ACPI: battery: register power_supply subdevice only when battery is present
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / cifs / cifsencrypt.c
blob632070b4275d91ba46baa1d735b578aeca555462
1 /*
2 * fs/cifs/cifsencrypt.c
4 * Copyright (C) International Business Machines Corp., 2005,2006
5 * Author(s): Steve French (sfrench@us.ibm.com)
7 * This library is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as published
9 * by the Free Software Foundation; either version 2.1 of the License, or
10 * (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
15 * the GNU Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public License
18 * along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/fs.h>
23 #include "cifspdu.h"
24 #include "cifsglob.h"
25 #include "cifs_debug.h"
26 #include "md5.h"
27 #include "cifs_unicode.h"
28 #include "cifsproto.h"
29 #include <linux/ctype.h>
30 #include <linux/random.h>
32 /* Calculate and return the CIFS signature based on the mac key and SMB PDU */
33 /* the 16 byte signature must be allocated by the caller */
34 /* Note we only use the 1st eight bytes */
35 /* Note that the smb header signature field on input contains the
36 sequence number before this function is called */
38 extern void mdfour(unsigned char *out, unsigned char *in, int n);
39 extern void E_md4hash(const unsigned char *passwd, unsigned char *p16);
40 extern void SMBencrypt(unsigned char *passwd, unsigned char *c8,
41 unsigned char *p24);
43 static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
44 const struct mac_key *key, char *signature)
46 struct MD5Context context;
48 if ((cifs_pdu == NULL) || (signature == NULL) || (key == NULL))
49 return -EINVAL;
51 MD5Init(&context);
52 MD5Update(&context, (char *)&key->data, key->len);
53 MD5Update(&context, cifs_pdu->Protocol, cifs_pdu->smb_buf_length);
55 MD5Final(signature, &context);
56 return 0;
59 int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
60 __u32 *pexpected_response_sequence_number)
62 int rc = 0;
63 char smb_signature[20];
65 if ((cifs_pdu == NULL) || (server == NULL))
66 return -EINVAL;
68 if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
69 return rc;
71 spin_lock(&GlobalMid_Lock);
72 cifs_pdu->Signature.Sequence.SequenceNumber =
73 cpu_to_le32(server->sequence_number);
74 cifs_pdu->Signature.Sequence.Reserved = 0;
76 *pexpected_response_sequence_number = server->sequence_number++;
77 server->sequence_number++;
78 spin_unlock(&GlobalMid_Lock);
80 rc = cifs_calculate_signature(cifs_pdu, &server->mac_signing_key,
81 smb_signature);
82 if (rc)
83 memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
84 else
85 memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
87 return rc;
90 static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
91 const struct mac_key *key, char *signature)
93 struct MD5Context context;
94 int i;
96 if ((iov == NULL) || (signature == NULL) || (key == NULL))
97 return -EINVAL;
99 MD5Init(&context);
100 MD5Update(&context, (char *)&key->data, key->len);
101 for (i = 0; i < n_vec; i++) {
102 if (iov[i].iov_base == NULL) {
103 cERROR(1, ("null iovec entry"));
104 return -EIO;
105 } else if (iov[i].iov_len == 0)
106 break; /* bail out if we are sent nothing to sign */
107 /* The first entry includes a length field (which does not get
108 signed that occupies the first 4 bytes before the header */
109 if (i == 0) {
110 if (iov[0].iov_len <= 8 ) /* cmd field at offset 9 */
111 break; /* nothing to sign or corrupt header */
112 MD5Update(&context, iov[0].iov_base+4,
113 iov[0].iov_len-4);
114 } else
115 MD5Update(&context, iov[i].iov_base, iov[i].iov_len);
118 MD5Final(signature, &context);
120 return 0;
124 int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
125 __u32 * pexpected_response_sequence_number)
127 int rc = 0;
128 char smb_signature[20];
129 struct smb_hdr *cifs_pdu = iov[0].iov_base;
131 if ((cifs_pdu == NULL) || (server == NULL))
132 return -EINVAL;
134 if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
135 return rc;
137 spin_lock(&GlobalMid_Lock);
138 cifs_pdu->Signature.Sequence.SequenceNumber =
139 cpu_to_le32(server->sequence_number);
140 cifs_pdu->Signature.Sequence.Reserved = 0;
142 *pexpected_response_sequence_number = server->sequence_number++;
143 server->sequence_number++;
144 spin_unlock(&GlobalMid_Lock);
