2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
50 kmem_zone_t
*xfs_ifork_zone
;
51 kmem_zone_t
*xfs_inode_zone
;
54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
55 * freed from a file in a single transaction.
57 #define XFS_ITRUNC_MAX_EXTENTS 2
59 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
60 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
61 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
62 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
66 * Make sure that the extents in the given memory buffer
76 xfs_bmbt_rec_host_t rec
;
79 for (i
= 0; i
< nrecs
; i
++) {
80 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
81 rec
.l0
= get_unaligned(&ep
->l0
);
82 rec
.l1
= get_unaligned(&ep
->l1
);
83 xfs_bmbt_get_all(&rec
, &irec
);
84 if (fmt
== XFS_EXTFMT_NOSTATE
)
85 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
89 #define xfs_validate_extents(ifp, nrecs, fmt)
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
106 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
108 for (i
= 0; i
< j
; i
++) {
109 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
110 i
* mp
->m_sb
.sb_inodesize
);
111 if (!dip
->di_next_unlinked
) {
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 ASSERT(dip
->di_next_unlinked
);
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
130 struct xfs_imap
*imap
,
140 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
141 (int)imap
->im_len
, buf_flags
, &bp
);
143 if (error
!= EAGAIN
) {
145 "%s: xfs_trans_read_buf() returned error %d.",
148 ASSERT(buf_flags
& XBF_TRYLOCK
);
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
159 #else /* usual case */
163 for (i
= 0; i
< ni
; i
++) {
167 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
168 (i
<< mp
->m_sb
.sb_inodelog
));
169 di_ok
= dip
->di_magic
== cpu_to_be16(XFS_DINODE_MAGIC
) &&
170 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
171 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
172 XFS_ERRTAG_ITOBP_INOTOBP
,
173 XFS_RANDOM_ITOBP_INOTOBP
))) {
174 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
175 xfs_trans_brelse(tp
, bp
);
176 return XFS_ERROR(EINVAL
);
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH
, mp
, dip
);
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 (unsigned long long)imap
->im_blkno
, i
,
184 be16_to_cpu(dip
->di_magic
));
187 xfs_trans_brelse(tp
, bp
);
188 return XFS_ERROR(EFSCORRUPTED
);
192 xfs_inobp_check(mp
, bp
);
195 * Mark the buffer as an inode buffer now that it looks good
197 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
204 * This routine is called to map an inode number within a file
205 * system to the buffer containing the on-disk version of the
206 * inode. It returns a pointer to the buffer containing the
207 * on-disk inode in the bpp parameter, and in the dip parameter
208 * it returns a pointer to the on-disk inode within that buffer.
210 * If a non-zero error is returned, then the contents of bpp and
211 * dipp are undefined.
213 * Use xfs_imap() to determine the size and location of the
214 * buffer to read from disk.
226 struct xfs_imap imap
;
231 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
235 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
239 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
241 *offset
= imap
.im_boffset
;
247 * This routine is called to map an inode to the buffer containing
248 * the on-disk version of the inode. It returns a pointer to the
249 * buffer containing the on-disk inode in the bpp parameter, and in
250 * the dip parameter it returns a pointer to the on-disk inode within
253 * If a non-zero error is returned, then the contents of bpp and
254 * dipp are undefined.
256 * The inode is expected to already been mapped to its buffer and read
257 * in once, thus we can use the mapping information stored in the inode
258 * rather than calling xfs_imap(). This allows us to avoid the overhead
259 * of looking at the inode btree for small block file systems
274 ASSERT(ip
->i_imap
.im_blkno
!= 0);
276 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
281 ASSERT(buf_flags
& XBF_TRYLOCK
);
287 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
293 * Move inode type and inode format specific information from the
294 * on-disk inode to the in-core inode. For fifos, devs, and sockets
295 * this means set if_rdev to the proper value. For files, directories,
296 * and symlinks this means to bring in the in-line data or extent
297 * pointers. For a file in B-tree format, only the root is immediately
298 * brought in-core. The rest will be in-lined in if_extents when it
299 * is first referenced (see xfs_iread_extents()).
