hwmon: (coretemp) Fix TjMax detection for older CPUs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / mxc_nand.c
blob90df34c4d26cae887454de88099fa6c672c6b88d
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
36 #include <asm/mach/flash.h>
37 #include <mach/mxc_nand.h>
38 #include <mach/hardware.h>
40 #define DRIVER_NAME "mxc_nand"
42 #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
43 #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
44 #define nfc_is_v3_2() cpu_is_mx51()
45 #define nfc_is_v3() nfc_is_v3_2()
47 /* Addresses for NFC registers */
48 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
49 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
50 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
51 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
52 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
53 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
54 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
55 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
56 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
57 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
58 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
59 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
60 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
61 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
62 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
63 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
64 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
65 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
66 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
67 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
68 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
69 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
71 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
72 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
73 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
74 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
75 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
76 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
77 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
78 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
79 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
80 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
82 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
85 * Operation modes for the NFC. Valid for v1, v2 and v3
86 * type controllers.
88 #define NFC_CMD (1 << 0)
89 #define NFC_ADDR (1 << 1)
90 #define NFC_INPUT (1 << 2)
91 #define NFC_OUTPUT (1 << 3)
92 #define NFC_ID (1 << 4)
93 #define NFC_STATUS (1 << 5)
95 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
96 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
98 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
99 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
100 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
102 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
104 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
106 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
107 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
108 #define NFC_V3_WRPROT_LOCK (1 << 1)
109 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
110 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
112 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
114 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
115 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
116 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
117 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
118 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
119 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
120 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
122 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
123 #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
124 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
125 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
126 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
127 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
129 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
130 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
131 #define NFC_V3_CONFIG3_FW8 (1 << 3)
132 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
133 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
134 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
135 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
137 #define NFC_V3_IPC (host->regs_ip + 0x2C)
138 #define NFC_V3_IPC_CREQ (1 << 0)
139 #define NFC_V3_IPC_INT (1 << 31)
141 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
143 struct mxc_nand_host {
144 struct mtd_info mtd;
145 struct nand_chip nand;
146 struct mtd_partition *parts;
147 struct device *dev;
