ath9k_hw: fix antenna diversity on AR9285
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blob54ce34ef1873af0270fec01fe0242e53f5db0f92
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9002_phy.h"
20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
30 ath9k_hw_get_channel_centers(ah, chan, &centers);
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
52 *pcdacIdx = i;
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
60 u32 i;
61 u32 offset;
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 struct ath_common *common = ath9k_hw_common(ah);
93 u16 *eep_data = (u16 *)&ah->eeprom.def;
94 int addr, ar5416_eep_start_loc = 0x100;
96 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
97 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
98 eep_data)) {
99 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
100 "Unable to read eeprom region\n");
101 return false;
103 eep_data++;
105 return true;
106 #undef SIZE_EEPROM_DEF
109 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
111 struct ar5416_eeprom_def *eep =
112 (struct ar5416_eeprom_def *) &ah->eeprom.def;
113 struct ath_common *common = ath9k_hw_common(ah);
114 u16 *eepdata, temp, magic, magic2;
115 u32 sum = 0, el;
116 bool need_swap = false;
117 int i, addr, size;
119 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
120 ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
121 return false;
124 if (!ath9k_hw_use_flash(ah)) {
125 ath_print(common, ATH_DBG_EEPROM,
126 "Read Magic = 0x%04X\n", magic);
128 if (magic != AR5416_EEPROM_MAGIC) {
129 magic2 = swab16(magic);
131 if (magic2 == AR5416_EEPROM_MAGIC) {
132 size = sizeof(struct ar5416_eeprom_def);
133 need_swap = true;
134 eepdata = (u16 *) (&ah->eeprom);
136 for (addr = 0; addr < size / sizeof(u16); addr++) {
137 temp = swab16(*eepdata);
138 *eepdata = temp;
139 eepdata++;
141 } else {
142 ath_print(common, ATH_DBG_FATAL,
143 "Invalid EEPROM Magic. "
144 "Endianness mismatch.\n");
145 return -EINVAL;
150 ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
151 need_swap ? "True" : "False");
153 if (need_swap)
154 el = swab16(ah->eeprom.def.baseEepHeader.length);
155 else
156 el = ah->eeprom.def.baseEepHeader.length;
158 if (el > sizeof(struct ar5416_eeprom_def))
159 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
160 else
161 el = el / sizeof(u16);
163 eepdata = (u16 *)(&ah->eeprom);
165 for (i = 0; i < el; i++)
166 sum ^= *eepdata++;
168 if (need_swap) {
169 u32 integer, j;
170 u16 word;
172 ath_print(common, ATH_DBG_EEPROM,
173 "EEPROM Endianness is not native.. Changing.\n");
175 word = swab16(eep->baseEepHeader.length);
176 eep->baseEepHeader.length = word;
178 word = swab16(eep->baseEepHeader.checksum);
179 eep->baseEepHeader.checksum = word;
181 word = swab16(eep->baseEepHeader.version);
182 eep->baseEepHeader.version = word;
184 word = swab16(eep->baseEepHeader.regDmn[0]);
185 eep->baseEepHeader.regDmn[0] = word;
187 word = swab16(eep->baseEepHeader.regDmn[1]);
188 eep->baseEepHeader.regDmn[1] = word;
190 word = swab16(eep->baseEepHeader.rfSilent);
191 eep->baseEepHeader.rfSilent = word;
193 word = swab16(eep->baseEepHeader.blueToothOptions);
194 eep->baseEepHeader.blueToothOptions = word;
196 word = swab16(eep->baseEepHeader.deviceCap);
197 eep->baseEepHeader.deviceCap = word;
199 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
200 struct modal_eep_header *pModal =
201 &eep->modalHeader[j];
202 integer = swab32(pModal->antCtrlCommon);
203 pModal->antCtrlCommon = integer;
205 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
206 integer = swab32(pModal->antCtrlChain[i]);
207 pModal->antCtrlChain[i] = integer;
210 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
211 word = swab16(pModal->spurChans[i].spurChan);
212 pModal->spurChans[i].spurChan = word;
217 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
218 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
219 ath_print(common, ATH_DBG_FATAL,
220 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
221 sum, ah->eep_ops->get_eeprom_ver(ah));
222 return -EINVAL;
225 /* Enable fixup for AR_AN_TOP2 if necessary */
226 if (AR_SREV_9280_10_OR_LATER(ah) &&
227 (eep->baseEepHeader.version & 0xff) > 0x0a &&
228 eep->baseEepHeader.pwdclkind == 0)
229 ah->need_an_top2_fixup = 1;
231 return 0;
234 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
235 enum eeprom_param param)
237 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
238 struct modal_eep_header *pModal = eep->modalHeader;
239 struct base_eep_header *pBase = &eep->baseEepHeader;
241 switch (param) {
242 case EEP_NFTHRESH_5:
243 return pModal[0].noiseFloorThreshCh[0];
244 case EEP_NFTHRESH_2:
245 return pModal[1].noiseFloorThreshCh[0];
246 case EEP_MAC_LSW:
247 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
248 case EEP_MAC_MID:
249 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
250 case EEP_MAC_MSW:
251 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
252 case EEP_REG_0:
253 return pBase->regDmn[0];
254 case EEP_REG_1:
255 return pBase->regDmn[1];
256 case EEP_OP_CAP:
257 return pBase->deviceCap;
258 case EEP_OP_MODE:
259 return pBase->opCapFlags;
260 case EEP_RF_SILENT:
261 return pBase->rfSilent;
262 case EEP_OB_5:
263 return pModal[0].ob;
264 case EEP_DB_5:
265 return pModal[0].db;
266 case EEP_OB_2:
267 return pModal[1].ob;
268 case EEP_DB_2:
269 return pModal[1].db;
270 case EEP_MINOR_REV:
271 return AR5416_VER_MASK;
272 case EEP_TX_MASK:
273 return pBase->txMask;
274 case EEP_RX_MASK:
275 return pBase->rxMask;
276 case EEP_FSTCLK_5G:
277 return pBase->fastClk5g;
278 case EEP_RXGAIN_TYPE:
279 return pBase->rxGainType;
280 case EEP_TXGAIN_TYPE:
281 return pBase->txGainType;
282 case EEP_OL_PWRCTRL:
283 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
284 return pBase->openLoopPwrCntl ? true : false;
285 else
286 return false;
287 case EEP_RC_CHAIN_MASK:
288 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
289 return pBase->rcChainMask;
290 else
291 return 0;
292 case EEP_DAC_HPWR_5G:
293 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
294 return pBase->dacHiPwrMode_5G;
295 else
296 return 0;
297 case EEP_FRAC_N_5G:
298 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
299 return pBase->frac_n_5g;
300 else
301 return 0;
302 case EEP_PWR_TABLE_OFFSET:
303 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
304 return pBase->pwr_table_offset;
305 else
306 return AR5416_PWR_TABLE_OFFSET_DB;
307 default:
308 return 0;
312 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
313 struct modal_eep_header *pModal,
314 struct ar5416_eeprom_def *eep,
315 u8 txRxAttenLocal, int regChainOffset, int i)
317 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
318 txRxAttenLocal = pModal->txRxAttenCh[i];
320 if (AR_SREV_9280_10_OR_LATER(ah)) {
321 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
322 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
323 pModal->bswMargin[i]);
324 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
325 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
326 pModal->bswAtten[i]);
327 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
328 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
329 pModal->xatten2Margin[i]);
330 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
331 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
332 pModal->xatten2Db[i]);
333 } else {
334 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
335 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
336 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
337 | SM(pModal-> bswMargin[i],
338 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
339 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
340 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
341 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
342 | SM(pModal->bswAtten[i],
343 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
347 if (AR_SREV_9280_10_OR_LATER(ah)) {
348 REG_RMW_FIELD(ah,
349 AR_PHY_RXGAIN + regChainOffset,
350 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
351 REG_RMW_FIELD(ah,
352 AR_PHY_RXGAIN + regChainOffset,
353 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
354 } else {
355 REG_WRITE(ah,
356 AR_PHY_RXGAIN + regChainOffset,
357 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
358 ~AR_PHY_RXGAIN_TXRX_ATTEN)
359 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
360 REG_WRITE(ah,
361 AR_PHY_GAIN_2GHZ + regChainOffset,
362 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
363 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
364 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
368 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
369 struct ath9k_channel *chan)
371 struct modal_eep_header *pModal;
372 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
373 int i, regChainOffset;
374 u8 txRxAttenLocal;
376 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
377 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
379 REG_WRITE(ah, AR_PHY_SWITCH_COM,
380 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
382 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
383 if (AR_SREV_9280(ah)) {
384 if (i >= 2)
385 break;
388 if (AR_SREV_5416_20_OR_LATER(ah) &&
389 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
390 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
391 else
392 regChainOffset = i * 0x1000;
394 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
395 pModal->antCtrlChain[i]);
397 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
398 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
399 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
400 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
401 SM(pModal->iqCalICh[i],
402 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
403 SM(pModal->iqCalQCh[i],
404 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
406 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
407 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
408 regChainOffset, i);
411 if (AR_SREV_9280_10_OR_LATER(ah)) {
412 if (IS_CHAN_2GHZ(chan)) {
413 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
414 AR_AN_RF2G1_CH0_OB,
415 AR_AN_RF2G1_CH0_OB_S,
416 pModal->ob);
417 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
418 AR_AN_RF2G1_CH0_DB,
419 AR_AN_RF2G1_CH0_DB_S,
420 pModal->db);
421 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
422 AR_AN_RF2G1_CH1_OB,
423 AR_AN_RF2G1_CH1_OB_S,
424 pModal->ob_ch1);
425 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
426 AR_AN_RF2G1_CH1_DB,
427 AR_AN_RF2G1_CH1_DB_S,
428 pModal->db_ch1);
429 } else {
430 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
431 AR_AN_RF5G1_CH0_OB5,
432 AR_AN_RF5G1_CH0_OB5_S,
433 pModal->ob);
434 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
