3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <xen/swiotlb-xen.h>
40 #include <xen/xen-ops.h>
42 * Used to do a quick range check in swiotlb_tbl_unmap_single and
43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
47 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
48 static unsigned long xen_io_tlb_nslabs
;
50 * Quick lookup value of the bus address of the IOTLB.
55 static dma_addr_t
xen_phys_to_bus(phys_addr_t paddr
)
57 return phys_to_machine(XPADDR(paddr
)).maddr
;
60 static phys_addr_t
xen_bus_to_phys(dma_addr_t baddr
)
62 return machine_to_phys(XMADDR(baddr
)).paddr
;
65 static dma_addr_t
xen_virt_to_bus(void *address
)
67 return xen_phys_to_bus(virt_to_phys(address
));
70 static int check_pages_physically_contiguous(unsigned long pfn
,
74 unsigned long next_mfn
;
78 next_mfn
= pfn_to_mfn(pfn
);
79 nr_pages
= (offset
+ length
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
81 for (i
= 1; i
< nr_pages
; i
++) {
82 if (pfn_to_mfn(++pfn
) != ++next_mfn
)
88 static int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
90 unsigned long pfn
= PFN_DOWN(p
);
91 unsigned int offset
= p
& ~PAGE_MASK
;
93 if (offset
+ size
<= PAGE_SIZE
)
95 if (check_pages_physically_contiguous(pfn
, offset
, size
))
100 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr
)
102 unsigned long mfn
= PFN_DOWN(dma_addr
);
103 unsigned long pfn
= mfn_to_local_pfn(mfn
);
106 /* If the address is outside our domain, it CAN
107 * have the same virtual address as another address
108 * in our domain. Therefore _only_ check address within our domain.
110 if (pfn_valid(pfn
)) {
111 paddr
= PFN_PHYS(pfn
);
112 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
113 paddr
< virt_to_phys(xen_io_tlb_end
);
118 static int max_dma_bits
= 32;
121 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
126 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
130 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
133 rc
= xen_create_contiguous_region(
134 (unsigned long)buf
+ (i
<< IO_TLB_SHIFT
),
135 get_order(slabs
<< IO_TLB_SHIFT
),
137 } while (rc
&& dma_bits
++ < max_dma_bits
);
142 } while (i
< nslabs
);
146 void __init
xen_swiotlb_init(int verbose
)
151 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
152 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
154 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
157 * Get IO TLB memory from any location.
159 xen_io_tlb_start
= alloc_bootmem(bytes
);
160 if (!xen_io_tlb_start
)
161 panic("Cannot allocate SWIOTLB buffer");
163 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
165 * And replace that memory with pages under 4GB.
167 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
173 start_dma_addr
= xen_virt_to_bus(xen_io_tlb_start
);
174 swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
, verbose
);
178 panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
179 "We either don't have the permission or you do not have enough"\
180 "free memory under 4GB!\n", rc
);
184 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
185 dma_addr_t
*dma_handle
, gfp_t flags
)
188 int order
= get_order(size
);
189 u64 dma_mask
= DMA_BIT_MASK(32);
190 unsigned long vstart
;
193 * Ignore region specifiers - the kernel's ideas of
194 * pseudo-phys memory layout has nothing to do with the
195 * machine physical layout. We can't allocate highmem
196 * because we can't return a pointer to it.
198 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
200 if (dma_alloc_from_coherent(hwdev
, size
, dma_handle
, &ret
))
203 vstart
= __get_free_pages(flags
, order
);
204 ret
= (void *)vstart
;
206 if (hwdev
&& hwdev
->coherent_dma_mask
)
207 dma_mask
= dma_alloc_coherent_mask(hwdev
, flags
);
210 if (xen_create_contiguous_region(vstart
, order
,
211 fls64(dma_mask
)) != 0) {
212 free_pages(vstart
, order
);
215 memset(ret
, 0, size
);
216 *dma_handle
= virt_to_machine(ret
).maddr
;
220 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent
);
223 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
226 int order
= get_order(size
);
228 if (dma_release_from_coherent(hwdev
, order
, vaddr
))
231 xen_destroy_contiguous_region((unsigned long)vaddr
, order
);
232 free_pages((unsigned long)vaddr
, order
);
234 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent
);
238 * Map a single buffer of the indicated size for DMA in streaming mode. The
239 * physical address to use is returned.
241 * Once the device is given the dma address, the device owns this memory until
242 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
244 dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
245 unsigned long offset
, size_t size
,
246 enum dma_data_direction dir
,
247 struct dma_attrs
*attrs
)
249 phys_addr_t phys
= page_to_phys(page
) + offset
;
250 dma_addr_t dev_addr
= xen_phys_to_bus(phys
);
253 BUG_ON(dir
== DMA_NONE
);
255 * If the address happens to be in the device's DMA window,
256 * we can safely return the device addr and not worry about bounce
259 if (dma_capable(dev
, dev_addr
, size
) &&
260 !range_straddles_page_boundary(phys
, size
) && !swiotlb_force
)
264 * Oh well, have to allocate and map a bounce buffer.
266 map
= swiotlb_tbl_map_single(dev
, start_dma_addr
, phys
, size
, dir
);
268 return DMA_ERROR_CODE
;
270 dev_addr
= xen_virt_to_bus(map
);
273 * Ensure that the address returned is DMA'ble
275 if (!dma_capable(dev
, dev_addr
, size
))
276 panic("map_single: bounce buffer is not DMA'ble");
280 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page
);
283 * Unmap a single streaming mode DMA translation. The dma_addr and size must
284 * match what was provided for in a previous xen_swiotlb_map_page call. All
285 * other usages are undefined.
