x86, 64-bit: adjust mapping of physical pagetables to work with Xen
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / init_64.c
blob363751dc3fb8bf2db8ab9ed5f47a923197083a7d
1 /*
2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
52 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53 * The direct mapping extends to max_pfn_mapped, so that we can directly access
54 * apertures, ACPI and other tables without having to play with fixmaps.
56 unsigned long max_pfn_mapped;
58 static unsigned long dma_reserve __initdata;
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64 = 1
65 #endif
68 static int __init parse_direct_gbpages_off(char *arg)
70 direct_gbpages = 0;
71 return 0;
73 early_param("nogbpages", parse_direct_gbpages_off);
75 static int __init parse_direct_gbpages_on(char *arg)
77 direct_gbpages = 1;
78 return 0;
80 early_param("gbpages", parse_direct_gbpages_on);
83 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84 * physical space so we can cache the place of the first one and move
85 * around without checking the pgd every time.
88 void show_mem(void)
90 long i, total = 0, reserved = 0;
91 long shared = 0, cached = 0;
92 struct page *page;
93 pg_data_t *pgdat;
95 printk(KERN_INFO "Mem-info:\n");
96 show_free_areas();
97 for_each_online_pgdat(pgdat) {
98 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
100 * This loop can take a while with 256 GB and
101 * 4k pages so defer the NMI watchdog:
103 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104 touch_nmi_watchdog();
106 if (!pfn_valid(pgdat->node_start_pfn + i))
107 continue;
109 page = pfn_to_page(pgdat->node_start_pfn + i);
110 total++;
111 if (PageReserved(page))
112 reserved++;
113 else if (PageSwapCache(page))
114 cached++;
115 else if (page_count(page))
116 shared += page_count(page) - 1;
119 printk(KERN_INFO "%lu pages of RAM\n", total);
120 printk(KERN_INFO "%lu reserved pages\n", reserved);
121 printk(KERN_INFO "%lu pages shared\n", shared);
122 printk(KERN_INFO "%lu pages swap cached\n", cached);
125 int after_bootmem;
127 static __init void *spp_getpage(void)
129 void *ptr;
131 if (after_bootmem)
132 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133 else
134 ptr = alloc_bootmem_pages(PAGE_SIZE);
136 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137 panic("set_pte_phys: cannot allocate page data %s\n",
138 after_bootmem ? "after bootmem" : "");
141 pr_debug("spp_getpage %p\n", ptr);
143 return ptr;
146 void
147 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
149 pgd_t *pgd;
150 pud_t *pud;
151 pmd_t *pmd;
152 pte_t *pte;
154 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
156 pgd = pgd_offset_k(vaddr);
157 if (pgd_none(*pgd)) {
158 printk(KERN_ERR
159 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
160 return;
162 pud = pud_offset(pgd, vaddr);
163 if (pud_none(*pud)) {
164 pmd = (pmd_t *) spp_getpage();
165 pud_populate(&init_mm, pud, pmd);
166 if (pmd != pmd_offset(pud, 0)) {
167 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
168 pmd, pmd_offset(pud, 0));
169 return;
172 pmd = pmd_offset(pud, vaddr);
173 if (pmd_none(*pmd)) {
174 pte = (pte_t *) spp_getpage();
175 pmd_populate_kernel(&init_mm, pmd, pte);
176 if (pte != pte_offset_kernel(pmd, 0)) {
177 printk(KERN_ERR "PAGETABLE BUG #02!\n");
178 return;
182 pte = pte_offset_kernel(pmd, vaddr);
183 if (!pte_none(*pte) && pte_val(new_pte) &&
184 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
185 pte_ERROR(*pte);
186 set_pte(pte, new_pte);
189 * It's enough to flush this one mapping.
190 * (PGE mappings get flushed as well)
192 __flush_tlb_one(vaddr);
196 * The head.S code sets up the kernel high mapping:
198 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
200 * phys_addr holds the negative offset to the kernel, which is added
201 * to the compile time generated pmds. This results in invalid pmds up
202 * to the point where we hit the physaddr 0 mapping.
