sctp: use limited socket backlog
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sctp / input.c
blobcbc063665e6b26c985df673aee508a5f70390f24
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions handle all input from the IP layer into SCTP.
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, write to
27 * the Free Software Foundation, 59 Temple Place - Suite 330,
28 * Boston, MA 02111-1307, USA.
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 * lksctp developers <lksctp-developers@lists.sourceforge.net>
34 * Or submit a bug report through the following website:
35 * http://www.sf.net/projects/lksctp
37 * Written or modified by:
38 * La Monte H.P. Yarroll <piggy@acm.org>
39 * Karl Knutson <karl@athena.chicago.il.us>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Jon Grimm <jgrimm@us.ibm.com>
42 * Hui Huang <hui.huang@nokia.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Sridhar Samudrala <sri@us.ibm.com>
45 * Ardelle Fan <ardelle.fan@intel.com>
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 #include <net/sctp/checksum.h>
64 #include <net/net_namespace.h>
66 /* Forward declarations for internal helpers. */
67 static int sctp_rcv_ootb(struct sk_buff *);
68 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
69 const union sctp_addr *laddr,
70 const union sctp_addr *paddr,
71 struct sctp_transport **transportp);
72 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
73 static struct sctp_association *__sctp_lookup_association(
74 const union sctp_addr *local,
75 const union sctp_addr *peer,
76 struct sctp_transport **pt);
78 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
81 /* Calculate the SCTP checksum of an SCTP packet. */
82 static inline int sctp_rcv_checksum(struct sk_buff *skb)
84 struct sctphdr *sh = sctp_hdr(skb);
85 __le32 cmp = sh->checksum;
86 struct sk_buff *list;
87 __le32 val;
88 __u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 skb_walk_frags(skb, list)
91 tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
92 tmp);
94 val = sctp_end_cksum(tmp);
96 if (val != cmp) {
97 /* CRC failure, dump it. */
98 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
99 return -1;
101 return 0;
104 struct sctp_input_cb {
105 union {
106 struct inet_skb_parm h4;
107 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
108 struct inet6_skb_parm h6;
109 #endif
110 } header;
111 struct sctp_chunk *chunk;
113 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0]))
116 * This is the routine which IP calls when receiving an SCTP packet.
118 int sctp_rcv(struct sk_buff *skb)
120 struct sock *sk;
121 struct sctp_association *asoc;
122 struct sctp_endpoint *ep = NULL;
123 struct sctp_ep_common *rcvr;
124 struct sctp_transport *transport = NULL;
125 struct sctp_chunk *chunk;
126 struct sctphdr *sh;
127 union sctp_addr src;
128 union sctp_addr dest;
129 int family;
130 struct sctp_af *af;
132 if (skb->pkt_type!=PACKET_HOST)
133 goto discard_it;
135 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 if (skb_linearize(skb))
138 goto discard_it;
140 sh = sctp_hdr(skb);
142 /* Pull up the IP and SCTP headers. */
143 __skb_pull(skb, skb_transport_offset(skb));
144 if (skb->len < sizeof(struct sctphdr))
145 goto discard_it;
146 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
147 sctp_rcv_checksum(skb) < 0)
148 goto discard_it;
150 skb_pull(skb, sizeof(struct sctphdr));
152 /* Make sure we at least have chunk headers worth of data left. */
153 if (skb->len < sizeof(struct sctp_chunkhdr))
154 goto discard_it;
156 family = ipver2af(ip_hdr(skb)->version);
157 af = sctp_get_af_specific(family);
158 if (unlikely(!af))
159 goto discard_it;
161 /* Initialize local addresses for lookups. */
162 af->from_skb(&src, skb, 1);
163 af->from_skb(&dest, skb, 0);
165 /* If the packet is to or from a non-unicast address,
166 * silently discard the packet.
