ACPI: thinkpad-acpi: add DMI-based modalias
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / rtc.c
blob664f36c98e6acc4f257759aaff8c5586f48653e2
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 * this driver.)
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/sysctl.h>
77 #include <linux/wait.h>
78 #include <linux/bcd.h>
79 #include <linux/delay.h>
81 #include <asm/current.h>
82 #include <asm/uaccess.h>
83 #include <asm/system.h>
85 #if defined(__i386__)
86 #include <asm/hpet.h>
87 #endif
89 #ifdef __sparc__
90 #include <linux/pci.h>
91 #include <asm/ebus.h>
92 #ifdef __sparc_v9__
93 #include <asm/isa.h>
94 #endif
96 static unsigned long rtc_port;
97 static int rtc_irq = PCI_IRQ_NONE;
98 #endif
100 #ifdef CONFIG_HPET_RTC_IRQ
101 #undef RTC_IRQ
102 #endif
104 #ifdef RTC_IRQ
105 static int rtc_has_irq = 1;
106 #endif
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled() 0
110 #define hpet_set_alarm_time(hrs, min, sec) 0
111 #define hpet_set_periodic_freq(arg) 0
112 #define hpet_mask_rtc_irq_bit(arg) 0
113 #define hpet_set_rtc_irq_bit(arg) 0
114 #define hpet_rtc_timer_init() do { } while (0)
115 #define hpet_rtc_dropped_irq() 0
116 #ifdef RTC_IRQ
117 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
119 return 0;
121 #endif
122 #else
123 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
124 #endif
127 * We sponge a minor off of the misc major. No need slurping
128 * up another valuable major dev number for this. If you add
129 * an ioctl, make sure you don't conflict with SPARC's RTC
130 * ioctls.
133 static struct fasync_struct *rtc_async_queue;
135 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
137 #ifdef RTC_IRQ
138 static struct timer_list rtc_irq_timer;
139 #endif
141 static ssize_t rtc_read(struct file *file, char __user *buf,
142 size_t count, loff_t *ppos);
144 static int rtc_ioctl(struct inode *inode, struct file *file,
145 unsigned int cmd, unsigned long arg);
147 #ifdef RTC_IRQ
148 static unsigned int rtc_poll(struct file *file, poll_table *wait);
149 #endif
151 static void get_rtc_alm_time (struct rtc_time *alm_tm);
152 #ifdef RTC_IRQ
153 static void rtc_dropped_irq(unsigned long data);
155 static void set_rtc_irq_bit_locked(unsigned char bit);
156 static void mask_rtc_irq_bit_locked(unsigned char bit);
158 static inline void set_rtc_irq_bit(unsigned char bit)
160 spin_lock_irq(&rtc_lock);
161 set_rtc_irq_bit_locked(bit);
162 spin_unlock_irq(&rtc_lock);
165 static void mask_rtc_irq_bit(unsigned char bit)
167 spin_lock_irq(&rtc_lock);
168 mask_rtc_irq_bit_locked(bit);
169 spin_unlock_irq(&rtc_lock);
171 #endif
173 #ifdef CONFIG_PROC_FS
174 static int rtc_proc_open(struct inode *inode, struct file *file);
175 #endif
178 * Bits in rtc_status. (6 bits of room for future expansion)
181 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
182 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the big kernel lock. However, ioctl can still disable the timer
187 * in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
191 static unsigned long rtc_status = 0; /* bitmapped status byte. */
192 static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
193 static unsigned long rtc_irq_data = 0; /* our output to the world */
194 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
196 #ifdef RTC_IRQ
198 * rtc_task_lock nests inside rtc_lock.
200 static DEFINE_SPINLOCK(rtc_task_lock);
201 static rtc_task_t *rtc_callback = NULL;
202 #endif
205 * If this driver ever becomes modularised, it will be really nice
206 * to make the epoch retain its value across module reload...
209 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
211 static const unsigned char days_in_mo[] =
212 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
215 * Returns true if a clock update is in progress
217 static inline unsigned char rtc_is_updating(void)
219 unsigned long flags;
220 unsigned char uip;
222 spin_lock_irqsave(&rtc_lock, flags);
223 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224 spin_unlock_irqrestore(&rtc_lock, flags);
225 return uip;
228 #ifdef RTC_IRQ
230 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231 * but there is possibility of conflicting with the set_rtc_mmss()
232 * call (the rtc irq and the timer irq can easily run at the same
233 * time in two different CPUs). So we need to serialize
234 * accesses to the chip with the rtc_lock spinlock that each
235 * architecture should implement in the timer code.
