1 /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
3 * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
5 * This driver is based on the CyberStorm driver, hence the occasional
6 * reference to CyberStorm.
11 * 1) Figure out how to make a cleaner merge with the sparc driver with regard
12 * to the caches and the Sparc MMU mapping.
13 * 2) Make as few routines required outside the generic driver. A lot of the
14 * routines in this file used to be inline!
17 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/delay.h>
22 #include <linux/types.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/proc_fs.h>
27 #include <linux/stat.h>
28 #include <linux/interrupt.h>
31 #include <scsi/scsi_host.h>
34 #include <linux/zorro.h>
36 #include <asm/amigaints.h>
37 #include <asm/amigahw.h>
39 #include <asm/pgtable.h>
43 /* The controller registers can be found in the Z2 config area at these
46 #define BLZ1230_ESP_ADDR 0x8000
47 #define BLZ1230_DMA_ADDR 0x10000
48 #define BLZ1230II_ESP_ADDR 0x10000
49 #define BLZ1230II_DMA_ADDR 0x10021
52 /* The Blizzard 1230 DMA interface
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Only two things can be programmed in the Blizzard DMA:
55 * 1) The data direction is controlled by the status of bit 31 (1 = write)
56 * 2) The source/dest address (word aligned, shifted one right) in bits 30-0
58 * Program DMA by first latching the highest byte of the address/direction
59 * (i.e. bits 31-24 of the long word constructed as described in steps 1+2
60 * above). Then write each byte of the address/direction (starting with the
61 * top byte, working down) to the DMA address register.
63 * Figure out interrupt status by reading the ESP status byte.
65 struct blz1230_dma_registers
{
66 volatile unsigned char dma_addr
; /* DMA address [0x0000] */
67 unsigned char dmapad2
[0x7fff];
68 volatile unsigned char dma_latch
; /* DMA latch [0x8000] */
71 struct blz1230II_dma_registers
{
72 volatile unsigned char dma_addr
; /* DMA address [0x0000] */
73 unsigned char dmapad2
[0xf];
74 volatile unsigned char dma_latch
; /* DMA latch [0x0010] */
77 #define BLZ1230_DMA_WRITE 0x80000000
79 static int dma_bytes_sent(struct NCR_ESP
*esp
, int fifo_count
);
80 static int dma_can_transfer(struct NCR_ESP
*esp
, Scsi_Cmnd
*sp
);
81 static void dma_dump_state(struct NCR_ESP
*esp
);
82 static void dma_init_read(struct NCR_ESP
*esp
, __u32 addr
, int length
);
83 static void dma_init_write(struct NCR_ESP
*esp
, __u32 addr
, int length
);
84 static void dma_ints_off(struct NCR_ESP
*esp
);
85 static void dma_ints_on(struct NCR_ESP
*esp
);
86 static int dma_irq_p(struct NCR_ESP
*esp
);
87 static int dma_ports_p(struct NCR_ESP
*esp
);
88 static void dma_setup(struct NCR_ESP
*esp
, __u32 addr
, int count
, int write
);
90 static volatile unsigned char cmd_buffer
[16];
91 /* This is where all commands are put
92 * before they are transferred to the ESP chip
96 /***************************************************************** Detection */
97 int __init
blz1230_esp_detect(struct scsi_host_template
*tpnt
)
100 struct zorro_dev
*z
= NULL
;
101 unsigned long address
;
102 struct ESP_regs
*eregs
;
106 #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
107 #define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
108 #define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
110 #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
111 #define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
112 #define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
115 if ((z
= zorro_find_device(REAL_BLZ1230_ID
, z
))) {
116 board
= z
->resource
.start
;
117 if (request_mem_region(board
+REAL_BLZ1230_ESP_ADDR
,
118 sizeof(struct ESP_regs
), "NCR53C9x")) {
119 /* Do some magic to figure out if the blizzard is
120 * equipped with a SCSI controller
122 address
= ZTWO_VADDR(board
);
123 eregs
= (struct ESP_regs
*)(address
+ REAL_BLZ1230_ESP_ADDR
);
124 esp
= esp_allocate(tpnt
, (void *)board
+REAL_BLZ1230_ESP_ADDR
);
126 esp_write(eregs
->esp_cfg1
, (ESP_CONFIG1_PENABLE
| 7));
128 if(esp_read(eregs
->esp_cfg1
) != (ESP_CONFIG1_PENABLE
| 7))
131 /* Do command transfer with programmed I/O */
132 esp
->do_pio_cmds
= 1;
134 /* Required functions */
135 esp
->dma_bytes_sent
= &dma_bytes_sent
;
136 esp
->dma_can_transfer
= &dma_can_transfer
;
137 esp
->dma_dump_state
= &dma_dump_state
;
138 esp
->dma_init_read
= &dma_init_read
;
139 esp
->dma_init_write
= &dma_init_write
;
140 esp
->dma_ints_off
= &dma_ints_off
;
141 esp
->dma_ints_on
= &dma_ints_on
;
142 esp
->dma_irq_p
= &dma_irq_p
;
143 esp
->dma_ports_p
= &dma_ports_p
;
144 esp
->dma_setup
= &dma_setup
;
146 /* Optional functions */
147 esp
->dma_barrier
= 0;
149 esp
->dma_invalidate
= 0;
150 esp
->dma_irq_entry
= 0;
151 esp
->dma_irq_exit
= 0;
153 esp
->dma_led_off
= 0;
157 /* SCSI chip speed */
158 esp
->cfreq
= 40000000;
160 /* The DMA registers on the Blizzard are mapped
161 * relative to the device (i.e. in the same Zorro
164 esp
->dregs
= (void *)(address
+ REAL_BLZ1230_DMA_ADDR
);
166 /* ESP register base */
169 /* Set the command buffer */
170 esp
->esp_command
= cmd_buffer
;
171 esp
->esp_command_dvma
= virt_to_bus((void *)cmd_buffer
);
173 esp
->irq
= IRQ_AMIGA_PORTS
;
174 esp
->slot
= board
+REAL_BLZ1230_ESP_ADDR
;
175 if (request_irq(IRQ_AMIGA_PORTS
, esp_intr
, IRQF_SHARED
,
176 "Blizzard 1230 SCSI IV", esp
->ehost
))
179 /* Figure out our scsi ID on the bus */
182 /* We don't have a differential SCSI-bus. */
187 printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps
, esps_in_use
);
188 esps_running
= esps_in_use
;
195 scsi_unregister(esp
->ehost
);
197 release_mem_region(board
+REAL_BLZ1230_ESP_ADDR
,
198 sizeof(struct ESP_regs
));
202 /************************************************************* DMA Functions */
203 static int dma_bytes_sent(struct NCR_ESP
*esp
, int fifo_count
)
205 /* Since the Blizzard DMA is fully dedicated to the ESP chip,
206 * the number of bytes sent (to the ESP chip) equals the number
207 * of bytes in the FIFO - there is no buffering in the DMA controller.