168 * This is not clearly defined in the RFC except in section
169 * 8.4 - OOTB handling. However, based on the book "Stream Control
170 * Transmission Protocol" 2.1, "It is important to note that the
171 * IP address of an SCTP transport address must be a routable
172 * unicast address. In other words, IP multicast addresses and
173 * IP broadcast addresses cannot be used in an SCTP transport
174 * address."
176 if (!af->addr_valid(&src, NULL, skb) ||
177 !af->addr_valid(&dest, NULL, skb))
178 goto discard_it;
180 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182 if (!asoc)
183 ep = __sctp_rcv_lookup_endpoint(&dest);
185 /* Retrieve the common input handling substructure. */
186 rcvr = asoc ? &asoc->base : &ep->base;
187 sk = rcvr->sk;
190 * If a frame arrives on an interface and the receiving socket is
191 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195 if (asoc) {
196 sctp_association_put(asoc);
197 asoc = NULL;
198 } else {
199 sctp_endpoint_put(ep);
200 ep = NULL;
202 sk = sctp_get_ctl_sock();
203 ep = sctp_sk(sk)->ep;
204 sctp_endpoint_hold(ep);
205 rcvr = &ep->base;
209 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
210 * An SCTP packet is called an "out of the blue" (OOTB)
211 * packet if it is correctly formed, i.e., passed the
212 * receiver's checksum check, but the receiver is not
213 * able to identify the association to which this
214 * packet belongs.
216 if (!asoc) {
217 if (sctp_rcv_ootb(skb)) {
218 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
219 goto discard_release;
223 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
224 goto discard_release;
225 nf_reset(skb);
227 if (sk_filter(sk, skb))
228 goto discard_release;
230 /* Create an SCTP packet structure. */
231 chunk = sctp_chunkify(skb, asoc, sk);
232 if (!chunk)
233 goto discard_release;
234 SCTP_INPUT_CB(skb)->chunk = chunk;
236 /* Remember what endpoint is to handle this packet. */
237 chunk->rcvr = rcvr;
239 /* Remember the SCTP header. */
240 chunk->sctp_hdr = sh;
242 /* Set the source and destination addresses of the incoming chunk. */
243 sctp_init_addrs(chunk, &src, &dest);
245 /* Remember where we came from. */
246 chunk->transport = transport;
248 /* Acquire access to the sock lock. Note: We are safe from other
249 * bottom halves on this lock, but a user may be in the lock too,
250 * so check if it is busy.
252 sctp_bh_lock_sock(sk);
254 if (sk != rcvr->sk) {
255 /* Our cached sk is different from the rcvr->sk. This is
256 * because migrate()/accept() may have moved the association
257 * to a new socket and released all the sockets. So now we
258 * are holding a lock on the old socket while the user may
259 * be doing something with the new socket. Switch our veiw
260 * of the current sk.
262 sctp_bh_unlock_sock(sk);
263 sk = rcvr->sk;
264 sctp_bh_lock_sock(sk);
267 if (sock_owned_by_user(sk)) {
268 if (sctp_add_backlog(sk, skb)) {
269 sctp_bh_unlock_sock(sk);
270 sctp_chunk_free(chunk);
271 skb = NULL; /* sctp_chunk_free already freed the skb */
272 goto discard_release;
274 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
275 } else {
276 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
277 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
280 sctp_bh_unlock_sock(sk);
282 /* Release the asoc/ep ref we took in the lookup calls. */
283 if (asoc)
284 sctp_association_put(asoc);
285 else
286 sctp_endpoint_put(ep);
288 return 0;
290 discard_it:
291 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
292 kfree_skb(skb);
293 return 0;
295 discard_release:
296 /* Release the asoc/ep ref we took in the lookup calls. */
297 if (asoc)
298 sctp_association_put(asoc);
299 else
300 sctp_endpoint_put(ep);
302 goto discard_it;
305 /* Process the backlog queue of the socket. Every skb on
306 * the backlog holds a ref on an association or endpoint.