236 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
239 irqreturn_t rtc_interrupt(int irq, void *dev_id)
242 * Can be an alarm interrupt, update complete interrupt,
243 * or a periodic interrupt. We store the status in the
244 * low byte and the number of interrupts received since
245 * the last read in the remainder of rtc_irq_data.
248 spin_lock (&rtc_lock);
249 rtc_irq_data += 0x100;
250 rtc_irq_data &= ~0xff;
251 if (is_hpet_enabled()) {
253 * In this case it is HPET RTC interrupt handler
254 * calling us, with the interrupt information
255 * passed as arg1, instead of irq.
257 rtc_irq_data |= (unsigned long)irq & 0xF0;
258 } else {
259 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
262 if (rtc_status & RTC_TIMER_ON)
263 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
265 spin_unlock (&rtc_lock);
267 /* Now do the rest of the actions */
268 spin_lock(&rtc_task_lock);
269 if (rtc_callback)
270 rtc_callback->func(rtc_callback->private_data);
271 spin_unlock(&rtc_task_lock);
272 wake_up_interruptible(&rtc_wait);
274 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
276 return IRQ_HANDLED;
278 #endif
281 * sysctl-tuning infrastructure.
283 static ctl_table rtc_table[] = {
285 .ctl_name = 1,
286 .procname = "max-user-freq",
287 .data = &rtc_max_user_freq,
288 .maxlen = sizeof(int),
289 .mode = 0644,
290 .proc_handler = &proc_dointvec,
292 { .ctl_name = 0 }
295 static ctl_table rtc_root[] = {
297 .ctl_name = 1,
298 .procname = "rtc",
299 .maxlen = 0,
300 .mode = 0555,
301 .child = rtc_table,
303 { .ctl_name = 0 }
306 static ctl_table dev_root[] = {
308 .ctl_name = CTL_DEV,
309 .procname = "dev",
310 .maxlen = 0,
311 .mode = 0555,
312 .child = rtc_root,
314 { .ctl_name = 0 }
317 static struct ctl_table_header *sysctl_header;
319 static int __init init_sysctl(void)
321 sysctl_header = register_sysctl_table(dev_root, 0);
322 return 0;
325 static void __exit cleanup_sysctl(void)
327 unregister_sysctl_table(sysctl_header);
331 * Now all the various file operations that we export.
334 static ssize_t rtc_read(struct file *file, char __user *buf,
335 size_t count, loff_t *ppos)
337 #ifndef RTC_IRQ
338 return -EIO;
339 #else
340 DECLARE_WAITQUEUE(wait, current);
341 unsigned long data;
342 ssize_t retval;
344 if (rtc_has_irq == 0)
345 return -EIO;
348 * Historically this function used to assume that sizeof(unsigned long)
349 * is the same in userspace and kernelspace. This lead to problems
350 * for configurations with multiple ABIs such a the MIPS o32 and 64
351 * ABIs supported on the same kernel. So now we support read of both
352 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
353 * userspace ABI.
355 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
356 return -EINVAL;
358 add_wait_queue(&rtc_wait, &wait);
360 do {
361 /* First make it right. Then make it fast. Putting this whole
362 * block within the parentheses of a while would be too
363 * confusing. And no, xchg() is not the answer. */
365 __set_current_state(TASK_INTERRUPTIBLE);
367 spin_lock_irq (&rtc_lock);
368 data = rtc_irq_data;
369 rtc_irq_data = 0;
370 spin_unlock_irq (&rtc_lock);
372 if (data != 0)
373 break;
375 if (file->f_flags & O_NONBLOCK) {
376 retval = -EAGAIN;
377 goto out;
379 if (signal_pending(current)) {
380 retval = -ERESTARTSYS;
381 goto out;
383 schedule();
384 } while (1);
386 if (count == sizeof(unsigned int))
387 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
388 else
389 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
390 if (!retval)
391 retval = count;
392 out:
393 current->state = TASK_RUNNING;
394 remove_wait_queue(&rtc_wait, &wait);
396 return retval;
397 #endif
400 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
402 struct rtc_time wtime;
404 #ifdef RTC_IRQ
405 if (rtc_has_irq == 0) {
406 switch (cmd) {
407 case RTC_AIE_OFF:
408 case RTC_AIE_ON:
409 case RTC_PIE_OFF:
410 case RTC_PIE_ON:
411 case RTC_UIE_OFF:
412 case RTC_UIE_ON:
413 case RTC_IRQP_READ:
414 case RTC_IRQP_SET:
415 return -EINVAL;
418 #endif
420 switch (cmd) {
421 #ifdef RTC_IRQ
422 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
424 mask_rtc_irq_bit(RTC_AIE);
425 return 0;
427 case RTC_AIE_ON: /* Allow alarm interrupts. */
429 set_rtc_irq_bit(RTC_AIE);
430 return 0;
432 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
434 unsigned long flags; /* can be called from isr via rtc_control() */
435 spin_lock_irqsave (&rtc_lock, flags);
436 mask_rtc_irq_bit_locked(RTC_PIE);
437 if (rtc_status & RTC_TIMER_ON) {
438 rtc_status &= ~RTC_TIMER_ON;
439 del_timer(&rtc_irq_timer);
441 spin_unlock_irqrestore (&rtc_lock, flags);
442 return 0;
444 case RTC_PIE_ON: /* Allow periodic ints */
446 unsigned long flags; /* can be called from isr via rtc_control() */
448 * We don't really want Joe User enabling more
449 * than 64Hz of interrupts on a multi-user machine.
