2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@redhat.com>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Version: $Id: ipmr.c,v 1.65 2001/10/31 21:55:54 davem Exp $
15 * Michael Chastain : Incorrect size of copying.
16 * Alan Cox : Added the cache manager code
17 * Alan Cox : Fixed the clone/copy bug and device race.
18 * Mike McLagan : Routing by source
19 * Malcolm Beattie : Buffer handling fixes.
20 * Alexey Kuznetsov : Double buffer free and other fixes.
21 * SVR Anand : Fixed several multicast bugs and problems.
22 * Alexey Kuznetsov : Status, optimisations and more.
23 * Brad Parker : Better behaviour on mrouted upcall
25 * Carlos Picoto : PIMv1 Support
26 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
27 * Relax this requrement to work with older peers.
31 #include <asm/system.h>
32 #include <asm/uaccess.h>
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/capability.h>
36 #include <linux/errno.h>
37 #include <linux/timer.h>
39 #include <linux/kernel.h>
40 #include <linux/fcntl.h>
41 #include <linux/stat.h>
42 #include <linux/socket.h>
44 #include <linux/inet.h>
45 #include <linux/netdevice.h>
46 #include <linux/inetdevice.h>
47 #include <linux/igmp.h>
48 #include <linux/proc_fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/mroute.h>
51 #include <linux/init.h>
52 #include <linux/if_ether.h>
54 #include <net/protocol.h>
55 #include <linux/skbuff.h>
56 #include <net/route.h>
61 #include <linux/notifier.h>
62 #include <linux/if_arp.h>
63 #include <linux/netfilter_ipv4.h>
65 #include <net/checksum.h>
67 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
68 #define CONFIG_IP_PIMSM 1
71 static struct sock
*mroute_socket
;
74 /* Big lock, protecting vif table, mrt cache and mroute socket state.
75 Note that the changes are semaphored via rtnl_lock.
78 static DEFINE_RWLOCK(mrt_lock
);
81 * Multicast router control variables
84 static struct vif_device vif_table
[MAXVIFS
]; /* Devices */
87 #define VIF_EXISTS(idx) (vif_table[idx].dev != NULL)
89 static int mroute_do_assert
; /* Set in PIM assert */
90 static int mroute_do_pim
;
92 static struct mfc_cache
*mfc_cache_array
[MFC_LINES
]; /* Forwarding cache */
94 static struct mfc_cache
*mfc_unres_queue
; /* Queue of unresolved entries */
95 static atomic_t cache_resolve_queue_len
; /* Size of unresolved */
97 /* Special spinlock for queue of unresolved entries */
98 static DEFINE_SPINLOCK(mfc_unres_lock
);
100 /* We return to original Alan's scheme. Hash table of resolved
101 entries is changed only in process context and protected
102 with weak lock mrt_lock. Queue of unresolved entries is protected
103 with strong spinlock mfc_unres_lock.
105 In this case data path is free of exclusive locks at all.
108 static struct kmem_cache
*mrt_cachep __read_mostly
;
110 static int ip_mr_forward(struct sk_buff
*skb
, struct mfc_cache
*cache
, int local
);
111 static int ipmr_cache_report(struct sk_buff
*pkt
, vifi_t vifi
, int assert);
112 static int ipmr_fill_mroute(struct sk_buff
*skb
, struct mfc_cache
*c
, struct rtmsg
*rtm
);
114 #ifdef CONFIG_IP_PIMSM_V2
115 static struct net_protocol pim_protocol
;
118 static struct timer_list ipmr_expire_timer
;
120 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
123 struct net_device
*ipmr_new_tunnel(struct vifctl
*v
)
125 struct net_device
*dev
;
127 dev
= __dev_get_by_name("tunl0");
133 struct ip_tunnel_parm p
;
134 struct in_device
*in_dev
;
136 memset(&p
, 0, sizeof(p
));
137 p
.iph
.daddr
= v
->vifc_rmt_addr
.s_addr
;
138 p
.iph
.saddr
= v
->vifc_lcl_addr
.s_addr
;
141 p
.iph
.protocol
= IPPROTO_IPIP
;
142 sprintf(p
.name
, "dvmrp%d", v
->vifc_vifi
);
143 ifr
.ifr_ifru
.ifru_data
= (void*)&p
;
145 oldfs
= get_fs(); set_fs(KERNEL_DS
);
146 err
= dev
->do_ioctl(dev
, &ifr
, SIOCADDTUNNEL
);
151 if (err
== 0 && (dev
= __dev_get_by_name(p
.name
)) != NULL
) {
152 dev
->flags
|= IFF_MULTICAST
;
154 in_dev
= __in_dev_get_rtnl(dev
);
155 if (in_dev
== NULL
&& (in_dev
= inetdev_init(dev
)) == NULL
)
157 in_dev
->cnf
.rp_filter
= 0;
166 /* allow the register to be completed before unregistering. */
170 unregister_netdevice(dev
);
174 #ifdef CONFIG_IP_PIMSM
176 static int reg_vif_num
= -1;
178 static int reg_vif_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
180 read_lock(&mrt_lock
);
181 ((struct net_device_stats
*)netdev_priv(dev
))->tx_bytes
+= skb
->len
;
182 ((struct net_device_stats
*)netdev_priv(dev
))->tx_packets
++;
183 ipmr_cache_report(skb
, reg_vif_num
, IGMPMSG_WHOLEPKT
);
184 read_unlock(&mrt_lock
);
189 static struct net_device_stats
*reg_vif_get_stats(struct net_device
*dev
)
191 return (struct net_device_stats
*)netdev_priv(dev
);
194 static void reg_vif_setup(struct net_device
*dev
)
196 dev
->type
= ARPHRD_PIMREG
;
197 dev
->mtu
= ETH_DATA_LEN
- sizeof(struct iphdr
) - 8;
198 dev
->flags
= IFF_NOARP
;
199 dev
->hard_start_xmit
= reg_vif_xmit
;
200 dev
->get_stats
= reg_vif_get_stats
;
201 dev
->destructor
= free_netdev
;
204 static struct net_device
*ipmr_reg_vif(void)
206 struct net_device
*dev
;
207 struct in_device
*in_dev
;
209 dev
= alloc_netdev(sizeof(struct net_device_stats
), "pimreg",
215 if (register_netdevice(dev
)) {
221 if ((in_dev
= inetdev_init(dev
)) == NULL
)
224 in_dev
->cnf
.rp_filter
= 0;
232 /* allow the register to be completed before unregistering. */
236 unregister_netdevice(dev
);
245 static int vif_delete(int vifi
)
247 struct vif_device
*v
;
248 struct net_device
*dev
;
249 struct in_device
*in_dev
;
251 if (vifi
< 0 || vifi
>= maxvif
)
252 return -EADDRNOTAVAIL
;
254 v
= &vif_table
[vifi
];
256 write_lock_bh(&mrt_lock
);
261 write_unlock_bh(&mrt_lock
);
262 return -EADDRNOTAVAIL
;
265 #ifdef CONFIG_IP_PIMSM
266 if (vifi
== reg_vif_num
)
270 if (vifi
+1 == maxvif
) {
272 for (tmp
=vifi
-1; tmp
>=0; tmp
--) {
279 write_unlock_bh(&mrt_lock
);
281 dev_set_allmulti(dev
, -1);
283 if ((in_dev
= __in_dev_get_rtnl(dev
)) != NULL
) {
284 in_dev
->cnf
.mc_forwarding
--;
285 ip_rt_multicast_event(in_dev
);
288 if (v
->flags
&(VIFF_TUNNEL
|VIFF_REGISTER
))
289 unregister_netdevice(dev
);
295 /* Destroy an unresolved cache entry, killing queued skbs
296 and reporting error to netlink readers.