307 * We hold this ref throughout the state machine to make
308 * sure that the structure we need is still around.
310 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
312 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
313 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
314 struct sctp_ep_common *rcvr = NULL;
315 int backloged = 0;
317 rcvr = chunk->rcvr;
319 /* If the rcvr is dead then the association or endpoint
320 * has been deleted and we can safely drop the chunk
321 * and refs that we are holding.
323 if (rcvr->dead) {
324 sctp_chunk_free(chunk);
325 goto done;
328 if (unlikely(rcvr->sk != sk)) {
329 /* In this case, the association moved from one socket to
330 * another. We are currently sitting on the backlog of the
331 * old socket, so we need to move.
332 * However, since we are here in the process context we
333 * need to take make sure that the user doesn't own
334 * the new socket when we process the packet.
335 * If the new socket is user-owned, queue the chunk to the
336 * backlog of the new socket without dropping any refs.
337 * Otherwise, we can safely push the chunk on the inqueue.
340 sk = rcvr->sk;
341 sctp_bh_lock_sock(sk);
343 if (sock_owned_by_user(sk)) {
344 if (sk_add_backlog_limited(sk, skb))
345 sctp_chunk_free(chunk);
346 else
347 backloged = 1;
348 } else
349 sctp_inq_push(inqueue, chunk);
351 sctp_bh_unlock_sock(sk);
353 /* If the chunk was backloged again, don't drop refs */
354 if (backloged)
355 return 0;
356 } else {
357 sctp_inq_push(inqueue, chunk);
360 done:
361 /* Release the refs we took in sctp_add_backlog */
362 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
363 sctp_association_put(sctp_assoc(rcvr));
364 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
365 sctp_endpoint_put(sctp_ep(rcvr));
366 else
367 BUG();
369 return 0;
372 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
375 struct sctp_ep_common *rcvr = chunk->rcvr;
376 int ret;
378 ret = sk_add_backlog_limited(sk, skb);
379 if (!ret) {
380 /* Hold the assoc/ep while hanging on the backlog queue.
381 * This way, we know structures we need will not disappear
382 * from us
384 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
385 sctp_association_hold(sctp_assoc(rcvr));
386 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
387 sctp_endpoint_hold(sctp_ep(rcvr));
388 else
389 BUG();
391 return ret;
395 /* Handle icmp frag needed error. */
396 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
397 struct sctp_transport *t, __u32 pmtu)
399 if (!t || (t->pathmtu <= pmtu))
400 return;
402 if (sock_owned_by_user(sk)) {
403 asoc->pmtu_pending = 1;
404 t->pmtu_pending = 1;
405 return;
408 if (t->param_flags & SPP_PMTUD_ENABLE) {
409 /* Update transports view of the MTU */
410 sctp_transport_update_pmtu(t, pmtu);
412 /* Update association pmtu. */
413 sctp_assoc_sync_pmtu(asoc);
416 /* Retransmit with the new pmtu setting.
417 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
418 * Needed will never be sent, but if a message was sent before
419 * PMTU discovery was disabled that was larger than the PMTU, it
420 * would not be fragmented, so it must be re-transmitted fragmented.
422 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
426 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
429 * or a "Protocol Unreachable" treat this message as an abort
430 * with the T bit set.
432 * This function sends an event to the state machine, which will abort the
433 * association.