451 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
452 (!capable(CAP_SYS_RESOURCE)))
453 return -EACCES;
455 spin_lock_irqsave (&rtc_lock, flags);
456 if (!(rtc_status & RTC_TIMER_ON)) {
457 rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
458 add_timer(&rtc_irq_timer);
459 rtc_status |= RTC_TIMER_ON;
461 set_rtc_irq_bit_locked(RTC_PIE);
462 spin_unlock_irqrestore (&rtc_lock, flags);
463 return 0;
465 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
467 mask_rtc_irq_bit(RTC_UIE);
468 return 0;
470 case RTC_UIE_ON: /* Allow ints for RTC updates. */
472 set_rtc_irq_bit(RTC_UIE);
473 return 0;
475 #endif
476 case RTC_ALM_READ: /* Read the present alarm time */
479 * This returns a struct rtc_time. Reading >= 0xc0
480 * means "don't care" or "match all". Only the tm_hour,
481 * tm_min, and tm_sec values are filled in.
483 memset(&wtime, 0, sizeof(struct rtc_time));
484 get_rtc_alm_time(&wtime);
485 break;
487 case RTC_ALM_SET: /* Store a time into the alarm */
490 * This expects a struct rtc_time. Writing 0xff means
491 * "don't care" or "match all". Only the tm_hour,
492 * tm_min and tm_sec are used.
494 unsigned char hrs, min, sec;
495 struct rtc_time alm_tm;
497 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
498 sizeof(struct rtc_time)))
499 return -EFAULT;
501 hrs = alm_tm.tm_hour;
502 min = alm_tm.tm_min;
503 sec = alm_tm.tm_sec;
505 spin_lock_irq(&rtc_lock);
506 if (hpet_set_alarm_time(hrs, min, sec)) {
508 * Fallthru and set alarm time in CMOS too,
509 * so that we will get proper value in RTC_ALM_READ
512 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
513 RTC_ALWAYS_BCD)
515 if (sec < 60) BIN_TO_BCD(sec);
516 else sec = 0xff;
518 if (min < 60) BIN_TO_BCD(min);
519 else min = 0xff;
521 if (hrs < 24) BIN_TO_BCD(hrs);
522 else hrs = 0xff;
524 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
525 CMOS_WRITE(min, RTC_MINUTES_ALARM);
526 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
527 spin_unlock_irq(&rtc_lock);
529 return 0;
531 case RTC_RD_TIME: /* Read the time/date from RTC */
533 memset(&wtime, 0, sizeof(struct rtc_time));
534 rtc_get_rtc_time(&wtime);
535 break;
537 case RTC_SET_TIME: /* Set the RTC */
539 struct rtc_time rtc_tm;
540 unsigned char mon, day, hrs, min, sec, leap_yr;
541 unsigned char save_control, save_freq_select;
542 unsigned int yrs;
543 #ifdef CONFIG_MACH_DECSTATION
544 unsigned int real_yrs;
545 #endif
547 if (!capable(CAP_SYS_TIME))
548 return -EACCES;
550 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
551 sizeof(struct rtc_time)))
552 return -EFAULT;
554 yrs = rtc_tm.tm_year + 1900;
555 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
556 day = rtc_tm.tm_mday;
557 hrs = rtc_tm.tm_hour;
558 min = rtc_tm.tm_min;
559 sec = rtc_tm.tm_sec;
561 if (yrs < 1970)
562 return -EINVAL;
564 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
566 if ((mon > 12) || (day == 0))
567 return -EINVAL;
569 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
570 return -EINVAL;
572 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
573 return -EINVAL;
575 if ((yrs -= epoch) > 255) /* They are unsigned */
576 return -EINVAL;
578 spin_lock_irq(&rtc_lock);
579 #ifdef CONFIG_MACH_DECSTATION
580 real_yrs = yrs;
581 yrs = 72;
584 * We want to keep the year set to 73 until March
585 * for non-leap years, so that Feb, 29th is handled
586 * correctly.