204 * We limit the mappings to the region from _text to _end. _end is
205 * rounded up to the 2MB boundary. This catches the invalid pmds as
206 * well, as they are located before _text:
208 void __init cleanup_highmap(void)
210 unsigned long vaddr = __START_KERNEL_map;
211 unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
212 pmd_t *pmd = level2_kernel_pgt;
213 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
215 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
216 if (pmd_none(*pmd))
217 continue;
218 if (vaddr < (unsigned long) _text || vaddr > end)
219 set_pmd(pmd, __pmd(0));
223 static unsigned long __initdata table_start;
224 static unsigned long __meminitdata table_end;
225 static unsigned long __meminitdata table_top;
227 static __meminit void *alloc_low_page(unsigned long *phys)
229 unsigned long pfn = table_end++;
230 void *adr;
232 if (after_bootmem) {
233 adr = (void *)get_zeroed_page(GFP_ATOMIC);
234 *phys = __pa(adr);
236 return adr;
239 if (pfn >= table_top)
240 panic("alloc_low_page: ran out of memory");
242 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
243 memset(adr, 0, PAGE_SIZE);
244 *phys = pfn * PAGE_SIZE;
245 return adr;
248 static __meminit void unmap_low_page(void *adr)
250 if (after_bootmem)
251 return;
253 early_iounmap(adr, PAGE_SIZE);
256 static void __meminit
257 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
259 unsigned pages = 0;
260 int i;
261 pte_t *pte = pte_page + pte_index(addr);
263 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
265 if (addr >= end) {
266 if (!after_bootmem) {
267 for(; i < PTRS_PER_PTE; i++, pte++)
268 set_pte(pte, __pte(0));
270 break;
273 if (pte_val(*pte))
274 continue;
276 if (0)
277 printk(" pte=%p addr=%lx pte=%016lx\n",
278 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
279 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
280 pages++;
282 update_page_count(PG_LEVEL_4K, pages);
285 static void __meminit
286 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
288 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
290 phys_pte_init(pte, address, end);
293 static unsigned long __meminit
294 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
296 unsigned long pages = 0;
298 int i = pmd_index(address);
300 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
301 unsigned long pte_phys;
302 pmd_t *pmd = pmd_page + pmd_index(address);
303 pte_t *pte;
305 if (address >= end) {
306 if (!after_bootmem) {
307 for (; i < PTRS_PER_PMD; i++, pmd++)
308 set_pmd(pmd, __pmd(0));
310 break;
313 if (pmd_val(*pmd)) {
314 phys_pte_update(pmd, address, end);
315 continue;
318 if (cpu_has_pse) {
319 pages++;
320 set_pte((pte_t *)pmd,
321 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
322 continue;
325 pte = alloc_low_page(&pte_phys);
326 phys_pte_init(pte, address, end);
327 unmap_low_page(pte);
329 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
331 update_page_count(PG_LEVEL_2M, pages);
332 return address;
335 static unsigned long __meminit
336 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
338 pmd_t *pmd = pmd_offset(pud, 0);
339 unsigned long last_map_addr;
341 spin_lock(&init_mm.page_table_lock);
342 last_map_addr = phys_pmd_init(pmd, address, end);
343 spin_unlock(&init_mm.page_table_lock);
344 __flush_tlb_all();
345 return last_map_addr;
348 static unsigned long __meminit
349 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
351 unsigned long pages = 0;
352 unsigned long last_map_addr = end;
353 int i = pud_index(addr);
355 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
356 unsigned long pmd_phys;
357 pud_t *pud = pud_page + pud_index(addr);
358 pmd_t *pmd;
360 if (addr >= end)
361 break;
363 if (!after_bootmem &&
364 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
365 set_pud(pud, __pud(0));
366 continue;
369 if (pud_val(*pud)) {
370 if (!pud_large(*pud))
371 last_map_addr = phys_pmd_update(pud, addr, end);
372 continue;
375 if (direct_gbpages) {
376 pages++;
377 set_pte((pte_t *)pud,
378 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
379 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
380 continue;
383 pmd = alloc_low_page(&pmd_phys);
385 spin_lock(&init_mm.page_table_lock);
386 last_map_addr = phys_pmd_init(pmd, addr, end);
387 unmap_low_page(pmd);
388 pud_populate(&init_mm, pud, __va(pmd_phys));
389 spin_unlock(&init_mm.page_table_lock);
392 __flush_tlb_all();
393 update_page_count(PG_LEVEL_1G, pages);
395 return last_map_addr;
398 static unsigned long __meminit
399 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end)
401 pud_t *pud;
403 pud = (pud_t *)pgd_page_vaddr(*pgd);
405 return phys_pud_init(pud, addr, end);
408 static void __init find_early_table_space(unsigned long end)
410 unsigned long puds, tables, start;
412 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
413 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
414 if (!direct_gbpages) {
415 unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
416 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
418 if (!cpu_has_pse) {
419 unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
420 tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
424 * RED-PEN putting page tables only on node 0 could
425 * cause a hotspot and fill up ZONE_DMA. The page tables
426 * need roughly 0.5KB per GB.
