md/raid1: delay reads that could overtake behind-writes.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blob52c6b5fa4f13de146cffa4b0730fbb08b9de1d28
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
62 struct pool_info *pi = data;
63 r1bio_t *r1_bio;
64 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
67 r1_bio = kzalloc(size, gfp_flags);
68 if (!r1_bio && pi->mddev)
69 unplug_slaves(pi->mddev);
71 return r1_bio;
74 static void r1bio_pool_free(void *r1_bio, void *data)
76 kfree(r1_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
87 struct pool_info *pi = data;
88 struct page *page;
89 r1bio_t *r1_bio;
90 struct bio *bio;
91 int i, j;
93 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 if (!r1_bio) {
95 unplug_slaves(pi->mddev);
96 return NULL;
100 * Allocate bios : 1 for reading, n-1 for writing
102 for (j = pi->raid_disks ; j-- ; ) {
103 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 if (!bio)
105 goto out_free_bio;
106 r1_bio->bios[j] = bio;
109 * Allocate RESYNC_PAGES data pages and attach them to
110 * the first bio.
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 j = pi->raid_disks;
116 else
117 j = 1;
118 while(j--) {
119 bio = r1_bio->bios[j];
120 for (i = 0; i < RESYNC_PAGES; i++) {
121 page = alloc_page(gfp_flags);
122 if (unlikely(!page))
123 goto out_free_pages;
125 bio->bi_io_vec[i].bv_page = page;
126 bio->bi_vcnt = i+1;
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
137 r1_bio->master_bio = NULL;
139 return r1_bio;
141 out_free_pages:
142 for (j=0 ; j < pi->raid_disks; j++)
143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 j = -1;
146 out_free_bio:
147 while ( ++j < pi->raid_disks )
148 bio_put(r1_bio->bios[j]);
149 r1bio_pool_free(r1_bio, data);
150 return NULL;
153 static void r1buf_pool_free(void *__r1_bio, void *data)
155 struct pool_info *pi = data;
156 int i,j;
157 r1bio_t *r1bio = __r1_bio;
159 for (i = 0; i < RESYNC_PAGES; i++)
160 for (j = pi->raid_disks; j-- ;) {
161 if (j == 0 ||
162 r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 r1bio->bios[0]->bi_io_vec[i].bv_page)
164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
166 for (i=0 ; i < pi->raid_disks; i++)
167 bio_put(r1bio->bios[i]);
169 r1bio_pool_free(r1bio, data);
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
174 int i;
176 for (i = 0; i < conf->raid_disks; i++) {
177 struct bio **bio = r1_bio->bios + i;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r1bio(r1bio_t *r1_bio)
186 conf_t *conf = r1_bio->mddev->private;
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r1_bio);
195 mempool_free(r1_bio, conf->r1bio_pool);
198 static void put_buf(r1bio_t *r1_bio)
200 conf_t *conf = r1_bio->mddev->private;
201 int i;
203 for (i=0; i<conf->raid_disks; i++) {
204 struct bio *bio = r1_bio->bios[i];
205 if (bio->bi_end_io)
206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
209 mempool_free(r1_bio, conf->r1buf_pool);
211 lower_barrier(conf);
214 static void reschedule_retry(r1bio_t *r1_bio)
216 unsigned long flags;
217 mddev_t *mddev = r1_bio->mddev;
218 conf_t *conf = mddev->private;
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r1_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
225 wake_up(&conf->wait_barrier);
226 md_wakeup_thread(mddev->thread);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
234 static void raid_end_bio_io(r1bio_t *r1_bio)
236 struct bio *bio = r1_bio->master_bio;
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio) == WRITE) ? "write" : "read",
242 (unsigned long long) bio->bi_sector,
243 (unsigned long long) bio->bi_sector +
244 (bio->bi_size >> 9) - 1);
246 bio_endio(bio,
247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
249 free_r1bio(r1_bio);
253 * Update disk head position estimator based on IRQ completion info.
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
257 conf_t *conf = r1_bio->mddev->private;
259 conf->mirrors[disk].head_position =
260 r1_bio->sector + (r1_bio->sectors);
263 static void raid1_end_read_request(struct bio *bio, int error)
265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
267 int mirror;
268 conf_t *conf = r1_bio->mddev->private;
270 mirror = r1_bio->read_disk;
272 * this branch is our 'one mirror IO has finished' event handler:
274 update_head_pos(mirror, r1_bio);
276 if (uptodate)
277 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 else {
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
283 unsigned long flags;
284 spin_lock_irqsave(&conf->device_lock, flags);
285 if (r1_bio->mddev->degraded == conf->raid_disks ||
286 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 uptodate = 1;
289 spin_unlock_irqrestore(&conf->device_lock, flags);
292 if (uptodate)
293 raid_end_bio_io(r1_bio);
294 else {
296 * oops, read error:
298 char b[BDEVNAME_SIZE];
299 if (printk_ratelimit())
300 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
301 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
302 reschedule_retry(r1_bio);
305 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
308 static void raid1_end_write_request(struct bio *bio, int error)
310 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
311 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
312 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
313 conf_t *conf = r1_bio->mddev->private;
314 struct bio *to_put = NULL;
317 for (mirror = 0; mirror < conf->raid_disks; mirror++)
318 if (r1_bio->bios[mirror] == bio)
319 break;
321 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
322 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
323 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
324 r1_bio->mddev->barriers_work = 0;
325 /* Don't rdev_dec_pending in this branch - keep it for the retry */
326 } else {
328 * this branch is our 'one mirror IO has finished' event handler:
330 r1_bio->bios[mirror] = NULL;
331 to_put = bio;
332 if (!uptodate) {
333 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
334 /* an I/O failed, we can't clear the bitmap */
335 set_bit(R1BIO_Degraded, &r1_bio->state);
336 } else
338 * Set R1BIO_Uptodate in our master bio, so that
339 * we will return a good error code for to the higher
340 * levels even if IO on some other mirrored buffer fails.
342 * The 'master' represents the composite IO operation to
343 * user-side. So if something waits for IO, then it will
344 * wait for the 'master' bio.
346 set_bit(R1BIO_Uptodate, &r1_bio->state);
348 update_head_pos(mirror, r1_bio);
350 if (behind) {
351 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
352 atomic_dec(&r1_bio->behind_remaining);
354 /* In behind mode, we ACK the master bio once the I/O has safely
355 * reached all non-writemostly disks. Setting the Returned bit
356 * ensures that this gets done only once -- we don't ever want to
357 * return -EIO here, instead we'll wait */
359 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
360 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
361 /* Maybe we can return now */
362 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
363 struct bio *mbio = r1_bio->master_bio;
364 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
365 (unsigned long long) mbio->bi_sector,
366 (unsigned long long) mbio->bi_sector +
367 (mbio->bi_size >> 9) - 1);
368 bio_endio(mbio, 0);
372 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
376 * Let's see if all mirrored write operations have finished
377 * already.
379 if (atomic_dec_and_test(&r1_bio->remaining)) {
380 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
381 reschedule_retry(r1_bio);
382 else {
383 /* it really is the end of this request */
384 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
385 /* free extra copy of the data pages */
386 int i = bio->bi_vcnt;
387 while (i--)
388 safe_put_page(bio->bi_io_vec[i].bv_page);
390 /* clear the bitmap if all writes complete successfully */
391 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
392 r1_bio->sectors,
393 !test_bit(R1BIO_Degraded, &r1_bio->state),
394 behind);
395 md_write_end(r1_bio->mddev);
396 raid_end_bio_io(r1_bio);
400 if (to_put)
401 bio_put(to_put);
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
417 * The rdev for the device selected will have nr_pending incremented.
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 const sector_t this_sector = r1_bio->sector;
422 int new_disk = conf->last_used, disk = new_disk;
423 int wonly_disk = -1;
424 const int sectors = r1_bio->sectors;
425 sector_t new_distance, current_distance;
426 mdk_rdev_t *rdev;
428 rcu_read_lock();
430 * Check if we can balance. We can balance on the whole
431 * device if no resync is going on, or below the resync window.
432 * We take the first readable disk when above the resync window.
