ALSA: hda - Fix wrong model range check for ALC268
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / crypto / twofish_common.c
blob0af216c75d7ea8f41666be90c201f757e029ef1b
1 /*
2 * Common Twofish algorithm parts shared between the c and assembler
3 * implementations
5 * Originally Twofish for GPG
6 * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
7 * 256-bit key length added March 20, 1999
8 * Some modifications to reduce the text size by Werner Koch, April, 1998
9 * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
10 * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
12 * The original author has disclaimed all copyright interest in this
13 * code and thus put it in the public domain. The subsequent authors
14 * have put this under the GNU General Public License.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
29 * USA
31 * This code is a "clean room" implementation, written from the paper
32 * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
33 * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
34 * through http://www.counterpane.com/twofish.html
36 * For background information on multiplication in finite fields, used for
37 * the matrix operations in the key schedule, see the book _Contemporary
38 * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
39 * Third Edition.
42 #include <crypto/twofish.h>
43 #include <linux/bitops.h>
44 #include <linux/crypto.h>
45 #include <linux/errno.h>
46 #include <linux/init.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
52 /* The large precomputed tables for the Twofish cipher (twofish.c)
53 * Taken from the same source as twofish.c
54 * Marc Mutz <Marc@Mutz.com>
57 /* These two tables are the q0 and q1 permutations, exactly as described in
58 * the Twofish paper. */
60 static const u8 q0[256] = {
61 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
62 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
63 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
64 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
65 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
66 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
67 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
68 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
69 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
70 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
71 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
72 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
73 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
74 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
75 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
76 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
77 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
78 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
79 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
80 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
81 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
82 0x4A, 0x5E, 0xC1, 0xE0
85 static const u8 q1[256] = {
86 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
87 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
88 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
89 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
90 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
91 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
92 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
93 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
94 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
95 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
96 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
97 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
98 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
99 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
100 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
101 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
102 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
103 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
104 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
105 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
106 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
107 0x55, 0x09, 0xBE, 0x91
110 /* These MDS tables are actually tables of MDS composed with q0 and q1,
111 * because it is only ever used that way and we can save some time by
112 * precomputing. Of course the main saving comes from precomputing the
113 * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
114 * things up in these tables we reduce the matrix multiply to four lookups
115 * and three XORs. Semi-formally, the definition of these tables is:
116 * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
117 * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
118 * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
119 * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
120 * by Schneier et al, and I'm casually glossing over the byte/word
121 * conversion issues. */
123 static const u32 mds[4][256] = {
125 0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
126 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
127 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
128 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
129 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
130 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
131 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
132 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
133 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
134 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
135 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
136 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
137 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
138 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
139 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
140 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
141 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
142 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
143 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
144 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
145 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
146 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
147 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
148 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
149 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
150 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
151 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
152 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
153 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
154 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
155 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
156 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
157 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
158 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
159 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
160 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
161 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
162 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
163 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
164 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
165 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
166 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
167 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
170 0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
171 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
172 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
173 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
174 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
175 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
176 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
177 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
178 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
179 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
180 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
181 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
182 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
183 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
184 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
185 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
186 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
187 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
188 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
189 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
190 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
191 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
192 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
193 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
194 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
195 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
196 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
197 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
198 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
199 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
200 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
201 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
202 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
203 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
204 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
205 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
206 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
207 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
208 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
209 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
210 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
211 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
212 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
215 0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
216 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
217 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
218 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
219 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
220 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
221 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
222 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
223 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
224 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
225 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
226 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
227 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
228 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
229 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
230 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
231 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
232 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
233 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
234 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
235 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
236 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
237 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
238 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
239 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
240 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
241 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
242 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
243 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
244 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
245 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
246 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
247 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
248 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
249 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
250 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
251 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
252 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
253 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
254 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
255 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
256 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
257 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
260 0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
261 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
262 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
263 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
264 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
265 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
266 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
267 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
268 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
269 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
270 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
271 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
272 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
273 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
274 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
275 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
276 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
277 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
278 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
279 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
280 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
281 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
282 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
283 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
284 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
285 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
286 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
287 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
288 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
289 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
290 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
291 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
292 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
293 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
294 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
295 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
296 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
297 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
298 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
299 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
300 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
301 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
302 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
305 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
306 * operations in GF(2^8) represented as GF(2)[x]/w(x) where
307 * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
308 * definition of the RS matrix in the key schedule. Elements of that field
309 * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
310 * which can be represented naturally by bytes (just substitute x=2). In that
311 * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
312 * multiplication is inefficient without hardware support. To multiply
313 * faster, I make use of the fact x is a generator for the nonzero elements,
314 * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
315 * some n in 0..254. Note that that caret is exponentiation in GF(2^8),
316 * *not* polynomial notation. So if I want to compute pq where p and q are
317 * in GF(2^8), I can just say:
318 * 1. if p=0 or q=0 then pq=0
319 * 2. otherwise, find m and n such that p=x^m and q=x^n
320 * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
321 * The translations in steps 2 and 3 are looked up in the tables
322 * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
323 * in action, look at the CALC_S macro. As additional wrinkles, note that
324 * one of my operands is always a constant, so the poly_to_exp lookup on it
325 * is done in advance; I included the original values in the comments so
326 * readers can have some chance of recognizing that this *is* the RS matrix
327 * from the Twofish paper. I've only included the table entries I actually
328 * need; I never do a lookup on a variable input of zero and the biggest
329 * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
330 * never sum to more than 491. I'm repeating part of the exp_to_poly table
331 * so that I don't have to do mod-255 reduction in the exponent arithmetic.