208 * XXXX Do I read this right? It is from host to ESP, right?
213 static int dma_can_transfer(struct NCR_ESP
*esp
, Scsi_Cmnd
*sp
)
215 /* I don't think there's any limit on the Blizzard DMA. So we use what
216 * the ESP chip can handle (24 bit).
218 unsigned long sz
= sp
->SCp
.this_residual
;
224 static void dma_dump_state(struct NCR_ESP
*esp
)
226 ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
227 amiga_custom
.intreqr
, amiga_custom
.intenar
));
230 void dma_init_read(struct NCR_ESP
*esp
, __u32 addr
, int length
)
233 struct blz1230_dma_registers
*dregs
=
234 (struct blz1230_dma_registers
*) (esp
->dregs
);
236 struct blz1230II_dma_registers
*dregs
=
237 (struct blz1230II_dma_registers
*) (esp
->dregs
);
240 cache_clear(addr
, length
);
243 addr
&= ~(BLZ1230_DMA_WRITE
);
245 /* First set latch */
246 dregs
->dma_latch
= (addr
>> 24) & 0xff;
248 /* Then pump the address to the DMA address register */
250 dregs
->dma_addr
= (addr
>> 24) & 0xff;
252 dregs
->dma_addr
= (addr
>> 16) & 0xff;
253 dregs
->dma_addr
= (addr
>> 8) & 0xff;
254 dregs
->dma_addr
= (addr
) & 0xff;
257 void dma_init_write(struct NCR_ESP
*esp
, __u32 addr
, int length
)
260 struct blz1230_dma_registers
*dregs
=
261 (struct blz1230_dma_registers
*) (esp
->dregs
);
263 struct blz1230II_dma_registers
*dregs
=
264 (struct blz1230II_dma_registers
*) (esp
->dregs
);
267 cache_push(addr
, length
);
270 addr
|= BLZ1230_DMA_WRITE
;
272 /* First set latch */
273 dregs
->dma_latch
= (addr
>> 24) & 0xff;
275 /* Then pump the address to the DMA address register */
277 dregs
->dma_addr
= (addr
>> 24) & 0xff;
279 dregs
->dma_addr
= (addr
>> 16) & 0xff;
280 dregs
->dma_addr
= (addr
>> 8) & 0xff;
281 dregs
->dma_addr
= (addr
) & 0xff;
284 static void dma_ints_off(struct NCR_ESP
*esp
)
286 disable_irq(esp
->irq
);
289 static void dma_ints_on(struct NCR_ESP
*esp
)
291 enable_irq(esp
->irq
);
294 static int dma_irq_p(struct NCR_ESP
*esp
)
296 return (esp_read(esp
->eregs
->esp_status
) & ESP_STAT_INTR
);
299 static int dma_ports_p(struct NCR_ESP
*esp
)
301 return ((amiga_custom
.intenar
) & IF_PORTS
);
304 static void dma_setup(struct NCR_ESP
*esp
, __u32 addr
, int count
, int write
)
306 /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
307 * so when (write) is true, it actually means READ!
310 dma_init_read(esp
, addr
, count
);
312 dma_init_write(esp
, addr
, count
);
318 int blz1230_esp_release(struct Scsi_Host
*instance
)
321 unsigned long address
= (unsigned long)((struct NCR_ESP
*)instance
->hostdata
)->edev
;
322 esp_deallocate((struct NCR_ESP
*)instance
->hostdata
);
324 release_mem_region(address
, sizeof(struct ESP_regs
));
325 free_irq(IRQ_AMIGA_PORTS
, esp_intr
);
331 static struct scsi_host_template driver_template
= {
332 .proc_name
= "esp-blz1230",
333 .proc_info
= esp_proc_info
,
334 .name
= "Blizzard1230 SCSI IV",
335 .detect
= blz1230_esp_detect
,
336 .slave_alloc
= esp_slave_alloc
,
337 .slave_destroy
= esp_slave_destroy
,
338 .release
= blz1230_esp_release
,
339 .queuecommand
= esp_queue
,
340 .eh_abort_handler
= esp_abort
,
341 .eh_bus_reset_handler
= esp_reset
,
344 .sg_tablesize
= SG_ALL
,
346 .use_clustering
= ENABLE_CLUSTERING
350 #include "scsi_module.c"
352 MODULE_LICENSE("GPL");