306 xfs_attr_shortform_t
*atp
;
310 ip
->i_df
.if_ext_max
=
311 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
314 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
315 be16_to_cpu(dip
->di_anextents
) >
316 be64_to_cpu(dip
->di_nblocks
))) {
317 xfs_warn(ip
->i_mount
,
318 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
319 (unsigned long long)ip
->i_ino
,
320 (int)(be32_to_cpu(dip
->di_nextents
) +
321 be16_to_cpu(dip
->di_anextents
)),
323 be64_to_cpu(dip
->di_nblocks
));
324 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
326 return XFS_ERROR(EFSCORRUPTED
);
329 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
330 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
331 (unsigned long long)ip
->i_ino
,
333 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
335 return XFS_ERROR(EFSCORRUPTED
);
338 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
339 !ip
->i_mount
->m_rtdev_targp
)) {
340 xfs_warn(ip
->i_mount
,
341 "corrupt dinode %Lu, has realtime flag set.",
343 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
344 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
345 return XFS_ERROR(EFSCORRUPTED
);
348 switch (ip
->i_d
.di_mode
& S_IFMT
) {
353 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
354 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
356 return XFS_ERROR(EFSCORRUPTED
);
360 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
366 switch (dip
->di_format
) {
367 case XFS_DINODE_FMT_LOCAL
:
369 * no local regular files yet
371 if (unlikely(S_ISREG(be16_to_cpu(dip
->di_mode
)))) {
372 xfs_warn(ip
->i_mount
,
373 "corrupt inode %Lu (local format for regular file).",
374 (unsigned long long) ip
->i_ino
);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
378 return XFS_ERROR(EFSCORRUPTED
);
381 di_size
= be64_to_cpu(dip
->di_size
);
382 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
383 xfs_warn(ip
->i_mount
,
384 "corrupt inode %Lu (bad size %Ld for local inode).",
385 (unsigned long long) ip
->i_ino
,
386 (long long) di_size
);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
390 return XFS_ERROR(EFSCORRUPTED
);
394 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
396 case XFS_DINODE_FMT_EXTENTS
:
397 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
399 case XFS_DINODE_FMT_BTREE
:
400 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
405 return XFS_ERROR(EFSCORRUPTED
);
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
411 return XFS_ERROR(EFSCORRUPTED
);
416 if (!XFS_DFORK_Q(dip
))
418 ASSERT(ip
->i_afp
== NULL
);
419 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
420 ip
->i_afp
->if_ext_max
=
421 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
422 switch (dip
->di_aformat
) {
423 case XFS_DINODE_FMT_LOCAL
:
424 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
425 size
= be16_to_cpu(atp
->hdr
.totsize
);
427 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
428 xfs_warn(ip
->i_mount
,
429 "corrupt inode %Lu (bad attr fork size %Ld).",
430 (unsigned long long) ip
->i_ino
,
432 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
435 return XFS_ERROR(EFSCORRUPTED
);
438 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
440 case XFS_DINODE_FMT_EXTENTS
:
441 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
443 case XFS_DINODE_FMT_BTREE
:
444 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
447 error
= XFS_ERROR(EFSCORRUPTED
);
451 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
453 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
459 * The file is in-lined in the on-disk inode.
460 * If it fits into if_inline_data, then copy
461 * it there, otherwise allocate a buffer for it
462 * and copy the data there. Either way, set
463 * if_data to point at the data.
464 * If we allocate a buffer for the data, make
465 * sure that its size is a multiple of 4 and
466 * record the real size in i_real_bytes.
479 * If the size is unreasonable, then something
480 * is wrong and we just bail out rather than crash in
481 * kmem_alloc() or memcpy() below.
483 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
484 xfs_warn(ip
->i_mount
,
485 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
486 (unsigned long long) ip
->i_ino
, size
,
487 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
488 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
490 return XFS_ERROR(EFSCORRUPTED
);
492 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
495 ifp
->if_u1
.if_data
= NULL
;
496 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
497 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
499 real_size
= roundup(size
, 4);
500 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
502 ifp
->if_bytes
= size
;
503 ifp
->if_real_bytes
= real_size
;
505 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
506 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
507 ifp
->if_flags
|= XFS_IFINLINE
;
512 * The file consists of a set of extents all
513 * of which fit into the on-disk inode.
514 * If there are few enough extents to fit into
515 * the if_inline_ext, then copy them there.
516 * Otherwise allocate a buffer for them and copy
517 * them into it. Either way, set if_extents
518 * to point at the extents.
532 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
533 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
534 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
537 * If the number of extents is unreasonable, then something
538 * is wrong and we just bail out rather than crash in
539 * kmem_alloc() or memcpy() below.
