions.
453 * Do not promote above max_cstate.
455 if (cx->promotion.state &&
456 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
457 if (sleep_ticks > cx->promotion.threshold.ticks &&
458 cx->promotion.state->latency <= system_latency_constraint()) {
459 cx->promotion.count++;
460 cx->demotion.count = 0;
461 if (cx->promotion.count >=
462 cx->promotion.threshold.count) {
463 if (pr->flags.bm_check) {
464 if (!
465 (pr->power.bm_activity & cx->
466 promotion.threshold.bm)) {
467 next_state =
468 cx->promotion.state;
469 goto end;
471 } else {
472 next_state = cx->promotion.state;
473 goto end;
480 * Demotion?
481 * ---------
482 * Track the number of shorts (time asleep is less than time threshold)
483 * and demote when the usage threshold is reached.
485 if (cx->demotion.state) {
486 if (sleep_ticks < cx->demotion.threshold.ticks) {
487 cx->demotion.count++;
488 cx->promotion.count = 0;
489 if (cx->demotion.count >= cx->demotion.threshold.count) {
490 next_state = cx->demotion.state;
491 goto end;
496 end:
498 * Demote if current state exceeds max_cstate
499 * or if the latency of the current state is unacceptable
501 if ((pr->power.state - pr->power.states) > max_cstate ||
502 pr->power.state->latency > system_latency_constraint()) {
503 if (cx->demotion.state)
504 next_state = cx->demotion.state;
508 * New Cx State?
509 * -------------
510 * If we're going to start using a new Cx state we must clean up
511 * from the previous and prepare to use the new.
513 if (next_state != pr->power.state)
514 acpi_processor_power_activate(pr, next_state);
517 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
519 unsigned int i;
520 unsigned int state_is_set = 0;
521 struct acpi_processor_cx *lower = NULL;
522 struct acpi_processor_cx *higher = NULL;
523 struct acpi_processor_cx *cx;
526 if (!pr)
527 return -EINVAL;
530 * This function sets the default Cx state policy (OS idle handler).
531 * Our scheme is to promote quickly to C2 but more conservatively
532 * to C3. We're favoring C2 for its characteristics of low latency
533 * (quick response), good power savings, and ability to allow bus
534 * mastering activity. Note that the Cx state policy is completely
535 * customizable and can be altered dynamically.
538 /* startup state */
539 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
540 cx = &pr->power.states[i];
541 if (!cx->valid)
542 continue;
544 if (!state_is_set)
545 pr->power.state = cx;
546 state_is_set++;
547 break;
550 if (!state_is_set)
551 return -ENODEV;
553 /* demotion */
554 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
555 cx = &pr->power.states[i];
556 if (!cx->valid)
557 continue;
559 if (lower) {
560 cx->demotion.state = lower;
561 cx->demotion.threshold.ticks = cx->latency_ticks;
562 cx->demotion.threshold.count = 1;
563 if (cx->type == ACPI_STATE_C3)
564 cx->demotion.threshold.bm = bm_history;
567 lower = cx;
570 /* promotion */
571 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
572 cx = &pr->power.states[i];
573 if (!cx->valid)
574 continue;
576 if (higher) {
577 cx->promotion.state = higher;
578 cx->promotion.threshold.ticks = cx->latency_ticks;
579 if (cx->type >= ACPI_STATE_C2)
580 cx->promotion.threshold.count = 4;
581 else
582 cx->promotion.threshold.count = 10;
583 if (higher->type == ACPI_STATE_C3)
584 cx->promotion.threshold.bm = bm_history;
587 higher = cx;
590 return 0;
593 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
596 if (!pr)
597 return -EINVAL;
599 if (!pr->pblk)
600 return -ENODEV;
602 /* if info is obtained from pblk/fadt, type equals state */
603 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
604 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
606 #ifndef CONFIG_HOTPLUG_CPU
608 * Check for P_LVL2_UP flag before entering C2 and above on
609 * an SMP system.