434 retry:
435 if (conf->mddev->recovery_cp < MaxSector &&
436 (this_sector + sectors >= conf->next_resync)) {
437 /* Choose the first operational device, for consistancy */
438 new_disk = 0;
440 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
441 r1_bio->bios[new_disk] == IO_BLOCKED ||
442 !rdev || !test_bit(In_sync, &rdev->flags)
443 || test_bit(WriteMostly, &rdev->flags);
444 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446 if (rdev && test_bit(In_sync, &rdev->flags) &&
447 r1_bio->bios[new_disk] != IO_BLOCKED)
448 wonly_disk = new_disk;
450 if (new_disk == conf->raid_disks - 1) {
451 new_disk = wonly_disk;
452 break;
455 goto rb_out;
459 /* make sure the disk is operational */
460 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
461 r1_bio->bios[new_disk] == IO_BLOCKED ||
462 !rdev || !test_bit(In_sync, &rdev->flags) ||
463 test_bit(WriteMostly, &rdev->flags);
464 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466 if (rdev && test_bit(In_sync, &rdev->flags) &&
467 r1_bio->bios[new_disk] != IO_BLOCKED)
468 wonly_disk = new_disk;
470 if (new_disk <= 0)
471 new_disk = conf->raid_disks;
472 new_disk--;
473 if (new_disk == disk) {
474 new_disk = wonly_disk;
475 break;
479 if (new_disk < 0)
480 goto rb_out;
482 disk = new_disk;
483 /* now disk == new_disk == starting point for search */
486 * Don't change to another disk for sequential reads:
488 if (conf->next_seq_sect == this_sector)
489 goto rb_out;
490 if (this_sector == conf->mirrors[new_disk].head_position)
491 goto rb_out;
493 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495 /* Find the disk whose head is closest */
497 do {
498 if (disk <= 0)
499 disk = conf->raid_disks;
500 disk--;
502 rdev = rcu_dereference(conf->mirrors[disk].rdev);
504 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
505 !test_bit(In_sync, &rdev->flags) ||
506 test_bit(WriteMostly, &rdev->flags))
507 continue;
509 if (!atomic_read(&rdev->nr_pending)) {
510 new_disk = disk;
511 break;
513 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
514 if (new_distance < current_distance) {
515 current_distance = new_distance;
516 new_disk = disk;
518 } while (disk != conf->last_used);
520 rb_out:
523 if (new_disk >= 0) {
524 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
525 if (!rdev)
526 goto retry;
527 atomic_inc(&rdev->nr_pending);
528 if (!test_bit(In_sync, &rdev->flags)) {
529 /* cannot risk returning a device that failed
530 * before we inc'ed nr_pending
532 rdev_dec_pending(rdev, conf->mddev);
533 goto retry;
535 conf->next_seq_sect = this_sector + sectors;
536 conf->last_used = new_disk;
538 rcu_read_unlock();
540 return new_disk;
543 static void unplug_slaves(mddev_t *mddev)
545 conf_t *conf = mddev->private;
546 int i;
548 rcu_read_lock();
549 for (i=0; i<mddev->raid_disks; i++) {
550 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
551 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
552 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
554 atomic_inc(&rdev->nr_pending);
555 rcu_read_unlock();
557 blk_unplug(r_queue);
559 rdev_dec_pending(rdev, mddev);
560 rcu_read_lock();
563 rcu_read_unlock();
566 static void raid1_unplug(struct request_queue *q)
568 mddev_t *mddev = q->queuedata;
570 unplug_slaves(mddev);
571 md_wakeup_thread(mddev->thread);
574 static int raid1_congested(void *data, int bits)
576 mddev_t *mddev = data;
577 conf_t *conf = mddev->private;
578 int i, ret = 0;
580 if (mddev_congested(mddev, bits))
581 return 1;
583 rcu_read_lock();
584 for (i = 0; i < mddev->raid_disks; i++) {
585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 if (rdev && !test_bit(Faulty, &rdev->flags)) {
587 struct request_queue *q = bdev_get_queue(rdev->bdev);
589 /* Note the '|| 1' - when read_balance prefers
590 * non-congested targets, it can be removed
592 if ((bits & (1<<BDI_async_congested)) || 1)
593 ret |= bdi_congested(&q->backing_dev_info, bits);
594 else
595 ret &= bdi_congested(&q->backing_dev_info, bits);
598 rcu_read_unlock();
599 return ret;
603 static int flush_pending_writes(conf_t *conf)
605 /* Any writes that have been queued but are awaiting
606 * bitmap updates get flushed here.
607 * We return 1 if any requests were actually submitted.
609 int rv = 0;
611 spin_lock_irq(&conf->device_lock);
613 if (conf->pending_bio_list.head) {
614 struct bio *bio;
615 bio = bio_list_get(&conf->pending_bio_list);
616 blk_remove_plug(conf->mddev->queue);
617 spin_unlock_irq(&conf->device_lock);
618 /* flush any pending bitmap writes to
619 * disk before proceeding w/ I/O */
620 bitmap_unplug(conf->mddev->bitmap);
622 while (bio) { /* submit pending writes */
623 struct bio *next = bio->bi_next;
624 bio->bi_next = NULL;
625 generic_make_request(bio);
626 bio = next;
628 rv = 1;
629 } else
630 spin_unlock_irq(&conf->device_lock);
631 return rv;
634 /* Barriers....
635 * Sometimes we need to suspend IO while we do something else,
636 * either some resync/recovery, or reconfigure the array.
637 * To do this we raise a 'barrier'.
638 * The 'barrier' is a counter that can be raised multiple times
639 * to count how many activities are happening which preclude
640 * normal IO.
641 * We can only raise the barrier if there is no pending IO.
642 * i.e. if nr_pending == 0.
643 * We choose only to raise the barrier if no-one is waiting for the
644 * barrier to go down. This means that as soon as an IO request
645 * is ready, no other operations which require a barrier will start
646 * until the IO request has had a chance.
648 * So: regular IO calls 'wait_barrier'. When that returns there
649 * is no backgroup IO happening, It must arrange to call
650 * allow_barrier when it has finished its IO.
651 * backgroup IO calls must call raise_barrier. Once that returns
652 * there is no normal IO happeing. It must arrange to call
653 * lower_barrier when the particular background IO completes.
655 #define RESYNC_DEPTH 32
657 static void raise_barrier(conf_t *conf)
659 spin_lock_irq(&conf->resync_lock);
661 /* Wait until no block IO is waiting */
662 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
663 conf->resync_lock,
664 raid1_unplug(conf->mddev->queue));
666 /* block any new IO from starting */
667 conf->barrier++;
669 /* No wait for all pending IO to complete */
670 wait_event_lock_irq(conf->wait_barrier,
671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
672 conf->resync_lock,
673 raid1_unplug(conf->mddev->queue));
675 spin_unlock_irq(&conf->resync_lock);
678 static void lower_barrier(conf_t *conf)
680 unsigned long flags;
681 BUG_ON(conf->barrier <= 0);
682 spin_lock_irqsave(&conf->resync_lock, flags);
683 conf->barrier--;
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
688 static void wait_barrier(conf_t *conf)
690 spin_lock_irq(&conf->resync_lock);
691 if (conf->barrier) {
692 conf->nr_waiting++;
693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 conf->resync_lock,
695 raid1_unplug(conf->mddev->queue));
696 conf->nr_waiting--;
698 conf->nr_pending++;
699 spin_unlock_irq(&conf->resync_lock);
702 static void allow_barrier(conf_t *conf)
704 unsigned long flags;
705 spin_lock_irqsave(&conf->resync_lock, flags);
706 conf->nr_pending--;
707 spin_unlock_irqrestore(&conf->resync_lock, flags);
708 wake_up(&conf->wait_barrier);
711 static void freeze_array(conf_t *conf)
713 /* stop syncio and normal IO and wait for everything to
714 * go quite.
715 * We increment barrier and nr_waiting, and then
716 * wait until nr_pending match nr_queued+1
717 * This is called in the context of one normal IO request
718 * that has failed. Thus any sync request that might be pending
719 * will be blocked by nr_pending, and we need to wait for
720 * pending IO requests to complete or be queued for re-try.
721 * Thus the number queued (nr_queued) plus this request (1)
722 * must match the number of pending IOs (nr_pending) before
723 * we continue.