299 static void ipmr_destroy_unres(struct mfc_cache
*c
)
304 atomic_dec(&cache_resolve_queue_len
);
306 while((skb
=skb_dequeue(&c
->mfc_un
.unres
.unresolved
))) {
307 if (skb
->nh
.iph
->version
== 0) {
308 struct nlmsghdr
*nlh
= (struct nlmsghdr
*)skb_pull(skb
, sizeof(struct iphdr
));
309 nlh
->nlmsg_type
= NLMSG_ERROR
;
310 nlh
->nlmsg_len
= NLMSG_LENGTH(sizeof(struct nlmsgerr
));
311 skb_trim(skb
, nlh
->nlmsg_len
);
313 e
->error
= -ETIMEDOUT
;
314 memset(&e
->msg
, 0, sizeof(e
->msg
));
316 rtnl_unicast(skb
, NETLINK_CB(skb
).pid
);
321 kmem_cache_free(mrt_cachep
, c
);
325 /* Single timer process for all the unresolved queue. */
327 static void ipmr_expire_process(unsigned long dummy
)
330 unsigned long expires
;
331 struct mfc_cache
*c
, **cp
;
333 if (!spin_trylock(&mfc_unres_lock
)) {
334 mod_timer(&ipmr_expire_timer
, jiffies
+HZ
/10);
338 if (atomic_read(&cache_resolve_queue_len
) == 0)
343 cp
= &mfc_unres_queue
;
345 while ((c
=*cp
) != NULL
) {
346 if (time_after(c
->mfc_un
.unres
.expires
, now
)) {
347 unsigned long interval
= c
->mfc_un
.unres
.expires
- now
;
348 if (interval
< expires
)
356 ipmr_destroy_unres(c
);
359 if (atomic_read(&cache_resolve_queue_len
))
360 mod_timer(&ipmr_expire_timer
, jiffies
+ expires
);
363 spin_unlock(&mfc_unres_lock
);
366 /* Fill oifs list. It is called under write locked mrt_lock. */
368 static void ipmr_update_thresholds(struct mfc_cache
*cache
, unsigned char *ttls
)
372 cache
->mfc_un
.res
.minvif
= MAXVIFS
;
373 cache
->mfc_un
.res
.maxvif
= 0;
374 memset(cache
->mfc_un
.res
.ttls
, 255, MAXVIFS
);
376 for (vifi
=0; vifi
<maxvif
; vifi
++) {
377 if (VIF_EXISTS(vifi
) && ttls
[vifi
] && ttls
[vifi
] < 255) {
378 cache
->mfc_un
.res
.ttls
[vifi
] = ttls
[vifi
];
379 if (cache
->mfc_un
.res
.minvif
> vifi
)
380 cache
->mfc_un
.res
.minvif
= vifi
;
381 if (cache
->mfc_un
.res
.maxvif
<= vifi
)
382 cache
->mfc_un
.res
.maxvif
= vifi
+ 1;
387 static int vif_add(struct vifctl
*vifc
, int mrtsock
)
389 int vifi
= vifc
->vifc_vifi
;
390 struct vif_device
*v
= &vif_table
[vifi
];
391 struct net_device
*dev
;
392 struct in_device
*in_dev
;
395 if (VIF_EXISTS(vifi
))
398 switch (vifc
->vifc_flags
) {
399 #ifdef CONFIG_IP_PIMSM
402 * Special Purpose VIF in PIM
403 * All the packets will be sent to the daemon
405 if (reg_vif_num
>= 0)
407 dev
= ipmr_reg_vif();
413 dev
= ipmr_new_tunnel(vifc
);
418 dev
= ip_dev_find(vifc
->vifc_lcl_addr
.s_addr
);
420 return -EADDRNOTAVAIL
;
427 if ((in_dev
= __in_dev_get_rtnl(dev
)) == NULL
)
428 return -EADDRNOTAVAIL
;
429 in_dev
->cnf
.mc_forwarding
++;
430 dev_set_allmulti(dev
, +1);
431 ip_rt_multicast_event(in_dev
);
434 * Fill in the VIF structures
436 v
->rate_limit
=vifc
->vifc_rate_limit
;
437 v
->local
=vifc
->vifc_lcl_addr
.s_addr
;
438 v
->remote
=vifc
->vifc_rmt_addr
.s_addr
;
439 v
->flags
=vifc
->vifc_flags
;
441 v
->flags
|= VIFF_STATIC
;
442 v
->threshold
=vifc
->vifc_threshold
;
447 v
->link
= dev
->ifindex
;
448 if (v
->flags
&(VIFF_TUNNEL
|VIFF_REGISTER
))
449 v
->link
= dev
->iflink
;
451 /* And finish update writing critical data */
452 write_lock_bh(&mrt_lock
);
455 #ifdef CONFIG_IP_PIMSM
456 if (v
->flags
&VIFF_REGISTER
)
461 write_unlock_bh(&mrt_lock
);
465 static struct mfc_cache
*ipmr_cache_find(__be32 origin
, __be32 mcastgrp
)
467 int line
=MFC_HASH(mcastgrp
,origin
);
470 for (c
=mfc_cache_array
[line
]; c
; c
= c
->next
) {
471 if (c
->mfc_origin
==origin
&& c
->mfc_mcastgrp
==mcastgrp
)
478 * Allocate a multicast cache entry
480 static struct mfc_cache
*ipmr_cache_alloc(void)
482 struct mfc_cache
*c
=kmem_cache_alloc(mrt_cachep
, GFP_KERNEL
);
485 memset(c
, 0, sizeof(*c
));
486 c
->mfc_un
.res
.minvif
= MAXVIFS
;
490 static struct mfc_cache
*ipmr_cache_alloc_unres(void)
492 struct mfc_cache
*c
=kmem_cache_alloc(mrt_cachep
, GFP_ATOMIC
);
495 memset(c
, 0, sizeof(*c
));
496 skb_queue_head_init(&c
->mfc_un
.unres
.unresolved
);
497 c
->mfc_un
.unres
.expires
= jiffies
+ 10*HZ
;
502 * A cache entry has gone into a resolved state from queued
505 static void ipmr_cache_resolve(struct mfc_cache
*uc
, struct mfc_cache
*c
)
511 * Play the pending entries through our router
514 while((skb
=__skb_dequeue(&uc
->mfc_un
.unres
.unresolved
))) {
515 if (skb
->nh
.iph
->version
== 0) {
516 struct nlmsghdr
*nlh
= (struct nlmsghdr
*)skb_pull(skb
, sizeof(struct iphdr
));
518 if (ipmr_fill_mroute(skb
, c
, NLMSG_DATA(nlh
)) > 0) {
519 nlh
->nlmsg_len
= skb
->tail
- (u8
*)nlh
;
521 nlh
->nlmsg_type
= NLMSG_ERROR
;
522 nlh
->nlmsg_len
= NLMSG_LENGTH(sizeof(struct nlmsgerr
));
523 skb_trim(skb
, nlh
->nlmsg_len
);
525 e
->error
= -EMSGSIZE
;
526 memset(&e
->msg
, 0, sizeof(e
->msg
));
529 rtnl_unicast(skb
, NETLINK_CB(skb
).pid
);
531 ip_mr_forward(skb
, c
, 0);
536 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
537 * expects the following bizarre scheme.