611 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
612 return -ENODEV;
613 #endif
615 /* determine C2 and C3 address from pblk */
616 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
617 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
619 /* determine latencies from FADT */
620 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
621 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
623 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
624 "lvl2[0x%08x] lvl3[0x%08x]\n",
625 pr->power.states[ACPI_STATE_C2].address,
626 pr->power.states[ACPI_STATE_C3].address));
628 return 0;
631 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
634 /* Zero initialize all the C-states info. */
635 memset(pr->power.states, 0, sizeof(pr->power.states));
637 /* set the first C-State to C1 */
638 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
640 /* the C0 state only exists as a filler in our array,
641 * and all processors need to support C1 */
642 pr->power.states[ACPI_STATE_C0].valid = 1;
643 pr->power.states[ACPI_STATE_C1].valid = 1;
645 return 0;
648 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
650 acpi_status status = 0;
651 acpi_integer count;
652 int current_count;
653 int i;
654 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
655 union acpi_object *cst;
658 if (nocst)
659 return -ENODEV;
661 current_count = 1;
663 /* Zero initialize C2 onwards and prepare for fresh CST lookup */
664 for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
665 memset(&(pr->power.states[i]), 0,
666 sizeof(struct acpi_processor_cx));
668 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
669 if (ACPI_FAILURE(status)) {
670 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
671 return -ENODEV;
674 cst = buffer.pointer;
676 /* There must be at least 2 elements */
677 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
678 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
679 status = -EFAULT;
680 goto end;
683 count = cst->package.elements[0].integer.value;
685 /* Validate number of power states. */
686 if (count < 1 || count != cst->package.count - 1) {
687 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
688 status = -EFAULT;
689 goto end;
692 /* Tell driver that at least _CST is supported. */
693 pr->flags.has_cst = 1;
695 for (i = 1; i <= count; i++) {
696 union acpi_object *element;
697 union acpi_object *obj;
698 struct acpi_power_register *reg;
699 struct acpi_processor_cx cx;
701 memset(&cx, 0, sizeof(cx));
703 element = &(cst->package.elements[i]);
704 if (element->type != ACPI_TYPE_PACKAGE)
705 continue;
707 if (element->package.count != 4)
708 continue;
710 obj = &(element->package.elements[0]);
712 if (obj->type != ACPI_TYPE_BUFFER)
713 continue;
715 reg = (struct acpi_power_register *)obj->buffer.pointer;
717 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
718 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
719 continue;
721 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
722 0 : reg->address;
724 /* There should be an easy way to extract an integer... */
725 obj = &(element->package.elements[1]);
726 if (obj->type != ACPI_TYPE_INTEGER)
727 continue;
729 cx.type = obj->integer.value;
731 if ((cx.type != ACPI_STATE_C1) &&
732 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
733 continue;
735 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
736 continue;
738 obj = &(element->package.elements[2]);
739 if (obj->type != ACPI_TYPE_INTEGER)
740 continue;
742 cx.latency = obj->integer.value;
744 obj = &(element->package.elements[3]);
745 if (obj->type != ACPI_TYPE_INTEGER)
746 continue;
748 cx.power = obj->integer.value;
750 current_count++;
751 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
754 * We support total ACPI_PROCESSOR_MAX_POWER - 1
755 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
757 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
758 printk(KERN_WARNING
759 "Limiting number of power states to max (%d)\n",
760 ACPI_PROCESSOR_MAX_POWER);
761 printk(KERN_WARNING
762 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
763 break;
767 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
768 current_count));
770 /* Validate number of power states discovered */
771 if (current_count < 2)
772 status = -EFAULT;
774 end:
775 kfree(buffer.pointer);
777 return status;
780 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
783 if (!cx->address)
784 return;
787 * C2 latency must be less than or equal to 100
788 * microseconds.
790 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
791 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
792 "latency too large [%d]\n", cx->latency));
793 return;
797 * Otherwise we've met all of our C2 requirements.
798 * Normalize the C2 latency to expidite policy
800 cx->valid = 1;
801 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
803 return;
806 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
807 struct acpi_processor_cx *cx)
809 static int bm_check_flag;
812 if (!cx->address)
813 return;
816 * C3 latency must be less than or equal to 1000
817 * microseconds.
819 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
820 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
821 "latency too large [%d]\n", cx->latency));
822 return;
826 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
827 * DMA transfers are used by any ISA device to avoid livelock.
828 * Note that we could disable Type-F DMA (as recommended by
829 * the erratum), but this is known to disrupt certain ISA
830 * devices thus we take the conservative approach.
832 else if (errata.piix4.fdma) {
833 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
834 "C3 not supported on PIIX4 with Type-F DMA\n"));
835 return;
838 /* All the logic here assumes flags.bm_check is same across all CPUs */
839 if (!bm_check_flag) {
840 /* Determine whether bm_check is needed based on CPU */
841 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
842 bm_check_flag = pr->flags.bm_check;
843 } else {
844 pr->flags.bm_check = bm_check_flag;
847 if (pr->flags.bm_check) {
848 /* bus mastering control is necessary */
849 if (!pr->flags.bm_control) {
850 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
851 "C3 support requires bus mastering control\n"));
852 return;
854 } else {
856 * WBINVD should be set in fadt, for C3 state to be
857 * supported on when bm_check is not required.