541 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
542 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
543 (unsigned long long) ip
->i_ino
, nex
);
544 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
546 return XFS_ERROR(EFSCORRUPTED
);
549 ifp
->if_real_bytes
= 0;
551 ifp
->if_u1
.if_extents
= NULL
;
552 else if (nex
<= XFS_INLINE_EXTS
)
553 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
555 xfs_iext_add(ifp
, 0, nex
);
557 ifp
->if_bytes
= size
;
559 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
560 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
561 for (i
= 0; i
< nex
; i
++, dp
++) {
562 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
563 ep
->l0
= get_unaligned_be64(&dp
->l0
);
564 ep
->l1
= get_unaligned_be64(&dp
->l1
);
566 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
567 if (whichfork
!= XFS_DATA_FORK
||
568 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
569 if (unlikely(xfs_check_nostate_extents(
571 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
574 return XFS_ERROR(EFSCORRUPTED
);
577 ifp
->if_flags
|= XFS_IFEXTENTS
;
582 * The file has too many extents to fit into
583 * the inode, so they are in B-tree format.
584 * Allocate a buffer for the root of the B-tree
585 * and copy the root into it. The i_extents
586 * field will remain NULL until all of the
587 * extents are read in (when they are needed).
595 xfs_bmdr_block_t
*dfp
;
601 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
602 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
603 size
= XFS_BMAP_BROOT_SPACE(dfp
);
604 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
607 * blow out if -- fork has less extents than can fit in
608 * fork (fork shouldn't be a btree format), root btree
609 * block has more records than can fit into the fork,
610 * or the number of extents is greater than the number of
613 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
614 || XFS_BMDR_SPACE_CALC(nrecs
) >
615 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
616 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
617 xfs_warn(ip
->i_mount
, "corrupt inode %Lu (btree).",
618 (unsigned long long) ip
->i_ino
);
619 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
621 return XFS_ERROR(EFSCORRUPTED
);
624 ifp
->if_broot_bytes
= size
;
625 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
626 ASSERT(ifp
->if_broot
!= NULL
);
628 * Copy and convert from the on-disk structure
629 * to the in-memory structure.
631 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
632 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
633 ifp
->if_broot
, size
);
634 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
635 ifp
->if_flags
|= XFS_IFBROOT
;
641 xfs_dinode_from_disk(
645 to
->di_magic
= be16_to_cpu(from
->di_magic
);
646 to
->di_mode
= be16_to_cpu(from
->di_mode
);
647 to
->di_version
= from
->di_version
;
648 to
->di_format
= from
->di_format
;
649 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
650 to
->di_uid
= be32_to_cpu(from
->di_uid
);
651 to
->di_gid
= be32_to_cpu(from
->di_gid
);
652 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
653 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
654 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
655 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
656 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
657 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
658 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
659 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
660 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
661 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
662 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
663 to
->di_size
= be64_to_cpu(from
->di_size
);
664 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
665 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
666 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
667 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
668 to
->di_forkoff
= from
->di_forkoff
;
669 to
->di_aformat
= from
->di_aformat
;
670 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
671 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
672 to
->di_flags
= be16_to_cpu(from
->di_flags
);
673 to
->di_gen
= be32_to_cpu(from
->di_gen
);
679 xfs_icdinode_t
*from
)
681 to
->di_magic
= cpu_to_be16(from
->di_magic
);
682 to
->di_mode
= cpu_to_be16(from
->di_mode
);
683 to
->di_version
= from
->di_version
;
684 to
->di_format
= from
->di_format
;
685 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
686 to
->di_uid
= cpu_to_be32(from
->di_uid
);
687 to
->di_gid
= cpu_to_be32(from
->di_gid
);
688 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
689 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
690 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
691 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
692 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
693 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
694 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
695 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
696 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
697 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
698 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
699 to
->di_size
= cpu_to_be64(from
->di_size
);
700 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
701 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
702 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
703 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
704 to
->di_forkoff
= from
->di_forkoff
;
705 to
->di_aformat
= from
->di_aformat
;
706 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
707 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
708 to
->di_flags
= cpu_to_be16(from
->di_flags
);
709 to
->di_gen
= cpu_to_be32(from
->di_gen
);
718 if (di_flags
& XFS_DIFLAG_ANY
) {
719 if (di_flags
& XFS_DIFLAG_REALTIME
)
720 flags
|= XFS_XFLAG_REALTIME
;
721 if (di_flags
& XFS_DIFLAG_PREALLOC
)
722 flags
|= XFS_XFLAG_PREALLOC
;
723 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
724 flags
|= XFS_XFLAG_IMMUTABLE
;
725 if (di_flags
& XFS_DIFLAG_APPEND
)
726 flags
|= XFS_XFLAG_APPEND
;
727 if (di_flags
& XFS_DIFLAG_SYNC
)
728 flags
|= XFS_XFLAG_SYNC
;
729 if (di_flags
& XFS_DIFLAG_NOATIME
)
730 flags
|= XFS_XFLAG_NOATIME
;
731 if (di_flags
& XFS_DIFLAG_NODUMP
)
732 flags
|= XFS_XFLAG_NODUMP
;
733 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
734 flags
|= XFS_XFLAG_RTINHERIT
;
735 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
736 flags
|= XFS_XFLAG_PROJINHERIT
;
737 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
738 flags
|= XFS_XFLAG_NOSYMLINKS
;
739 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
740 flags
|= XFS_XFLAG_EXTSIZE
;
741 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
742 flags
|= XFS_XFLAG_EXTSZINHERIT
;
743 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
744 flags
|= XFS_XFLAG_NODEFRAG
;
745 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
746 flags
|= XFS_XFLAG_FILESTREAM
;
756 xfs_icdinode_t
*dic
= &ip
->i_d
;
758 return _xfs_dic2xflags(dic
->di_flags
) |
759 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
766 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
767 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
771 * Read the disk inode attributes into the in-core inode structure.