146 rc = cifs_calc_signature2(iov, n_vec, &server->mac_signing_key,
147 smb_signature);
148 if (rc)
149 memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
150 else
151 memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
153 return rc;
156 int cifs_verify_signature(struct smb_hdr *cifs_pdu,
157 const struct mac_key *mac_key,
158 __u32 expected_sequence_number)
160 unsigned int rc;
161 char server_response_sig[8];
162 char what_we_think_sig_should_be[20];
164 if ((cifs_pdu == NULL) || (mac_key == NULL))
165 return -EINVAL;
167 if (cifs_pdu->Command == SMB_COM_NEGOTIATE)
168 return 0;
170 if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
171 struct smb_com_lock_req *pSMB =
172 (struct smb_com_lock_req *)cifs_pdu;
173 if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
174 return 0;
177 /* BB what if signatures are supposed to be on for session but
178 server does not send one? BB */
180 /* Do not need to verify session setups with signature "BSRSPYL " */
181 if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
182 cFYI(1, ("dummy signature received for smb command 0x%x",
183 cifs_pdu->Command));
185 /* save off the origiginal signature so we can modify the smb and check
186 its signature against what the server sent */
187 memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
189 cifs_pdu->Signature.Sequence.SequenceNumber =
190 cpu_to_le32(expected_sequence_number);
191 cifs_pdu->Signature.Sequence.Reserved = 0;
193 rc = cifs_calculate_signature(cifs_pdu, mac_key,
194 what_we_think_sig_should_be);
196 if (rc)
197 return rc;
199 /* cifs_dump_mem("what we think it should be: ",
200 what_we_think_sig_should_be, 16); */
202 if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
203 return -EACCES;
204 else
205 return 0;
209 /* We fill in key by putting in 40 byte array which was allocated by caller */
210 int cifs_calculate_mac_key(struct mac_key *key, const char *rn,
211 const char *password)
213 char temp_key[16];
214 if ((key == NULL) || (rn == NULL))
215 return -EINVAL;
217 E_md4hash(password, temp_key);
218 mdfour(key->data.ntlm, temp_key, 16);
219 memcpy(key->data.ntlm+16, rn, CIFS_SESS_KEY_SIZE);
220 key->len = 40;
221 return 0;
224 int CalcNTLMv2_partial_mac_key(struct cifsSesInfo *ses,
225 const struct nls_table *nls_info)
227 char temp_hash[16];
228 struct HMACMD5Context ctx;
229 char *ucase_buf;
230 __le16 *unicode_buf;
231 unsigned int i, user_name_len, dom_name_len;
233 if (ses == NULL)
234 return -EINVAL;
236 E_md4hash(ses->password, temp_hash);
238 hmac_md5_init_limK_to_64(temp_hash, 16, &ctx);
239 user_name_len = strlen(ses->userName);
240 if (user_name_len > MAX_USERNAME_SIZE)
241 return -EINVAL;
242 if (ses->domainName == NULL)
243 return -EINVAL; /* BB should we use CIFS_LINUX_DOM */
244 dom_name_len = strlen(ses->domainName);
245 if (dom_name_len > MAX_USERNAME_SIZE)
246 return -EINVAL;
248 ucase_buf = kmalloc((MAX_USERNAME_SIZE+1), GFP_KERNEL);
249 if (ucase_buf == NULL)
250 return -ENOMEM;
251 unicode_buf = kmalloc((MAX_USERNAME_SIZE+1)*4, GFP_KERNEL);
252 if (unicode_buf == NULL) {
253 kfree(ucase_buf);
254 return -ENOMEM;
257 for (i = 0; i < user_name_len; i++)
258 ucase_buf[i] = nls_info->charset2upper[(int)ses->userName[i]];
259 ucase_buf[i] = 0;
260 user_name_len = cifs_strtoUCS(unicode_buf, ucase_buf,
261 MAX_USERNAME_SIZE*2, nls_info);
262 unicode_buf[user_name_len] = 0;
263 user_name_len++;
265 for (i = 0; i < dom_name_len; i++)
266 ucase_buf[i] = nls_info->charset2upper[(int)ses->domainName[i]];
267 ucase_buf[i] = 0;
268 dom_name_len = cifs_strtoUCS(unicode_buf+user_name_len, ucase_buf,
269 MAX_USERNAME_SIZE*2, nls_info);
271 unicode_buf[user_name_len + dom_name_len] = 0;
272 hmac_md5_update((const unsigned char *) unicode_buf,
273 (user_name_len+dom_name_len)*2, &ctx);
275 hmac_md5_final(ses->server->ntlmv2_hash, &ctx);
276 kfree(ucase_buf);
277 kfree(unicode_buf);
278 return 0;
281 #ifdef CONFIG_CIFS_WEAK_PW_HASH
282 void calc_lanman_hash(struct cifsSesInfo *ses, char *lnm_session_key)
284 int i;
285 char password_with_pad[CIFS_ENCPWD_SIZE];
287 if (ses->server == NULL)
288 return;
290 memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
291 if (ses->password)
292 strncpy(password_with_pad, ses->password, CIFS_ENCPWD_SIZE);
294 if ((ses->server->secMode & SECMODE_PW_ENCRYPT) == 0)