588 if (!leap_yr && mon < 3) {
589 real_yrs--;
590 yrs = 73;
592 #endif
593 /* These limits and adjustments are independent of
594 * whether the chip is in binary mode or not.
596 if (yrs > 169) {
597 spin_unlock_irq(&rtc_lock);
598 return -EINVAL;
600 if (yrs >= 100)
601 yrs -= 100;
603 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
604 || RTC_ALWAYS_BCD) {
605 BIN_TO_BCD(sec);
606 BIN_TO_BCD(min);
607 BIN_TO_BCD(hrs);
608 BIN_TO_BCD(day);
609 BIN_TO_BCD(mon);
610 BIN_TO_BCD(yrs);
613 save_control = CMOS_READ(RTC_CONTROL);
614 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
615 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
616 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
618 #ifdef CONFIG_MACH_DECSTATION
619 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
620 #endif
621 CMOS_WRITE(yrs, RTC_YEAR);
622 CMOS_WRITE(mon, RTC_MONTH);
623 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
624 CMOS_WRITE(hrs, RTC_HOURS);
625 CMOS_WRITE(min, RTC_MINUTES);
626 CMOS_WRITE(sec, RTC_SECONDS);
628 CMOS_WRITE(save_control, RTC_CONTROL);
629 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
631 spin_unlock_irq(&rtc_lock);
632 return 0;
634 #ifdef RTC_IRQ
635 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
637 return put_user(rtc_freq, (unsigned long __user *)arg);
639 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
641 int tmp = 0;
642 unsigned char val;
643 unsigned long flags; /* can be called from isr via rtc_control() */
646 * The max we can do is 8192Hz.
648 if ((arg < 2) || (arg > 8192))
649 return -EINVAL;
651 * We don't really want Joe User generating more
652 * than 64Hz of interrupts on a multi-user machine.
654 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
655 return -EACCES;
657 while (arg > (1<<tmp))
658 tmp++;
661 * Check that the input was really a power of 2.
663 if (arg != (1<<tmp))
664 return -EINVAL;
666 spin_lock_irqsave(&rtc_lock, flags);
667 if (hpet_set_periodic_freq(arg)) {
668 spin_unlock_irqrestore(&rtc_lock, flags);
669 return 0;
671 rtc_freq = arg;
673 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
674 val |= (16 - tmp);
675 CMOS_WRITE(val, RTC_FREQ_SELECT);
676 spin_unlock_irqrestore(&rtc_lock, flags);
677 return 0;
679 #endif
680 case RTC_EPOCH_READ: /* Read the epoch. */
682 return put_user (epoch, (unsigned long __user *)arg);
684 case RTC_EPOCH_SET: /* Set the epoch. */
687 * There were no RTC clocks before 1900.
689 if (arg < 1900)
690 return -EINVAL;
692 if (!capable(CAP_SYS_TIME))
693 return -EACCES;
695 epoch = arg;
696 return 0;
698 default:
699 return -ENOTTY;
701 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
704 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
705 unsigned long arg)
707 return rtc_do_ioctl(cmd, arg, 0);
711 * We enforce only one user at a time here with the open/close.
712 * Also clear the previous interrupt data on an open, and clean
713 * up things on a close.
716 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
717 * needed here. Or anywhere else in this driver. */
718 static int rtc_open(struct inode *inode, struct file *file)
720 spin_lock_irq (&rtc_lock);
722 if(rtc_status & RTC_IS_OPEN)
723 goto out_busy;
725 rtc_status |= RTC_IS_OPEN;
727 rtc_irq_data = 0;
728 spin_unlock_irq (&rtc_lock);
729 return 0;
731 out_busy:
732 spin_unlock_irq (&rtc_lock);
733 return -EBUSY;
736 static int rtc_fasync (int fd, struct file *filp, int on)
739 return fasync_helper (fd, filp, on, &rtc_async_queue);
742 static int rtc_release(struct inode *inode, struct file *file)
744 #ifdef RTC_IRQ
745 unsigned char tmp;
747 if (rtc_has_irq == 0)
748 goto no_irq;
751 * Turn off all interrupts once the device is no longer
752 * in use, and clear the data.