436 void sctp_icmp_proto_unreachable(struct sock *sk,
437 struct sctp_association *asoc,
438 struct sctp_transport *t)
440 SCTP_DEBUG_PRINTK("%s\n", __func__);
442 sctp_do_sm(SCTP_EVENT_T_OTHER,
443 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
444 asoc->state, asoc->ep, asoc, t,
445 GFP_ATOMIC);
449 /* Common lookup code for icmp/icmpv6 error handler. */
450 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
451 struct sctphdr *sctphdr,
452 struct sctp_association **app,
453 struct sctp_transport **tpp)
455 union sctp_addr saddr;
456 union sctp_addr daddr;
457 struct sctp_af *af;
458 struct sock *sk = NULL;
459 struct sctp_association *asoc;
460 struct sctp_transport *transport = NULL;
461 struct sctp_init_chunk *chunkhdr;
462 __u32 vtag = ntohl(sctphdr->vtag);
463 int len = skb->len - ((void *)sctphdr - (void *)skb->data);
465 *app = NULL; *tpp = NULL;
467 af = sctp_get_af_specific(family);
468 if (unlikely(!af)) {
469 return NULL;
472 /* Initialize local addresses for lookups. */
473 af->from_skb(&saddr, skb, 1);
474 af->from_skb(&daddr, skb, 0);
476 /* Look for an association that matches the incoming ICMP error
477 * packet.
479 asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
480 if (!asoc)
481 return NULL;
483 sk = asoc->base.sk;
485 /* RFC 4960, Appendix C. ICMP Handling
487 * ICMP6) An implementation MUST validate that the Verification Tag
488 * contained in the ICMP message matches the Verification Tag of
489 * the peer. If the Verification Tag is not 0 and does NOT
490 * match, discard the ICMP message. If it is 0 and the ICMP
491 * message contains enough bytes to verify that the chunk type is
492 * an INIT chunk and that the Initiate Tag matches the tag of the
493 * peer, continue with ICMP7. If the ICMP message is too short
494 * or the chunk type or the Initiate Tag does not match, silently
495 * discard the packet.
497 if (vtag == 0) {
498 chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
499 + sizeof(struct sctphdr));
500 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
501 + sizeof(__be32) ||
502 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
503 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
504 goto out;
506 } else if (vtag != asoc->c.peer_vtag) {
507 goto out;
510 sctp_bh_lock_sock(sk);
512 /* If too many ICMPs get dropped on busy
513 * servers this needs to be solved differently.
515 if (sock_owned_by_user(sk))
516 NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
518 *app = asoc;
519 *tpp = transport;
520 return sk;
522 out:
523 if (asoc)
524 sctp_association_put(asoc);
525 return NULL;
528 /* Common cleanup code for icmp/icmpv6 error handler. */
529 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
531 sctp_bh_unlock_sock(sk);
532 if (asoc)
533 sctp_association_put(asoc);
537 * This routine is called by the ICMP module when it gets some
538 * sort of error condition. If err < 0 then the socket should
539 * be closed and the error returned to the user. If err > 0
540 * it's just the icmp type << 8 | icmp code. After adjustment
541 * header points to the first 8 bytes of the sctp header. We need
542 * to find the appropriate port.
544 * The locking strategy used here is very "optimistic". When
545 * someone else accesses the socket the ICMP is just dropped
546 * and for some paths there is no check at all.
547 * A more general error queue to queue errors for later handling
548 * is probably better.
551 void sctp_v4_err(struct sk_buff *skb, __u32 info)
553 struct iphdr *iph = (struct iphdr *)skb->data;
554 const int ihlen = iph->ihl * 4;
555 const int type = icmp_hdr(skb)->type;
556 const int code = icmp_hdr(skb)->code;
557 struct sock *sk;
558 struct sctp_association *asoc = NULL;
559 struct sctp_transport *transport;
560 struct inet_sock *inet;
561 sk_buff_data_t saveip, savesctp;
562 int err;
564 if (skb->len < ihlen + 8) {
565 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
566 return;
569 /* Fix up skb to look at the embedded net header. */
570 saveip = skb->network_header;
571 savesctp = skb->transport_header;
572 skb_reset_network_header(skb);
573 skb_set_transport_header(skb, ihlen);
574 sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
575 /* Put back, the original values. */
576 skb->network_header = saveip;
577 skb->transport_header = savesctp;
578 if (!sk) {
579 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
580 return;
582 /* Warning: The sock lock is held. Remember to call
583 * sctp_err_finish!