428 start = 0x8000;
429 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
430 if (table_start == -1UL)
431 panic("Cannot find space for the kernel page tables");
433 table_start >>= PAGE_SHIFT;
434 table_end = table_start;
435 table_top = table_start + (tables >> PAGE_SHIFT);
437 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
438 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
441 static void __init init_gbpages(void)
443 if (direct_gbpages && cpu_has_gbpages)
444 printk(KERN_INFO "Using GB pages for direct mapping\n");
445 else
446 direct_gbpages = 0;
449 #ifdef CONFIG_MEMTEST
451 static void __init memtest(unsigned long start_phys, unsigned long size,
452 unsigned pattern)
454 unsigned long i;
455 unsigned long *start;
456 unsigned long start_bad;
457 unsigned long last_bad;
458 unsigned long val;
459 unsigned long start_phys_aligned;
460 unsigned long count;
461 unsigned long incr;
463 switch (pattern) {
464 case 0:
465 val = 0UL;
466 break;
467 case 1:
468 val = -1UL;
469 break;
470 case 2:
471 val = 0x5555555555555555UL;
472 break;
473 case 3:
474 val = 0xaaaaaaaaaaaaaaaaUL;
475 break;
476 default:
477 return;
480 incr = sizeof(unsigned long);
481 start_phys_aligned = ALIGN(start_phys, incr);
482 count = (size - (start_phys_aligned - start_phys))/incr;
483 start = __va(start_phys_aligned);
484 start_bad = 0;
485 last_bad = 0;
487 for (i = 0; i < count; i++)
488 start[i] = val;
489 for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
490 if (*start != val) {
491 if (start_phys_aligned == last_bad + incr) {
492 last_bad += incr;
493 } else {
494 if (start_bad) {
495 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
496 val, start_bad, last_bad + incr);
497 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
499 start_bad = last_bad = start_phys_aligned;
503 if (start_bad) {
504 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
505 val, start_bad, last_bad + incr);
506 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
511 /* default is disabled */
512 static int memtest_pattern __initdata;
514 static int __init parse_memtest(char *arg)
516 if (arg)
517 memtest_pattern = simple_strtoul(arg, NULL, 0);
518 return 0;
521 early_param("memtest", parse_memtest);
523 static void __init early_memtest(unsigned long start, unsigned long end)
525 u64 t_start, t_size;
526 unsigned pattern;
528 if (!memtest_pattern)
529 return;
531 printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
532 for (pattern = 0; pattern < memtest_pattern; pattern++) {
533 t_start = start;
534 t_size = 0;
535 while (t_start < end) {
536 t_start = find_e820_area_size(t_start, &t_size, 1);
538 /* done ? */
539 if (t_start >= end)
540 break;
541 if (t_start + t_size > end)
542 t_size = end - t_start;
544 printk(KERN_CONT "\n %016llx - %016llx pattern %d",
545 (unsigned long long)t_start,
546 (unsigned long long)t_start + t_size, pattern);
548 memtest(t_start, t_size, pattern);
550 t_start += t_size;
553 printk(KERN_CONT "\n");
555 #else
556 static void __init early_memtest(unsigned long start, unsigned long end)
559 #endif
562 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
563 * This runs before bootmem is initialized and gets pages directly from
564 * the physical memory. To access them they are temporarily mapped.