785 * Fill in the location information in the in-core inode.
787 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
792 * Get pointers to the on-disk inode and the buffer containing it.
794 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
795 XBF_LOCK
, iget_flags
);
798 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
801 * If we got something that isn't an inode it means someone
802 * (nfs or dmi) has a stale handle.
804 if (dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
)) {
807 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
808 __func__
, be16_to_cpu(dip
->di_magic
), XFS_DINODE_MAGIC
);
810 error
= XFS_ERROR(EINVAL
);
815 * If the on-disk inode is already linked to a directory
816 * entry, copy all of the inode into the in-core inode.
817 * xfs_iformat() handles copying in the inode format
818 * specific information.
819 * Otherwise, just get the truly permanent information.
822 xfs_dinode_from_disk(&ip
->i_d
, dip
);
823 error
= xfs_iformat(ip
, dip
);
826 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
832 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
833 ip
->i_d
.di_version
= dip
->di_version
;
834 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
835 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
837 * Make sure to pull in the mode here as well in
838 * case the inode is released without being used.
839 * This ensures that xfs_inactive() will see that
840 * the inode is already free and not try to mess
841 * with the uninitialized part of it.
845 * Initialize the per-fork minima and maxima for a new
846 * inode here. xfs_iformat will do it for old inodes.
848 ip
->i_df
.if_ext_max
=
849 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
853 * The inode format changed when we moved the link count and
854 * made it 32 bits long. If this is an old format inode,
855 * convert it in memory to look like a new one. If it gets
856 * flushed to disk we will convert back before flushing or
857 * logging it. We zero out the new projid field and the old link
858 * count field. We'll handle clearing the pad field (the remains
859 * of the old uuid field) when we actually convert the inode to
860 * the new format. We don't change the version number so that we
861 * can distinguish this from a real new format inode.
863 if (ip
->i_d
.di_version
== 1) {
864 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
865 ip
->i_d
.di_onlink
= 0;
866 xfs_set_projid(ip
, 0);
869 ip
->i_delayed_blks
= 0;
870 ip
->i_size
= ip
->i_d
.di_size
;
873 * Mark the buffer containing the inode as something to keep
874 * around for a while. This helps to keep recently accessed
875 * meta-data in-core longer.
877 xfs_buf_set_ref(bp
, XFS_INO_REF
);
880 * Use xfs_trans_brelse() to release the buffer containing the
881 * on-disk inode, because it was acquired with xfs_trans_read_buf()
882 * in xfs_itobp() above. If tp is NULL, this is just a normal
883 * brelse(). If we're within a transaction, then xfs_trans_brelse()
884 * will only release the buffer if it is not dirty within the
885 * transaction. It will be OK to release the buffer in this case,
886 * because inodes on disk are never destroyed and we will be
887 * locking the new in-core inode before putting it in the hash
888 * table where other processes can find it. Thus we don't have
889 * to worry about the inode being changed just because we released
893 xfs_trans_brelse(tp
, bp
);
898 * Read in extents from a btree-format inode.