435 AR_AN_RF5G1_CH0_DB5,
436 AR_AN_RF5G1_CH0_DB5_S,
437 pModal->db);
438 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
439 AR_AN_RF5G1_CH1_OB5,
440 AR_AN_RF5G1_CH1_OB5_S,
441 pModal->ob_ch1);
442 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
443 AR_AN_RF5G1_CH1_DB5,
444 AR_AN_RF5G1_CH1_DB5_S,
445 pModal->db_ch1);
447 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
448 AR_AN_TOP2_XPABIAS_LVL,
449 AR_AN_TOP2_XPABIAS_LVL_S,
450 pModal->xpaBiasLvl);
451 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
452 AR_AN_TOP2_LOCALBIAS,
453 AR_AN_TOP2_LOCALBIAS_S,
454 pModal->local_bias);
455 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
456 pModal->force_xpaon);
459 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
460 pModal->switchSettling);
461 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
462 pModal->adcDesiredSize);
464 if (!AR_SREV_9280_10_OR_LATER(ah))
465 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
466 AR_PHY_DESIRED_SZ_PGA,
467 pModal->pgaDesiredSize);
469 REG_WRITE(ah, AR_PHY_RF_CTL4,
470 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
471 | SM(pModal->txEndToXpaOff,
472 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
473 | SM(pModal->txFrameToXpaOn,
474 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
475 | SM(pModal->txFrameToXpaOn,
476 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
478 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
479 pModal->txEndToRxOn);
481 if (AR_SREV_9280_10_OR_LATER(ah)) {
482 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
483 pModal->thresh62);
484 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
485 AR_PHY_EXT_CCA0_THRESH62,
486 pModal->thresh62);
487 } else {
488 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
489 pModal->thresh62);
490 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
491 AR_PHY_EXT_CCA_THRESH62,
492 pModal->thresh62);
495 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
496 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
497 AR_PHY_TX_END_DATA_START,
498 pModal->txFrameToDataStart);
499 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
500 pModal->txFrameToPaOn);
503 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
504 if (IS_CHAN_HT40(chan))
505 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
506 AR_PHY_SETTLING_SWITCH,
507 pModal->swSettleHt40);
510 if (AR_SREV_9280_20_OR_LATER(ah) &&
511 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
512 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
513 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
514 pModal->miscBits);
517 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
518 if (IS_CHAN_2GHZ(chan))
519 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
520 eep->baseEepHeader.dacLpMode);
521 else if (eep->baseEepHeader.dacHiPwrMode_5G)
522 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
523 else
524 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
525 eep->baseEepHeader.dacLpMode);
527 udelay(100);
529 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
530 pModal->miscBits >> 2);
532 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
533 AR_PHY_TX_DESIRED_SCALE_CCK,
534 eep->baseEepHeader.desiredScaleCCK);
538 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
539 struct ath9k_channel *chan)
541 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
542 struct modal_eep_header *pModal;
543 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
544 u8 biaslevel;
546 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
547 return;
549 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
550 return;
552 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
554 if (pModal->xpaBiasLvl != 0xff) {
555 biaslevel = pModal->xpaBiasLvl;
556 } else {
557 u16 resetFreqBin, freqBin, freqCount = 0;
558 struct chan_centers centers;
560 ath9k_hw_get_channel_centers(ah, chan, &centers);
562 resetFreqBin = FREQ2FBIN(centers.synth_center,
563 IS_CHAN_2GHZ(chan));
564 freqBin = XPA_LVL_FREQ(0) & 0xff;
565 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
567 freqCount++;
569 while (freqCount < 3) {
570 if (XPA_LVL_FREQ(freqCount) == 0x0)
571 break;
573 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
574 if (resetFreqBin >= freqBin)
575 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
576 else
577 break;
578 freqCount++;
582 if (IS_CHAN_2GHZ(chan)) {
583 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
584 7, 1) & (~0x18)) | biaslevel << 3;
585 } else {
586 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
587 6, 1) & (~0xc0)) | biaslevel << 6;
589 #undef XPA_LVL_FREQ
592 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
593 struct ath9k_channel *chan,
594 struct cal_data_per_freq *pRawDataSet,
595 u8 *bChans, u16 availPiers,
596 u16 tPdGainOverlap, int16_t *pMinCalPower,
597 u16 *pPdGainBoundaries, u8 *pPDADCValues,
598 u16 numXpdGains)
600 int i, j, k;
601 int16_t ss;
602 u16 idxL = 0, idxR = 0, numPiers;
603 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
604 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
605 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
606 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
607 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
608 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
610 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