859 if (acpi_fadt.wb_invd != 1) {
860 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
861 "Cache invalidation should work properly"
862 " for C3 to be enabled on SMP systems\n"));
863 return;
865 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
866 0, ACPI_MTX_DO_NOT_LOCK);
870 * Otherwise we've met all of our C3 requirements.
871 * Normalize the C3 latency to expidite policy. Enable
872 * checking of bus mastering status (bm_check) so we can
873 * use this in our C3 policy
875 cx->valid = 1;
876 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
878 return;
881 static int acpi_processor_power_verify(struct acpi_processor *pr)
883 unsigned int i;
884 unsigned int working = 0;
886 #ifdef ARCH_APICTIMER_STOPS_ON_C3
887 int timer_broadcast = 0;
888 cpumask_t mask = cpumask_of_cpu(pr->id);
889 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
890 #endif
892 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
893 struct acpi_processor_cx *cx = &pr->power.states[i];
895 switch (cx->type) {
896 case ACPI_STATE_C1:
897 cx->valid = 1;
898 break;
900 case ACPI_STATE_C2:
901 acpi_processor_power_verify_c2(cx);
902 #ifdef ARCH_APICTIMER_STOPS_ON_C3
903 /* Some AMD systems fake C3 as C2, but still
904 have timer troubles */
905 if (cx->valid &&
906 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
907 timer_broadcast++;
908 #endif
909 break;
911 case ACPI_STATE_C3:
912 acpi_processor_power_verify_c3(pr, cx);
913 #ifdef ARCH_APICTIMER_STOPS_ON_C3
914 if (cx->valid)
915 timer_broadcast++;
916 #endif
917 break;
920 if (cx->valid)
921 working++;
924 #ifdef ARCH_APICTIMER_STOPS_ON_C3
925 if (timer_broadcast)
926 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
927 #endif
929 return (working);
932 static int acpi_processor_get_power_info(struct acpi_processor *pr)
934 unsigned int i;
935 int result;
938 /* NOTE: the idle thread may not be running while calling
939 * this function */
941 /* Adding C1 state */
942 acpi_processor_get_power_info_default_c1(pr);
943 result = acpi_processor_get_power_info_cst(pr);
944 if (result == -ENODEV)
945 acpi_processor_get_power_info_fadt(pr);
947 pr->power.count = acpi_processor_power_verify(pr);
950 * Set Default Policy
951 * ------------------
952 * Now that we know which states are supported, set the default
953 * policy. Note that this policy can be changed dynamically
954 * (e.g. encourage deeper sleeps to conserve battery life when
955 * not on AC).
957 result = acpi_processor_set_power_policy(pr);
958 if (result)
959 return result;
962 * if one state of type C2 or C3 is available, mark this
963 * CPU as being "idle manageable"
965 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
966 if (pr->power.states[i].valid) {
967 pr->power.count = i;
968 if (pr->power.states[i].type >= ACPI_STATE_C2)
969 pr->flags.power = 1;
973 return 0;
976 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
978 int result = 0;
981 if (!pr)
982 return -EINVAL;
984 if (nocst) {
985 return -ENODEV;
988 if (!pr->flags.power_setup_done)
989 return -ENODEV;
991 /* Fall back to the default idle loop */
992 pm_idle = pm_idle_save;
993 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
995 pr->flags.power = 0;
996 result = acpi_processor_get_power_info(pr);
997 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
998 pm_idle = acpi_processor_idle;
1000 return result;
1003 /* proc interface */
1005 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1007 struct acpi_processor *pr = seq->private;
1008 unsigned int i;
1011 if (!pr)
1012 goto end;
1014 seq_printf(seq, "active state: C%zd\n"
1015 "max_cstate: C%d\n"
1016 "bus master activity: %08x\n"
1017 "maximum allowed latency: %d usec\n",
1018 pr->power.state ? pr->power.state - pr->power.states : 0,
1019 max_cstate, (unsigned)pr->power.bm_activity,
1020 system_latency_constraint());
1022 seq_puts(seq, "states:\n");
1024 for (i = 1; i <= pr->power.count; i++) {
1025 seq_printf(seq, " %cC%d: ",
1026 (&pr->power.states[i] ==
1027 pr->power.state ? '*' : ' '), i);
1029 if (!pr->power.states[i].valid) {
1030 seq_puts(seq, "<not supported>\n");
1031 continue;
1034 switch (pr->power.states[i].type) {
1035 case ACPI_STATE_C1:
1036 seq_printf(seq, "type[C1] ");
1037 break;
1038 case ACPI_STATE_C2:
1039 seq_printf(seq, "type[C2] ");
1040 break;
1041 case ACPI_STATE_C3:
1042 seq_printf(seq, "type[C3] ");
1043 break;
1044 default:
1045 seq_printf(seq, "type[--] ");
1046 break;
1049 if (pr->power.states[i].promotion.state)
1050 seq_printf(seq, "promotion[C%zd] ",
1051 (pr->power.states[i].promotion.state -
1052 pr->power.states));
1053 else
1054 seq_puts(seq, "promotion[--] ");
1056 if (pr->power.states[i].demotion.state)
1057 seq_printf(seq, "demotion[C%zd] ",
1058 (pr->power.states[i].demotion.state -
1059 pr->power.states));
1060 else
1061 seq_puts(seq, "demotion[--] ");
1063 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1064 pr->power.states[i].latency,
1065 pr->power.states[i].usage,
1066 pr->power.states[i].time);
1069 end:
1070 return 0;
1073 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1075 return single_open(file, acpi_processor_power_seq_show,
1076 PDE(inode)->data);
1079 static const struct file_operations acpi_processor_power_fops = {
1080 .open = acpi_processor_power_open_fs,
1081 .read = seq_read,
1082 .llseek = seq_lseek,
1083 .release = single_release,
1086 static void smp_callback(void *v)
1088 /* we already woke the CPU up, nothing more to do */
1092 * This function gets called when a part of the kernel has a new latency
1093 * requirement. This means we need to get all processors out of their C-state,
1094 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1095 * wakes them all right up.
1097 static int acpi_processor_latency_notify(struct notifier_block *b,
1098 unsigned long l, void *v)
1100 smp_call_function(smp_callback, NULL, 0, 1);
1101 return NOTIFY_OK;
1104 static struct notifier_block acpi_processor_latency_notifier = {
1105 .notifier_call = acpi_processor_latency_notify,
1108 int acpi_processor_power_init(struct acpi_processor *pr,
1109 struct acpi_device *device)
1111 acpi_status status = 0;
1112 static int first_run;
1113 struct proc_dir_entry *entry = NULL;
1114 unsigned int i;
1117 if (!first_run) {
1118 dmi_check_system(processor_power_dmi_table);
1119 if (max_cstate < ACPI_C_STATES_MAX)
1120 printk(KERN_NOTICE
1121 "ACPI: processor limited to max C-state %d\n",
1122 max_cstate);
1123 first_run++;
1124 register_latency_notifier(&acpi_processor_latency_notifier);
1127 if (!pr)
1128 return -EINVAL;
1130 if (acpi_fadt.cst_cnt && !nocst) {
1131 status =
1132 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1133 if (ACPI_FAILURE(status)) {
1134 ACPI_EXCEPTION((AE_INFO, status,
1135 "Notifying BIOS of _CST ability failed"));
1139 acpi_processor_get_power_info(pr);
1142 * Install the idle handler if processor power management is supported.
1143 * Note that we use previously set idle handler will be used on
1144 * platforms that only support C1.
1146 if ((pr->flags.power) && (!boot_option_idle_override)) {
1147 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1148 for (i = 1; i <= pr->power.count; i++)
1149 if (pr->power.states[i].valid)
1150 printk(" C%d[C%d]", i,
1151 pr->power.states[i].type);
1152 printk(")\n");
1154 if (pr->id == 0) {
1155 pm_idle_save = pm_idle;
1156 pm_idle = acpi_processor_idle;
1160 /* 'power' [R] */
1161 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1162 S_IRUGO, acpi_device_dir(device));
1163 if (!entry)
1164 return -EIO;
1165 else {
1166 entry->proc_fops = &acpi_processor_power_fops;
1167 entry->data = acpi_driver_data(device);
1168 entry->owner = THIS_MODULE;
1171 pr->flags.power_setup_done = 1;
1173 return 0;
1176 int acpi_processor_power_exit(struct acpi_processor *pr,
1177 struct acpi_device *device)
1180 pr->flags.power_setup_done = 0;
1182 if (acpi_device_dir(device))
1183 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1184 acpi_device_dir(device));
1186 /* Unregister the idle handler when processor #0 is removed. */
1187 if (pr->id == 0) {
1188 pm_idle = pm_idle_save;
1191 * We are about to unload the current idle thread pm callback
1192 * (pm_idle), Wait for all processors to update cached/local
1193 * copies of pm_idle before proceeding.
1195 cpu_idle_wait();
1196 unregister_latency_notifier(&acpi_processor_latency_notifier);
1199 return 0;