149 void *spare0;
150 void *main_area0;
152 void __iomem *base;
153 void __iomem *regs;
154 void __iomem *regs_axi;
155 void __iomem *regs_ip;
156 int status_request;
157 struct clk *clk;
158 int clk_act;
159 int irq;
160 int eccsize;
161 int active_cs;
163 struct completion op_completion;
165 uint8_t *data_buf;
166 unsigned int buf_start;
167 int spare_len;
169 void (*preset)(struct mtd_info *);
170 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
171 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
172 void (*send_page)(struct mtd_info *, unsigned int);
173 void (*send_read_id)(struct mxc_nand_host *);
174 uint16_t (*get_dev_status)(struct mxc_nand_host *);
175 int (*check_int)(struct mxc_nand_host *);
176 void (*irq_control)(struct mxc_nand_host *, int);
179 /* OOB placement block for use with hardware ecc generation */
180 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
181 .eccbytes = 5,
182 .eccpos = {6, 7, 8, 9, 10},
183 .oobfree = {{0, 5}, {12, 4}, }
186 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
187 .eccbytes = 20,
188 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
189 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
190 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
193 /* OOB description for 512 byte pages with 16 byte OOB */
194 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
195 .eccbytes = 1 * 9,
196 .eccpos = {
197 7, 8, 9, 10, 11, 12, 13, 14, 15
199 .oobfree = {
200 {.offset = 0, .length = 5}
204 /* OOB description for 2048 byte pages with 64 byte OOB */
205 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
206 .eccbytes = 4 * 9,
207 .eccpos = {
208 7, 8, 9, 10, 11, 12, 13, 14, 15,
209 23, 24, 25, 26, 27, 28, 29, 30, 31,
210 39, 40, 41, 42, 43, 44, 45, 46, 47,
211 55, 56, 57, 58, 59, 60, 61, 62, 63
213 .oobfree = {
214 {.offset = 2, .length = 4},
215 {.offset = 16, .length = 7},
216 {.offset = 32, .length = 7},
217 {.offset = 48, .length = 7}
221 /* OOB description for 4096 byte pages with 128 byte OOB */
222 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
223 .eccbytes = 8 * 9,
224 .eccpos = {
225 7, 8, 9, 10, 11, 12, 13, 14, 15,
226 23, 24, 25, 26, 27, 28, 29, 30, 31,
227 39, 40, 41, 42, 43, 44, 45, 46, 47,
228 55, 56, 57, 58, 59, 60, 61, 62, 63,
229 71, 72, 73, 74, 75, 76, 77, 78, 79,
230 87, 88, 89, 90, 91, 92, 93, 94, 95,
231 103, 104, 105, 106, 107, 108, 109, 110, 111,
232 119, 120, 121, 122, 123, 124, 125, 126, 127,
234 .oobfree = {
235 {.offset = 2, .length = 4},
236 {.offset = 16, .length = 7},
237 {.offset = 32, .length = 7},
238 {.offset = 48, .length = 7},
239 {.offset = 64, .length = 7},
240 {.offset = 80, .length = 7},
241 {.offset = 96, .length = 7},
242 {.offset = 112, .length = 7},
246 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
248 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
250 struct mxc_nand_host *host = dev_id;
252 if (!host->check_int(host))
253 return IRQ_NONE;
255 host->irq_control(host, 0);
257 complete(&host->op_completion);
259 return IRQ_HANDLED;
262 static int check_int_v3(struct mxc_nand_host *host)
264 uint32_t tmp;
266 tmp = readl(NFC_V3_IPC);
267 if (!(tmp & NFC_V3_IPC_INT))
268 return 0;
270 tmp &= ~NFC_V3_IPC_INT;
271 writel(tmp, NFC_V3_IPC);
273 return 1;
276 static int check_int_v1_v2(struct mxc_nand_host *host)
278 uint32_t tmp;
280 tmp = readw(NFC_V1_V2_CONFIG2);
281 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
282 return 0;
284 if (!cpu_is_mx21())
285 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
287 return 1;
291 * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
292 * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
293 * driver can enable/disable the irq line rather than simply masking the
294 * interrupts.
296 static void irq_control_mx21(struct mxc_nand_host *host, int activate)
298 if (activate)
299 enable_irq(host->irq);
300 else
301 disable_irq_nosync(host->irq);
304 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
306 uint16_t tmp;
308 tmp = readw(NFC_V1_V2_CONFIG1);
310 if (activate)
311 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
312 else
313 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
315 writew(tmp, NFC_V1_V2_CONFIG1);
318 static void irq_control_v3(struct mxc_nand_host *host, int activate)
320 uint32_t tmp;
322 tmp = readl(NFC_V3_CONFIG2);
324 if (activate)
325 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
326 else
327 tmp |= NFC_V3_CONFIG2_INT_MSK;
329 writel(tmp, NFC_V3_CONFIG2);
332 /* This function polls the NANDFC to wait for the basic operation to
333 * complete by checking the INT bit of config2 register.
335 static void wait_op_done(struct mxc_nand_host *host, int useirq)
337 int max_retries = 8000;
339 if (useirq) {
340 if (!host->check_int(host)) {
341 INIT_COMPLETION(host->op_completion);
342 host->irq_control(host, 1);
343 wait_for_completion(&host->op_completion);
345 } else {
346 while (max_retries-- > 0) {