725 spin_lock_irq(&conf->resync_lock);
726 conf->barrier++;
727 conf->nr_waiting++;
728 wait_event_lock_irq(conf->wait_barrier,
729 conf->nr_pending == conf->nr_queued+1,
730 conf->resync_lock,
731 ({ flush_pending_writes(conf);
732 raid1_unplug(conf->mddev->queue); }));
733 spin_unlock_irq(&conf->resync_lock);
735 static void unfreeze_array(conf_t *conf)
737 /* reverse the effect of the freeze */
738 spin_lock_irq(&conf->resync_lock);
739 conf->barrier--;
740 conf->nr_waiting--;
741 wake_up(&conf->wait_barrier);
742 spin_unlock_irq(&conf->resync_lock);
746 /* duplicate the data pages for behind I/O */
747 static struct page **alloc_behind_pages(struct bio *bio)
749 int i;
750 struct bio_vec *bvec;
751 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
752 GFP_NOIO);
753 if (unlikely(!pages))
754 goto do_sync_io;
756 bio_for_each_segment(bvec, bio, i) {
757 pages[i] = alloc_page(GFP_NOIO);
758 if (unlikely(!pages[i]))
759 goto do_sync_io;
760 memcpy(kmap(pages[i]) + bvec->bv_offset,
761 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
762 kunmap(pages[i]);
763 kunmap(bvec->bv_page);
766 return pages;
768 do_sync_io:
769 if (pages)
770 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
771 put_page(pages[i]);
772 kfree(pages);
773 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
774 return NULL;
777 static int make_request(struct request_queue *q, struct bio * bio)
779 mddev_t *mddev = q->queuedata;
780 conf_t *conf = mddev->private;
781 mirror_info_t *mirror;
782 r1bio_t *r1_bio;
783 struct bio *read_bio;
784 int i, targets = 0, disks;
785 struct bitmap *bitmap;
786 unsigned long flags;
787 struct bio_list bl;
788 struct page **behind_pages = NULL;
789 const int rw = bio_data_dir(bio);
790 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
791 int cpu;
792 bool do_barriers;
793 mdk_rdev_t *blocked_rdev;
796 * Register the new request and wait if the reconstruction
797 * thread has put up a bar for new requests.
798 * Continue immediately if no resync is active currently.
799 * We test barriers_work *after* md_write_start as md_write_start
800 * may cause the first superblock write, and that will check out
801 * if barriers work.
804 md_write_start(mddev, bio); /* wait on superblock update early */
806 if (bio_data_dir(bio) == WRITE &&
807 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
808 bio->bi_sector < mddev->suspend_hi) {
809 /* As the suspend_* range is controlled by
810 * userspace, we want an interruptible
811 * wait.
813 DEFINE_WAIT(w);
814 for (;;) {
815 flush_signals(current);
816 prepare_to_wait(&conf->wait_barrier,
817 &w, TASK_INTERRUPTIBLE);
818 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
819 bio->bi_sector >= mddev->suspend_hi)
820 break;
821 schedule();
823 finish_wait(&conf->wait_barrier, &w);
825 if (unlikely(!mddev->barriers_work &&
826 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
827 if (rw == WRITE)
828 md_write_end(mddev);
829 bio_endio(bio, -EOPNOTSUPP);
830 return 0;
833 wait_barrier(conf);
835 bitmap = mddev->bitmap;
837 cpu = part_stat_lock();
838 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
839 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
840 bio_sectors(bio));
841 part_stat_unlock();
844 * make_request() can abort the operation when READA is being
845 * used and no empty request is available.
848 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
850 r1_bio->master_bio = bio;
851 r1_bio->sectors = bio->bi_size >> 9;
852 r1_bio->state = 0;
853 r1_bio->mddev = mddev;
854 r1_bio->sector = bio->bi_sector;
856 if (rw == READ) {
858 * read balancing logic:
860 int rdisk = read_balance(conf, r1_bio);
862 if (rdisk < 0) {
863 /* couldn't find anywhere to read from */
864 raid_end_bio_io(r1_bio);
865 return 0;
867 mirror = conf->mirrors + rdisk;
869 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
870 bitmap) {
871 /* Reading from a write-mostly device must
872 * take care not to over-take any writes
873 * that are 'behind'
875 wait_event(bitmap->behind_wait,
876 atomic_read(&bitmap->behind_writes) == 0);
878 r1_bio->read_disk = rdisk;
880 read_bio = bio_clone(bio, GFP_NOIO);
882 r1_bio->bios[rdisk] = read_bio;
884 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
885 read_bio->bi_bdev = mirror->rdev->bdev;
886 read_bio->bi_end_io = raid1_end_read_request;
887 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
888 read_bio->bi_private = r1_bio;
890 generic_make_request(read_bio);
891 return 0;
895 * WRITE:
897 /* first select target devices under spinlock and
898 * inc refcount on their rdev. Record them by setting
899 * bios[x] to bio
901 disks = conf->raid_disks;
902 #if 0
903 { static int first=1;
904 if (first) printk("First Write sector %llu disks %d\n",
905 (unsigned long long)r1_bio->sector, disks);
906 first = 0;
908 #endif
909 retry_write:
910 blocked_rdev = NULL;
911 rcu_read_lock();
912 for (i = 0; i < disks; i++) {
913 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
914 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
915 atomic_inc(&rdev->nr_pending);
916 blocked_rdev = rdev;
917 break;
919 if (rdev && !test_bit(Faulty, &rdev->flags)) {
920 atomic_inc(&rdev->nr_pending);
921 if (test_bit(Faulty, &rdev->flags)) {
922 rdev_dec_pending(rdev, mddev);
923 r1_bio->bios[i] = NULL;
924 } else {
925 r1_bio->bios[i] = bio;
926 targets++;
928 } else
929 r1_bio->bios[i] = NULL;
931 rcu_read_unlock();
933 if (unlikely(blocked_rdev)) {
934 /* Wait for this device to become unblocked */
935 int j;
937 for (j = 0; j < i; j++)
938 if (r1_bio->bios[j])
939 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
941 allow_barrier(conf);
942 md_wait_for_blocked_rdev(blocked_rdev, mddev);
943 wait_barrier(conf);
944 goto retry_write;
947 BUG_ON(targets == 0); /* we never fail the last device */
949 if (targets < conf->raid_disks) {
950 /* array is degraded, we will not clear the bitmap
951 * on I/O completion (see raid1_end_write_request) */
952 set_bit(R1BIO_Degraded, &r1_bio->state);
955 /* do behind I/O ?
956 * Not if there are too many, or cannot allocate memory,
957 * or a reader on WriteMostly is waiting for behind writes
958 * to flush */
959 if (bitmap &&
960 (atomic_read(&bitmap->behind_writes)
961 < mddev->bitmap_info.max_write_behind) &&
962 !waitqueue_active(&bitmap->behind_wait) &&
963 (behind_pages = alloc_behind_pages(bio)) != NULL)
964 set_bit(R1BIO_BehindIO, &r1_bio->state);
966 atomic_set(&r1_bio->remaining, 0);
967 atomic_set(&r1_bio->behind_remaining, 0);
969 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
970 if (do_barriers)
971 set_bit(R1BIO_Barrier, &r1_bio->state);
973 bio_list_init(&bl);
974 for (i = 0; i < disks; i++) {
975 struct bio *mbio;
976 if (!r1_bio->bios[i])
977 continue;
979 mbio = bio_clone(bio, GFP_NOIO);
980 r1_bio->bios[i] = mbio;
982 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
983 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
984 mbio->bi_end_io = raid1_end_write_request;
985 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
986 (do_sync << BIO_RW_SYNCIO);
987 mbio->bi_private = r1_bio;
989 if (behind_pages) {
990 struct bio_vec *bvec;
991 int j;
993 /* Yes, I really want the '__' version so that
994 * we clear any unused pointer in the io_vec, rather
995 * than leave them unchanged. This is important
996 * because when we come to free the pages, we won't
997 * know the originial bi_idx, so we just free
998 * them all
1000 __bio_for_each_segment(bvec, mbio, j, 0)
1001 bvec->bv_page = behind_pages[j];
1002 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1003 atomic_inc(&r1_bio->behind_remaining);
1006 atomic_inc(&r1_bio->remaining);
1008 bio_list_add(&bl, mbio);
1010 kfree(behind_pages); /* the behind pages are attached to the bios now */
1012 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
1013 test_bit(R1BIO_BehindIO, &r1_bio->state));
1014 spin_lock_irqsave(&conf->device_lock, flags);
1015 bio_list_merge(&conf->pending_bio_list, &bl);
1016 bio_list_init(&bl);
1018 blk_plug_device(mddev->queue);
1019 spin_unlock_irqrestore(&conf->device_lock, flags);
1021 /* In case raid1d snuck into freeze_array */
1022 wake_up(&conf->wait_barrier);
1024 if (do_sync)
1025 md_wakeup_thread(mddev->thread);
1026 #if 0
1027 while ((bio = bio_list_pop(&bl)) != NULL)
1028 generic_make_request(bio);
1029 #endif
1031 return 0;
1034 static void status(struct seq_file *seq, mddev_t *mddev)
1036 conf_t *conf = mddev->private;
1037 int i;
1039 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1040 conf->raid_disks - mddev->degraded);
1041 rcu_read_lock();
1042 for (i = 0; i < conf->raid_disks; i++) {
1043 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1044 seq_printf(seq, "%s",
1045 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1047 rcu_read_unlock();
1048 seq_printf(seq, "]");
1052 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1054 char b[BDEVNAME_SIZE];
1055 conf_t *conf = mddev->private;
1058 * If it is not operational, then we have already marked it as dead
1059 * else if it is the last working disks, ignore the error, let the
1060 * next level up know.