611 u8 minPwrT4[AR5416_NUM_PD_GAINS];
612 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
613 int16_t vpdStep;
614 int16_t tmpVal;
615 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
616 bool match;
617 int16_t minDelta = 0;
618 struct chan_centers centers;
620 ath9k_hw_get_channel_centers(ah, chan, &centers);
622 for (numPiers = 0; numPiers < availPiers; numPiers++) {
623 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
624 break;
627 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
628 IS_CHAN_2GHZ(chan)),
629 bChans, numPiers, &idxL, &idxR);
631 if (match) {
632 for (i = 0; i < numXpdGains; i++) {
633 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
634 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
635 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
636 pRawDataSet[idxL].pwrPdg[i],
637 pRawDataSet[idxL].vpdPdg[i],
638 AR5416_PD_GAIN_ICEPTS,
639 vpdTableI[i]);
641 } else {
642 for (i = 0; i < numXpdGains; i++) {
643 pVpdL = pRawDataSet[idxL].vpdPdg[i];
644 pPwrL = pRawDataSet[idxL].pwrPdg[i];
645 pVpdR = pRawDataSet[idxR].vpdPdg[i];
646 pPwrR = pRawDataSet[idxR].pwrPdg[i];
648 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
650 maxPwrT4[i] =
651 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
652 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
655 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
656 pPwrL, pVpdL,
657 AR5416_PD_GAIN_ICEPTS,
658 vpdTableL[i]);
659 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
660 pPwrR, pVpdR,
661 AR5416_PD_GAIN_ICEPTS,
662 vpdTableR[i]);
664 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
665 vpdTableI[i][j] =
666 (u8)(ath9k_hw_interpolate((u16)
667 FREQ2FBIN(centers.
668 synth_center,
669 IS_CHAN_2GHZ
670 (chan)),
671 bChans[idxL], bChans[idxR],
672 vpdTableL[i][j], vpdTableR[i][j]));
677 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
679 k = 0;
681 for (i = 0; i < numXpdGains; i++) {
682 if (i == (numXpdGains - 1))
683 pPdGainBoundaries[i] =
684 (u16)(maxPwrT4[i] / 2);
685 else
686 pPdGainBoundaries[i] =
687 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
689 pPdGainBoundaries[i] =
690 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
692 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
693 minDelta = pPdGainBoundaries[0] - 23;
694 pPdGainBoundaries[0] = 23;
695 } else {
696 minDelta = 0;
699 if (i == 0) {
700 if (AR_SREV_9280_10_OR_LATER(ah))
701 ss = (int16_t)(0 - (minPwrT4[i] / 2));
702 else
703 ss = 0;
704 } else {
705 ss = (int16_t)((pPdGainBoundaries[i - 1] -
706 (minPwrT4[i] / 2)) -
707 tPdGainOverlap + 1 + minDelta);
709 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
710 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
712 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
713 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
714 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
715 ss++;
718 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
719 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
720 (minPwrT4[i] / 2));
721 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
722 tgtIndex : sizeCurrVpdTable;
724 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
725 pPDADCValues[k++] = vpdTableI[i][ss++];
728 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
729 vpdTableI[i][sizeCurrVpdTable - 2]);
730 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
732 if (tgtIndex >= maxIndex) {
733 while ((ss <= tgtIndex) &&
734 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
735 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
736 (ss - maxIndex + 1) * vpdStep));
737 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
738 255 : tmpVal);
739 ss++;
744 while (i < AR5416_PD_GAINS_IN_MASK) {
745 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
746 i++;
749 while (k < AR5416_NUM_PDADC_VALUES) {
750 pPDADCValues[k] = pPDADCValues[k - 1];
751 k++;
755 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
756 u16 *gb,
757 u16 numXpdGain,
758 u16 pdGainOverlap_t2,
759 int8_t pwr_table_offset,
760 int16_t *diff)
763 u16 k;
765 /* Prior to writing the boundaries or the pdadc vs. power table
766 * into the chip registers the default starting point on the pdadc
767 * vs. power table needs to be checked and the curve boundaries
768 * adjusted accordingly
770 if (AR_SREV_9280_20_OR_LATER(ah)) {
771 u16 gb_limit;
773 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
774 /* get the difference in dB */
775 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
776 /* get the number of half dB steps */
777 *diff *= 2;
778 /* change the original gain boundary settings
779 * by the number of half dB steps
781 for (k = 0; k < numXpdGain; k++)
782 gb[k] = (u16)(gb[k] - *diff);
784 /* Because of a hardware limitation, ensure the gain boundary
785 * is not larger than (63 - overlap)
787 gb_limit = (u16)(AR5416_MAX_RATE_POWER - pdGainOverlap_t2);
789 for (k = 0; k < numXpdGain; k++)
790 gb[k] = (u16)min(gb_limit, gb[k]);
793 return *diff;
796 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
797 int8_t pwr_table_offset,
798 int16_t diff,
799 u8 *pdadcValues)
801 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
802 u16 k;
804 /* If this is a board that has a pwrTableOffset that differs from
805 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
806 * pdadc vs pwr table needs to be adjusted prior to writing to the
807 * chip.