295 if (extended_security & CIFSSEC_MAY_PLNTXT) {
296 memcpy(lnm_session_key, password_with_pad,
297 CIFS_ENCPWD_SIZE);
298 return;
301 /* calculate old style session key */
302 /* calling toupper is less broken than repeatedly
303 calling nls_toupper would be since that will never
304 work for UTF8, but neither handles multibyte code pages
305 but the only alternative would be converting to UCS-16 (Unicode)
306 (using a routine something like UniStrupr) then
307 uppercasing and then converting back from Unicode - which
308 would only worth doing it if we knew it were utf8. Basically
309 utf8 and other multibyte codepages each need their own strupper
310 function since a byte at a time will ont work. */
312 for (i = 0; i < CIFS_ENCPWD_SIZE; i++) {
313 password_with_pad[i] = toupper(password_with_pad[i]);
316 SMBencrypt(password_with_pad, ses->server->cryptKey, lnm_session_key);
317 /* clear password before we return/free memory */
318 memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
320 #endif /* CIFS_WEAK_PW_HASH */
322 static int calc_ntlmv2_hash(struct cifsSesInfo *ses,
323 const struct nls_table *nls_cp)
325 int rc = 0;
326 int len;
327 char nt_hash[16];
328 struct HMACMD5Context *pctxt;
329 wchar_t *user;
330 wchar_t *domain;
332 pctxt = kmalloc(sizeof(struct HMACMD5Context), GFP_KERNEL);
334 if (pctxt == NULL)
335 return -ENOMEM;
337 /* calculate md4 hash of password */
338 E_md4hash(ses->password, nt_hash);
340 /* convert Domainname to unicode and uppercase */
341 hmac_md5_init_limK_to_64(nt_hash, 16, pctxt);
343 /* convert ses->userName to unicode and uppercase */
344 len = strlen(ses->userName);
345 user = kmalloc(2 + (len * 2), GFP_KERNEL);
346 if (user == NULL)
347 goto calc_exit_2;
348 len = cifs_strtoUCS((__le16 *)user, ses->userName, len, nls_cp);
349 UniStrupr(user);
350 hmac_md5_update((char *)user, 2*len, pctxt);
352 /* convert ses->domainName to unicode and uppercase */
353 if (ses->domainName) {
354 len = strlen(ses->domainName);
356 domain = kmalloc(2 + (len * 2), GFP_KERNEL);
357 if (domain == NULL)
358 goto calc_exit_1;
359 len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
360 nls_cp);
361 /* the following line was removed since it didn't work well
362 with lower cased domain name that passed as an option.
363 Maybe converting the domain name earlier makes sense */
364 /* UniStrupr(domain); */
366 hmac_md5_update((char *)domain, 2*len, pctxt);
368 kfree(domain);
370 calc_exit_1:
371 kfree(user);
372 calc_exit_2:
373 /* BB FIXME what about bytes 24 through 40 of the signing key?
374 compare with the NTLM example */
375 hmac_md5_final(ses->server->ntlmv2_hash, pctxt);
377 return rc;
380 void setup_ntlmv2_rsp(struct cifsSesInfo *ses, char *resp_buf,
381 const struct nls_table *nls_cp)
383 int rc;
384 struct ntlmv2_resp *buf = (struct ntlmv2_resp *)resp_buf;
385 struct HMACMD5Context context;
387 buf->blob_signature = cpu_to_le32(0x00000101);
388 buf->reserved = 0;
389 buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
390 get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
391 buf->reserved2 = 0;
392 buf->names[0].type = cpu_to_le16(NTLMSSP_DOMAIN_TYPE);
393 buf->names[0].length = 0;
394 buf->names[1].type = 0;
395 buf->names[1].length = 0;
397 /* calculate buf->ntlmv2_hash */
398 rc = calc_ntlmv2_hash(ses, nls_cp);
399 if (rc)
400 cERROR(1, ("could not get v2 hash rc %d", rc));
401 CalcNTLMv2_response(ses, resp_buf);
403 /* now calculate the MAC key for NTLMv2 */
404 hmac_md5_init_limK_to_64(ses->server->ntlmv2_hash, 16, &context);
405 hmac_md5_update(resp_buf, 16, &context);
406 hmac_md5_final(ses->server->mac_signing_key.data.ntlmv2.key, &context);
408 memcpy(&ses->server->mac_signing_key.data.ntlmv2.resp, resp_buf,
409 sizeof(struct ntlmv2_resp));
410 ses->server->mac_signing_key.len = 16 + sizeof(struct ntlmv2_resp);
413 void CalcNTLMv2_response(const struct cifsSesInfo *ses,
414 char *v2_session_response)
416 struct HMACMD5Context context;
417 /* rest of v2 struct already generated */
418 memcpy(v2_session_response + 8, ses->server->cryptKey, 8);
419 hmac_md5_init_limK_to_64(ses->server->ntlmv2_hash, 16, &context);
421 hmac_md5_update(v2_session_response+8,
422 sizeof(struct ntlmv2_resp) - 8, &context);
424 hmac_md5_final(v2_session_response, &context);
425 /* cifs_dump_mem("v2_sess_rsp: ", v2_session_response, 32); */