539 * Called under mrt_lock.
542 static int ipmr_cache_report(struct sk_buff
*pkt
, vifi_t vifi
, int assert)
545 int ihl
= pkt
->nh
.iph
->ihl
<<2;
546 struct igmphdr
*igmp
;
550 #ifdef CONFIG_IP_PIMSM
551 if (assert == IGMPMSG_WHOLEPKT
)
552 skb
= skb_realloc_headroom(pkt
, sizeof(struct iphdr
));
555 skb
= alloc_skb(128, GFP_ATOMIC
);
560 #ifdef CONFIG_IP_PIMSM
561 if (assert == IGMPMSG_WHOLEPKT
) {
562 /* Ugly, but we have no choice with this interface.
563 Duplicate old header, fix ihl, length etc.
564 And all this only to mangle msg->im_msgtype and
565 to set msg->im_mbz to "mbz" :-)
567 msg
= (struct igmpmsg
*)skb_push(skb
, sizeof(struct iphdr
));
568 skb
->nh
.raw
= skb
->h
.raw
= (u8
*)msg
;
569 memcpy(msg
, pkt
->nh
.raw
, sizeof(struct iphdr
));
570 msg
->im_msgtype
= IGMPMSG_WHOLEPKT
;
572 msg
->im_vif
= reg_vif_num
;
573 skb
->nh
.iph
->ihl
= sizeof(struct iphdr
) >> 2;
574 skb
->nh
.iph
->tot_len
= htons(ntohs(pkt
->nh
.iph
->tot_len
) + sizeof(struct iphdr
));
583 skb
->nh
.iph
= (struct iphdr
*)skb_put(skb
, ihl
);
584 memcpy(skb
->data
,pkt
->data
,ihl
);
585 skb
->nh
.iph
->protocol
= 0; /* Flag to the kernel this is a route add */
586 msg
= (struct igmpmsg
*)skb
->nh
.iph
;
588 skb
->dst
= dst_clone(pkt
->dst
);
594 igmp
=(struct igmphdr
*)skb_put(skb
,sizeof(struct igmphdr
));
596 msg
->im_msgtype
= assert;
598 skb
->nh
.iph
->tot_len
=htons(skb
->len
); /* Fix the length */
599 skb
->h
.raw
= skb
->nh
.raw
;
602 if (mroute_socket
== NULL
) {
610 if ((ret
=sock_queue_rcv_skb(mroute_socket
,skb
))<0) {
612 printk(KERN_WARNING
"mroute: pending queue full, dropping entries.\n");
620 * Queue a packet for resolution. It gets locked cache entry!
624 ipmr_cache_unresolved(vifi_t vifi
, struct sk_buff
*skb
)
629 spin_lock_bh(&mfc_unres_lock
);
630 for (c
=mfc_unres_queue
; c
; c
=c
->next
) {
631 if (c
->mfc_mcastgrp
== skb
->nh
.iph
->daddr
&&
632 c
->mfc_origin
== skb
->nh
.iph
->saddr
)
638 * Create a new entry if allowable
641 if (atomic_read(&cache_resolve_queue_len
)>=10 ||
642 (c
=ipmr_cache_alloc_unres())==NULL
) {
643 spin_unlock_bh(&mfc_unres_lock
);
650 * Fill in the new cache entry
653 c
->mfc_origin
=skb
->nh
.iph
->saddr
;
654 c
->mfc_mcastgrp
=skb
->nh
.iph
->daddr
;
657 * Reflect first query at mrouted.
659 if ((err
= ipmr_cache_report(skb
, vifi
, IGMPMSG_NOCACHE
))<0) {
660 /* If the report failed throw the cache entry
663 spin_unlock_bh(&mfc_unres_lock
);
665 kmem_cache_free(mrt_cachep
, c
);
670 atomic_inc(&cache_resolve_queue_len
);
671 c
->next
= mfc_unres_queue
;
674 mod_timer(&ipmr_expire_timer
, c
->mfc_un
.unres
.expires
);
678 * See if we can append the packet
680 if (c
->mfc_un
.unres
.unresolved
.qlen
>3) {
684 skb_queue_tail(&c
->mfc_un
.unres
.unresolved
,skb
);
688 spin_unlock_bh(&mfc_unres_lock
);
693 * MFC cache manipulation by user space mroute daemon
696 static int ipmr_mfc_delete(struct mfcctl
*mfc
)
699 struct mfc_cache
*c
, **cp
;
701 line
=MFC_HASH(mfc
->mfcc_mcastgrp
.s_addr
, mfc
->mfcc_origin
.s_addr
);
703 for (cp
=&mfc_cache_array
[line
]; (c
=*cp
) != NULL
; cp
= &c
->next
) {
704 if (c
->mfc_origin
== mfc
->mfcc_origin
.s_addr
&&
705 c
->mfc_mcastgrp
== mfc
->mfcc_mcastgrp
.s_addr
) {
706 write_lock_bh(&mrt_lock
);
708 write_unlock_bh(&mrt_lock
);
710 kmem_cache_free(mrt_cachep
, c
);
717 static int ipmr_mfc_add(struct mfcctl
*mfc
, int mrtsock
)
720 struct mfc_cache
*uc
, *c
, **cp
;
722 line
=MFC_HASH(mfc
->mfcc_mcastgrp
.s_addr
, mfc
->mfcc_origin
.s_addr
);
724 for (cp
=&mfc_cache_array
[line
]; (c
=*cp
) != NULL
; cp
= &c
->next
) {
725 if (c
->mfc_origin
== mfc
->mfcc_origin
.s_addr
&&
726 c
->mfc_mcastgrp
== mfc
->mfcc_mcastgrp
.s_addr
)
731 write_lock_bh(&mrt_lock
);
732 c
->mfc_parent
= mfc
->mfcc_parent
;
733 ipmr_update_thresholds(c
, mfc
->mfcc_ttls
);
735 c
->mfc_flags
|= MFC_STATIC
;
736 write_unlock_bh(&mrt_lock
);
740 if(!MULTICAST(mfc
->mfcc_mcastgrp
.s_addr
))
743 c
=ipmr_cache_alloc();
747 c
->mfc_origin
=mfc
->mfcc_origin
.s_addr
;
748 c
->mfc_mcastgrp
=mfc
->mfcc_mcastgrp
.s_addr
;
749 c
->mfc_parent
=mfc
->mfcc_parent
;
750 ipmr_update_thresholds(c
, mfc
->mfcc_ttls
);
752 c
->mfc_flags
|= MFC_STATIC
;
754 write_lock_bh(&mrt_lock
);
755 c
->next
= mfc_cache_array
[line
];
756 mfc_cache_array
[line
] = c
;
757 write_unlock_bh(&mrt_lock
);
760 * Check to see if we resolved a queued list. If so we
761 * need to send on the frames and tidy up.