1061 * else mark the drive as failed
1063 if (test_bit(In_sync, &rdev->flags)
1064 && (conf->raid_disks - mddev->degraded) == 1) {
1066 * Don't fail the drive, act as though we were just a
1067 * normal single drive.
1068 * However don't try a recovery from this drive as
1069 * it is very likely to fail.
1071 mddev->recovery_disabled = 1;
1072 return;
1074 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1075 unsigned long flags;
1076 spin_lock_irqsave(&conf->device_lock, flags);
1077 mddev->degraded++;
1078 set_bit(Faulty, &rdev->flags);
1079 spin_unlock_irqrestore(&conf->device_lock, flags);
1081 * if recovery is running, make sure it aborts.
1083 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1084 } else
1085 set_bit(Faulty, &rdev->flags);
1086 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1087 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1088 "raid1: Operation continuing on %d devices.\n",
1089 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1092 static void print_conf(conf_t *conf)
1094 int i;
1096 printk("RAID1 conf printout:\n");
1097 if (!conf) {
1098 printk("(!conf)\n");
1099 return;
1101 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1102 conf->raid_disks);
1104 rcu_read_lock();
1105 for (i = 0; i < conf->raid_disks; i++) {
1106 char b[BDEVNAME_SIZE];
1107 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1108 if (rdev)
1109 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1110 i, !test_bit(In_sync, &rdev->flags),
1111 !test_bit(Faulty, &rdev->flags),
1112 bdevname(rdev->bdev,b));
1114 rcu_read_unlock();
1117 static void close_sync(conf_t *conf)
1119 wait_barrier(conf);
1120 allow_barrier(conf);
1122 mempool_destroy(conf->r1buf_pool);
1123 conf->r1buf_pool = NULL;
1126 static int raid1_spare_active(mddev_t *mddev)
1128 int i;
1129 conf_t *conf = mddev->private;
1132 * Find all failed disks within the RAID1 configuration
1133 * and mark them readable.
1134 * Called under mddev lock, so rcu protection not needed.
1136 for (i = 0; i < conf->raid_disks; i++) {
1137 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1138 if (rdev
1139 && !test_bit(Faulty, &rdev->flags)
1140 && !test_and_set_bit(In_sync, &rdev->flags)) {
1141 unsigned long flags;
1142 spin_lock_irqsave(&conf->device_lock, flags);
1143 mddev->degraded--;
1144 spin_unlock_irqrestore(&conf->device_lock, flags);
1148 print_conf(conf);
1149 return 0;
1153 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1155 conf_t *conf = mddev->private;
1156 int err = -EEXIST;
1157 int mirror = 0;
1158 mirror_info_t *p;
1159 int first = 0;
1160 int last = mddev->raid_disks - 1;
1162 if (rdev->raid_disk >= 0)
1163 first = last = rdev->raid_disk;
1165 for (mirror = first; mirror <= last; mirror++)
1166 if ( !(p=conf->mirrors+mirror)->rdev) {
1168 disk_stack_limits(mddev->gendisk, rdev->bdev,
1169 rdev->data_offset << 9);
1170 /* as we don't honour merge_bvec_fn, we must
1171 * never risk violating it, so limit
1172 * ->max_segments to one lying with a single
1173 * page, as a one page request is never in
1174 * violation.
1176 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1177 blk_queue_max_segments(mddev->queue, 1);
1178 blk_queue_segment_boundary(mddev->queue,
1179 PAGE_CACHE_SIZE - 1);
1182 p->head_position = 0;
1183 rdev->raid_disk = mirror;
1184 err = 0;
1185 /* As all devices are equivalent, we don't need a full recovery
1186 * if this was recently any drive of the array
1188 if (rdev->saved_raid_disk < 0)
1189 conf->fullsync = 1;
1190 rcu_assign_pointer(p->rdev, rdev);
1191 break;
1193 md_integrity_add_rdev(rdev, mddev);
1194 print_conf(conf);
1195 return err;
1198 static int raid1_remove_disk(mddev_t *mddev, int number)
1200 conf_t *conf = mddev->private;
1201 int err = 0;
1202 mdk_rdev_t *rdev;
1203 mirror_info_t *p = conf->mirrors+ number;
1205 print_conf(conf);
1206 rdev = p->rdev;
1207 if (rdev) {
1208 if (test_bit(In_sync, &rdev->flags) ||
1209 atomic_read(&rdev->nr_pending)) {
1210 err = -EBUSY;
1211 goto abort;
1213 /* Only remove non-faulty devices is recovery
1214 * is not possible.
1216 if (!test_bit(Faulty, &rdev->flags) &&
1217 mddev->degraded < conf->raid_disks) {
1218 err = -EBUSY;
1219 goto abort;
1221 p->rdev = NULL;
1222 synchronize_rcu();
1223 if (atomic_read(&rdev->nr_pending)) {
1224 /* lost the race, try later */
1225 err = -EBUSY;
1226 p->rdev = rdev;
1227 goto abort;
1229 md_integrity_register(mddev);
1231 abort:
1233 print_conf(conf);
1234 return err;
1238 static void end_sync_read(struct bio *bio, int error)
1240 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1241 int i;
1243 for (i=r1_bio->mddev->raid_disks; i--; )
1244 if (r1_bio->bios[i] == bio)
1245 break;
1246 BUG_ON(i < 0);
1247 update_head_pos(i, r1_bio);
1249 * we have read a block, now it needs to be re-written,
1250 * or re-read if the read failed.
1251 * We don't do much here, just schedule handling by raid1d
1253 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1254 set_bit(R1BIO_Uptodate, &r1_bio->state);
1256 if (atomic_dec_and_test(&r1_bio->remaining))
1257 reschedule_retry(r1_bio);
1260 static void end_sync_write(struct bio *bio, int error)
1262 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1263 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1264 mddev_t *mddev = r1_bio->mddev;
1265 conf_t *conf = mddev->private;
1266 int i;
1267 int mirror=0;
1269 for (i = 0; i < conf->raid_disks; i++)
1270 if (r1_bio->bios[i] == bio) {
1271 mirror = i;
1272 break;
1274 if (!uptodate) {
1275 int sync_blocks = 0;
1276 sector_t s = r1_bio->sector;
1277 long sectors_to_go = r1_bio->sectors;
1278 /* make sure these bits doesn't get cleared. */
1279 do {
1280 bitmap_end_sync(mddev->bitmap, s,
1281 &sync_blocks, 1);
1282 s += sync_blocks;
1283 sectors_to_go -= sync_blocks;
1284 } while (sectors_to_go > 0);
1285 md_error(mddev, conf->mirrors[mirror].rdev);
1288 update_head_pos(mirror, r1_bio);
1290 if (atomic_dec_and_test(&r1_bio->remaining)) {
1291 sector_t s = r1_bio->sectors;
1292 put_buf(r1_bio);
1293 md_done_sync(mddev, s, uptodate);
1297 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1299 conf_t *conf = mddev->private;
1300 int i;
1301 int disks = conf->raid_disks;
1302 struct bio *bio, *wbio;
1304 bio = r1_bio->bios[r1_bio->read_disk];
1307 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1308 /* We have read all readable devices. If we haven't
1309 * got the block, then there is no hope left.
1310 * If we have, then we want to do a comparison
1311 * and skip the write if everything is the same.