586 switch (type) {
587 case ICMP_PARAMETERPROB:
588 err = EPROTO;
589 break;
590 case ICMP_DEST_UNREACH:
591 if (code > NR_ICMP_UNREACH)
592 goto out_unlock;
594 /* PMTU discovery (RFC1191) */
595 if (ICMP_FRAG_NEEDED == code) {
596 sctp_icmp_frag_needed(sk, asoc, transport, info);
597 goto out_unlock;
599 else {
600 if (ICMP_PROT_UNREACH == code) {
601 sctp_icmp_proto_unreachable(sk, asoc,
602 transport);
603 goto out_unlock;
606 err = icmp_err_convert[code].errno;
607 break;
608 case ICMP_TIME_EXCEEDED:
609 /* Ignore any time exceeded errors due to fragment reassembly
610 * timeouts.
612 if (ICMP_EXC_FRAGTIME == code)
613 goto out_unlock;
615 err = EHOSTUNREACH;
616 break;
617 default:
618 goto out_unlock;
621 inet = inet_sk(sk);
622 if (!sock_owned_by_user(sk) && inet->recverr) {
623 sk->sk_err = err;
624 sk->sk_error_report(sk);
625 } else { /* Only an error on timeout */
626 sk->sk_err_soft = err;
629 out_unlock:
630 sctp_err_finish(sk, asoc);
634 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
636 * This function scans all the chunks in the OOTB packet to determine if
637 * the packet should be discarded right away. If a response might be needed
638 * for this packet, or, if further processing is possible, the packet will
639 * be queued to a proper inqueue for the next phase of handling.
641 * Output:
642 * Return 0 - If further processing is needed.
643 * Return 1 - If the packet can be discarded right away.
645 static int sctp_rcv_ootb(struct sk_buff *skb)
647 sctp_chunkhdr_t *ch;
648 __u8 *ch_end;
649 sctp_errhdr_t *err;
651 ch = (sctp_chunkhdr_t *) skb->data;
653 /* Scan through all the chunks in the packet. */
654 do {
655 /* Break out if chunk length is less then minimal. */
656 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
657 break;
659 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
660 if (ch_end > skb_tail_pointer(skb))
661 break;
663 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
664 * receiver MUST silently discard the OOTB packet and take no
665 * further action.
667 if (SCTP_CID_ABORT == ch->type)
668 goto discard;
670 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
671 * chunk, the receiver should silently discard the packet
672 * and take no further action.
674 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
675 goto discard;
677 /* RFC 4460, 2.11.2
678 * This will discard packets with INIT chunk bundled as
679 * subsequent chunks in the packet. When INIT is first,
680 * the normal INIT processing will discard the chunk.
682 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
683 goto discard;
685 /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
686 * or a COOKIE ACK the SCTP Packet should be silently
687 * discarded.