763 spin_lock_bh(&mfc_unres_lock
);
764 for (cp
= &mfc_unres_queue
; (uc
=*cp
) != NULL
;
766 if (uc
->mfc_origin
== c
->mfc_origin
&&
767 uc
->mfc_mcastgrp
== c
->mfc_mcastgrp
) {
769 if (atomic_dec_and_test(&cache_resolve_queue_len
))
770 del_timer(&ipmr_expire_timer
);
774 spin_unlock_bh(&mfc_unres_lock
);
777 ipmr_cache_resolve(uc
, c
);
778 kmem_cache_free(mrt_cachep
, uc
);
784 * Close the multicast socket, and clear the vif tables etc
787 static void mroute_clean_tables(struct sock
*sk
)
792 * Shut down all active vif entries
794 for(i
=0; i
<maxvif
; i
++) {
795 if (!(vif_table
[i
].flags
&VIFF_STATIC
))
802 for (i
=0;i
<MFC_LINES
;i
++) {
803 struct mfc_cache
*c
, **cp
;
805 cp
= &mfc_cache_array
[i
];
806 while ((c
= *cp
) != NULL
) {
807 if (c
->mfc_flags
&MFC_STATIC
) {
811 write_lock_bh(&mrt_lock
);
813 write_unlock_bh(&mrt_lock
);
815 kmem_cache_free(mrt_cachep
, c
);
819 if (atomic_read(&cache_resolve_queue_len
) != 0) {
822 spin_lock_bh(&mfc_unres_lock
);
823 while (mfc_unres_queue
!= NULL
) {
825 mfc_unres_queue
= c
->next
;
826 spin_unlock_bh(&mfc_unres_lock
);
828 ipmr_destroy_unres(c
);
830 spin_lock_bh(&mfc_unres_lock
);
832 spin_unlock_bh(&mfc_unres_lock
);
836 static void mrtsock_destruct(struct sock
*sk
)
839 if (sk
== mroute_socket
) {
840 ipv4_devconf
.mc_forwarding
--;
842 write_lock_bh(&mrt_lock
);
844 write_unlock_bh(&mrt_lock
);
846 mroute_clean_tables(sk
);
852 * Socket options and virtual interface manipulation. The whole
853 * virtual interface system is a complete heap, but unfortunately
854 * that's how BSD mrouted happens to think. Maybe one day with a proper
855 * MOSPF/PIM router set up we can clean this up.
858 int ip_mroute_setsockopt(struct sock
*sk
,int optname
,char __user
*optval
,int optlen
)
864 if(optname
!=MRT_INIT
)
866 if(sk
!=mroute_socket
&& !capable(CAP_NET_ADMIN
))
873 if (sk
->sk_type
!= SOCK_RAW
||
874 inet_sk(sk
)->num
!= IPPROTO_IGMP
)
876 if(optlen
!=sizeof(int))
885 ret
= ip_ra_control(sk
, 1, mrtsock_destruct
);
887 write_lock_bh(&mrt_lock
);
889 write_unlock_bh(&mrt_lock
);
891 ipv4_devconf
.mc_forwarding
++;
896 if (sk
!=mroute_socket
)
898 return ip_ra_control(sk
, 0, NULL
);
901 if(optlen
!=sizeof(vif
))
903 if (copy_from_user(&vif
,optval
,sizeof(vif
)))
905 if(vif
.vifc_vifi
>= MAXVIFS
)
908 if (optname
==MRT_ADD_VIF
) {
909 ret
= vif_add(&vif
, sk
==mroute_socket
);
911 ret
= vif_delete(vif
.vifc_vifi
);
917 * Manipulate the forwarding caches. These live
918 * in a sort of kernel/user symbiosis.
922 if(optlen
!=sizeof(mfc
))
924 if (copy_from_user(&mfc
,optval
, sizeof(mfc
)))
927 if (optname
==MRT_DEL_MFC
)
928 ret
= ipmr_mfc_delete(&mfc
);
930 ret
= ipmr_mfc_add(&mfc
, sk
==mroute_socket
);
934 * Control PIM assert.
939 if(get_user(v
,(int __user
*)optval
))
941 mroute_do_assert
=(v
)?1:0;
944 #ifdef CONFIG_IP_PIMSM
948 if(get_user(v
,(int __user
*)optval
))
953 if (v
!= mroute_do_pim
) {
955 mroute_do_assert
= v
;
956 #ifdef CONFIG_IP_PIMSM_V2
958 ret
= inet_add_protocol(&pim_protocol
,
961 ret
= inet_del_protocol(&pim_protocol
,
972 * Spurious command, or MRT_VERSION which you cannot
981 * Getsock opt support for the multicast routing system.
984 int ip_mroute_getsockopt(struct sock
*sk
,int optname
,char __user
*optval
,int __user
*optlen
)
989 if(optname
!=MRT_VERSION
&&
990 #ifdef CONFIG_IP_PIMSM
996 if (get_user(olr
, optlen
))
999 olr
= min_t(unsigned int, olr
, sizeof(int));
1003 if(put_user(olr
,optlen
))
1005 if(optname
==MRT_VERSION
)
1007 #ifdef CONFIG_IP_PIMSM
1008 else if(optname
==MRT_PIM
)
1012 val
=mroute_do_assert
;
1013 if(copy_to_user(optval
,&val
,olr
))
1019 * The IP multicast ioctl support routines.