287 * After this call, reads by the cpu to the buffer are guaranteed to see
288 * whatever the device wrote there.
290 static void xen_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
291 size_t size
, enum dma_data_direction dir
)
293 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
295 BUG_ON(dir
== DMA_NONE
);
297 /* NOTE: We use dev_addr here, not paddr! */
298 if (is_xen_swiotlb_buffer(dev_addr
)) {
299 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
303 if (dir
!= DMA_FROM_DEVICE
)
307 * phys_to_virt doesn't work with hihgmem page but we could
308 * call dma_mark_clean() with hihgmem page here. However, we
309 * are fine since dma_mark_clean() is null on POWERPC. We can
310 * make dma_mark_clean() take a physical address if necessary.
312 dma_mark_clean(phys_to_virt(paddr
), size
);
315 void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
316 size_t size
, enum dma_data_direction dir
,
317 struct dma_attrs
*attrs
)
319 xen_unmap_single(hwdev
, dev_addr
, size
, dir
);
321 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page
);
324 * Make physical memory consistent for a single streaming mode DMA translation
327 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
328 * using the cpu, yet do not wish to teardown the dma mapping, you must
329 * call this function before doing so. At the next point you give the dma
330 * address back to the card, you must first perform a
331 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
334 xen_swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
335 size_t size
, enum dma_data_direction dir
,
336 enum dma_sync_target target
)
338 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
340 BUG_ON(dir
== DMA_NONE
);
342 /* NOTE: We use dev_addr here, not paddr! */
343 if (is_xen_swiotlb_buffer(dev_addr
)) {
344 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
349 if (dir
!= DMA_FROM_DEVICE
)
352 dma_mark_clean(phys_to_virt(paddr
), size
);
356 xen_swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
357 size_t size
, enum dma_data_direction dir
)
359 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
361 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu
);
364 xen_swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
365 size_t size
, enum dma_data_direction dir
)
367 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
369 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device
);
372 * Map a set of buffers described by scatterlist in streaming mode for DMA.
373 * This is the scatter-gather version of the above xen_swiotlb_map_page
374 * interface. Here the scatter gather list elements are each tagged with the
375 * appropriate dma address and length. They are obtained via
376 * sg_dma_{address,length}(SG).
378 * NOTE: An implementation may be able to use a smaller number of
379 * DMA address/length pairs than there are SG table elements.
380 * (for example via virtual mapping capabilities)
381 * The routine returns the number of addr/length pairs actually
382 * used, at most nents.
384 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
388 xen_swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
389 int nelems
, enum dma_data_direction dir
,
390 struct dma_attrs
*attrs
)
392 struct scatterlist
*sg
;
395 BUG_ON(dir
== DMA_NONE
);
397 for_each_sg(sgl
, sg
, nelems
, i
) {
398 phys_addr_t paddr
= sg_phys(sg
);
399 dma_addr_t dev_addr
= xen_phys_to_bus(paddr
);
402 !dma_capable(hwdev
, dev_addr
, sg
->length
) ||
403 range_straddles_page_boundary(paddr
, sg
->length
)) {
404 void *map
= swiotlb_tbl_map_single(hwdev
,
409 /* Don't panic here, we expect map_sg users
410 to do proper error handling. */
411 xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
413 sgl
[0].dma_length
= 0;
414 return DMA_ERROR_CODE
;
416 sg
->dma_address
= xen_virt_to_bus(map
);
418 sg
->dma_address
= dev_addr
;
419 sg
->dma_length
= sg
->length
;
423 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs
);
426 xen_swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
427 enum dma_data_direction dir
)
429 return xen_swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
431 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg
);
434 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
435 * concerning calls here are the same as for swiotlb_unmap_page() above.
438 xen_swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
439 int nelems
, enum dma_data_direction dir
,
440 struct dma_attrs
*attrs
)
442 struct scatterlist
*sg
;
445 BUG_ON(dir
== DMA_NONE
);
447 for_each_sg(sgl
, sg
, nelems
, i
)
448 xen_unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
451 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs
);
454 xen_swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
455 enum dma_data_direction dir
)
457 return xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
459 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg
);
462 * Make physical memory consistent for a set of streaming mode DMA translations
465 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
469 xen_swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
470 int nelems
, enum dma_data_direction dir
,
471 enum dma_sync_target target
)
473 struct scatterlist
*sg
;
476 for_each_sg(sgl
, sg
, nelems
, i
)
477 xen_swiotlb_sync_single(hwdev
, sg
->dma_address
,
478 sg
->dma_length
, dir
, target
);
482 xen_swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
483 int nelems
, enum dma_data_direction dir
)
485 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
487 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu
);
490 xen_swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
491 int nelems
, enum dma_data_direction dir
)
493 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
495 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device
);
498 xen_swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
502 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error
);
505 * Return whether the given device DMA address mask can be supported
506 * properly. For example, if your device can only drive the low 24-bits
507 * during bus mastering, then you would pass 0x00ffffff as the mask to
511 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
513 return xen_virt_to_bus(xen_io_tlb_end
- 1) <= mask
;
515 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported
);