689 if (SCTP_CID_COOKIE_ACK == ch->type)
690 goto discard;
692 if (SCTP_CID_ERROR == ch->type) {
693 sctp_walk_errors(err, ch) {
694 if (SCTP_ERROR_STALE_COOKIE == err->cause)
695 goto discard;
699 ch = (sctp_chunkhdr_t *) ch_end;
700 } while (ch_end < skb_tail_pointer(skb));
702 return 0;
704 discard:
705 return 1;
708 /* Insert endpoint into the hash table. */
709 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
711 struct sctp_ep_common *epb;
712 struct sctp_hashbucket *head;
714 epb = &ep->base;
716 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
717 head = &sctp_ep_hashtable[epb->hashent];
719 sctp_write_lock(&head->lock);
720 hlist_add_head(&epb->node, &head->chain);
721 sctp_write_unlock(&head->lock);
724 /* Add an endpoint to the hash. Local BH-safe. */
725 void sctp_hash_endpoint(struct sctp_endpoint *ep)
727 sctp_local_bh_disable();
728 __sctp_hash_endpoint(ep);
729 sctp_local_bh_enable();
732 /* Remove endpoint from the hash table. */
733 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
735 struct sctp_hashbucket *head;
736 struct sctp_ep_common *epb;
738 epb = &ep->base;
740 if (hlist_unhashed(&epb->node))
741 return;
743 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
745 head = &sctp_ep_hashtable[epb->hashent];
747 sctp_write_lock(&head->lock);
748 __hlist_del(&epb->node);
749 sctp_write_unlock(&head->lock);
752 /* Remove endpoint from the hash. Local BH-safe. */
753 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
755 sctp_local_bh_disable();
756 __sctp_unhash_endpoint(ep);
757 sctp_local_bh_enable();
760 /* Look up an endpoint. */
761 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
763 struct sctp_hashbucket *head;
764 struct sctp_ep_common *epb;
765 struct sctp_endpoint *ep;
766 struct hlist_node *node;
767 int hash;
769 hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
770 head = &sctp_ep_hashtable[hash];
771 read_lock(&head->lock);
772 sctp_for_each_hentry(epb, node, &head->chain) {
773 ep = sctp_ep(epb);
774 if (sctp_endpoint_is_match(ep, laddr))
775 goto hit;
778 ep = sctp_sk((sctp_get_ctl_sock()))->ep;
780 hit:
781 sctp_endpoint_hold(ep);
782 read_unlock(&head->lock);
783 return ep;
786 /* Insert association into the hash table. */
787 static void __sctp_hash_established(struct sctp_association *asoc)
789 struct sctp_ep_common *epb;
790 struct sctp_hashbucket *head;
792 epb = &asoc->base;
794 /* Calculate which chain this entry will belong to. */
795 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
797 head = &sctp_assoc_hashtable[epb->hashent];
799 sctp_write_lock(&head->lock);
800 hlist_add_head(&epb->node, &head->chain);
801 sctp_write_unlock(&head->lock);
804 /* Add an association to the hash. Local BH-safe. */
805 void sctp_hash_established(struct sctp_association *asoc)
807 if (asoc->temp)
808 return;
810 sctp_local_bh_disable();
811 __sctp_hash_established(asoc);
812 sctp_local_bh_enable();
815 /* Remove association from the hash table. */
816 static void __sctp_unhash_established(struct sctp_association *asoc)
818 struct sctp_hashbucket *head;
819 struct sctp_ep_common *epb;
821 epb = &asoc->base;
823 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
824 asoc->peer.port);
826 head = &sctp_assoc_hashtable[epb->hashent];
828 sctp_write_lock(&head->lock);
829 __hlist_del(&epb->node);
830 sctp_write_unlock(&head->lock);
833 /* Remove association from the hash table. Local BH-safe. */
834 void sctp_unhash_established(struct sctp_association *asoc)
836 if (asoc->temp)
837 return;
839 sctp_local_bh_disable();
840 __sctp_unhash_established(asoc);
841 sctp_local_bh_enable();
844 /* Look up an association. */
845 static struct sctp_association *__sctp_lookup_association(
846 const union sctp_addr *local,
847 const union sctp_addr *peer,
848 struct sctp_transport **pt)
850 struct sctp_hashbucket *head;
851 struct sctp_ep_common *epb;
852 struct sctp_association *asoc;
853 struct sctp_transport *transport;
854 struct hlist_node *node;
855 int hash;
857 /* Optimize here for direct hit, only listening connections can
858 * have wildcards anyways.