1022 int ipmr_ioctl(struct sock
*sk
, int cmd
, void __user
*arg
)
1024 struct sioc_sg_req sr
;
1025 struct sioc_vif_req vr
;
1026 struct vif_device
*vif
;
1027 struct mfc_cache
*c
;
1032 if (copy_from_user(&vr
,arg
,sizeof(vr
)))
1036 read_lock(&mrt_lock
);
1037 vif
=&vif_table
[vr
.vifi
];
1038 if(VIF_EXISTS(vr
.vifi
)) {
1039 vr
.icount
=vif
->pkt_in
;
1040 vr
.ocount
=vif
->pkt_out
;
1041 vr
.ibytes
=vif
->bytes_in
;
1042 vr
.obytes
=vif
->bytes_out
;
1043 read_unlock(&mrt_lock
);
1045 if (copy_to_user(arg
,&vr
,sizeof(vr
)))
1049 read_unlock(&mrt_lock
);
1050 return -EADDRNOTAVAIL
;
1052 if (copy_from_user(&sr
,arg
,sizeof(sr
)))
1055 read_lock(&mrt_lock
);
1056 c
= ipmr_cache_find(sr
.src
.s_addr
, sr
.grp
.s_addr
);
1058 sr
.pktcnt
= c
->mfc_un
.res
.pkt
;
1059 sr
.bytecnt
= c
->mfc_un
.res
.bytes
;
1060 sr
.wrong_if
= c
->mfc_un
.res
.wrong_if
;
1061 read_unlock(&mrt_lock
);
1063 if (copy_to_user(arg
,&sr
,sizeof(sr
)))
1067 read_unlock(&mrt_lock
);
1068 return -EADDRNOTAVAIL
;
1070 return -ENOIOCTLCMD
;
1075 static int ipmr_device_event(struct notifier_block
*this, unsigned long event
, void *ptr
)
1077 struct vif_device
*v
;
1079 if (event
!= NETDEV_UNREGISTER
)
1082 for(ct
=0;ct
<maxvif
;ct
++,v
++) {
1090 static struct notifier_block ip_mr_notifier
={
1091 .notifier_call
= ipmr_device_event
,
1095 * Encapsulate a packet by attaching a valid IPIP header to it.
1096 * This avoids tunnel drivers and other mess and gives us the speed so
1097 * important for multicast video.
1100 static void ip_encap(struct sk_buff
*skb
, __be32 saddr
, __be32 daddr
)
1102 struct iphdr
*iph
= (struct iphdr
*)skb_push(skb
,sizeof(struct iphdr
));
1105 iph
->tos
= skb
->nh
.iph
->tos
;
1106 iph
->ttl
= skb
->nh
.iph
->ttl
;
1110 iph
->protocol
= IPPROTO_IPIP
;
1112 iph
->tot_len
= htons(skb
->len
);
1113 ip_select_ident(iph
, skb
->dst
, NULL
);
1116 skb
->h
.ipiph
= skb
->nh
.iph
;
1118 memset(&(IPCB(skb
)->opt
), 0, sizeof(IPCB(skb
)->opt
));
1122 static inline int ipmr_forward_finish(struct sk_buff
*skb
)
1124 struct ip_options
* opt
= &(IPCB(skb
)->opt
);
1126 IP_INC_STATS_BH(IPSTATS_MIB_OUTFORWDATAGRAMS
);
1128 if (unlikely(opt
->optlen
))
1129 ip_forward_options(skb
);
1131 return dst_output(skb
);
1135 * Processing handlers for ipmr_forward
1138 static void ipmr_queue_xmit(struct sk_buff
*skb
, struct mfc_cache
*c
, int vifi
)
1140 struct iphdr
*iph
= skb
->nh
.iph
;
1141 struct vif_device
*vif
= &vif_table
[vifi
];
1142 struct net_device
*dev
;
1146 if (vif
->dev
== NULL
)
1149 #ifdef CONFIG_IP_PIMSM
1150 if (vif
->flags
& VIFF_REGISTER
) {
1152 vif
->bytes_out
+=skb
->len
;
1153 ((struct net_device_stats
*)netdev_priv(vif
->dev
))->tx_bytes
+= skb
->len
;
1154 ((struct net_device_stats
*)netdev_priv(vif
->dev
))->tx_packets
++;
1155 ipmr_cache_report(skb
, vifi
, IGMPMSG_WHOLEPKT
);
1161 if (vif
->flags
&VIFF_TUNNEL
) {
1162 struct flowi fl
= { .oif
= vif
->link
,
1164 { .daddr
= vif
->remote
,
1165 .saddr
= vif
->local
,
1166 .tos
= RT_TOS(iph
->tos
) } },
1167 .proto
= IPPROTO_IPIP
};
1168 if (ip_route_output_key(&rt
, &fl
))
1170 encap
= sizeof(struct iphdr
);
1172 struct flowi fl
= { .oif
= vif
->link
,
1174 { .daddr
= iph
->daddr
,
1175 .tos
= RT_TOS(iph
->tos
) } },
1176 .proto
= IPPROTO_IPIP
};
1177 if (ip_route_output_key(&rt
, &fl
))
1181 dev
= rt
->u
.dst
.dev
;
1183 if (skb
->len
+encap
> dst_mtu(&rt
->u
.dst
) && (ntohs(iph
->frag_off
) & IP_DF
)) {
1184 /* Do not fragment multicasts. Alas, IPv4 does not
1185 allow to send ICMP, so that packets will disappear
1189 IP_INC_STATS_BH(IPSTATS_MIB_FRAGFAILS
);
1194 encap
+= LL_RESERVED_SPACE(dev
) + rt
->u
.dst
.header_len
;
1196 if (skb_cow(skb
, encap
)) {
1202 vif
->bytes_out
+=skb
->len
;
1204 dst_release(skb
->dst
);
1205 skb
->dst
= &rt
->u
.dst
;
1207 ip_decrease_ttl(iph
);
1209 /* FIXME: forward and output firewalls used to be called here.
1210 * What do we do with netfilter? -- RR */
1211 if (vif
->flags
& VIFF_TUNNEL
) {
1212 ip_encap(skb
, vif
->local
, vif
->remote
);
1213 /* FIXME: extra output firewall step used to be here. --RR */
1214 ((struct ip_tunnel
*)netdev_priv(vif
->dev
))->stat
.tx_packets
++;
1215 ((struct ip_tunnel
*)netdev_priv(vif
->dev
))->stat
.tx_bytes
+=skb
->len
;
1218 IPCB(skb
)->flags
|= IPSKB_FORWARDED
;
1221 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1222 * not only before forwarding, but after forwarding on all output
1223 * interfaces. It is clear, if mrouter runs a multicasting
1224 * program, it should receive packets not depending to what interface
1225 * program is joined.