1312 * If any blocks failed to read, then we need to
1313 * attempt an over-write
1315 int primary;
1316 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1317 for (i=0; i<mddev->raid_disks; i++)
1318 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1319 md_error(mddev, conf->mirrors[i].rdev);
1321 md_done_sync(mddev, r1_bio->sectors, 1);
1322 put_buf(r1_bio);
1323 return;
1325 for (primary=0; primary<mddev->raid_disks; primary++)
1326 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1327 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1328 r1_bio->bios[primary]->bi_end_io = NULL;
1329 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1330 break;
1332 r1_bio->read_disk = primary;
1333 for (i=0; i<mddev->raid_disks; i++)
1334 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1335 int j;
1336 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1337 struct bio *pbio = r1_bio->bios[primary];
1338 struct bio *sbio = r1_bio->bios[i];
1340 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1341 for (j = vcnt; j-- ; ) {
1342 struct page *p, *s;
1343 p = pbio->bi_io_vec[j].bv_page;
1344 s = sbio->bi_io_vec[j].bv_page;
1345 if (memcmp(page_address(p),
1346 page_address(s),
1347 PAGE_SIZE))
1348 break;
1350 } else
1351 j = 0;
1352 if (j >= 0)
1353 mddev->resync_mismatches += r1_bio->sectors;
1354 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1355 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1356 sbio->bi_end_io = NULL;
1357 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1358 } else {
1359 /* fixup the bio for reuse */
1360 int size;
1361 sbio->bi_vcnt = vcnt;
1362 sbio->bi_size = r1_bio->sectors << 9;
1363 sbio->bi_idx = 0;
1364 sbio->bi_phys_segments = 0;
1365 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1366 sbio->bi_flags |= 1 << BIO_UPTODATE;
1367 sbio->bi_next = NULL;
1368 sbio->bi_sector = r1_bio->sector +
1369 conf->mirrors[i].rdev->data_offset;
1370 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1371 size = sbio->bi_size;
1372 for (j = 0; j < vcnt ; j++) {
1373 struct bio_vec *bi;
1374 bi = &sbio->bi_io_vec[j];
1375 bi->bv_offset = 0;
1376 if (size > PAGE_SIZE)
1377 bi->bv_len = PAGE_SIZE;
1378 else
1379 bi->bv_len = size;
1380 size -= PAGE_SIZE;
1381 memcpy(page_address(bi->bv_page),
1382 page_address(pbio->bi_io_vec[j].bv_page),
1383 PAGE_SIZE);
1389 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1390 /* ouch - failed to read all of that.
1391 * Try some synchronous reads of other devices to get
1392 * good data, much like with normal read errors. Only
1393 * read into the pages we already have so we don't
1394 * need to re-issue the read request.
1395 * We don't need to freeze the array, because being in an
1396 * active sync request, there is no normal IO, and
1397 * no overlapping syncs.
1399 sector_t sect = r1_bio->sector;
1400 int sectors = r1_bio->sectors;
1401 int idx = 0;
1403 while(sectors) {
1404 int s = sectors;
1405 int d = r1_bio->read_disk;
1406 int success = 0;
1407 mdk_rdev_t *rdev;
1409 if (s > (PAGE_SIZE>>9))
1410 s = PAGE_SIZE >> 9;
1411 do {
1412 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1413 /* No rcu protection needed here devices
1414 * can only be removed when no resync is
1415 * active, and resync is currently active
1417 rdev = conf->mirrors[d].rdev;
1418 if (sync_page_io(rdev->bdev,
1419 sect + rdev->data_offset,
1420 s<<9,
1421 bio->bi_io_vec[idx].bv_page,
1422 READ)) {
1423 success = 1;
1424 break;
1427 d++;
1428 if (d == conf->raid_disks)
1429 d = 0;
1430 } while (!success && d != r1_bio->read_disk);
1432 if (success) {
1433 int start = d;
1434 /* write it back and re-read */
1435 set_bit(R1BIO_Uptodate, &r1_bio->state);
1436 while (d != r1_bio->read_disk) {
1437 if (d == 0)
1438 d = conf->raid_disks;
1439 d--;
1440 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1441 continue;
1442 rdev = conf->mirrors[d].rdev;
1443 atomic_add(s, &rdev->corrected_errors);
1444 if (sync_page_io(rdev->bdev,
1445 sect + rdev->data_offset,
1446 s<<9,
1447 bio->bi_io_vec[idx].bv_page,
1448 WRITE) == 0)
1449 md_error(mddev, rdev);
1451 d = start;
1452 while (d != r1_bio->read_disk) {
1453 if (d == 0)
1454 d = conf->raid_disks;
1455 d--;
1456 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1457 continue;
1458 rdev = conf->mirrors[d].rdev;
1459 if (sync_page_io(rdev->bdev,
1460 sect + rdev->data_offset,
1461 s<<9,
1462 bio->bi_io_vec[idx].bv_page,
1463 READ) == 0)
1464 md_error(mddev, rdev);
1466 } else {
1467 char b[BDEVNAME_SIZE];
1468 /* Cannot read from anywhere, array is toast */
1469 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1470 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1471 " for block %llu\n",
1472 bdevname(bio->bi_bdev,b),
1473 (unsigned long long)r1_bio->sector);
1474 md_done_sync(mddev, r1_bio->sectors, 0);
1475 put_buf(r1_bio);
1476 return;
1478 sectors -= s;
1479 sect += s;
1480 idx ++;
1485 * schedule writes
1487 atomic_set(&r1_bio->remaining, 1);
1488 for (i = 0; i < disks ; i++) {
1489 wbio = r1_bio->bios[i];
1490 if (wbio->bi_end_io == NULL ||
1491 (wbio->bi_end_io == end_sync_read &&
1492 (i == r1_bio->read_disk ||
1493 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1494 continue;
1496 wbio->bi_rw = WRITE;
1497 wbio->bi_end_io = end_sync_write;
1498 atomic_inc(&r1_bio->remaining);
1499 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1501 generic_make_request(wbio);
1504 if (atomic_dec_and_test(&r1_bio->remaining)) {
1505 /* if we're here, all write(s) have completed, so clean up */
1506 md_done_sync(mddev, r1_bio->sectors, 1);
1507 put_buf(r1_bio);
1512 * This is a kernel thread which:
1514 * 1. Retries failed read operations on working mirrors.
1515 * 2. Updates the raid superblock when problems encounter.
1516 * 3. Performs writes following reads for array syncronising.
1519 static void fix_read_error(conf_t *conf, int read_disk,
1520 sector_t sect, int sectors)
1522 mddev_t *mddev = conf->mddev;
1523 while(sectors) {
1524 int s = sectors;
1525 int d = read_disk;
1526 int success = 0;
1527 int start;
1528 mdk_rdev_t *rdev;
1530 if (s > (PAGE_SIZE>>9))
1531 s = PAGE_SIZE >> 9;
1533 do {
1534 /* Note: no rcu protection needed here
1535 * as this is synchronous in the raid1d thread
1536 * which is the thread that might remove
1537 * a device. If raid1d ever becomes multi-threaded....