755 spin_lock_irq(&rtc_lock);
756 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
757 tmp = CMOS_READ(RTC_CONTROL);
758 tmp &= ~RTC_PIE;
759 tmp &= ~RTC_AIE;
760 tmp &= ~RTC_UIE;
761 CMOS_WRITE(tmp, RTC_CONTROL);
762 CMOS_READ(RTC_INTR_FLAGS);
764 if (rtc_status & RTC_TIMER_ON) {
765 rtc_status &= ~RTC_TIMER_ON;
766 del_timer(&rtc_irq_timer);
768 spin_unlock_irq(&rtc_lock);
770 if (file->f_flags & FASYNC) {
771 rtc_fasync (-1, file, 0);
773 no_irq:
774 #endif
776 spin_lock_irq (&rtc_lock);
777 rtc_irq_data = 0;
778 rtc_status &= ~RTC_IS_OPEN;
779 spin_unlock_irq (&rtc_lock);
780 return 0;
783 #ifdef RTC_IRQ
784 /* Called without the kernel lock - fine */
785 static unsigned int rtc_poll(struct file *file, poll_table *wait)
787 unsigned long l;
789 if (rtc_has_irq == 0)
790 return 0;
792 poll_wait(file, &rtc_wait, wait);
794 spin_lock_irq (&rtc_lock);
795 l = rtc_irq_data;
796 spin_unlock_irq (&rtc_lock);
798 if (l != 0)
799 return POLLIN | POLLRDNORM;
800 return 0;
802 #endif
805 * exported stuffs
808 EXPORT_SYMBOL(rtc_register);
809 EXPORT_SYMBOL(rtc_unregister);
810 EXPORT_SYMBOL(rtc_control);
812 int rtc_register(rtc_task_t *task)
814 #ifndef RTC_IRQ
815 return -EIO;
816 #else
817 if (task == NULL || task->func == NULL)
818 return -EINVAL;
819 spin_lock_irq(&rtc_lock);
820 if (rtc_status & RTC_IS_OPEN) {
821 spin_unlock_irq(&rtc_lock);
822 return -EBUSY;
824 spin_lock(&rtc_task_lock);
825 if (rtc_callback) {
826 spin_unlock(&rtc_task_lock);
827 spin_unlock_irq(&rtc_lock);
828 return -EBUSY;
830 rtc_status |= RTC_IS_OPEN;
831 rtc_callback = task;
832 spin_unlock(&rtc_task_lock);
833 spin_unlock_irq(&rtc_lock);
834 return 0;
835 #endif
838 int rtc_unregister(rtc_task_t *task)
840 #ifndef RTC_IRQ
841 return -EIO;
842 #else
843 unsigned char tmp;
845 spin_lock_irq(&rtc_lock);
846 spin_lock(&rtc_task_lock);
847 if (rtc_callback != task) {
848 spin_unlock(&rtc_task_lock);
849 spin_unlock_irq(&rtc_lock);
850 return -ENXIO;
852 rtc_callback = NULL;
854 /* disable controls */
855 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
856 tmp = CMOS_READ(RTC_CONTROL);
857 tmp &= ~RTC_PIE;
858 tmp &= ~RTC_AIE;
859 tmp &= ~RTC_UIE;
860 CMOS_WRITE(tmp, RTC_CONTROL);
861 CMOS_READ(RTC_INTR_FLAGS);
863 if (rtc_status & RTC_TIMER_ON) {
864 rtc_status &= ~RTC_TIMER_ON;
865 del_timer(&rtc_irq_timer);
867 rtc_status &= ~RTC_IS_OPEN;
868 spin_unlock(&rtc_task_lock);
869 spin_unlock_irq(&rtc_lock);
870 return 0;
871 #endif
874 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
876 #ifndef RTC_IRQ
877 return -EIO;
878 #else
879 unsigned long flags;
880 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
881 return -EINVAL;
882 spin_lock_irqsave(&rtc_task_lock, flags);
883 if (rtc_callback != task) {
884 spin_unlock_irqrestore(&rtc_task_lock, flags);
885 return -ENXIO;
887 spin_unlock_irqrestore(&rtc_task_lock, flags);
888 return rtc_do_ioctl(cmd, arg, 1);
889 #endif
894 * The various file operations we support.