1226 * If we will not make it, the program will have to join on all
1227 * interfaces. On the other hand, multihoming host (or router, but
1228 * not mrouter) cannot join to more than one interface - it will
1229 * result in receiving multiple packets.
1231 NF_HOOK(PF_INET
, NF_IP_FORWARD
, skb
, skb
->dev
, dev
,
1232 ipmr_forward_finish
);
1240 static int ipmr_find_vif(struct net_device
*dev
)
1243 for (ct
=maxvif
-1; ct
>=0; ct
--) {
1244 if (vif_table
[ct
].dev
== dev
)
1250 /* "local" means that we should preserve one skb (for local delivery) */
1252 static int ip_mr_forward(struct sk_buff
*skb
, struct mfc_cache
*cache
, int local
)
1257 vif
= cache
->mfc_parent
;
1258 cache
->mfc_un
.res
.pkt
++;
1259 cache
->mfc_un
.res
.bytes
+= skb
->len
;
1262 * Wrong interface: drop packet and (maybe) send PIM assert.
1264 if (vif_table
[vif
].dev
!= skb
->dev
) {
1267 if (((struct rtable
*)skb
->dst
)->fl
.iif
== 0) {
1268 /* It is our own packet, looped back.
1269 Very complicated situation...
1271 The best workaround until routing daemons will be
1272 fixed is not to redistribute packet, if it was
1273 send through wrong interface. It means, that
1274 multicast applications WILL NOT work for
1275 (S,G), which have default multicast route pointing
1276 to wrong oif. In any case, it is not a good
1277 idea to use multicasting applications on router.
1282 cache
->mfc_un
.res
.wrong_if
++;
1283 true_vifi
= ipmr_find_vif(skb
->dev
);
1285 if (true_vifi
>= 0 && mroute_do_assert
&&
1286 /* pimsm uses asserts, when switching from RPT to SPT,
1287 so that we cannot check that packet arrived on an oif.
1288 It is bad, but otherwise we would need to move pretty
1289 large chunk of pimd to kernel. Ough... --ANK
1291 (mroute_do_pim
|| cache
->mfc_un
.res
.ttls
[true_vifi
] < 255) &&
1293 cache
->mfc_un
.res
.last_assert
+ MFC_ASSERT_THRESH
)) {
1294 cache
->mfc_un
.res
.last_assert
= jiffies
;
1295 ipmr_cache_report(skb
, true_vifi
, IGMPMSG_WRONGVIF
);
1300 vif_table
[vif
].pkt_in
++;
1301 vif_table
[vif
].bytes_in
+=skb
->len
;
1306 for (ct
= cache
->mfc_un
.res
.maxvif
-1; ct
>= cache
->mfc_un
.res
.minvif
; ct
--) {
1307 if (skb
->nh
.iph
->ttl
> cache
->mfc_un
.res
.ttls
[ct
]) {
1309 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1311 ipmr_queue_xmit(skb2
, cache
, psend
);
1318 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1320 ipmr_queue_xmit(skb2
, cache
, psend
);
1322 ipmr_queue_xmit(skb
, cache
, psend
);
1335 * Multicast packets for forwarding arrive here
1338 int ip_mr_input(struct sk_buff
*skb
)
1340 struct mfc_cache
*cache
;
1341 int local
= ((struct rtable
*)skb
->dst
)->rt_flags
&RTCF_LOCAL
;
1343 /* Packet is looped back after forward, it should not be
1344 forwarded second time, but still can be delivered locally.
1346 if (IPCB(skb
)->flags
&IPSKB_FORWARDED
)
1350 if (IPCB(skb
)->opt
.router_alert
) {
1351 if (ip_call_ra_chain(skb
))
1353 } else if (skb
->nh
.iph
->protocol
== IPPROTO_IGMP
){
1354 /* IGMPv1 (and broken IGMPv2 implementations sort of
1355 Cisco IOS <= 11.2(8)) do not put router alert
1356 option to IGMP packets destined to routable
1357 groups. It is very bad, because it means
1358 that we can forward NO IGMP messages.
1360 read_lock(&mrt_lock
);
1361 if (mroute_socket
) {
1363 raw_rcv(mroute_socket
, skb
);
1364 read_unlock(&mrt_lock
);
1367 read_unlock(&mrt_lock
);
1371 read_lock(&mrt_lock
);
1372 cache
= ipmr_cache_find(skb
->nh
.iph
->saddr
, skb
->nh
.iph
->daddr
);
1375 * No usable cache entry
1381 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1382 ip_local_deliver(skb
);
1384 read_unlock(&mrt_lock
);
1390 vif
= ipmr_find_vif(skb
->dev
);
1392 int err
= ipmr_cache_unresolved(vif
, skb
);
1393 read_unlock(&mrt_lock
);
1397 read_unlock(&mrt_lock
);
1402 ip_mr_forward(skb
, cache
, local
);
1404 read_unlock(&mrt_lock
);
1407 return ip_local_deliver(skb
);
1413 return ip_local_deliver(skb
);
1418 #ifdef CONFIG_IP_PIMSM_V1
1420 * Handle IGMP messages of PIMv1
1423 int pim_rcv_v1(struct sk_buff
* skb
)
1425 struct igmphdr
*pim
;
1426 struct iphdr
*encap
;
1427 struct net_device
*reg_dev
= NULL
;
1429 if (!pskb_may_pull(skb
, sizeof(*pim
) + sizeof(*encap
)))
1432 pim
= (struct igmphdr
*)skb
->h
.raw
;
1434 if (!mroute_do_pim
||
1435 skb
->len
< sizeof(*pim
) + sizeof(*encap
) ||
1436 pim
->group
!= PIM_V1_VERSION
|| pim
->code
!= PIM_V1_REGISTER
)
1439 encap
= (struct iphdr
*)(skb
->h
.raw
+ sizeof(struct igmphdr
));
1442 a. packet is really destinted to a multicast group
1443 b. packet is not a NULL-REGISTER
1444 c. packet is not truncated
1446 if (!MULTICAST(encap
->daddr
) ||
1447 encap
->tot_len
== 0 ||
1448 ntohs(encap
->tot_len
) + sizeof(*pim
) > skb
->len
)
1451 read_lock(&mrt_lock