347 if (host->check_int(host))
348 break;
350 udelay(1);
352 if (max_retries < 0)
353 DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
354 __func__);
358 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
360 /* fill command */
361 writel(cmd, NFC_V3_FLASH_CMD);
363 /* send out command */
364 writel(NFC_CMD, NFC_V3_LAUNCH);
366 /* Wait for operation to complete */
367 wait_op_done(host, useirq);
370 /* This function issues the specified command to the NAND device and
371 * waits for completion. */
372 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
374 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
376 writew(cmd, NFC_V1_V2_FLASH_CMD);
377 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
379 if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
380 int max_retries = 100;
381 /* Reset completion is indicated by NFC_CONFIG2 */
382 /* being set to 0 */
383 while (max_retries-- > 0) {
384 if (readw(NFC_V1_V2_CONFIG2) == 0) {
385 break;
387 udelay(1);
389 if (max_retries < 0)
390 DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n",
391 __func__);
392 } else {
393 /* Wait for operation to complete */
394 wait_op_done(host, useirq);
398 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
400 /* fill address */
401 writel(addr, NFC_V3_FLASH_ADDR0);
403 /* send out address */
404 writel(NFC_ADDR, NFC_V3_LAUNCH);
406 wait_op_done(host, 0);
409 /* This function sends an address (or partial address) to the
410 * NAND device. The address is used to select the source/destination for
411 * a NAND command. */
412 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
414 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
416 writew(addr, NFC_V1_V2_FLASH_ADDR);
417 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
419 /* Wait for operation to complete */
420 wait_op_done(host, islast);
423 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
425 struct nand_chip *nand_chip = mtd->priv;
426 struct mxc_nand_host *host = nand_chip->priv;
427 uint32_t tmp;
429 tmp = readl(NFC_V3_CONFIG1);
430 tmp &= ~(7 << 4);
431 writel(tmp, NFC_V3_CONFIG1);
433 /* transfer data from NFC ram to nand */
434 writel(ops, NFC_V3_LAUNCH);
436 wait_op_done(host, false);
439 static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
441 struct nand_chip *nand_chip = mtd->priv;
442 struct mxc_nand_host *host = nand_chip->priv;
443 int bufs, i;
445 if (nfc_is_v1() && mtd->writesize > 512)
446 bufs = 4;
447 else
448 bufs = 1;
450 for (i = 0; i < bufs; i++) {
452 /* NANDFC buffer 0 is used for page read/write */
453 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
455 writew(ops, NFC_V1_V2_CONFIG2);
457 /* Wait for operation to complete */
458 wait_op_done(host, true);
462 static void send_read_id_v3(struct mxc_nand_host *host)
464 /* Read ID into main buffer */
465 writel(NFC_ID, NFC_V3_LAUNCH);
467 wait_op_done(host, true);
469 memcpy(host->data_buf, host->main_area0, 16);
472 /* Request the NANDFC to perform a read of the NAND device ID. */
473 static void send_read_id_v1_v2(struct mxc_nand_host *host)
475 struct nand_chip *this = &host->nand;
477 /* NANDFC buffer 0 is used for device ID output */
478 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
480 writew(NFC_ID, NFC_V1_V2_CONFIG2);
482 /* Wait for operation to complete */
483 wait_op_done(host, true);
485 memcpy(host->data_buf, host->main_area0, 16);
487 if (this->options & NAND_BUSWIDTH_16) {
488 /* compress the ID info */
489 host->data_buf[1] = host->data_buf[2];
490 host->data_buf[2] = host->data_buf[4];
491 host->data_buf[3] = host->data_buf[6];
492 host->data_buf[4] = host->data_buf[8];
493 host->data_buf[5] = host->data_buf[10];
497 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
499 writew(NFC_STATUS, NFC_V3_LAUNCH);
500 wait_op_done(host, true);
502 return readl(NFC_V3_CONFIG1) >> 16;
505 /* This function requests the NANDFC to perform a read of the
506 * NAND device status and returns the current status. */
507 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
509 void __iomem *main_buf = host->main_area0;
510 uint32_t store;
511 uint16_t ret;
513 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
516 * The device status is stored in main_area0. To
517 * prevent corruption of the buffer save the value
518 * and restore it afterwards.
520 store = readl(main_buf);
522 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
523 wait_op_done(host, true);
525 ret = readw(main_buf);
527 writel(store, main_buf);
529 return ret;
532 /* This functions is used by upper layer to checks if device is ready */
533 static int mxc_nand_dev_ready(struct mtd_info *mtd)
536 * NFC handles R/B internally. Therefore, this function
537 * always returns status as ready.
539 return 1;
542 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545 * If HW ECC is enabled, we turn it on during init. There is
546 * no need to enable again here.