897 static const struct file_operations rtc_fops = {
898 .owner = THIS_MODULE,
899 .llseek = no_llseek,
900 .read = rtc_read,
901 #ifdef RTC_IRQ
902 .poll = rtc_poll,
903 #endif
904 .ioctl = rtc_ioctl,
905 .open = rtc_open,
906 .release = rtc_release,
907 .fasync = rtc_fasync,
910 static struct miscdevice rtc_dev = {
911 .minor = RTC_MINOR,
912 .name = "rtc",
913 .fops = &rtc_fops,
916 #ifdef CONFIG_PROC_FS
917 static const struct file_operations rtc_proc_fops = {
918 .owner = THIS_MODULE,
919 .open = rtc_proc_open,
920 .read = seq_read,
921 .llseek = seq_lseek,
922 .release = single_release,
924 #endif
926 static int __init rtc_init(void)
928 #ifdef CONFIG_PROC_FS
929 struct proc_dir_entry *ent;
930 #endif
931 #if defined(__alpha__) || defined(__mips__)
932 unsigned int year, ctrl;
933 char *guess = NULL;
934 #endif
935 #ifdef __sparc__
936 struct linux_ebus *ebus;
937 struct linux_ebus_device *edev;
938 #ifdef __sparc_v9__
939 struct sparc_isa_bridge *isa_br;
940 struct sparc_isa_device *isa_dev;
941 #endif
942 #else
943 void *r;
944 #ifdef RTC_IRQ
945 irq_handler_t rtc_int_handler_ptr;
946 #endif
947 #endif
949 #ifdef __sparc__
950 for_each_ebus(ebus) {
951 for_each_ebusdev(edev, ebus) {
952 if(strcmp(edev->prom_node->name, "rtc") == 0) {
953 rtc_port = edev->resource[0].start;
954 rtc_irq = edev->irqs[0];
955 goto found;
959 #ifdef __sparc_v9__
960 for_each_isa(isa_br) {
961 for_each_isadev(isa_dev, isa_br) {
962 if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
963 rtc_port = isa_dev->resource.start;
964 rtc_irq = isa_dev->irq;
965 goto found;
969 #endif
970 rtc_has_irq = 0;
971 printk(KERN_ERR "rtc_init: no PC rtc found\n");
972 return -EIO;
974 found:
975 if (rtc_irq == PCI_IRQ_NONE) {
976 rtc_has_irq = 0;
977 goto no_irq;
981 * XXX Interrupt pin #7 in Espresso is shared between RTC and
982 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
984 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
985 rtc_has_irq = 0;
986 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
987 return -EIO;
989 no_irq:
990 #else
991 if (RTC_IOMAPPED)
992 r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
993 else
994 r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
995 if (!r) {
996 #ifdef RTC_IRQ
997 rtc_has_irq = 0;
998 #endif
999 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1000 (long)(RTC_PORT(0)));
1001 return -EIO;
1004 #ifdef RTC_IRQ
1005 if (is_hpet_enabled()) {
1006 rtc_int_handler_ptr = hpet_rtc_interrupt;
1007 } else {
1008 rtc_int_handler_ptr = rtc_interrupt;
1011 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
1012 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1013 rtc_has_irq = 0;
1014 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1015 if (RTC_IOMAPPED)
1016 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1017 else
1018 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1019 return -EIO;
1021 hpet_rtc_timer_init();
1023 #endif
1025 #endif /* __sparc__ vs. others */
1027 if (misc_register(&rtc_dev)) {
1028 #ifdef RTC_IRQ
1029 free_irq(RTC_IRQ, NULL);
1030 rtc_has_irq = 0;
1031 #endif
1032 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1033 return -ENODEV;
1036 #ifdef CONFIG_PROC_FS
1037 ent = create_proc_entry("driver/rtc", 0, NULL);
1038 if (ent)
1039 ent->proc_fops = &rtc_proc_fops;
1040 else
1041 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1042 #endif
1044 #if defined(__alpha__) || defined(__mips__)
1045 rtc_freq = HZ;
1047 /* Each operating system on an Alpha uses its own epoch.