899 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
909 xfs_extnum_t nextents
;
911 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
912 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
914 return XFS_ERROR(EFSCORRUPTED
);
916 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
917 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
920 * We know that the size is valid (it's checked in iformat_btree)
922 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
923 ifp
->if_flags
|= XFS_IFEXTENTS
;
924 xfs_iext_add(ifp
, 0, nextents
);
925 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
927 xfs_iext_destroy(ifp
);
928 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
931 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
936 * Allocate an inode on disk and return a copy of its in-core version.
937 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
938 * appropriately within the inode. The uid and gid for the inode are
939 * set according to the contents of the given cred structure.
941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
942 * has a free inode available, call xfs_iget()
943 * to obtain the in-core version of the allocated inode. Finally,
944 * fill in the inode and log its initial contents. In this case,
945 * ialloc_context would be set to NULL and call_again set to false.
947 * If xfs_dialloc() does not have an available inode,
948 * it will replenish its supply by doing an allocation. Since we can
949 * only do one allocation within a transaction without deadlocks, we
950 * must commit the current transaction before returning the inode itself.
951 * In this case, therefore, we will set call_again to true and return.
952 * The caller should then commit the current transaction, start a new
953 * transaction, and call xfs_ialloc() again to actually get the inode.
955 * To ensure that some other process does not grab the inode that
956 * was allocated during the first call to xfs_ialloc(), this routine
957 * also returns the [locked] bp pointing to the head of the freelist
958 * as ialloc_context. The caller should hold this buffer across
959 * the commit and pass it back into this routine on the second call.
961 * If we are allocating quota inodes, we do not have a parent inode
962 * to attach to or associate with (i.e. pip == NULL) because they
963 * are not linked into the directory structure - they are attached
964 * directly to the superblock - and so have no parent.
975 xfs_buf_t
**ialloc_context
,
976 boolean_t
*call_again
,
987 * Call the space management code to pick
988 * the on-disk inode to be allocated.
990 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
991 ialloc_context
, call_again
, &ino
);
994 if (*call_again
|| ino
== NULLFSINO
) {
998 ASSERT(*ialloc_context
== NULL
);
1001 * Get the in-core inode with the lock held exclusively.
1002 * This is because we're setting fields here we need
1003 * to prevent others from looking at until we're done.
1005 error
= xfs_iget(tp
->t_mountp
, tp
, ino
, XFS_IGET_CREATE
,
1006 XFS_ILOCK_EXCL
, &ip
);
1011 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1012 ip
->i_d
.di_onlink
= 0;
1013 ip
->i_d
.di_nlink
= nlink
;
1014 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1015 ip
->i_d
.di_uid
= current_fsuid();
1016 ip
->i_d
.di_gid
= current_fsgid();
1017 xfs_set_projid(ip
, prid
);
1018 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1021 * If the superblock version is up to where we support new format
1022 * inodes and this is currently an old format inode, then change
1023 * the inode version number now. This way we only do the conversion
1024 * here rather than here and in the flush/logging code.
1026 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1027 ip
->i_d
.di_version
== 1) {
1028 ip
->i_d
.di_version
= 2;
1030 * We've already zeroed the old link count, the projid field,
1031 * and the pad field.
1036 * Project ids won't be stored on disk if we are using a version 1 inode.
1038 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1039 xfs_bump_ino_vers2(tp
, ip
);
1041 if (pip
&& XFS_INHERIT_GID(pip
)) {
1042 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1043 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
1044 ip
->i_d
.di_mode
|= S_ISGID
;
1049 * If the group ID of the new file does not match the effective group
1050 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051 * (and only if the irix_sgid_inherit compatibility variable is set).
1053 if ((irix_sgid_inherit
) &&
1054 (ip
->i_d
.di_mode
& S_ISGID
) &&
1055 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1056 ip
->i_d
.di_mode
&= ~S_ISGID
;
1059 ip
->i_d
.di_size
= 0;
1061 ip
->i_d
.di_nextents
= 0;
1062 ASSERT(ip
->i_d
.di_nblocks
== 0);
1065 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1066 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1067 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1068 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1071 * di_gen will have been taken care of in xfs_iread.
1073 ip
->i_d
.di_extsize
= 0;
1074 ip
->i_d
.di_dmevmask
= 0;
1075 ip
->i_d
.di_dmstate
= 0;
1076 ip
->i_d
.di_flags
= 0;
1077 flags
= XFS_ILOG_CORE
;
1078 switch (mode
& S_IFMT
) {
1083 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1084 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1085 ip
->i_df
.if_flags
= 0;
1086 flags
|= XFS_ILOG_DEV
;
1090 * we can't set up filestreams until after the VFS inode
1091 * is set up properly.