);
1452 if (reg_vif_num
>= 0)
1453 reg_dev
= vif_table
[reg_vif_num
].dev
;
1456 read_unlock(&mrt_lock
);
1458 if (reg_dev
== NULL
)
1461 skb
->mac
.raw
= skb
->nh
.raw
;
1462 skb_pull(skb
, (u8
*)encap
- skb
->data
);
1463 skb
->nh
.iph
= (struct iphdr
*)skb
->data
;
1465 skb
->protocol
= htons(ETH_P_IP
);
1467 skb
->pkt_type
= PACKET_HOST
;
1468 dst_release(skb
->dst
);
1470 ((struct net_device_stats
*)netdev_priv(reg_dev
))->rx_bytes
+= skb
->len
;
1471 ((struct net_device_stats
*)netdev_priv(reg_dev
))->rx_packets
++;
1482 #ifdef CONFIG_IP_PIMSM_V2
1483 static int pim_rcv(struct sk_buff
* skb
)
1485 struct pimreghdr
*pim
;
1486 struct iphdr
*encap
;
1487 struct net_device
*reg_dev
= NULL
;
1489 if (!pskb_may_pull(skb
, sizeof(*pim
) + sizeof(*encap
)))
1492 pim
= (struct pimreghdr
*)skb
->h
.raw
;
1493 if (pim
->type
!= ((PIM_VERSION
<<4)|(PIM_REGISTER
)) ||
1494 (pim
->flags
&PIM_NULL_REGISTER
) ||
1495 (ip_compute_csum((void *)pim
, sizeof(*pim
)) != 0 &&
1496 csum_fold(skb_checksum(skb
, 0, skb
->len
, 0))))
1499 /* check if the inner packet is destined to mcast group */
1500 encap
= (struct iphdr
*)(skb
->h
.raw
+ sizeof(struct pimreghdr
));
1501 if (!MULTICAST(encap
->daddr
) ||
1502 encap
->tot_len
== 0 ||
1503 ntohs(encap
->tot_len
) + sizeof(*pim
) > skb
->len
)
1506 read_lock(&mrt_lock
);
1507 if (reg_vif_num
>= 0)
1508 reg_dev
= vif_table
[reg_vif_num
].dev
;
1511 read_unlock(&mrt_lock
);
1513 if (reg_dev
== NULL
)
1516 skb
->mac
.raw
= skb
->nh
.raw
;
1517 skb_pull(skb
, (u8
*)encap
- skb
->data
);
1518 skb
->nh
.iph
= (struct iphdr
*)skb
->data
;
1520 skb
->protocol
= htons(ETH_P_IP
);
1522 skb
->pkt_type
= PACKET_HOST
;
1523 dst_release(skb
->dst
);
1524 ((struct net_device_stats
*)netdev_priv(reg_dev
))->rx_bytes
+= skb
->len
;
1525 ((struct net_device_stats
*)netdev_priv(reg_dev
))->rx_packets
++;
1538 ipmr_fill_mroute(struct sk_buff
*skb
, struct mfc_cache
*c
, struct rtmsg
*rtm
)
1541 struct rtnexthop
*nhp
;
1542 struct net_device
*dev
= vif_table
[c
->mfc_parent
].dev
;
1544 struct rtattr
*mp_head
;
1547 RTA_PUT(skb
, RTA_IIF
, 4, &dev
->ifindex
);
1549 mp_head
= (struct rtattr
*)skb_put(skb
, RTA_LENGTH(0));
1551 for (ct
= c
->mfc_un
.res
.minvif
; ct
< c
->mfc_un
.res
.maxvif
; ct
++) {
1552 if (c
->mfc_un
.res
.ttls
[ct
] < 255) {
1553 if (skb_tailroom(skb
) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp
)) + 4))
1554 goto rtattr_failure
;
1555 nhp
= (struct rtnexthop
*)skb_put(skb
, RTA_ALIGN(sizeof(*nhp
)));
1556 nhp
->rtnh_flags
= 0;
1557 nhp
->rtnh_hops
= c
->mfc_un
.res
.ttls
[ct
];
1558 nhp
->rtnh_ifindex
= vif_table
[ct
].dev
->ifindex
;
1559 nhp
->rtnh_len
= sizeof(*nhp
);
1562 mp_head
->rta_type
= RTA_MULTIPATH
;
1563 mp_head
->rta_len
= skb
->tail
- (u8
*)mp_head
;
1564 rtm
->rtm_type
= RTN_MULTICAST
;
1568 skb_trim(skb
, b
- skb
->data
);
1572 int ipmr_get_route(struct sk_buff
*skb
, struct rtmsg
*rtm
, int nowait
)
1575 struct mfc_cache
*cache
;
1576 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1578 read_lock(&mrt_lock
);
1579 cache
= ipmr_cache_find(rt
->rt_src
, rt
->rt_dst
);
1582 struct sk_buff
*skb2
;
1583 struct net_device
*dev
;
1587 read_unlock(&mrt_lock
);
1592 if (dev
== NULL
|| (vif
= ipmr_find_vif(dev
)) < 0) {
1593 read_unlock(&mrt_lock
);
1596 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1598 read_unlock(&mrt_lock
);
1602 skb2
->nh
.raw
= skb_push(skb2
, sizeof(struct iphdr
));
1603 skb2
->nh
.iph
->ihl
= sizeof(struct iphdr
)>>2;
1604 skb2
->nh
.iph
->saddr
= rt
->rt_src
;
1605 skb2
->nh
.iph
->daddr
= rt
->rt_dst
;
1606 skb2
->nh
.iph
->version
= 0;
1607 err
= ipmr_cache_unresolved(vif
, skb2
);
1608 read_unlock(&mrt_lock
);
1612 if (!nowait
&& (rtm
->rtm_flags
&RTM_F_NOTIFY
))
1613 cache
->mfc_flags
|= MFC_NOTIFY
;
1614 err
= ipmr_fill_mroute(skb
, cache
, rtm
);
1615 read_unlock(&mrt_lock
);
1619 #ifdef CONFIG_PROC_FS
1621 * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
1623 struct ipmr_vif_iter
{
1627 static struct vif_device
*ipmr_vif_seq_idx(struct ipmr_vif_iter
*iter
,
1630 for (iter
->ct
= 0; iter
->ct
< maxvif
; ++iter
->ct
) {
1631 if(!VIF_EXISTS(iter
->ct
))
1634 return &vif_table
[iter
->ct
];
1639 static void *ipmr_vif_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1641 read_lock(&mrt_lock
);
1642 return *pos
? ipmr_vif_seq_idx(seq
->private, *pos
- 1)
1646 static void *ipmr_vif_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1648 struct ipmr_vif_iter
*iter
= seq
->private;
1651 if (v
== SEQ_START_TOKEN
)
1652 return ipmr_vif_seq_idx(iter
, 0);
1654 while (++iter
->ct
< maxvif
) {
1655 if(!VIF_EXISTS(iter
->ct
))
1657 return &vif_table
[iter
->ct
];
1662 static void ipmr_vif_seq_stop(struct seq_file
*seq
, void *v