1048 Let's try to guess which one we are using now. */
1050 if (rtc_is_updating() != 0)
1051 msleep(20);
1053 spin_lock_irq(&rtc_lock);
1054 year = CMOS_READ(RTC_YEAR);
1055 ctrl = CMOS_READ(RTC_CONTROL);
1056 spin_unlock_irq(&rtc_lock);
1058 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1059 BCD_TO_BIN(year); /* This should never happen... */
1061 if (year < 20) {
1062 epoch = 2000;
1063 guess = "SRM (post-2000)";
1064 } else if (year >= 20 && year < 48) {
1065 epoch = 1980;
1066 guess = "ARC console";
1067 } else if (year >= 48 && year < 72) {
1068 epoch = 1952;
1069 guess = "Digital UNIX";
1070 #if defined(__mips__)
1071 } else if (year >= 72 && year < 74) {
1072 epoch = 2000;
1073 guess = "Digital DECstation";
1074 #else
1075 } else if (year >= 70) {
1076 epoch = 1900;
1077 guess = "Standard PC (1900)";
1078 #endif
1080 if (guess)
1081 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1082 #endif
1083 #ifdef RTC_IRQ
1084 if (rtc_has_irq == 0)
1085 goto no_irq2;
1087 init_timer(&rtc_irq_timer);
1088 rtc_irq_timer.function = rtc_dropped_irq;
1089 spin_lock_irq(&rtc_lock);
1090 rtc_freq = 1024;
1091 if (!hpet_set_periodic_freq(rtc_freq)) {
1092 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1093 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1095 spin_unlock_irq(&rtc_lock);
1096 no_irq2:
1097 #endif
1099 (void) init_sysctl();
1101 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1103 return 0;
1106 static void __exit rtc_exit (void)
1108 cleanup_sysctl();
1109 remove_proc_entry ("driver/rtc", NULL);
1110 misc_deregister(&rtc_dev);
1112 #ifdef __sparc__
1113 if (rtc_has_irq)
1114 free_irq (rtc_irq, &rtc_port);
1115 #else
1116 if (RTC_IOMAPPED)
1117 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1118 else
1119 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1120 #ifdef RTC_IRQ
1121 if (rtc_has_irq)
1122 free_irq (RTC_IRQ, NULL);
1123 #endif
1124 #endif /* __sparc__ */
1127 module_init(rtc_init);
1128 module_exit(rtc_exit);
1130 #ifdef RTC_IRQ
1132 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1133 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1134 * Since the interrupt handler doesn't get called, the IRQ status
1135 * byte doesn't get read, and the RTC stops generating interrupts.
1136 * A timer is set, and will call this function if/when that happens.
1137 * To get it out of this stalled state, we just read the status.
1138 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1139 * (You *really* shouldn't be trying to use a non-realtime system
1140 * for something that requires a steady > 1KHz signal anyways.)
1143 static void rtc_dropped_irq(unsigned long data)
1145 unsigned long freq;
1147 spin_lock_irq (&rtc_lock);
1149 if (hpet_rtc_dropped_irq()) {
1150 spin_unlock_irq(&rtc_lock);
1151 return;
1154 /* Just in case someone disabled the timer from behind our back... */
1155 if (rtc_status & RTC_TIMER_ON)
1156 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1158 rtc_irq_data += ((rtc_freq/HZ)<<8);
1159 rtc_irq_data &= ~0xff;
1160 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1162 freq = rtc_freq;
1164 spin_unlock_irq(&rtc_lock);
1166 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1168 /* Now we have new data */
1169 wake_up_interruptible(&rtc_wait);
1171 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1173 #endif
1175 #ifdef CONFIG_PROC_FS
1177 * Info exported via "/proc/driver/rtc".
1180 static int rtc_proc_show(struct seq_file *seq, void *v)
1182 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1183 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1184 struct rtc_time tm;
1185 unsigned char batt, ctrl;
1186 unsigned long freq;
1188 spin_lock_irq(&rtc_lock);
1189 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1190 ctrl = CMOS_READ(RTC_CONTROL);
1191 freq = rtc_freq;
1192 spin_unlock_irq(&rtc_lock);
1195 rtc_get_rtc_time(&tm);
1198 * There is no way to tell if the luser has the RTC set for local
1199 * time or for Universal Standard Time (GMT). Probably local though.
1201 seq_printf(seq,
1202 "rtc_time\t: %02d:%02d:%02d\n"
1203 "rtc_date\t: %04d-%02d-%02d\n"
1204 "rtc_epoch\t: %04lu\n",
1205 tm.tm_hour, tm.tm_min, tm.tm_sec,
1206 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1208 get_rtc_alm_time(&tm);
1211 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1212 * match any value for that particular field. Values that are
1213 * greater than a valid time, but less than 0xc0 shouldn't appear.
1215 seq_puts(seq, "alarm\t\t: ");
1216 if (tm.tm_hour <= 24)
1217 seq_printf(seq, "%02d:", tm.tm_hour);
1218 else
1219 seq_puts(seq, "**:");
1221 if (tm.tm_min <= 59)
1222 seq_printf(seq, "%02d:", tm.tm_min);
1223 else
1224 seq_puts(seq, "**:");
1226 if (tm.tm_sec <= 59)
1227 seq_printf(seq, "%02d\n", tm.tm_sec);
1228 else
1229 seq_puts(seq, "**\n");
1231 seq_printf(seq,
1232 "DST_enable\t: %s\n"
1233 "BCD\t\t: %s\n"
1234 "24hr\t\t: %s\n"
1235 "square_wave\t: %s\n"
1236 "alarm_IRQ\t: %s\n"
1237 "update_IRQ\t: %s\n"
1238 "periodic_IRQ\t: %s\n"
1239 "periodic_freq\t: %ld\n"
1240 "batt_status\t: %s\n",
1241 YN(RTC_DST_EN),
1242 NY(RTC_DM_BINARY),
1243 YN(RTC_24H),
1244 YN(RTC_SQWE),
1245 YN(RTC_AIE),
1246 YN(RTC_UIE),
1247 YN(RTC_PIE),
1248 freq,
1249 batt ? "okay" : "dead");
1251 return 0;
1252 #undef YN
1253 #undef NY
1256 static int rtc_proc_open(struct inode *inode, struct file *file)
1258 return single_open(file, rtc_proc_show, NULL);
1260 #endif
1262 void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1264 unsigned long uip_watchdog = jiffies, flags;
1265 unsigned char ctrl;
1266 #ifdef CONFIG_MACH_DECSTATION
1267 unsigned int real_year;
1268 #endif
1271 * read RTC once any update in progress is done. The update
1272 * can take just over 2ms. We wait 20ms. There is no need to
1273 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1274 * If you need to know *exactly* when a second has started, enable
1275 * periodic update complete interrupts, (via ioctl) and then
1276 * immediately read /dev/rtc which will block until you get the IRQ.