1093 if (pip
&& xfs_inode_is_filestream(pip
))
1097 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1100 if (S_ISDIR(mode
)) {
1101 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1102 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1103 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1104 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1105 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1107 } else if (S_ISREG(mode
)) {
1108 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1109 di_flags
|= XFS_DIFLAG_REALTIME
;
1110 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1111 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1112 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1115 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1116 xfs_inherit_noatime
)
1117 di_flags
|= XFS_DIFLAG_NOATIME
;
1118 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1120 di_flags
|= XFS_DIFLAG_NODUMP
;
1121 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1123 di_flags
|= XFS_DIFLAG_SYNC
;
1124 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1125 xfs_inherit_nosymlinks
)
1126 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1127 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1128 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1129 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1130 xfs_inherit_nodefrag
)
1131 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1132 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1133 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1134 ip
->i_d
.di_flags
|= di_flags
;
1138 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1139 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1140 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1141 ip
->i_df
.if_u1
.if_extents
= NULL
;
1147 * Attribute fork settings for new inode.
1149 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1150 ip
->i_d
.di_anextents
= 0;
1153 * Log the new values stuffed into the inode.
1155 xfs_trans_ijoin_ref(tp
, ip
, XFS_ILOCK_EXCL
);
1156 xfs_trans_log_inode(tp
, ip
, flags
);
1158 /* now that we have an i_mode we can setup inode ops and unlock */
1159 xfs_setup_inode(ip
);
1161 /* now we have set up the vfs inode we can associate the filestream */
1163 error
= xfs_filestream_associate(pip
, ip
);
1167 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file. We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
1183 struct xfs_inode
*ip
,
1186 struct xfs_mount
*mp
= ip
->i_mount
;
1187 xfs_fileoff_t map_first
;
1189 xfs_bmbt_irec_t imaps
[2];
1191 if (!S_ISREG(ip
->i_d
.di_mode
))
1194 if (XFS_IS_REALTIME_INODE(ip
))
1197 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1201 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1203 * The filesystem could be shutting down, so bmapi may return
1206 if (xfs_bmapi(NULL
, ip
, map_first
,
1208 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1210 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1213 ASSERT(nimaps
== 1);
1214 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1217 #define xfs_isize_check(ip, isize)
1221 * Free up the underlying blocks past new_size. The new size must be smaller
1222 * than the current size. This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here. Some transaction will be
1229 * returned to the caller to be committed. The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction. On return the inode
1232 * will be "held" within the returned transaction. This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not. We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1242 xfs_itruncate_extents(
1243 struct xfs_trans
**tpp
,
1244 struct xfs_inode
*ip
,
1246 xfs_fsize_t new_size
)
1248 struct xfs_mount
*mp
= ip
->i_mount
;
1249 struct xfs_trans
*tp
= *tpp
;
1250 struct xfs_trans
*ntp
;
1251 xfs_bmap_free_t free_list
;
1252 xfs_fsblock_t first_block
;
1253 xfs_fileoff_t first_unmap_block
;
1254 xfs_fileoff_t last_block
;
1255 xfs_filblks_t unmap_len
;
1260 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1261 ASSERT(new_size
<= ip
->i_size
);
1262 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1263 ASSERT(ip
->i_itemp
!= NULL
);
1264 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1265 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1268 * Since it is possible for space to become allocated beyond
1269 * the end of the file (in a crash where the space is allocated
1270 * but the inode size is not yet updated), simply remove any
1271 * blocks which show up between the new EOF and the maximum
1272 * possible file size. If the first block to be removed is
1273 * beyond the maximum file size (ie it is the same as last_block),
1274 * then there is nothing to do.
1276 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1277 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1278 if (first_unmap_block
== last_block
)
1281 ASSERT(first_unmap_block
< last_block
);
1282 unmap_len
= last_block
- first_unmap_block
+ 1;
1284 xfs_bmap_init(&free_list
, &first_block
);
1285 error
= xfs_bunmapi(tp
, ip
,
1286 first_unmap_block
, unmap_len
,
1287 xfs_bmapi_aflag(whichfork
),
1288 XFS_ITRUNC_MAX_EXTENTS
,
1289 &first_block
, &free_list
,
1292 goto out_bmap_cancel
;
1295 * Duplicate the transaction that has the permanent
1296 * reservation and commit the old transaction.
1298 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1300 xfs_trans_ijoin(tp
, ip
);
1302 goto out_bmap_cancel
;
1306 * Mark the inode dirty so it will be logged and
1307 * moved forward in the log as part of every commit.