566 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
568 unsigned long next, last_map_addr = end;
569 unsigned long start_phys = start, end_phys = end;
571 printk(KERN_INFO "init_memory_mapping\n");
574 * Find space for the kernel direct mapping tables.
576 * Later we should allocate these tables in the local node of the
577 * memory mapped. Unfortunately this is done currently before the
578 * nodes are discovered.
580 if (!after_bootmem) {
581 init_gbpages();
582 find_early_table_space(end);
585 start = (unsigned long)__va(start);
586 end = (unsigned long)__va(end);
588 for (; start < end; start = next) {
589 pgd_t *pgd = pgd_offset_k(start);
590 unsigned long pud_phys;
591 pud_t *pud;
593 next = start + PGDIR_SIZE;
594 if (next > end)
595 next = end;
597 if (pgd_val(*pgd)) {
598 last_map_addr = phys_pud_update(pgd, __pa(start), __pa(end));
599 continue;
602 if (after_bootmem)
603 pud = pud_offset(pgd, start & PGDIR_MASK);
604 else
605 pud = alloc_low_page(&pud_phys);
607 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
608 unmap_low_page(pud);
609 if (!after_bootmem)
610 pgd_populate(&init_mm, pgd_offset_k(start),
611 __va(pud_phys));
614 if (!after_bootmem)
615 mmu_cr4_features = read_cr4();
616 __flush_tlb_all();
618 if (!after_bootmem)
619 reserve_early(table_start << PAGE_SHIFT,
620 table_end << PAGE_SHIFT, "PGTABLE");
622 if (!after_bootmem)
623 early_memtest(start_phys, end_phys);
625 return last_map_addr >> PAGE_SHIFT;
628 #ifndef CONFIG_NUMA
629 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
631 unsigned long bootmap_size, bootmap;
633 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
634 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
635 PAGE_SIZE);
636 if (bootmap == -1L)
637 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
638 /* don't touch min_low_pfn */
639 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
640 0, end_pfn);
641 e820_register_active_regions(0, start_pfn, end_pfn);
642 free_bootmem_with_active_regions(0, end_pfn);
643 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
644 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
647 void __init paging_init(void)
649 unsigned long max_zone_pfns[MAX_NR_ZONES];
651 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
652 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
653 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
654 max_zone_pfns[ZONE_NORMAL] = max_pfn;
656 memory_present(0, 0, max_pfn);
657 sparse_init();
658 free_area_init_nodes(max_zone_pfns);
660 #endif
663 * Memory hotplug specific functions
665 #ifdef CONFIG_MEMORY_HOTPLUG
667 * Memory is added always to NORMAL zone. This means you will never get
668 * additional DMA/DMA32 memory.
670 int arch_add_memory(int nid, u64 start, u64 size)
672 struct pglist_data *pgdat = NODE_DATA(nid);
673 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
674 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
675 unsigned long nr_pages = size >> PAGE_SHIFT;
676 int ret;
678 last_mapped_pfn = init_memory_mapping(start, start + size-1);
679 if (last_mapped_pfn > max_pfn_mapped)
680 max_pfn_mapped = last_mapped_pfn;
682 ret = __add_pages(zone, start_pfn, nr_pages);
683 WARN_ON(1);
685 return ret;
687 EXPORT_SYMBOL_GPL(arch_add_memory);
689 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
690 int memory_add_physaddr_to_nid(u64 start)
692 return 0;
694 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
695 #endif
697 #endif /* CONFIG_MEMORY_HOTPLUG */
700 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
701 * is valid. The argument is a physical page number.
704 * On x86, access has to be given to the first megabyte of ram because that area
705 * contains bios code and data regions used by X and dosemu and similar apps.
706 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
707 * mmio resources as well as potential bios/acpi data regions.