550 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
551 u_char *read_ecc, u_char *calc_ecc)
553 struct nand_chip *nand_chip = mtd->priv;
554 struct mxc_nand_host *host = nand_chip->priv;
557 * 1-Bit errors are automatically corrected in HW. No need for
558 * additional correction. 2-Bit errors cannot be corrected by
559 * HW ECC, so we need to return failure
561 uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
563 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
564 DEBUG(MTD_DEBUG_LEVEL0,
565 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
566 return -1;
569 return 0;
572 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
573 u_char *read_ecc, u_char *calc_ecc)
575 struct nand_chip *nand_chip = mtd->priv;
576 struct mxc_nand_host *host = nand_chip->priv;
577 u32 ecc_stat, err;
578 int no_subpages = 1;
579 int ret = 0;
580 u8 ecc_bit_mask, err_limit;
582 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
583 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
585 no_subpages = mtd->writesize >> 9;
587 if (nfc_is_v21())
588 ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
589 else
590 ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
592 do {
593 err = ecc_stat & ecc_bit_mask;
594 if (err > err_limit) {
595 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
596 return -1;
597 } else {
598 ret += err;
600 ecc_stat >>= 4;
601 } while (--no_subpages);
603 mtd->ecc_stats.corrected += ret;
604 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
606 return ret;
609 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
610 u_char *ecc_code)
612 return 0;
615 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
617 struct nand_chip *nand_chip = mtd->priv;
618 struct mxc_nand_host *host = nand_chip->priv;
619 uint8_t ret;
621 /* Check for status request */
622 if (host->status_request)
623 return host->get_dev_status(host) & 0xFF;
625 ret = *(uint8_t *)(host->data_buf + host->buf_start);
626 host->buf_start++;
628 return ret;
631 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
633 struct nand_chip *nand_chip = mtd->priv;
634 struct mxc_nand_host *host = nand_chip->priv;
635 uint16_t ret;
637 ret = *(uint16_t *)(host->data_buf + host->buf_start);
638 host->buf_start += 2;
640 return ret;
643 /* Write data of length len to buffer buf. The data to be
644 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
645 * Operation by the NFC, the data is written to NAND Flash */
646 static void mxc_nand_write_buf(struct mtd_info *mtd,
647 const u_char *buf, int len)
649 struct nand_chip *nand_chip = mtd->priv;
650 struct mxc_nand_host *host = nand_chip->priv;
651 u16 col = host->buf_start;
652 int n = mtd->oobsize + mtd->writesize - col;
654 n = min(n, len);
656 memcpy(host->data_buf + col, buf, n);
658 host->buf_start += n;
661 /* Read the data buffer from the NAND Flash. To read the data from NAND
662 * Flash first the data output cycle is initiated by the NFC, which copies
663 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
665 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
667 struct nand_chip *nand_chip = mtd->priv;
668 struct mxc_nand_host *host = nand_chip->priv;
669 u16 col = host->buf_start;
670 int n = mtd->oobsize + mtd->writesize - col;
672 n = min(n, len);
674 memcpy(buf, host->data_buf + col, n);
676 host->buf_start += n;
679 /* Used by the upper layer to verify the data in NAND Flash
680 * with the data in the buf. */
681 static int mxc_nand_verify_buf(struct mtd_info *mtd,
682 const u_char *buf, int len)
684 return -EFAULT;
687 /* This function is used by upper layer for select and
688 * deselect of the NAND chip */
689 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
691 struct nand_chip *nand_chip = mtd->priv;
692 struct mxc_nand_host *host = nand_chip->priv;
694 if (chip == -1) {
695 /* Disable the NFC clock */
696 if (host->clk_act) {
697 clk_disable(host->clk);
698 host->clk_act = 0;
700 return;
703 if (!host->clk_act) {
704 /* Enable the NFC clock */
705 clk_enable(host->clk);
706 host->clk_act = 1;
709 if (nfc_is_v21()) {
710 host->active_cs = chip;
711 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
716 * Function to transfer data to/from spare area.
718 static void copy_spare(struct mtd_info *mtd, bool bfrom)
720 struct nand_chip *this = mtd->priv;
721 struct mxc_nand_host *host = this->priv;
722 u16 i, j;
723 u16 n = mtd->writesize >> 9;
724 u8 *d = host->data_buf + mtd->writesize;
725 u8 *s = host->spare0;
726 u16 t = host->spare_len;
728 j = (mtd->oobsize / n >> 1) << 1;
730 if (bfrom) {
731 for (i = 0; i < n - 1; i++)
732 memcpy(d + i * j, s + i * t, j);
734 /* the last section */
735 memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
736 } else {
737 for (i = 0; i < n - 1; i++)
738 memcpy(&s[i * t], &d[i * j], j);
740 /* the last section */
741 memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
745 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
747 struct nand_chip *nand_chip = mtd->priv;
748 struct mxc_nand_host *host = nand_chip->priv;
750 /* Write out column address, if necessary */
751 if (column != -1) {
753 * MXC NANDFC can only perform full page+spare or
754 * spare-only read/write. When the upper layers
755 * perform a read/write buf operation, the saved column
756 * address is used to index into the full page.