1309 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1312 ntp
= xfs_trans_dup(tp
);
1313 error
= xfs_trans_commit(tp
, 0);
1316 xfs_trans_ijoin(tp
, ip
);
1322 * Transaction commit worked ok so we can drop the extra ticket
1323 * reference that we gained in xfs_trans_dup()
1325 xfs_log_ticket_put(tp
->t_ticket
);
1326 error
= xfs_trans_reserve(tp
, 0,
1327 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1328 XFS_TRANS_PERM_LOG_RES
,
1329 XFS_ITRUNCATE_LOG_COUNT
);
1339 * If the bunmapi call encounters an error, return to the caller where
1340 * the transaction can be properly aborted. We just need to make sure
1341 * we're not holding any resources that we were not when we came in.
1343 xfs_bmap_cancel(&free_list
);
1349 struct xfs_trans
**tpp
,
1350 struct xfs_inode
*ip
,
1351 xfs_fsize_t new_size
)
1355 trace_xfs_itruncate_data_start(ip
, new_size
);
1358 * The first thing we do is set the size to new_size permanently on
1359 * disk. This way we don't have to worry about anyone ever being able
1360 * to look at the data being freed even in the face of a crash.
1361 * What we're getting around here is the case where we free a block, it
1362 * is allocated to another file, it is written to, and then we crash.
1363 * If the new data gets written to the file but the log buffers
1364 * containing the free and reallocation don't, then we'd end up with
1365 * garbage in the blocks being freed. As long as we make the new_size
1366 * permanent before actually freeing any blocks it doesn't matter if
1367 * they get written to.
1369 if (ip
->i_d
.di_nextents
> 0) {
1371 * If we are not changing the file size then do not update
1372 * the on-disk file size - we may be called from
1373 * xfs_inactive_free_eofblocks(). If we update the on-disk
1374 * file size and then the system crashes before the contents
1375 * of the file are flushed to disk then the files may be
1376 * full of holes (ie NULL files bug).
1378 if (ip
->i_size
!= new_size
) {
1379 ip
->i_d
.di_size
= new_size
;
1380 ip
->i_size
= new_size
;
1381 xfs_trans_log_inode(*tpp
, ip
, XFS_ILOG_CORE
);
1385 error
= xfs_itruncate_extents(tpp
, ip
, XFS_DATA_FORK
, new_size
);
1390 * If we are not changing the file size then do not update the on-disk
1391 * file size - we may be called from xfs_inactive_free_eofblocks().
1392 * If we update the on-disk file size and then the system crashes
1393 * before the contents of the file are flushed to disk then the files
1394 * may be full of holes (ie NULL files bug).
1396 xfs_isize_check(ip
, new_size
);
1397 if (ip
->i_size
!= new_size
) {
1398 ip
->i_d
.di_size
= new_size
;
1399 ip
->i_size
= new_size
;
1402 ASSERT(new_size
!= 0 || ip
->i_delayed_blks
== 0);
1403 ASSERT(new_size
!= 0 || ip
->i_d
.di_nextents
== 0);
1406 * Always re-log the inode so that our permanent transaction can keep
1407 * on rolling it forward in the log.
1409 xfs_trans_log_inode(*tpp
, ip
, XFS_ILOG_CORE
);
1411 trace_xfs_itruncate_data_end(ip
, new_size
);
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI. It
1418 * will be pulled from this list when the inode is freed.
1435 ASSERT(ip
->i_d
.di_nlink
== 0);
1436 ASSERT(ip
->i_d
.di_mode
!= 0);
1441 * Get the agi buffer first. It ensures lock ordering
1444 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1447 agi
= XFS_BUF_TO_AGI(agibp
);
1450 * Get the index into the agi hash table for the
1451 * list this inode will go on.
1453 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1455 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1456 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1457 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1459 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1461 * There is already another inode in the bucket we need
1462 * to add ourselves to. Add us at the front of the list.
1463 * Here we put the head pointer into our next pointer,
1464 * and then we fall through to point the head at us.
1466 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1470 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1471 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1472 offset
= ip
->i_imap
.im_boffset
+
1473 offsetof(xfs_dinode_t
, di_next_unlinked
);
1474 xfs_trans_inode_buf(tp
, ibp
);
1475 xfs_trans_log_buf(tp
, ibp
, offset
,
1476 (offset
+ sizeof(xfs_agino_t
) - 1));
1477 xfs_inobp_check(mp
, ibp
);
1481 * Point the bucket head pointer at the inode being inserted.