1539 rdev = conf->mirrors[d].rdev;
1540 if (rdev &&
1541 test_bit(In_sync, &rdev->flags) &&
1542 sync_page_io(rdev->bdev,
1543 sect + rdev->data_offset,
1544 s<<9,
1545 conf->tmppage, READ))
1546 success = 1;
1547 else {
1548 d++;
1549 if (d == conf->raid_disks)
1550 d = 0;
1552 } while (!success && d != read_disk);
1554 if (!success) {
1555 /* Cannot read from anywhere -- bye bye array */
1556 md_error(mddev, conf->mirrors[read_disk].rdev);
1557 break;
1559 /* write it back and re-read */
1560 start = d;
1561 while (d != read_disk) {
1562 if (d==0)
1563 d = conf->raid_disks;
1564 d--;
1565 rdev = conf->mirrors[d].rdev;
1566 if (rdev &&
1567 test_bit(In_sync, &rdev->flags)) {
1568 if (sync_page_io(rdev->bdev,
1569 sect + rdev->data_offset,
1570 s<<9, conf->tmppage, WRITE)
1571 == 0)
1572 /* Well, this device is dead */
1573 md_error(mddev, rdev);
1576 d = start;
1577 while (d != read_disk) {
1578 char b[BDEVNAME_SIZE];
1579 if (d==0)
1580 d = conf->raid_disks;
1581 d--;
1582 rdev = conf->mirrors[d].rdev;
1583 if (rdev &&
1584 test_bit(In_sync, &rdev->flags)) {
1585 if (sync_page_io(rdev->bdev,
1586 sect + rdev->data_offset,
1587 s<<9, conf->tmppage, READ)
1588 == 0)
1589 /* Well, this device is dead */
1590 md_error(mddev, rdev);
1591 else {
1592 atomic_add(s, &rdev->corrected_errors);
1593 printk(KERN_INFO
1594 "raid1:%s: read error corrected "
1595 "(%d sectors at %llu on %s)\n",
1596 mdname(mddev), s,
1597 (unsigned long long)(sect +
1598 rdev->data_offset),
1599 bdevname(rdev->bdev, b));
1603 sectors -= s;
1604 sect += s;
1608 static void raid1d(mddev_t *mddev)
1610 r1bio_t *r1_bio;
1611 struct bio *bio;
1612 unsigned long flags;
1613 conf_t *conf = mddev->private;
1614 struct list_head *head = &conf->retry_list;
1615 int unplug=0;
1616 mdk_rdev_t *rdev;
1618 md_check_recovery(mddev);
1620 for (;;) {
1621 char b[BDEVNAME_SIZE];
1623 unplug += flush_pending_writes(conf);
1625 spin_lock_irqsave(&conf->device_lock, flags);
1626 if (list_empty(head)) {
1627 spin_unlock_irqrestore(&conf->device_lock, flags);
1628 break;
1630 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1631 list_del(head->prev);
1632 conf->nr_queued--;
1633 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 mddev = r1_bio->mddev;
1636 conf = mddev->private;
1637 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1638 sync_request_write(mddev, r1_bio);
1639 unplug = 1;
1640 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1641 /* some requests in the r1bio were BIO_RW_BARRIER
1642 * requests which failed with -EOPNOTSUPP. Hohumm..
1643 * Better resubmit without the barrier.
1644 * We know which devices to resubmit for, because
1645 * all others have had their bios[] entry cleared.
1646 * We already have a nr_pending reference on these rdevs.
1648 int i;
1649 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1650 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1651 clear_bit(R1BIO_Barrier, &r1_bio->state);
1652 for (i=0; i < conf->raid_disks; i++)
1653 if (r1_bio->bios[i])
1654 atomic_inc(&r1_bio->remaining);
1655 for (i=0; i < conf->raid_disks; i++)
1656 if (r1_bio->bios[i]) {
1657 struct bio_vec *bvec;
1658 int j;
1660 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1661 /* copy pages from the failed bio, as
1662 * this might be a write-behind device */
1663 __bio_for_each_segment(bvec, bio, j, 0)
1664 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1665 bio_put(r1_bio->bios[i]);
1666 bio->bi_sector = r1_bio->sector +
1667 conf->mirrors[i].rdev->data_offset;
1668 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1669 bio->bi_end_io = raid1_end_write_request;
1670 bio->bi_rw = WRITE |
1671 (do_sync << BIO_RW_SYNCIO);
1672 bio->bi_private = r1_bio;
1673 r1_bio->bios[i] = bio;
1674 generic_make_request(bio);
1676 } else {
1677 int disk;
1679 /* we got a read error. Maybe the drive is bad. Maybe just
1680 * the block and we can fix it.
1681 * We freeze all other IO, and try reading the block from
1682 * other devices. When we find one, we re-write
1683 * and check it that fixes the read error.
1684 * This is all done synchronously while the array is
1685 * frozen
1687 if (mddev->ro == 0) {
1688 freeze_array(conf);
1689 fix_read_error(conf, r1_bio->read_disk,
1690 r1_bio->sector,
1691 r1_bio->sectors);
1692 unfreeze_array(conf);
1693 } else
1694 md_error(mddev,
1695 conf->mirrors[r1_bio->read_disk].rdev);
1697 bio = r1_bio->bios[r1_bio->read_disk];
1698 if ((disk=read_balance(conf, r1_bio)) == -1) {
1699 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1700 " read error for block %llu\n",
1701 bdevname(bio->bi_bdev,b),
1702 (unsigned long long)r1_bio->sector);
1703 raid_end_bio_io(r1_bio);
1704 } else {
1705 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1706 r1_bio->bios[r1_bio->read_disk] =
1707 mddev->ro ? IO_BLOCKED : NULL;
1708 r1_bio->read_disk = disk;
1709 bio_put(bio);
1710 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1711 r1_bio->bios[r1_bio->read_disk] = bio;
1712 rdev = conf->mirrors[disk].rdev;
1713 if (printk_ratelimit())
1714 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1715 " another mirror\n",
1716 bdevname(rdev->bdev,b),
1717 (unsigned long long)r1_bio->sector);
1718 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1719 bio->bi_bdev = rdev->bdev;
1720 bio->bi_end_io = raid1_end_read_request;
1721 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1722 bio->bi_private = r1_bio;
1723 unplug = 1;
1724 generic_make_request(bio);
1727 cond_resched();
1729 if (unplug)
1730 unplug_slaves(mddev);
1734 static int init_resync(conf_t *conf)
1736 int buffs;
1738 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1739 BUG_ON(conf->r1buf_pool);
1740 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1741 conf->poolinfo);
1742 if (!conf->r1buf_pool)
1743 return -ENOMEM;
1744 conf->next_resync = 0;
1745 return 0;
1749 * perform a "sync" on one "block"
1751 * We need to make sure that no normal I/O request - particularly write
1752 * requests - conflict with active sync requests.
1754 * This is achieved by tracking pending requests and a 'barrier' concept
1755 * that can be installed to exclude normal IO requests.
1758 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1760 conf_t *conf = mddev->private;
1761 r1bio_t *r1_bio;
1762 struct bio *bio;
1763 sector_t max_sector, nr_sectors;
1764 int disk = -1;
1765 int i;
1766 int wonly = -1;
1767 int write_targets = 0, read_targets = 0;
1768 int sync_blocks;
1769 int still_degraded = 0;
1771 if (!conf->r1buf_pool)
1774 printk("sync start - bitmap %p\n", mddev->bitmap);
1776 if (init_resync(conf))
1777 return 0;
1780 max_sector = mddev->dev_sectors;
1781 if (sector_nr >= max_sector) {
1782 /* If we aborted, we need to abort the
1783 * sync on the 'current' bitmap chunk (there will
1784 * only be one in raid1 resync.
1785 * We can find the current addess in mddev->curr_resync
1787 if (mddev->curr_resync < max_sector) /* aborted */
1788 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1789 &sync_blocks, 1);
1790 else /* completed sync */
1791 conf->fullsync = 0;
1793 bitmap_close_sync(mddev->bitmap);
1794 close_sync(conf);
1795 return 0;
1798 if (mddev->bitmap == NULL &&
1799 mddev->recovery_cp == MaxSector &&
1800 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1801 conf->fullsync == 0) {
1802 *skipped = 1;
1803 return max_sector - sector_nr;
1805 /* before building a request, check if we can skip these blocks..
1806 * This call the bitmap_start_sync doesn't actually record anything
1808 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1809 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1810 /* We can skip this block, and probably several more */
1811 *skipped = 1;
1812 return sync_blocks;
1815 * If there is non-resync activity waiting for a turn,
1816 * and resync is going fast enough,
1817 * then let it though before starting on this new sync request.
1819 if (!go_faster && conf->nr_waiting)
1820 msleep_interruptible(1000);
1822 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1823 raise_barrier(conf);
1825 conf->next_resync = sector_nr;
1827 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1828 rcu_read_lock();
1830 * If we get a correctably read error during resync or recovery,
1831 * we might want to read from a different device. So we
1832 * flag all drives that could conceivably be read from for READ,
1833 * and any others (which will be non-In_sync devices) for WRITE.
1834 * If a read fails, we try reading from something else for which READ
1835 * is OK.