758 host->send_addr(host, 0, page_addr == -1);
759 if (mtd->writesize > 512)
760 /* another col addr cycle for 2k page */
761 host->send_addr(host, 0, false);
764 /* Write out page address, if necessary */
765 if (page_addr != -1) {
766 /* paddr_0 - p_addr_7 */
767 host->send_addr(host, (page_addr & 0xff), false);
769 if (mtd->writesize > 512) {
770 if (mtd->size >= 0x10000000) {
771 /* paddr_8 - paddr_15 */
772 host->send_addr(host, (page_addr >> 8) & 0xff, false);
773 host->send_addr(host, (page_addr >> 16) & 0xff, true);
774 } else
775 /* paddr_8 - paddr_15 */
776 host->send_addr(host, (page_addr >> 8) & 0xff, true);
777 } else {
778 /* One more address cycle for higher density devices */
779 if (mtd->size >= 0x4000000) {
780 /* paddr_8 - paddr_15 */
781 host->send_addr(host, (page_addr >> 8) & 0xff, false);
782 host->send_addr(host, (page_addr >> 16) & 0xff, true);
783 } else
784 /* paddr_8 - paddr_15 */
785 host->send_addr(host, (page_addr >> 8) & 0xff, true);
791 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
792 * on how much oob the nand chip has. For 8bit ecc we need at least
793 * 26 bytes of oob data per 512 byte block.
795 static int get_eccsize(struct mtd_info *mtd)
797 int oobbytes_per_512 = 0;
799 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
801 if (oobbytes_per_512 < 26)
802 return 4;
803 else
804 return 8;
807 static void preset_v1_v2(struct mtd_info *mtd)
809 struct nand_chip *nand_chip = mtd->priv;
810 struct mxc_nand_host *host = nand_chip->priv;
811 uint16_t config1 = 0;
813 if (nand_chip->ecc.mode == NAND_ECC_HW)
814 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
816 if (nfc_is_v21())
817 config1 |= NFC_V2_CONFIG1_FP_INT;
819 if (!cpu_is_mx21())
820 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
822 if (nfc_is_v21() && mtd->writesize) {
823 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
825 host->eccsize = get_eccsize(mtd);
826 if (host->eccsize == 4)
827 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
829 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
830 } else {
831 host->eccsize = 1;
834 writew(config1, NFC_V1_V2_CONFIG1);
835 /* preset operation */
837 /* Unlock the internal RAM Buffer */
838 writew(0x2, NFC_V1_V2_CONFIG);
840 /* Blocks to be unlocked */
841 if (nfc_is_v21()) {
842 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
843 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
844 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
845 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
846 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
847 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
848 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
849 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
850 } else if (nfc_is_v1()) {
851 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
852 writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR);
853 } else
854 BUG();
856 /* Unlock Block Command for given address range */
857 writew(0x4, NFC_V1_V2_WRPROT);
860 static void preset_v3(struct mtd_info *mtd)
862 struct nand_chip *chip = mtd->priv;
863 struct mxc_nand_host *host = chip->priv;
864 uint32_t config2, config3;
865 int i, addr_phases;
867 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
868 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
870 /* Unlock the internal RAM Buffer */
871 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
872 NFC_V3_WRPROT);
874 /* Blocks to be unlocked */
875 for (i = 0; i < NAND_MAX_CHIPS; i++)
876 writel(0x0 | (0xffff << 16),
877 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
879 writel(0, NFC_V3_IPC);
881 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