809 if (AR_SREV_9280_20_OR_LATER(ah)) {
810 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
811 /* shift the table to start at the new offset */
812 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
813 pdadcValues[k] = pdadcValues[k + diff];
816 /* fill the back of the table */
817 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
818 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
822 #undef NUM_PDADC
825 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
826 struct ath9k_channel *chan,
827 int16_t *pTxPowerIndexOffset)
829 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
830 #define SM_PDGAIN_B(x, y) \
831 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
832 struct ath_common *common = ath9k_hw_common(ah);
833 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
834 struct cal_data_per_freq *pRawDataset;
835 u8 *pCalBChans = NULL;
836 u16 pdGainOverlap_t2;
837 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
838 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
839 u16 numPiers, i, j;
840 int16_t tMinCalPower, diff = 0;
841 u16 numXpdGain, xpdMask;
842 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
843 u32 reg32, regOffset, regChainOffset;
844 int16_t modalIdx;
845 int8_t pwr_table_offset;
847 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
848 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
850 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
852 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
853 AR5416_EEP_MINOR_VER_2) {
854 pdGainOverlap_t2 =
855 pEepData->modalHeader[modalIdx].pdGainOverlap;
856 } else {
857 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
858 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
861 if (IS_CHAN_2GHZ(chan)) {
862 pCalBChans = pEepData->calFreqPier2G;
863 numPiers = AR5416_NUM_2G_CAL_PIERS;
864 } else {
865 pCalBChans = pEepData->calFreqPier5G;
866 numPiers = AR5416_NUM_5G_CAL_PIERS;
869 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
870 pRawDataset = pEepData->calPierData2G[0];
871 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
872 pRawDataset)->vpdPdg[0][0];
875 numXpdGain = 0;
877 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
878 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
879 if (numXpdGain >= AR5416_NUM_PD_GAINS)
880 break;
881 xpdGainValues[numXpdGain] =
882 (u16)(AR5416_PD_GAINS_IN_MASK - i);
883 numXpdGain++;
887 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
888 (numXpdGain - 1) & 0x3);
889 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
890 xpdGainValues[0]);
891 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
892 xpdGainValues[1]);
893 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
894 xpdGainValues[2]);
896 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
897 if (AR_SREV_5416_20_OR_LATER(ah) &&
898 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
899 (i != 0)) {
900 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
901 } else
902 regChainOffset = i * 0x1000;
904 if (pEepData->baseEepHeader.txMask & (1 << i)) {
905 if (IS_CHAN_2GHZ(chan))
906 pRawDataset = pEepData->calPierData2G[i];
907 else
908 pRawDataset = pEepData->calPierData5G[i];
911 if (OLC_FOR_AR9280_20_LATER) {
912 u8 pcdacIdx;
913 u8 txPower;
915 ath9k_get_txgain_index(ah, chan,
916 (struct calDataPerFreqOpLoop *)pRawDataset,
917 pCalBChans, numPiers, &txPower, &pcdacIdx);
918 ath9k_olc_get_pdadcs(ah, pcdacIdx,
919 txPower/2, pdadcValues);
920 } else {
921 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
922 chan, pRawDataset,
923 pCalBChans, numPiers,
924 pdGainOverlap_t2,
925 &tMinCalPower,
926 gainBoundaries,
927 pdadcValues,
928 numXpdGain);
931 diff = ath9k_change_gain_boundary_setting(ah,
932 gainBoundaries,
933 numXpdGain,
934 pdGainOverlap_t2,
935 pwr_table_offset,
936 &diff);
938 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
939 if (OLC_FOR_AR9280_20_LATER) {
940 REG_WRITE(ah,
941 AR_PHY_TPCRG5 + regChainOffset,
942 SM(0x6,
943 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
944 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
945 SM_PD_GAIN(3) | SM_PD_GAIN(4));
946 } else {
947 REG_WRITE(ah,
948 AR_PHY_TPCRG5 + regChainOffset,
949 SM(pdGainOverlap_t2,
950 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
951 SM_PDGAIN_B(0, 1) |
952 SM_PDGAIN_B(1, 2) |
953 SM_PDGAIN_B(2, 3) |
954 SM_PDGAIN_B(3, 4));
959 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
960 diff, pdadcValues);
962 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
963 for (j = 0; j < 32; j++) {
964 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
965 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
966 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
967 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
968 REG_WRITE(ah, regOffset, reg32);
970 ath_print(common, ATH_DBG_EEPROM,
971 "PDADC (%d,%4x): %4.4x %8.8x\n",
972 i, regChainOffset, regOffset,
973 reg32);
974 ath_print(common, ATH_DBG_EEPROM,
975 "PDADC: Chain %d | PDADC %3d "
976 "Value %3d | PDADC %3d Value %3d | "
977 "PDADC %3d Value %3d | PDADC %3d "
978 "Value %3d |\n",
979 i, 4 * j, pdadcValues[4 * j],
980 4 * j + 1, pdadcValues[4 * j + 1],
981 4 * j + 2, pdadcValues[4 * j + 2],
982 4 * j + 3,
983 pdadcValues[4 * j + 3]);
985 regOffset += 4;
990 *pTxPowerIndexOffset = 0;
991 #undef SM_PD_GAIN
992 #undef SM_PDGAIN_B
995 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
996 struct ath9k_channel *chan,
997 int16_t *ratesArray,