860 hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
861 head = &sctp_assoc_hashtable[hash];
862 read_lock(&head->lock);
863 sctp_for_each_hentry(epb, node, &head->chain) {
864 asoc = sctp_assoc(epb);
865 transport = sctp_assoc_is_match(asoc, local, peer);
866 if (transport)
867 goto hit;
870 read_unlock(&head->lock);
872 return NULL;
874 hit:
875 *pt = transport;
876 sctp_association_hold(asoc);
877 read_unlock(&head->lock);
878 return asoc;
881 /* Look up an association. BH-safe. */
882 SCTP_STATIC
883 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
884 const union sctp_addr *paddr,
885 struct sctp_transport **transportp)
887 struct sctp_association *asoc;
889 sctp_local_bh_disable();
890 asoc = __sctp_lookup_association(laddr, paddr, transportp);
891 sctp_local_bh_enable();
893 return asoc;
896 /* Is there an association matching the given local and peer addresses? */
897 int sctp_has_association(const union sctp_addr *laddr,
898 const union sctp_addr *paddr)
900 struct sctp_association *asoc;
901 struct sctp_transport *transport;
903 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
904 sctp_association_put(asoc);
905 return 1;
908 return 0;
912 * SCTP Implementors Guide, 2.18 Handling of address
913 * parameters within the INIT or INIT-ACK.
915 * D) When searching for a matching TCB upon reception of an INIT
916 * or INIT-ACK chunk the receiver SHOULD use not only the
917 * source address of the packet (containing the INIT or
918 * INIT-ACK) but the receiver SHOULD also use all valid
919 * address parameters contained within the chunk.
921 * 2.18.3 Solution description
923 * This new text clearly specifies to an implementor the need
924 * to look within the INIT or INIT-ACK. Any implementation that
925 * does not do this, may not be able to establish associations
926 * in certain circumstances.
929 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
930 const union sctp_addr *laddr, struct sctp_transport **transportp)
932 struct sctp_association *asoc;
933 union sctp_addr addr;
934 union sctp_addr *paddr = &addr;
935 struct sctphdr *sh = sctp_hdr(skb);
936 sctp_chunkhdr_t *ch;
937 union sctp_params params;
938 sctp_init_chunk_t *init;
939 struct sctp_transport *transport;
940 struct sctp_af *af;
942 ch = (sctp_chunkhdr_t *) skb->data;
945 * This code will NOT touch anything inside the chunk--it is
946 * strictly READ-ONLY.
948 * RFC 2960 3 SCTP packet Format
950 * Multiple chunks can be bundled into one SCTP packet up to
951 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
952 * COMPLETE chunks. These chunks MUST NOT be bundled with any
953 * other chunk in a packet. See Section 6.10 for more details
954 * on chunk bundling.
957 /* Find the start of the TLVs and the end of the chunk. This is
958 * the region we search for address parameters.
960 init = (sctp_init_chunk_t *)skb->data;
962 /* Walk the parameters looking for embedded addresses. */
963 sctp_walk_params(params, init, init_hdr.params) {
965 /* Note: Ignoring hostname addresses. */
966 af = sctp_get_af_specific(param_type2af(params.p->type));
967 if (!af)
968 continue;
970 af->from_addr_param(paddr, params.addr, sh->source, 0);
972 asoc = __sctp_lookup_association(laddr, paddr, &transport);
973 if (asoc)
974 return asoc;
977 return NULL;
980 /* ADD-IP, Section 5.2
981 * When an endpoint receives an ASCONF Chunk from the remote peer
982 * special procedures may be needed to identify the association the
983 * ASCONF Chunk is associated with. To properly find the association
984 * the following procedures SHOULD be followed:
986 * D2) If the association is not found, use the address found in the
987 * Address Parameter TLV combined with the port number found in the
988 * SCTP common header. If found proceed to rule D4.
990 * D2-ext) If more than one ASCONF Chunks are packed together, use the
991 * address found in the ASCONF Address Parameter TLV of each of the
992 * subsequent ASCONF Chunks. If found, proceed to rule D4.