332 * Since I know my constant operands are never zero, I only have to worry
333 * about zero values in the variable operand, and I do it with a simple
334 * conditional branch. I know conditionals are expensive, but I couldn't
335 * see a non-horrible way of avoiding them, and I did manage to group the
336 * statements so that each if covers four group multiplications. */
338 static const u8 poly_to_exp[255] = {
339 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
340 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
341 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
342 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
343 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
344 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
345 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
346 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
347 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
348 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
349 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
350 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
351 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
352 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
353 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
354 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
355 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
356 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
357 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
358 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
359 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
360 0x85, 0xC8, 0xA1
363 static const u8 exp_to_poly[492] = {
364 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
365 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
366 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
367 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
368 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
369 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
370 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
371 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
372 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
373 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
374 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
375 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
376 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
377 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
378 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
379 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
380 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
381 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
382 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
383 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
384 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
385 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
386 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
387 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
388 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
389 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
390 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
391 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
392 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
393 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
394 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
395 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
396 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
397 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
398 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
399 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
400 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
401 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
402 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
403 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
404 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
408 /* The table constants are indices of
409 * S-box entries, preprocessed through q0 and q1. */
410 static const u8 calc_sb_tbl[512] = {
411 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
412 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
413 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
414 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
415 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
416 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
417 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
418 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
419 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
420 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
421 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
422 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
423 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
424 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
425 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
426 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
427 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
428 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
429 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
430 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
431 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
432 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
433 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
434 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
435 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
436 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
437 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
438 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
439 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
440 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
441 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
442 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
443 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
444 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
445 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
446 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
447 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
448 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
449 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
450 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
451 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
452 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
453 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
454 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
455 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
456 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
457 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
458 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
459 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
460 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
461 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
462 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
463 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
464 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
465 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
466 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
467 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
468 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
469 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
470 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
471 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
472 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
473 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
474 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
477 /* Macro to perform one column of the RS matrix multiplication. The
478 * parameters a, b, c, and d are the four bytes of output; i is the index
479 * of the key bytes, and w, x, y, and z, are the column of constants from
480 * the RS matrix, preprocessed through the poly_to_exp table. */
482 #define CALC_S(a, b, c, d, i, w, x, y, z) \
483 if (key[i]) { \
484 tmp = poly_to_exp[key[i] - 1]; \
485 (a) ^= exp_to_poly[tmp + (w)]; \
486 (b) ^= exp_to_poly[tmp + (x)]; \
487 (c) ^= exp_to_poly[tmp + (y)]; \
488 (d) ^= exp_to_poly[tmp + (z)]; \
491 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
492 * the S vector from CALC_S. CALC_SB_2 computes a single entry in all
493 * four S-boxes, where i is the index of the entry to compute, and a and b
494 * are the index numbers preprocessed through the q0 and q1 tables
495 * respectively. */
497 #define CALC_SB_2(i, a, b) \
498 ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
499 ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
500 ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
501 ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
503 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
505 #define CALC_SB192_2(i, a, b) \
506 ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
507 ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
508 ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
509 ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
511 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
513 #define CALC_SB256_2(i, a, b) \
514 ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
515 ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
516 ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
517 ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
519 /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
520 * last two stages of the h() function for a given index (either 2i or 2i+1).
521 * a, b, c, and d are the four bytes going into the last two stages. For
522 * 128-bit keys, this is the entire h() function and a and c are the index
523 * preprocessed through q0 and q1 respectively; for longer keys they are the
524 * output of previous stages. j is the index of the first key byte to use.
525 * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
526 * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
527 * rotations. Its parameters are: a, the array to write the results into,
528 * j, the index of the first output entry, k and l, the preprocessed indices
529 * for index 2i, and m and n, the preprocessed indices for index 2i+1.
530 * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
531 * additional lookup-and-XOR stage. The parameters a, b, c and d are the
532 * four bytes going into the last three stages. For 192-bit keys, c = d
533 * are the index preprocessed through q0, and a = b are the index
534 * preprocessed through q1; j is the index of the first key byte to use.
535 * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
536 * instead of CALC_K_2.