709 int devmem_is_allowed(unsigned long pagenr)
711 if (pagenr <= 256)
712 return 1;
713 if (!page_is_ram(pagenr))
714 return 1;
715 return 0;
719 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
720 kcore_modules, kcore_vsyscall;
722 void __init mem_init(void)
724 long codesize, reservedpages, datasize, initsize;
726 pci_iommu_alloc();
728 /* clear_bss() already clear the empty_zero_page */
730 reservedpages = 0;
732 /* this will put all low memory onto the freelists */
733 #ifdef CONFIG_NUMA
734 totalram_pages = numa_free_all_bootmem();
735 #else
736 totalram_pages = free_all_bootmem();
737 #endif
738 reservedpages = max_pfn - totalram_pages -
739 absent_pages_in_range(0, max_pfn);
740 after_bootmem = 1;
742 codesize = (unsigned long) &_etext - (unsigned long) &_text;
743 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
744 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
746 /* Register memory areas for /proc/kcore */
747 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
748 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
749 VMALLOC_END-VMALLOC_START);
750 kclist_add(&kcore_kernel, &_stext, _end - _stext);
751 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
752 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
753 VSYSCALL_END - VSYSCALL_START);
755 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
756 "%ldk reserved, %ldk data, %ldk init)\n",
757 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
758 max_pfn << (PAGE_SHIFT-10),
759 codesize >> 10,
760 reservedpages << (PAGE_SHIFT-10),
761 datasize >> 10,
762 initsize >> 10);
764 cpa_init();
767 void free_init_pages(char *what, unsigned long begin, unsigned long end)
769 unsigned long addr = begin;
771 if (addr >= end)
772 return;
775 * If debugging page accesses then do not free this memory but
776 * mark them not present - any buggy init-section access will
777 * create a kernel page fault:
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
781 begin, PAGE_ALIGN(end));
782 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
783 #else
784 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
786 for (; addr < end; addr += PAGE_SIZE) {
787 ClearPageReserved(virt_to_page(addr));
788 init_page_count(virt_to_page(addr));
789 memset((void *)(addr & ~(PAGE_SIZE-1)),
790 POISON_FREE_INITMEM, PAGE_SIZE);
791 free_page(addr);
792 totalram_pages++;
794 #endif
797 void free_initmem(void)
799 free_init_pages("unused kernel memory",
800 (unsigned long)(&__init_begin),
801 (unsigned long)(&__init_end));
804 #ifdef CONFIG_DEBUG_RODATA
805 const int rodata_test_data = 0xC3;
806 EXPORT_SYMBOL_GPL(rodata_test_data);
808 void mark_rodata_ro(void)
810 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
812 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
813 (end - start) >> 10);
814 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
817 * The rodata section (but not the kernel text!) should also be
818 * not-executable.
820 start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
821 set_memory_nx(start, (end - start) >> PAGE_SHIFT);
823 rodata_test();
825 #ifdef CONFIG_CPA_DEBUG
826 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
827 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
829 printk(KERN_INFO "Testing CPA: again\n");
830 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
831 #endif
834 #endif
836 #ifdef CONFIG_BLK_DEV_INITRD
837 void free_initrd_mem(unsigned long start, unsigned long end)
839 free_init_pages("initrd memory", start, end);
841 #endif
843 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
844 int flags)
846 #ifdef CONFIG_NUMA
847 int nid, next_nid;
848 int ret;
849 #endif
850 unsigned long pfn = phys >> PAGE_SHIFT;
852 if (pfn >= max_pfn) {
854 * This can happen with kdump kernels when accessing
855 * firmware tables:
857 if (pfn < max_pfn_mapped)
858 return -EFAULT;
860 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
861 phys, len);
862 return -EFAULT;
865 /* Should check here against the e820 map to avoid double free */
866 #ifdef CONFIG_NUMA