1277 * Once the read clears, read the RTC time (again via ioctl). Easy.
1280 while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1281 cpu_relax();
1284 * Only the values that we read from the RTC are set. We leave
1285 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1286 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1287 * only updated by the RTC when initially set to a non-zero value.
1289 spin_lock_irqsave(&rtc_lock, flags);
1290 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1291 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1292 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1293 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1294 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1295 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1296 /* Only set from 2.6.16 onwards */
1297 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1299 #ifdef CONFIG_MACH_DECSTATION
1300 real_year = CMOS_READ(RTC_DEC_YEAR);
1301 #endif
1302 ctrl = CMOS_READ(RTC_CONTROL);
1303 spin_unlock_irqrestore(&rtc_lock, flags);
1305 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1307 BCD_TO_BIN(rtc_tm->tm_sec);
1308 BCD_TO_BIN(rtc_tm->tm_min);
1309 BCD_TO_BIN(rtc_tm->tm_hour);
1310 BCD_TO_BIN(rtc_tm->tm_mday);
1311 BCD_TO_BIN(rtc_tm->tm_mon);
1312 BCD_TO_BIN(rtc_tm->tm_year);
1313 BCD_TO_BIN(rtc_tm->tm_wday);
1316 #ifdef CONFIG_MACH_DECSTATION
1317 rtc_tm->tm_year += real_year - 72;
1318 #endif
1321 * Account for differences between how the RTC uses the values
1322 * and how they are defined in a struct rtc_time;
1324 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1325 rtc_tm->tm_year += 100;
1327 rtc_tm->tm_mon--;
1330 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1332 unsigned char ctrl;
1335 * Only the values that we read from the RTC are set. That
1336 * means only tm_hour, tm_min, and tm_sec.
1338 spin_lock_irq(&rtc_lock);
1339 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1340 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1341 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1342 ctrl = CMOS_READ(RTC_CONTROL);
1343 spin_unlock_irq(&rtc_lock);
1345 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1347 BCD_TO_BIN(alm_tm->tm_sec);
1348 BCD_TO_BIN(alm_tm->tm_min);
1349 BCD_TO_BIN(alm_tm->tm_hour);
1353 #ifdef RTC_IRQ
1355 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1356 * Rumour has it that if you frob the interrupt enable/disable
1357 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1358 * ensure you actually start getting interrupts. Probably for
1359 * compatibility with older/broken chipset RTC implementations.
1360 * We also clear out any old irq data after an ioctl() that
1361 * meddles with the interrupt enable/disable bits.
1364 static void mask_rtc_irq_bit_locked(unsigned char bit)
1366 unsigned char val;
1368 if (hpet_mask_rtc_irq_bit(bit))
1369 return;
1370 val = CMOS_READ(RTC_CONTROL);
1371 val &= ~bit;
1372 CMOS_WRITE(val, RTC_CONTROL);
1373 CMOS_READ(RTC_INTR_FLAGS);
1375 rtc_irq_data = 0;
1378 static void set_rtc_irq_bit_locked(unsigned char bit)
1380 unsigned char val;
1382 if (hpet_set_rtc_irq_bit(bit))
1383 return;
1384 val = CMOS_READ(RTC_CONTROL);
1385 val |= bit;
1386 CMOS_WRITE(val, RTC_CONTROL);
1387 CMOS_READ(RTC_INTR_FLAGS);
1389 rtc_irq_data = 0;
1391 #endif
1393 MODULE_AUTHOR("Paul Gortmaker");
1394 MODULE_LICENSE("GPL");
1395 MODULE_ALIAS_MISCDEV(RTC_MINOR);