882 NFC_V3_CONFIG2_2CMD_PHASES |
883 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
884 NFC_V3_CONFIG2_ST_CMD(0x70) |
885 NFC_V3_CONFIG2_INT_MSK |
886 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
888 if (chip->ecc.mode == NAND_ECC_HW)
889 config2 |= NFC_V3_CONFIG2_ECC_EN;
891 addr_phases = fls(chip->pagemask) >> 3;
893 if (mtd->writesize == 2048) {
894 config2 |= NFC_V3_CONFIG2_PS_2048;
895 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
896 } else if (mtd->writesize == 4096) {
897 config2 |= NFC_V3_CONFIG2_PS_4096;
898 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
899 } else {
900 config2 |= NFC_V3_CONFIG2_PS_512;
901 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
904 if (mtd->writesize) {
905 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
906 host->eccsize = get_eccsize(mtd);
907 if (host->eccsize == 8)
908 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
911 writel(config2, NFC_V3_CONFIG2);
913 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
914 NFC_V3_CONFIG3_NO_SDMA |
915 NFC_V3_CONFIG3_RBB_MODE |
916 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
917 NFC_V3_CONFIG3_ADD_OP(0);
919 if (!(chip->options & NAND_BUSWIDTH_16))
920 config3 |= NFC_V3_CONFIG3_FW8;
922 writel(config3, NFC_V3_CONFIG3);
924 writel(0, NFC_V3_DELAY_LINE);
927 /* Used by the upper layer to write command to NAND Flash for
928 * different operations to be carried out on NAND Flash */
929 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
930 int column, int page_addr)
932 struct nand_chip *nand_chip = mtd->priv;
933 struct mxc_nand_host *host = nand_chip->priv;
935 DEBUG(MTD_DEBUG_LEVEL3,
936 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
937 command, column, page_addr);
939 /* Reset command state information */
940 host->status_request = false;
942 /* Command pre-processing step */
943 switch (command) {
944 case NAND_CMD_RESET:
945 host->preset(mtd);
946 host->send_cmd(host, command, false);
947 break;
949 case NAND_CMD_STATUS:
950 host->buf_start = 0;
951 host->status_request = true;
953 host->send_cmd(host, command, true);
954 mxc_do_addr_cycle(mtd, column, page_addr);
955 break;
957 case NAND_CMD_READ0:
958 case NAND_CMD_READOOB:
959 if (command == NAND_CMD_READ0)
960 host->buf_start = column;
961 else
962 host->buf_start = column + mtd->writesize;
964 command = NAND_CMD_READ0; /* only READ0 is valid */
966 host->send_cmd(host, command, false);
967 mxc_do_addr_cycle(mtd, column, page_addr);
969 if (mtd->writesize > 512)
970 host->send_cmd(host, NAND_CMD_READSTART, true);
972 host->send_page(mtd, NFC_OUTPUT);
974 memcpy(host->data_buf, host->main_area0, mtd->writesize);
975 copy_spare(mtd, true);
976 break;
978 case NAND_CMD_SEQIN:
979 if (column >= mtd->writesize)
980 /* call ourself to read a page */
981 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
983 host->buf_start = column;
985 host->send_cmd(host, command, false);
986 mxc_do_addr_cycle(mtd, column, page_addr);
987 break;
989 case NAND_CMD_PAGEPROG:
990 memcpy(host->main_area0, host->data_buf, mtd->writesize);
991 copy_spare(mtd, false);
992 host->send_page(mtd, NFC_INPUT);
993 host->send_cmd(host, command, true);
994 mxc_do_addr_cycle(mtd, column, page_addr);
995 break;
997 case NAND_CMD_READID:
998 host->send_cmd(host, command, true);
999 mxc_do_addr_cycle(mtd, column, page_addr);
1000 host->send_read_id(host);
1001 host->buf_start = column;
1002 break;
1004 case NAND_CMD_ERASE1:
1005 case NAND_CMD_ERASE2:
1006 host->send_cmd(host, command, false);
1007 mxc_do_addr_cycle(mtd, column, page_addr);
1009 break;
1014 * The generic flash bbt decriptors overlap with our ecc
1015 * hardware, so define some i.MX specific ones.