867 nid = phys_to_nid(phys);
868 next_nid = phys_to_nid(phys + len - 1);
869 if (nid == next_nid)
870 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
871 else
872 ret = reserve_bootmem(phys, len, flags);
874 if (ret != 0)
875 return ret;
877 #else
878 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
879 #endif
881 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
882 dma_reserve += len / PAGE_SIZE;
883 set_dma_reserve(dma_reserve);
886 return 0;
889 int kern_addr_valid(unsigned long addr)
891 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
892 pgd_t *pgd;
893 pud_t *pud;
894 pmd_t *pmd;
895 pte_t *pte;
897 if (above != 0 && above != -1UL)
898 return 0;
900 pgd = pgd_offset_k(addr);
901 if (pgd_none(*pgd))
902 return 0;
904 pud = pud_offset(pgd, addr);
905 if (pud_none(*pud))
906 return 0;
908 pmd = pmd_offset(pud, addr);
909 if (pmd_none(*pmd))
910 return 0;
912 if (pmd_large(*pmd))
913 return pfn_valid(pmd_pfn(*pmd));
915 pte = pte_offset_kernel(pmd, addr);
916 if (pte_none(*pte))
917 return 0;
919 return pfn_valid(pte_pfn(*pte));
923 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
924 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
925 * not need special handling anymore:
927 static struct vm_area_struct gate_vma = {
928 .vm_start = VSYSCALL_START,
929 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
930 .vm_page_prot = PAGE_READONLY_EXEC,
931 .vm_flags = VM_READ | VM_EXEC
934 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
936 #ifdef CONFIG_IA32_EMULATION
937 if (test_tsk_thread_flag(tsk, TIF_IA32))
938 return NULL;
939 #endif
940 return &gate_vma;
943 int in_gate_area(struct task_struct *task, unsigned long addr)
945 struct vm_area_struct *vma = get_gate_vma(task);
947 if (!vma)
948 return 0;
950 return (addr >= vma->vm_start) && (addr < vma->vm_end);
954 * Use this when you have no reliable task/vma, typically from interrupt
955 * context. It is less reliable than using the task's vma and may give
956 * false positives:
958 int in_gate_area_no_task(unsigned long addr)
960 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
963 const char *arch_vma_name(struct vm_area_struct *vma)
965 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
966 return "[vdso]";
967 if (vma == &gate_vma)
968 return "[vsyscall]";
969 return NULL;
972 #ifdef CONFIG_SPARSEMEM_VMEMMAP
974 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
976 static long __meminitdata addr_start, addr_end;
977 static void __meminitdata *p_start, *p_end;
978 static int __meminitdata node_start;
980 int __meminit
981 vmemmap_populate(struct page *start_page, unsigned long size, int node)
983 unsigned long addr = (unsigned long)start_page;
984 unsigned long end = (unsigned long)(start_page + size);
985 unsigned long next;
986 pgd_t *pgd;
987 pud_t *pud;
988 pmd_t *pmd;
990 for (; addr < end; addr = next) {
991 next = pmd_addr_end(addr, end);
993 pgd = vmemmap_pgd_populate(addr, node);
994 if (!pgd)
995 return -ENOMEM;
997 pud = vmemmap_pud_populate(pgd, addr, node);
998 if (!pud)
999 return -ENOMEM;
1001 pmd = pmd_offset(pud, addr);
1002 if (pmd_none(*pmd)) {
1003 pte_t entry;
1004 void *p;
1006 p = vmemmap_alloc_block(PMD_SIZE, node);
1007 if (!p)
1008 return -ENOMEM;
1010 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1011 PAGE_KERNEL_LARGE);
1012 set_pmd(pmd, __pmd(pte_val(entry)));
1014 /* check to see if we have contiguous blocks */
1015 if (p_end != p || node_start != node) {
1016 if (p_start)
1017 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1018 addr_start, addr_end-1, p_start, p_end-1, node_start);
1019 addr_start = addr;
1020 node_start = node;
1021 p_start = p;
1023 addr_end = addr + PMD_SIZE;
1024 p_end = p + PMD_SIZE;
1025 } else {
1026 vmemmap_verify((pte_t *)pmd, node, addr, next);
1029 return 0;
1032 void __meminit vmemmap_populate_print_last(void)
1034 if (p_start) {
1035 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1036 addr_start, addr_end-1, p_start, p_end-1, node_start);
1037 p_start = NULL;
1038 p_end = NULL;
1039 node_start = 0;
1042 #endif