1838 r1_bio->mddev = mddev;
1839 r1_bio->sector = sector_nr;
1840 r1_bio->state = 0;
1841 set_bit(R1BIO_IsSync, &r1_bio->state);
1843 for (i=0; i < conf->raid_disks; i++) {
1844 mdk_rdev_t *rdev;
1845 bio = r1_bio->bios[i];
1847 /* take from bio_init */
1848 bio->bi_next = NULL;
1849 bio->bi_flags |= 1 << BIO_UPTODATE;
1850 bio->bi_rw = READ;
1851 bio->bi_vcnt = 0;
1852 bio->bi_idx = 0;
1853 bio->bi_phys_segments = 0;
1854 bio->bi_size = 0;
1855 bio->bi_end_io = NULL;
1856 bio->bi_private = NULL;
1858 rdev = rcu_dereference(conf->mirrors[i].rdev);
1859 if (rdev == NULL ||
1860 test_bit(Faulty, &rdev->flags)) {
1861 still_degraded = 1;
1862 continue;
1863 } else if (!test_bit(In_sync, &rdev->flags)) {
1864 bio->bi_rw = WRITE;
1865 bio->bi_end_io = end_sync_write;
1866 write_targets ++;
1867 } else {
1868 /* may need to read from here */
1869 bio->bi_rw = READ;
1870 bio->bi_end_io = end_sync_read;
1871 if (test_bit(WriteMostly, &rdev->flags)) {
1872 if (wonly < 0)
1873 wonly = i;
1874 } else {
1875 if (disk < 0)
1876 disk = i;
1878 read_targets++;
1880 atomic_inc(&rdev->nr_pending);
1881 bio->bi_sector = sector_nr + rdev->data_offset;
1882 bio->bi_bdev = rdev->bdev;
1883 bio->bi_private = r1_bio;
1885 rcu_read_unlock();
1886 if (disk < 0)
1887 disk = wonly;
1888 r1_bio->read_disk = disk;
1890 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1891 /* extra read targets are also write targets */
1892 write_targets += read_targets-1;
1894 if (write_targets == 0 || read_targets == 0) {
1895 /* There is nowhere to write, so all non-sync
1896 * drives must be failed - so we are finished
1898 sector_t rv = max_sector - sector_nr;
1899 *skipped = 1;
1900 put_buf(r1_bio);
1901 return rv;
1904 if (max_sector > mddev->resync_max)
1905 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1906 nr_sectors = 0;
1907 sync_blocks = 0;
1908 do {
1909 struct page *page;
1910 int len = PAGE_SIZE;
1911 if (sector_nr + (len>>9) > max_sector)
1912 len = (max_sector - sector_nr) << 9;
1913 if (len == 0)
1914 break;
1915 if (sync_blocks == 0) {
1916 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1917 &sync_blocks, still_degraded) &&
1918 !conf->fullsync &&
1919 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1920 break;
1921 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1922 if (len > (sync_blocks<<9))
1923 len = sync_blocks<<9;
1926 for (i=0 ; i < conf->raid_disks; i++) {
1927 bio = r1_bio->bios[i];
1928 if (bio->bi_end_io) {
1929 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1930 if (bio_add_page(bio, page, len, 0) == 0) {
1931 /* stop here */
1932 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1933 while (i > 0) {
1934 i--;
1935 bio = r1_bio->bios[i];
1936 if (bio->bi_end_io==NULL)
1937 continue;
1938 /* remove last page from this bio */
1939 bio->bi_vcnt--;
1940 bio->bi_size -= len;
1941 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1943 goto bio_full;
1947 nr_sectors += len>>9;
1948 sector_nr += len>>9;
1949 sync_blocks -= (len>>9);
1950 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1951 bio_full:
1952 r1_bio->sectors = nr_sectors;
1954 /* For a user-requested sync, we read all readable devices and do a
1955 * compare
1957 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1958 atomic_set(&r1_bio->remaining, read_targets);
1959 for (i=0; i<conf->raid_disks; i++) {
1960 bio = r1_bio->bios[i];
1961 if (bio->bi_end_io == end_sync_read) {
1962 md_sync_acct(bio->bi_bdev, nr_sectors);
1963 generic_make_request(bio);
1966 } else {
1967 atomic_set(&r1_bio->remaining, 1);
1968 bio = r1_bio->bios[r1_bio->read_disk];
1969 md_sync_acct(bio->bi_bdev, nr_sectors);
1970 generic_make_request(bio);
1973 return nr_sectors;
1976 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1978 if (sectors)
1979 return sectors;
1981 return mddev->dev_sectors;
1984 static conf_t *setup_conf(mddev_t *mddev)
1986 conf_t *conf;
1987 int i;
1988 mirror_info_t *disk;
1989 mdk_rdev_t *rdev;
1990 int err = -ENOMEM;
1992 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1993 if (!conf)
1994 goto abort;
1996 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1997 GFP_KERNEL);
1998 if (!conf->mirrors)
1999 goto abort;
2001 conf->tmppage = alloc_page(GFP_KERNEL);
2002 if (!conf->tmppage)
2003 goto abort;
2005 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2006 if (!conf->poolinfo)
2007 goto abort;
2008 conf->poolinfo->raid_disks = mddev->raid_disks;
2009 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2010 r1bio_pool_free,
2011 conf->poolinfo);
2012 if (!conf->r1bio_pool)
2013 goto abort;
2015 conf->poolinfo->mddev = mddev;
2017 spin_lock_init(&conf->device_lock);
2018 list_for_each_entry(rdev, &mddev->disks, same_set) {
2019 int disk_idx = rdev->raid_disk;
2020 if (disk_idx >= mddev->raid_disks
2021 || disk_idx < 0)
2022 continue;
2023 disk = conf->mirrors + disk_idx;
2025 disk->rdev = rdev;
2027 disk->head_position = 0;
2029 conf->raid_disks = mddev->raid_disks;
2030 conf->mddev = mddev;
2031 INIT_LIST_HEAD(&conf->retry_list);
2033 spin_lock_init(&conf->resync_lock);
2034 init_waitqueue_head(&conf->wait_barrier);
2036 bio_list_init(&conf->pending_bio_list);
2037 bio_list_init(&conf->flushing_bio_list);
2039 conf->last_used = -1;
2040 for (i = 0; i < conf->raid_disks; i++) {
2042 disk = conf->mirrors + i;
2044 if (!disk->rdev ||
2045 !test_bit(In_sync, &disk->rdev->flags)) {
2046 disk->head_position = 0;
2047 if (disk->rdev)
2048 conf->fullsync = 1;
2049 } else if (conf->last_used < 0)
2051 * The first working device is used as a
2052 * starting point to read balancing.
2054 conf->last_used = i;
2057 err = -EIO;
2058 if (conf->last_used < 0) {
2059 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2060 mdname(mddev));
2061 goto abort;
2063 err = -ENOMEM;
2064 conf->thread = md_register_thread(raid1d, mddev, NULL);
2065 if (!conf->thread) {
2066 printk(KERN_ERR
2067 "raid1: couldn't allocate thread for %s\n",
2068 mdname(mddev));
2069 goto abort;
2072 return conf;
2074 abort:
2075 if (conf) {
2076 if (conf->r1bio_pool)
2077 mempool_destroy(conf->r1bio_pool);
2078 kfree(conf->mirrors);
2079 safe_put_page(conf->tmppage);
2080 kfree(conf->poolinfo);
2081 kfree(conf);
2083 return ERR_PTR(err);
2086 static int run(mddev_t *mddev)
2088 conf_t *conf;
2089 int i;
2090 mdk_rdev_t *rdev;
2092 if (mddev->level != 1) {
2093 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2094 mdname(mddev), mddev->level);
2095 return -EIO;
2097 if (mddev->reshape_position != MaxSector) {
2098 printk("raid1: %s: reshape_position set but not supported\n",
2099 mdname(mddev));
2100 return -EIO;
2103 * copy the already verified devices into our private RAID1
2104 * bookkeeping area. [whatever we allocate in run(),
2105 * should be freed in stop()]
2107 if (mddev->private == NULL)
2108 conf = setup_conf(mddev);
2109 else
2110 conf = mddev->private;
2112 if (IS_ERR(conf))
2113 return PTR_ERR(conf);
2115 mddev->queue->queue_lock = &conf->device_lock;
2116 list_for_each_entry(rdev, &mddev->disks, same_set) {
2117 disk_stack_limits(mddev->gendisk, rdev->bdev,
2118 rdev->data_offset << 9);
2119 /* as we don't honour merge_bvec_fn, we must never risk
2120 * violating it, so limit ->max_segments to 1 lying within
2121 * a single page, as a one page request is never in violation.