1017 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1018 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1020 static struct nand_bbt_descr bbt_main_descr = {
1021 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1022 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1023 .offs = 0,
1024 .len = 4,
1025 .veroffs = 4,
1026 .maxblocks = 4,
1027 .pattern = bbt_pattern,
1030 static struct nand_bbt_descr bbt_mirror_descr = {
1031 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1032 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1033 .offs = 0,
1034 .len = 4,
1035 .veroffs = 4,
1036 .maxblocks = 4,
1037 .pattern = mirror_pattern,
1040 static int __init mxcnd_probe(struct platform_device *pdev)
1042 struct nand_chip *this;
1043 struct mtd_info *mtd;
1044 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1045 struct mxc_nand_host *host;
1046 struct resource *res;
1047 int err = 0, __maybe_unused nr_parts = 0;
1048 struct nand_ecclayout *oob_smallpage, *oob_largepage;
1050 /* Allocate memory for MTD device structure and private data */
1051 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1052 NAND_MAX_OOBSIZE, GFP_KERNEL);
1053 if (!host)
1054 return -ENOMEM;
1056 host->data_buf = (uint8_t *)(host + 1);
1058 host->dev = &pdev->dev;
1059 /* structures must be linked */
1060 this = &host->nand;
1061 mtd = &host->mtd;
1062 mtd->priv = this;
1063 mtd->owner = THIS_MODULE;
1064 mtd->dev.parent = &pdev->dev;
1065 mtd->name = DRIVER_NAME;
1067 /* 50 us command delay time */
1068 this->chip_delay = 5;
1070 this->priv = host;
1071 this->dev_ready = mxc_nand_dev_ready;
1072 this->cmdfunc = mxc_nand_command;
1073 this->select_chip = mxc_nand_select_chip;
1074 this->read_byte = mxc_nand_read_byte;
1075 this->read_word = mxc_nand_read_word;
1076 this->write_buf = mxc_nand_write_buf;
1077 this->read_buf = mxc_nand_read_buf;
1078 this->verify_buf = mxc_nand_verify_buf;
1080 host->clk = clk_get(&pdev->dev, "nfc");
1081 if (IS_ERR(host->clk)) {
1082 err = PTR_ERR(host->clk);
1083 goto eclk;
1086 clk_enable(host->clk);
1087 host->clk_act = 1;
1089 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1090 if (!res) {
1091 err = -ENODEV;
1092 goto eres;
1095 host->base = ioremap(res->start, resource_size(res));
1096 if (!host->base) {
1097 err = -ENOMEM;
1098 goto eres;
1101 host->main_area0 = host->base;
1103 if (nfc_is_v1() || nfc_is_v21()) {
1104 host->preset = preset_v1_v2;
1105 host->send_cmd = send_cmd_v1_v2;
1106 host->send_addr = send_addr_v1_v2;
1107 host->send_page = send_page_v1_v2;
1108 host->send_read_id = send_read_id_v1_v2;
1109 host->get_dev_status = get_dev_status_v1_v2;
1110 host->check_int = check_int_v1_v2;
1111 if (cpu_is_mx21())
1112 host->irq_control = irq_control_mx21;
1113 else
1114 host->irq_control = irq_control_v1_v2;
1117 if (nfc_is_v21()) {
1118 host->regs = host->base + 0x1e00;
1119 host->spare0 = host->base + 0x1000;
1120 host->spare_len = 64;
1121 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1122 oob_largepage = &nandv2_hw_eccoob_largepage;
1123 this->ecc.bytes = 9;
1124 } else if (nfc_is_v1()) {
1125 host->regs = host->base + 0xe00;
1126 host->spare0 = host->base + 0x800;
1127 host->spare_len = 16;
1128 oob_smallpage = &nandv1_hw_eccoob_smallpage;
1129 oob_largepage = &nandv1_hw_eccoob_largepage;
1130 this->ecc.bytes = 3;
1131 host->eccsize = 1;
1132 } else if (nfc_is_v3_2()) {
1133 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1134 if (!res) {
1135 err = -ENODEV;
1136 goto eirq;
1138 host->regs_ip = ioremap(res->start, resource_size(res));
1139 if (!host->regs_ip) {
1140 err = -ENOMEM;
1141 goto eirq;
1143 host->regs_axi = host->base + 0x1e00;
1144 host->spare0 = host->base + 0x1000;
1145 host->spare_len = 64;
1146 host->preset = preset_v3;
1147 host->send_cmd = send_cmd_v3;
1148 host->send_addr = send_addr_v3;
1149 host->send_page = send_page_v3;