537 * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
538 * additional lookup-and-XOR stage. The parameters a and b are the index
539 * preprocessed through q0 and q1 respectively; j is the index of the first
540 * key byte to use. CALC_K256 is identical to CALC_K but for using the
541 * CALC_K256_2 macro instead of CALC_K_2. */
543 #define CALC_K_2(a, b, c, d, j) \
544 mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
545 ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
546 ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
547 ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
549 #define CALC_K(a, j, k, l, m, n) \
550 x = CALC_K_2 (k, l, k, l, 0); \
551 y = CALC_K_2 (m, n, m, n, 4); \
552 y = rol32(y, 8); \
553 x += y; y += x; ctx->a[j] = x; \
554 ctx->a[(j) + 1] = rol32(y, 9)
556 #define CALC_K192_2(a, b, c, d, j) \
557 CALC_K_2 (q0[a ^ key[(j) + 16]], \
558 q1[b ^ key[(j) + 17]], \
559 q0[c ^ key[(j) + 18]], \
560 q1[d ^ key[(j) + 19]], j)
562 #define CALC_K192(a, j, k, l, m, n) \
563 x = CALC_K192_2 (l, l, k, k, 0); \
564 y = CALC_K192_2 (n, n, m, m, 4); \
565 y = rol32(y, 8); \
566 x += y; y += x; ctx->a[j] = x; \
567 ctx->a[(j) + 1] = rol32(y, 9)
569 #define CALC_K256_2(a, b, j) \
570 CALC_K192_2 (q1[b ^ key[(j) + 24]], \
571 q1[a ^ key[(j) + 25]], \
572 q0[a ^ key[(j) + 26]], \
573 q0[b ^ key[(j) + 27]], j)
575 #define CALC_K256(a, j, k, l, m, n) \
576 x = CALC_K256_2 (k, l, 0); \
577 y = CALC_K256_2 (m, n, 4); \
578 y = rol32(y, 8); \
579 x += y; y += x; ctx->a[j] = x; \
580 ctx->a[(j) + 1] = rol32(y, 9)
582 /* Perform the key setup. */
583 int twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
586 struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
587 u32 *flags = &tfm->crt_flags;
589 int i, j, k;
591 /* Temporaries for CALC_K. */
592 u32 x, y;
594 /* The S vector used to key the S-boxes, split up into individual bytes.
595 * 128-bit keys use only sa through sh; 256-bit use all of them. */
596 u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
597 u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
599 /* Temporary for CALC_S. */
600 u8 tmp;
602 /* Check key length. */
603 if (key_len % 8)
605 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
606 return -EINVAL; /* unsupported key length */
609 /* Compute the first two words of the S vector. The magic numbers are
610 * the entries of the RS matrix, preprocessed through poly_to_exp. The
611 * numbers in the comments are the original (polynomial form) matrix
612 * entries. */
613 CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
614 CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
615 CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
616 CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
617 CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
618 CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
619 CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
620 CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
621 CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
622 CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
623 CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
624 CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
625 CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
626 CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
627 CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
628 CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
630 if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
631 /* Calculate the third word of the S vector */
632 CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
633 CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
634 CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
635 CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
636 CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
637 CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
638 CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
639 CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
642 if (key_len == 32) { /* 256-bit key */
643 /* Calculate the fourth word of the S vector */
644 CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
645 CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
646 CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
647 CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
648 CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
649 CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
650 CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
651 CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
653 /* Compute the S-boxes. */
654 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
655 CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
658 /* CALC_K256/CALC_K192/CALC_K loops were unrolled.
659 * Unrolling produced x2.5 more code (+18k on i386),
660 * and speeded up key setup by 7%:
661 * unrolled: twofish_setkey/sec: 41128
662 * loop: twofish_setkey/sec: 38148
663 * CALC_K256: ~100 insns each
664 * CALC_K192: ~90 insns
665 * CALC_K: ~70 insns
667 /* Calculate whitening and round subkeys */
668 for ( i = 0; i < 8; i += 2 ) {
669 CALC_K256 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
671 for ( i = 0; i < 32; i += 2 ) {
672 CALC_K256 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
674 } else if (key_len == 24) { /* 192-bit key */
675 /* Compute the S-boxes. */
676 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
677 CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
680 /* Calculate whitening and round subkeys */
681 for ( i = 0; i < 8; i += 2 ) {
682 CALC_K192 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
684 for ( i = 0; i < 32; i += 2 ) {
685 CALC_K192 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
687 } else { /* 128-bit key */
688 /* Compute the S-boxes. */
689 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
690 CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
693 /* Calculate whitening and round subkeys */
694 for ( i = 0; i < 8; i += 2 ) {
695 CALC_K (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
697 for ( i = 0; i < 32; i += 2 ) {
698 CALC_K (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
702 return 0;
705 EXPORT_SYMBOL_GPL(twofish_setkey);
707 MODULE_LICENSE("GPL");
708 MODULE_DESCRIPTION("Twofish cipher common functions");