998 u16 cfgCtl,
999 u16 AntennaReduction,
1000 u16 twiceMaxRegulatoryPower,
1001 u16 powerLimit)
1003 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
1004 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
1006 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1007 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1008 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1009 static const u16 tpScaleReductionTable[5] =
1010 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1012 int i;
1013 int16_t twiceLargestAntenna;
1014 struct cal_ctl_data *rep;
1015 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1016 0, { 0, 0, 0, 0}
1018 struct cal_target_power_leg targetPowerOfdmExt = {
1019 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1020 0, { 0, 0, 0, 0 }
1022 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1023 0, {0, 0, 0, 0}
1025 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1026 u16 ctlModesFor11a[] =
1027 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1028 u16 ctlModesFor11g[] =
1029 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1030 CTL_2GHT40
1032 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1033 struct chan_centers centers;
1034 int tx_chainmask;
1035 u16 twiceMinEdgePower;
1037 tx_chainmask = ah->txchainmask;
1039 ath9k_hw_get_channel_centers(ah, chan, &centers);
1041 twiceLargestAntenna = max(
1042 pEepData->modalHeader
1043 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1044 pEepData->modalHeader
1045 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1047 twiceLargestAntenna = max((u8)twiceLargestAntenna,
1048 pEepData->modalHeader
1049 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1051 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1052 twiceLargestAntenna, 0);
1054 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1056 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
1057 maxRegAllowedPower -=
1058 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
1061 scaledPower = min(powerLimit, maxRegAllowedPower);
1063 switch (ar5416_get_ntxchains(tx_chainmask)) {
1064 case 1:
1065 break;
1066 case 2:
1067 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1068 break;
1069 case 3:
1070 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1071 break;
1074 scaledPower = max((u16)0, scaledPower);
1076 if (IS_CHAN_2GHZ(chan)) {
1077 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1078 SUB_NUM_CTL_MODES_AT_2G_40;
1079 pCtlMode = ctlModesFor11g;
1081 ath9k_hw_get_legacy_target_powers(ah, chan,
1082 pEepData->calTargetPowerCck,
1083 AR5416_NUM_2G_CCK_TARGET_POWERS,
1084 &targetPowerCck, 4, false);
1085 ath9k_hw_get_legacy_target_powers(ah, chan,
1086 pEepData->calTargetPower2G,
1087 AR5416_NUM_2G_20_TARGET_POWERS,
1088 &targetPowerOfdm, 4, false);
1089 ath9k_hw_get_target_powers(ah, chan,
1090 pEepData->calTargetPower2GHT20,
1091 AR5416_NUM_2G_20_TARGET_POWERS,
1092 &targetPowerHt20, 8, false);
1094 if (IS_CHAN_HT40(chan)) {
1095 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1096 ath9k_hw_get_target_powers(ah, chan,
1097 pEepData->calTargetPower2GHT40,
1098 AR5416_NUM_2G_40_TARGET_POWERS,
1099 &targetPowerHt40, 8, true);
1100 ath9k_hw_get_legacy_target_powers(ah, chan,
1101 pEepData->calTargetPowerCck,
1102 AR5416_NUM_2G_CCK_TARGET_POWERS,
1103 &targetPowerCckExt, 4, true);
1104 ath9k_hw_get_legacy_target_powers(ah, chan,
1105 pEepData->calTargetPower2G,
1106 AR5416_NUM_2G_20_TARGET_POWERS,
1107 &targetPowerOfdmExt, 4, true);
1109 } else {
1110 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1111 SUB_NUM_CTL_MODES_AT_5G_40;
1112 pCtlMode = ctlModesFor11a;
1114 ath9k_hw_get_legacy_target_powers(ah, chan,
1115 pEepData->calTargetPower5G,
1116 AR5416_NUM_5G_20_TARGET_POWERS,
1117 &targetPowerOfdm, 4, false);
1118 ath9k_hw_get_target_powers(ah, chan,
1119 pEepData->calTargetPower5GHT20,
1120 AR5416_NUM_5G_20_TARGET_POWERS,
1121 &targetPowerHt20, 8, false);
1123 if (IS_CHAN_HT40(chan)) {
1124 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1125 ath9k_hw_get_target_powers(ah, chan,
1126 pEepData->calTargetPower5GHT40,
1127 AR5416_NUM_5G_40_TARGET_POWERS,
1128 &targetPowerHt40, 8, true);
1129 ath9k_hw_get_legacy_target_powers(ah, chan,
1130 pEepData->calTargetPower5G,
1131 AR5416_NUM_5G_20_TARGET_POWERS,
1132 &targetPowerOfdmExt, 4, true);
1136 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1137 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1138 (pCtlMode[ctlMode] == CTL_2GHT40);
1139 if (isHt40CtlMode)
1140 freq = centers.synth_center;
1141 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1142 freq = centers.ext_center;
1143 else
1144 freq = centers.ctl_center;
1146 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1147 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1148 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1150 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1151 if ((((cfgCtl & ~CTL_MODE_M) |
1152 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1153 pEepData->ctlIndex[i]) ||
1154 (((cfgCtl & ~CTL_MODE_M) |
1155 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1156 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1157 rep = &(pEepData->ctlData[i]);
1159 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1160 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1161 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1163 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1164 twiceMaxEdgePower = min(twiceMaxEdgePower,