994 static struct sctp_association *__sctp_rcv_asconf_lookup(
995 sctp_chunkhdr_t *ch,
996 const union sctp_addr *laddr,
997 __be16 peer_port,
998 struct sctp_transport **transportp)
1000 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1001 struct sctp_af *af;
1002 union sctp_addr_param *param;
1003 union sctp_addr paddr;
1005 /* Skip over the ADDIP header and find the Address parameter */
1006 param = (union sctp_addr_param *)(asconf + 1);
1008 af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
1009 if (unlikely(!af))
1010 return NULL;
1012 af->from_addr_param(&paddr, param, peer_port, 0);
1014 return __sctp_lookup_association(laddr, &paddr, transportp);
1018 /* SCTP-AUTH, Section 6.3:
1019 * If the receiver does not find a STCB for a packet containing an AUTH
1020 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1021 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1022 * association.
1024 * This means that any chunks that can help us identify the association need
1025 * to be looked at to find this assocation.
1027 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1028 const union sctp_addr *laddr,
1029 struct sctp_transport **transportp)
1031 struct sctp_association *asoc = NULL;
1032 sctp_chunkhdr_t *ch;
1033 int have_auth = 0;
1034 unsigned int chunk_num = 1;
1035 __u8 *ch_end;
1037 /* Walk through the chunks looking for AUTH or ASCONF chunks
1038 * to help us find the association.
1040 ch = (sctp_chunkhdr_t *) skb->data;
1041 do {
1042 /* Break out if chunk length is less then minimal. */
1043 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1044 break;
1046 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1047 if (ch_end > skb_tail_pointer(skb))
1048 break;
1050 switch(ch->type) {
1051 case SCTP_CID_AUTH:
1052 have_auth = chunk_num;
1053 break;
1055 case SCTP_CID_COOKIE_ECHO:
1056 /* If a packet arrives containing an AUTH chunk as
1057 * a first chunk, a COOKIE-ECHO chunk as the second
1058 * chunk, and possibly more chunks after them, and
1059 * the receiver does not have an STCB for that
1060 * packet, then authentication is based on
1061 * the contents of the COOKIE- ECHO chunk.
1063 if (have_auth == 1 && chunk_num == 2)
1064 return NULL;
1065 break;
1067 case SCTP_CID_ASCONF:
1068 if (have_auth || sctp_addip_noauth)
1069 asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1070 sctp_hdr(skb)->source,
1071 transportp);
1072 default:
1073 break;
1076 if (asoc)
1077 break;
1079 ch = (sctp_chunkhdr_t *) ch_end;
1080 chunk_num++;
1081 } while (ch_end < skb_tail_pointer(skb));
1083 return asoc;
1087 * There are circumstances when we need to look inside the SCTP packet
1088 * for information to help us find the association. Examples
1089 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1090 * chunks.
1092 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1093 const union sctp_addr *laddr,
1094 struct sctp_transport **transportp)
1096 sctp_chunkhdr_t *ch;
1098 ch = (sctp_chunkhdr_t *) skb->data;
1100 /* The code below will attempt to walk the chunk and extract
1101 * parameter information. Before we do that, we need to verify
1102 * that the chunk length doesn't cause overflow. Otherwise, we'll
1103 * walk off the end.
1105 if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1106 return NULL;
1108 /* If this is INIT/INIT-ACK look inside the chunk too. */
1109 switch (ch->type) {
1110 case SCTP_CID_INIT:
1111 case SCTP_CID_INIT_ACK:
1112 return __sctp_rcv_init_lookup(skb, laddr, transportp);
1113 break;
1115 default:
1116 return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1117 break;
1121 return NULL;
1124 /* Lookup an association for an inbound skb. */
1125 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1126 const union sctp_addr *paddr,
1127 const union sctp_addr *laddr,
1128 struct sctp_transport **transportp)
1130 struct sctp_association *asoc;
1132 asoc = __sctp_lookup_association(laddr, paddr, transportp);
1134 /* Further lookup for INIT/INIT-ACK packets.
1135 * SCTP Implementors Guide, 2.18 Handling of address
1136 * parameters within the INIT or INIT-ACK.
1138 if (!asoc)
1139 asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1141 return asoc;