)
1664 read_unlock(&mrt_lock
);
1667 static int ipmr_vif_seq_show(struct seq_file
*seq
, void *v
)
1669 if (v
== SEQ_START_TOKEN
) {
1671 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
1673 const struct vif_device
*vif
= v
;
1674 const char *name
= vif
->dev
? vif
->dev
->name
: "none";
1677 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
1679 name
, vif
->bytes_in
, vif
->pkt_in
,
1680 vif
->bytes_out
, vif
->pkt_out
,
1681 vif
->flags
, vif
->local
, vif
->remote
);
1686 static struct seq_operations ipmr_vif_seq_ops
= {
1687 .start
= ipmr_vif_seq_start
,
1688 .next
= ipmr_vif_seq_next
,
1689 .stop
= ipmr_vif_seq_stop
,
1690 .show
= ipmr_vif_seq_show
,
1693 static int ipmr_vif_open(struct inode
*inode
, struct file
*file
)
1695 struct seq_file
*seq
;
1697 struct ipmr_vif_iter
*s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1702 rc
= seq_open(file
, &ipmr_vif_seq_ops
);
1707 seq
= file
->private_data
;
1717 static struct file_operations ipmr_vif_fops
= {
1718 .owner
= THIS_MODULE
,
1719 .open
= ipmr_vif_open
,
1721 .llseek
= seq_lseek
,
1722 .release
= seq_release_private
,
1725 struct ipmr_mfc_iter
{
1726 struct mfc_cache
**cache
;
1731 static struct mfc_cache
*ipmr_mfc_seq_idx(struct ipmr_mfc_iter
*it
, loff_t pos
)
1733 struct mfc_cache
*mfc
;
1735 it
->cache
= mfc_cache_array
;
1736 read_lock(&mrt_lock
);
1737 for (it
->ct
= 0; it
->ct
< MFC_LINES
; it
->ct
++)
1738 for(mfc
= mfc_cache_array
[it
->ct
]; mfc
; mfc
= mfc
->next
)
1741 read_unlock(&mrt_lock
);
1743 it
->cache
= &mfc_unres_queue
;
1744 spin_lock_bh(&mfc_unres_lock
);
1745 for(mfc
= mfc_unres_queue
; mfc
; mfc
= mfc
->next
)
1748 spin_unlock_bh(&mfc_unres_lock
);
1755 static void *ipmr_mfc_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1757 struct ipmr_mfc_iter
*it
= seq
->private;
1760 return *pos
? ipmr_mfc_seq_idx(seq
->private, *pos
- 1)
1764 static void *ipmr_mfc_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1766 struct mfc_cache
*mfc
= v
;
1767 struct ipmr_mfc_iter
*it
= seq
->private;
1771 if (v
== SEQ_START_TOKEN
)
1772 return ipmr_mfc_seq_idx(seq
->private, 0);
1777 if (it
->cache
== &mfc_unres_queue
)
1780 BUG_ON(it
->cache
!= mfc_cache_array
);
1782 while (++it
->ct
< MFC_LINES
) {
1783 mfc
= mfc_cache_array
[it
->ct
];
1788 /* exhausted cache_array, show unresolved */
1789 read_unlock(&mrt_lock
);
1790 it
->cache
= &mfc_unres_queue
;
1793 spin_lock_bh(&mfc_unres_lock
);
1794 mfc
= mfc_unres_queue
;
1799 spin_unlock_bh(&mfc_unres_lock
);
1805 static void ipmr_mfc_seq_stop(struct seq_file
*seq
, void *v
)
1807 struct ipmr_mfc_iter
*it
= seq
->private;
1809 if (it
->cache
== &mfc_unres_queue
)
1810 spin_unlock_bh(&mfc_unres_lock
);
1811 else if (it
->cache
== mfc_cache_array
)
1812 read_unlock(&mrt_lock
);
1815 static int ipmr_mfc_seq_show(struct seq_file
*seq
, void *v
)
1819 if (v
== SEQ_START_TOKEN
) {
1821 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
1823 const struct mfc_cache
*mfc
= v
;
1824 const struct ipmr_mfc_iter
*it
= seq
->private;
1826 seq_printf(seq
, "%08lX %08lX %-3d %8ld %8ld %8ld",
1827 (unsigned long) mfc
->mfc_mcastgrp
,
1828 (unsigned long) mfc
->mfc_origin
,
1830 mfc
->mfc_un
.res
.pkt
,
1831 mfc
->mfc_un
.res
.bytes
,
1832 mfc
->mfc_un
.res
.wrong_if
);
1834 if (it
->cache
!= &mfc_unres_queue
) {
1835 for(n
= mfc
->mfc_un
.res
.minvif
;
1836 n
< mfc
->mfc_un
.res
.maxvif
; n
++ ) {
1838 && mfc
->mfc_un
.res
.ttls
[n
] < 255)
1841 n
, mfc
->mfc_un
.res
.ttls
[n
]);
1844 seq_putc(seq
, '\n');
1849 static struct seq_operations ipmr_mfc_seq_ops
= {
1850 .start
= ipmr_mfc_seq_start
,
1851 .next
= ipmr_mfc_seq_next
,
1852 .stop
= ipmr_mfc_seq_stop
,
1853 .show
= ipmr_mfc_seq_show
,
1856 static int ipmr_mfc_open(struct inode
*inode
, struct file
*file
)
1858 struct seq_file
*seq
;
1860 struct ipmr_mfc_iter
*s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1865 rc
= seq_open(file
, &ipmr_mfc_seq_ops
);
1869 seq
= file
->private_data
;
1879 static struct file_operations ipmr_mfc_fops
= {
1880 .owner
= THIS_MODULE
,
1881 .open
= ipmr_mfc_open
,
1883 .llseek
= seq_lseek
,
1884 .release
= seq_release_private
,
1888 #ifdef CONFIG_IP_PIMSM_V2
1889 static struct net_protocol pim_protocol
= {
1896 * Setup for IP multicast routing
1899 void __init
ip_mr_init(void)
1901 mrt_cachep
= kmem_cache_create("ip_mrt_cache",
1902 sizeof(struct mfc_cache
),
1903 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1905 init_timer(&ipmr_expire_timer
);
1906 ipmr_expire_timer
.function
=ipmr_expire_process
;
1907 register_netdevice_notifier(&ip_mr_notifier
);
1908 #ifdef CONFIG_PROC_FS
1909 proc_net_fops_create("ip_mr_vif", 0, &ipmr_vif_fops
);
1910 proc_net_fops_create("ip_mr_cache", 0, &ipmr_mfc_fops
);