1165 twiceMinEdgePower);
1166 } else {
1167 twiceMaxEdgePower = twiceMinEdgePower;
1168 break;
1173 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1175 switch (pCtlMode[ctlMode]) {
1176 case CTL_11B:
1177 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1178 targetPowerCck.tPow2x[i] =
1179 min((u16)targetPowerCck.tPow2x[i],
1180 minCtlPower);
1182 break;
1183 case CTL_11A:
1184 case CTL_11G:
1185 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1186 targetPowerOfdm.tPow2x[i] =
1187 min((u16)targetPowerOfdm.tPow2x[i],
1188 minCtlPower);
1190 break;
1191 case CTL_5GHT20:
1192 case CTL_2GHT20:
1193 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1194 targetPowerHt20.tPow2x[i] =
1195 min((u16)targetPowerHt20.tPow2x[i],
1196 minCtlPower);
1198 break;
1199 case CTL_11B_EXT:
1200 targetPowerCckExt.tPow2x[0] = min((u16)
1201 targetPowerCckExt.tPow2x[0],
1202 minCtlPower);
1203 break;
1204 case CTL_11A_EXT:
1205 case CTL_11G_EXT:
1206 targetPowerOfdmExt.tPow2x[0] = min((u16)
1207 targetPowerOfdmExt.tPow2x[0],
1208 minCtlPower);
1209 break;
1210 case CTL_5GHT40:
1211 case CTL_2GHT40:
1212 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1213 targetPowerHt40.tPow2x[i] =
1214 min((u16)targetPowerHt40.tPow2x[i],
1215 minCtlPower);
1217 break;
1218 default:
1219 break;
1223 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1224 ratesArray[rate18mb] = ratesArray[rate24mb] =
1225 targetPowerOfdm.tPow2x[0];
1226 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1227 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1228 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1229 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1231 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1232 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1234 if (IS_CHAN_2GHZ(chan)) {
1235 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1236 ratesArray[rate2s] = ratesArray[rate2l] =
1237 targetPowerCck.tPow2x[1];
1238 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1239 targetPowerCck.tPow2x[2];
1240 ratesArray[rate11s] = ratesArray[rate11l] =
1241 targetPowerCck.tPow2x[3];
1243 if (IS_CHAN_HT40(chan)) {
1244 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1245 ratesArray[rateHt40_0 + i] =
1246 targetPowerHt40.tPow2x[i];
1248 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1249 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1250 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1251 if (IS_CHAN_2GHZ(chan)) {
1252 ratesArray[rateExtCck] =
1253 targetPowerCckExt.tPow2x[0];
1258 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1259 struct ath9k_channel *chan,
1260 u16 cfgCtl,
1261 u8 twiceAntennaReduction,
1262 u8 twiceMaxRegulatoryPower,
1263 u8 powerLimit)
1265 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1266 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1267 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1268 struct modal_eep_header *pModal =
1269 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1270 int16_t ratesArray[Ar5416RateSize];
1271 int16_t txPowerIndexOffset = 0;
1272 u8 ht40PowerIncForPdadc = 2;
1273 int i, cck_ofdm_delta = 0;
1275 memset(ratesArray, 0, sizeof(ratesArray));
1277 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1278 AR5416_EEP_MINOR_VER_2) {
1279 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1282 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1283 &ratesArray[0], cfgCtl,
1284 twiceAntennaReduction,
1285 twiceMaxRegulatoryPower,
1286 powerLimit);
1288 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1290 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1291 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1292 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1293 ratesArray[i] = AR5416_MAX_RATE_POWER;
1296 if (AR_SREV_9280_10_OR_LATER(ah)) {
1297 for (i = 0; i < Ar5416RateSize; i++) {
1298 int8_t pwr_table_offset;
1300 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1301 EEP_PWR_TABLE_OFFSET);
1302 ratesArray[i] -= pwr_table_offset * 2;
1306 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1307 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1308 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1309 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1310 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1311 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1312 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1313 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1314 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1315 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1317 if (IS_CHAN_2GHZ(chan)) {
1318 if (OLC_FOR_AR9280_20_LATER) {
1319 cck_ofdm_delta = 2;
1320 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1321 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1322 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1323 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1324 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1325 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1326 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1327 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1328 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1329 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1330 } else {
1331 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1332 ATH9K_POW_SM(ratesArray[rate2s], 24)