2123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2124 blk_queue_max_segments(mddev->queue, 1);
2125 blk_queue_segment_boundary(mddev->queue,
2126 PAGE_CACHE_SIZE - 1);
2130 mddev->degraded = 0;
2131 for (i=0; i < conf->raid_disks; i++)
2132 if (conf->mirrors[i].rdev == NULL ||
2133 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2134 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2135 mddev->degraded++;
2137 if (conf->raid_disks - mddev->degraded == 1)
2138 mddev->recovery_cp = MaxSector;
2140 if (mddev->recovery_cp != MaxSector)
2141 printk(KERN_NOTICE "raid1: %s is not clean"
2142 " -- starting background reconstruction\n",
2143 mdname(mddev));
2144 printk(KERN_INFO
2145 "raid1: raid set %s active with %d out of %d mirrors\n",
2146 mdname(mddev), mddev->raid_disks - mddev->degraded,
2147 mddev->raid_disks);
2150 * Ok, everything is just fine now
2152 mddev->thread = conf->thread;
2153 conf->thread = NULL;
2154 mddev->private = conf;
2156 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2158 mddev->queue->unplug_fn = raid1_unplug;
2159 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2160 mddev->queue->backing_dev_info.congested_data = mddev;
2161 md_integrity_register(mddev);
2162 return 0;
2165 static int stop(mddev_t *mddev)
2167 conf_t *conf = mddev->private;
2168 struct bitmap *bitmap = mddev->bitmap;
2170 /* wait for behind writes to complete */
2171 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2172 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop.\n", mdname(mddev));
2173 /* need to kick something here to make sure I/O goes? */
2174 wait_event(bitmap->behind_wait,
2175 atomic_read(&bitmap->behind_writes) == 0);
2178 raise_barrier(conf);
2179 lower_barrier(conf);
2181 md_unregister_thread(mddev->thread);
2182 mddev->thread = NULL;
2183 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2184 if (conf->r1bio_pool)
2185 mempool_destroy(conf->r1bio_pool);
2186 kfree(conf->mirrors);
2187 kfree(conf->poolinfo);
2188 kfree(conf);
2189 mddev->private = NULL;
2190 return 0;
2193 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2195 /* no resync is happening, and there is enough space
2196 * on all devices, so we can resize.
2197 * We need to make sure resync covers any new space.
2198 * If the array is shrinking we should possibly wait until
2199 * any io in the removed space completes, but it hardly seems
2200 * worth it.
2202 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2203 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2204 return -EINVAL;
2205 set_capacity(mddev->gendisk, mddev->array_sectors);
2206 mddev->changed = 1;
2207 revalidate_disk(mddev->gendisk);
2208 if (sectors > mddev->dev_sectors &&
2209 mddev->recovery_cp == MaxSector) {
2210 mddev->recovery_cp = mddev->dev_sectors;
2211 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2213 mddev->dev_sectors = sectors;
2214 mddev->resync_max_sectors = sectors;
2215 return 0;
2218 static int raid1_reshape(mddev_t *mddev)
2220 /* We need to:
2221 * 1/ resize the r1bio_pool
2222 * 2/ resize conf->mirrors
2224 * We allocate a new r1bio_pool if we can.
2225 * Then raise a device barrier and wait until all IO stops.
2226 * Then resize conf->mirrors and swap in the new r1bio pool.
2228 * At the same time, we "pack" the devices so that all the missing
2229 * devices have the higher raid_disk numbers.
2231 mempool_t *newpool, *oldpool;
2232 struct pool_info *newpoolinfo;
2233 mirror_info_t *newmirrors;
2234 conf_t *conf = mddev->private;
2235 int cnt, raid_disks;
2236 unsigned long flags;
2237 int d, d2, err;
2239 /* Cannot change chunk_size, layout, or level */
2240 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2241 mddev->layout != mddev->new_layout ||
2242 mddev->level != mddev->new_level) {
2243 mddev->new_chunk_sectors = mddev->chunk_sectors;
2244 mddev->new_layout = mddev->layout;
2245 mddev->new_level = mddev->level;
2246 return -EINVAL;
2249 err = md_allow_write(mddev);
2250 if (err)
2251 return err;
2253 raid_disks = mddev->raid_disks + mddev->delta_disks;
2255 if (raid_disks < conf->raid_disks) {
2256 cnt=0;
2257 for (d= 0; d < conf->raid_disks; d++)
2258 if (conf->mirrors[d].rdev)
2259 cnt++;
2260 if (cnt > raid_disks)
2261 return -EBUSY;
2264 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2265 if (!newpoolinfo)
2266 return -ENOMEM;
2267 newpoolinfo->mddev = mddev;
2268 newpoolinfo->raid_disks = raid_disks;
2270 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2271 r1bio_pool_free, newpoolinfo);
2272 if (!newpool) {
2273 kfree(newpoolinfo);
2274 return -ENOMEM;
2276 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2277 if (!newmirrors) {
2278 kfree(newpoolinfo);
2279 mempool_destroy(newpool);
2280 return -ENOMEM;
2283 raise_barrier(conf);
2285 /* ok, everything is stopped */
2286 oldpool = conf->r1bio_pool;
2287 conf->r1bio_pool = newpool;
2289 for (d = d2 = 0; d < conf->raid_disks; d++) {
2290 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2291 if (rdev && rdev->raid_disk != d2) {
2292 char nm[20];
2293 sprintf(nm, "rd%d", rdev->raid_disk);
2294 sysfs_remove_link(&mddev->kobj, nm);
2295 rdev->raid_disk = d2;
2296 sprintf(nm, "rd%d", rdev->raid_disk);
2297 sysfs_remove_link(&mddev->kobj, nm);
2298 if (sysfs_create_link(&mddev->kobj,
2299 &rdev->kobj, nm))
2300 printk(KERN_WARNING
2301 "md/raid1: cannot register "
2302 "%s for %s\n",
2303 nm, mdname(mddev));
2305 if (rdev)
2306 newmirrors[d2++].rdev = rdev;
2308 kfree(conf->mirrors);
2309 conf->mirrors = newmirrors;
2310 kfree(conf->poolinfo);
2311 conf->poolinfo = newpoolinfo;
2313 spin_lock_irqsave(&conf->device_lock, flags);
2314 mddev->degraded += (raid_disks - conf->raid_disks);
2315 spin_unlock_irqrestore(&conf->device_lock, flags);
2316 conf->raid_disks = mddev->raid_disks = raid_disks;
2317 mddev->delta_disks = 0;
2319 conf->last_used = 0; /* just make sure it is in-range */
2320 lower_barrier(conf);
2322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2323 md_wakeup_thread(mddev->thread);
2325 mempool_destroy(oldpool);
2326 return 0;
2329 static void raid1_quiesce(mddev_t *mddev, int state)
2331 conf_t *conf = mddev->private;
2333 switch(state) {
2334 case 2: /* wake for suspend */
2335 wake_up(&conf->wait_barrier);
2336 break;
2337 case 1:
2338 raise_barrier(conf);
2339 break;
2340 case 0:
2341 lower_barrier(conf);
2342 break;
2346 static void *raid1_takeover(mddev_t *mddev)
2348 /* raid1 can take over:
2349 * raid5 with 2 devices, any layout or chunk size
2351 if (mddev->level == 5 && mddev->raid_disks == 2) {
2352 conf_t *conf;
2353 mddev->new_level = 1;
2354 mddev->new_layout = 0;
2355 mddev->new_chunk_sectors = 0;
2356 conf = setup_conf(mddev);
2357 if (!IS_ERR(conf))
2358 conf->barrier = 1;
2359 return conf;
2361 return ERR_PTR(-EINVAL);
2364 static struct mdk_personality raid1_personality =
2366 .name = "raid1",
2367 .level = 1,
2368 .owner = THIS_MODULE,
2369 .make_request = make_request,
2370 .run = run,
2371 .stop = stop,
2372 .status = status,
2373 .error_handler = error,
2374 .hot_add_disk = raid1_add_disk,
2375 .hot_remove_disk= raid1_remove_disk,
2376 .spare_active = raid1_spare_active,
2377 .sync_request = sync_request,
2378 .resize = raid1_resize,
2379 .size = raid1_size,
2380 .check_reshape = raid1_reshape,
2381 .quiesce = raid1_quiesce,
2382 .takeover = raid1_takeover,
2385 static int __init raid_init(void)
2387 return register_md_personality(&raid1_personality);
2390 static void raid_exit(void)
2392 unregister_md_personality(&raid1_personality);
2395 module_init(raid_init);
2396 module_exit(raid_exit);
2397 MODULE_LICENSE("GPL");
2398 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2399 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2400 MODULE_ALIAS("md-raid1");
2401 MODULE_ALIAS("md-level-1");