1150 host->send_read_id = send_read_id_v3;
1151 host->check_int = check_int_v3;
1152 host->get_dev_status = get_dev_status_v3;
1153 host->irq_control = irq_control_v3;
1154 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1155 oob_largepage = &nandv2_hw_eccoob_largepage;
1156 } else
1157 BUG();
1159 this->ecc.size = 512;
1160 this->ecc.layout = oob_smallpage;
1162 if (pdata->hw_ecc) {
1163 this->ecc.calculate = mxc_nand_calculate_ecc;
1164 this->ecc.hwctl = mxc_nand_enable_hwecc;
1165 if (nfc_is_v1())
1166 this->ecc.correct = mxc_nand_correct_data_v1;
1167 else
1168 this->ecc.correct = mxc_nand_correct_data_v2_v3;
1169 this->ecc.mode = NAND_ECC_HW;
1170 } else {
1171 this->ecc.mode = NAND_ECC_SOFT;
1174 /* NAND bus width determines access funtions used by upper layer */
1175 if (pdata->width == 2)
1176 this->options |= NAND_BUSWIDTH_16;
1178 if (pdata->flash_bbt) {
1179 this->bbt_td = &bbt_main_descr;
1180 this->bbt_md = &bbt_mirror_descr;
1181 /* update flash based bbt */
1182 this->options |= NAND_USE_FLASH_BBT;
1185 init_completion(&host->op_completion);
1187 host->irq = platform_get_irq(pdev, 0);
1190 * mask the interrupt. For i.MX21 explicitely call
1191 * irq_control_v1_v2 to use the mask bit. We can't call
1192 * disable_irq_nosync() for an interrupt we do not own yet.
1194 if (cpu_is_mx21())
1195 irq_control_v1_v2(host, 0);
1196 else
1197 host->irq_control(host, 0);
1199 err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1200 if (err)
1201 goto eirq;
1203 host->irq_control(host, 0);
1206 * Now that the interrupt is disabled make sure the interrupt
1207 * mask bit is cleared on i.MX21. Otherwise we can't read
1208 * the interrupt status bit on this machine.
1210 if (cpu_is_mx21())
1211 irq_control_v1_v2(host, 1);
1213 /* first scan to find the device and get the page size */
1214 if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1215 err = -ENXIO;
1216 goto escan;
1219 /* Call preset again, with correct writesize this time */
1220 host->preset(mtd);
1222 if (mtd->writesize == 2048)
1223 this->ecc.layout = oob_largepage;
1224 if (nfc_is_v21() && mtd->writesize == 4096)
1225 this->ecc.layout = &nandv2_hw_eccoob_4k;
1227 /* second phase scan */
1228 if (nand_scan_tail(mtd)) {
1229 err = -ENXIO;
1230 goto escan;
1233 /* Register the partitions */
1234 nr_parts =
1235 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
1236 if (nr_parts > 0)
1237 mtd_device_register(mtd, host->parts, nr_parts);
1238 else if (pdata->parts)
1239 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
1240 else {
1241 pr_info("Registering %s as whole device\n", mtd->name);
1242 mtd_device_register(mtd, NULL, 0);
1245 platform_set_drvdata(pdev, host);
1247 return 0;
1249 escan:
1250 free_irq(host->irq, host);
1251 eirq:
1252 if (host->regs_ip)
1253 iounmap(host->regs_ip);
1254 iounmap(host->base);
1255 eres:
1256 clk_put(host->clk);
1257 eclk:
1258 kfree(host);
1260 return err;
1263 static int __devexit mxcnd_remove(struct platform_device *pdev)
1265 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1267 clk_put(host->clk);
1269 platform_set_drvdata(pdev, NULL);
1271 nand_release(&host->mtd);
1272 free_irq(host->irq, host);
1273 if (host->regs_ip)
1274 iounmap(host->regs_ip);
1275 iounmap(host->base);
1276 kfree(host);
1278 return 0;
1281 static struct platform_driver mxcnd_driver = {
1282 .driver = {
1283 .name = DRIVER_NAME,
1285 .remove = __devexit_p(mxcnd_remove),
1288 static int __init mxc_nd_init(void)
1290 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1293 static void __exit mxc_nd_cleanup(void)
1295 /* Unregister the device structure */
1296 platform_driver_unregister(&mxcnd_driver);
1299 module_init(mxc_nd_init);
1300 module_exit(mxc_nd_cleanup);
1302 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1303 MODULE_DESCRIPTION("MXC NAND MTD driver");
1304 MODULE_LICENSE("GPL");