1333 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1334 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1335 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1336 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1337 ATH9K_POW_SM(ratesArray[rate11s], 24)
1338 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1339 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1340 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1344 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1345 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1346 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1347 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1348 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1349 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1350 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1351 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1352 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1353 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1355 if (IS_CHAN_HT40(chan)) {
1356 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1357 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1358 ht40PowerIncForPdadc, 24)
1359 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1360 ht40PowerIncForPdadc, 16)
1361 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1362 ht40PowerIncForPdadc, 8)
1363 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1364 ht40PowerIncForPdadc, 0));
1365 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1366 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1367 ht40PowerIncForPdadc, 24)
1368 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1369 ht40PowerIncForPdadc, 16)
1370 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1371 ht40PowerIncForPdadc, 8)
1372 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1373 ht40PowerIncForPdadc, 0));
1374 if (OLC_FOR_AR9280_20_LATER) {
1375 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1376 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1377 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1378 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1379 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1380 } else {
1381 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1382 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1383 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1384 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1385 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1389 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1390 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1391 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1393 i = rate6mb;
1395 if (IS_CHAN_HT40(chan))
1396 i = rateHt40_0;
1397 else if (IS_CHAN_HT20(chan))
1398 i = rateHt20_0;
1400 if (AR_SREV_9280_10_OR_LATER(ah))
1401 regulatory->max_power_level =
1402 ratesArray[i] + AR5416_PWR_TABLE_OFFSET_DB * 2;
1403 else
1404 regulatory->max_power_level = ratesArray[i];
1406 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1407 case 1:
1408 break;
1409 case 2:
1410 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1411 break;
1412 case 3:
1413 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1414 break;
1415 default:
1416 ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1417 "Invalid chainmask configuration\n");
1418 break;
1422 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1423 enum ieee80211_band freq_band)
1425 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1426 struct modal_eep_header *pModal =
1427 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1428 struct base_eep_header *pBase = &eep->baseEepHeader;
1429 u8 num_ant_config;
1431 num_ant_config = 1;
1433 if (pBase->version >= 0x0E0D)
1434 if (pModal->useAnt1)
1435 num_ant_config += 1;
1437 return num_ant_config;
1440 static u32 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1441 struct ath9k_channel *chan)
1443 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1444 struct modal_eep_header *pModal =
1445 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1447 return pModal->antCtrlCommon;
1450 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1452 #define EEP_DEF_SPURCHAN \
1453 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1454 struct ath_common *common = ath9k_hw_common(ah);
1456 u16 spur_val = AR_NO_SPUR;
1458 ath_print(common, ATH_DBG_ANI,
1459 "Getting spur idx %d is2Ghz. %d val %x\n",
1460 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1462 switch (ah->config.spurmode) {
1463 case SPUR_DISABLE:
1464 break;
1465 case SPUR_ENABLE_IOCTL:
1466 spur_val = ah->config.spurchans[i][is2GHz];
1467 ath_print(common, ATH_DBG_ANI,
1468 "Getting spur val from new loc. %d\n", spur_val);
1469 break;
1470 case SPUR_ENABLE_EEPROM:
1471 spur_val = EEP_DEF_SPURCHAN;
1472 break;
1475 return spur_val;
1477 #undef EEP_DEF_SPURCHAN
1480 const struct eeprom_ops eep_def_ops = {
1481 .check_eeprom = ath9k_hw_def_check_eeprom,
1482 .get_eeprom = ath9k_hw_def_get_eeprom,
1483 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1484 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1485 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1486 .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
1487 .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
1488 .set_board_values = ath9k_hw_def_set_board_values,
1489 .set_addac = ath9k_hw_def_set_addac,
1490 .set_txpower = ath9k_hw_def_set_txpower,
1491 .get_spur_channel = ath9k_hw_def_get_spur_channel