1484 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1485 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1486 (sizeof(xfs_agino_t
) * bucket_index
);
1487 xfs_trans_log_buf(tp
, agibp
, offset
,
1488 (offset
+ sizeof(xfs_agino_t
) - 1));
1493 * Pull the on-disk inode from the AGI unlinked list.
1506 xfs_agnumber_t agno
;
1508 xfs_agino_t next_agino
;
1509 xfs_buf_t
*last_ibp
;
1510 xfs_dinode_t
*last_dip
= NULL
;
1512 int offset
, last_offset
= 0;
1516 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1519 * Get the agi buffer first. It ensures lock ordering
1522 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1526 agi
= XFS_BUF_TO_AGI(agibp
);
1529 * Get the index into the agi hash table for the
1530 * list this inode will go on.
1532 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1534 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1535 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
1536 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1538 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1540 * We're at the head of the list. Get the inode's
1541 * on-disk buffer to see if there is anyone after us
1542 * on the list. Only modify our next pointer if it
1543 * is not already NULLAGINO. This saves us the overhead
1544 * of dealing with the buffer when there is no need to
1547 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1549 xfs_warn(mp
, "%s: xfs_itobp() returned error %d.",
1553 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1554 ASSERT(next_agino
!= 0);
1555 if (next_agino
!= NULLAGINO
) {
1556 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1557 offset
= ip
->i_imap
.im_boffset
+
1558 offsetof(xfs_dinode_t
, di_next_unlinked
);
1559 xfs_trans_inode_buf(tp
, ibp
);
1560 xfs_trans_log_buf(tp
, ibp
, offset
,
1561 (offset
+ sizeof(xfs_agino_t
) - 1));
1562 xfs_inobp_check(mp
, ibp
);
1564 xfs_trans_brelse(tp
, ibp
);
1567 * Point the bucket head pointer at the next inode.
1569 ASSERT(next_agino
!= 0);
1570 ASSERT(next_agino
!= agino
);
1571 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1572 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1573 (sizeof(xfs_agino_t
) * bucket_index
);
1574 xfs_trans_log_buf(tp
, agibp
, offset
,
1575 (offset
+ sizeof(xfs_agino_t
) - 1));
1578 * We need to search the list for the inode being freed.
1580 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1582 while (next_agino
!= agino
) {
1584 * If the last inode wasn't the one pointing to
1585 * us, then release its buffer since we're not
1586 * going to do anything with it.
1588 if (last_ibp
!= NULL
) {
1589 xfs_trans_brelse(tp
, last_ibp
);
1591 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1592 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1593 &last_ibp
, &last_offset
, 0);
1596 "%s: xfs_inotobp() returned error %d.",
1600 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1601 ASSERT(next_agino
!= NULLAGINO
);
1602 ASSERT(next_agino
!= 0);
1605 * Now last_ibp points to the buffer previous to us on
1606 * the unlinked list. Pull us from the list.
1608 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1610 xfs_warn(mp
, "%s: xfs_itobp(2) returned error %d.",
1614 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1615 ASSERT(next_agino
!= 0);
1616 ASSERT(next_agino
!= agino
);
1617 if (next_agino
!= NULLAGINO
) {
1618 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1619 offset
= ip
->i_imap
.im_boffset
+
1620 offsetof(xfs_dinode_t
, di_next_unlinked
);
1621 xfs_trans_inode_buf(tp
, ibp
);
1622 xfs_trans_log_buf(tp
, ibp
, offset
,
1623 (offset
+ sizeof(xfs_agino_t
) - 1));
1624 xfs_inobp_check(mp
, ibp
);
1626 xfs_trans_brelse(tp
, ibp
);
1629 * Point the previous inode on the list to the next inode.
1631 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1632 ASSERT(next_agino
!= 0);
1633 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1634 xfs_trans_inode_buf(tp
, last_ibp
);
1635 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1636 (offset
+ sizeof(xfs_agino_t
) - 1));
1637 xfs_inobp_check(mp
, last_ibp
);
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
1649 xfs_inode_t
*free_ip
,
1653 xfs_mount_t
*mp
= free_ip
->i_mount
;
1654 int blks_per_cluster
;
1661 xfs_inode_log_item_t
*iip
;
1662 xfs_log_item_t
*lip
;
1663 struct xfs_perag
*pag
;
1665 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1666 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1667 blks_per_cluster
= 1;
1668 ninodes
= mp
->m_sb
.sb_inopblock
;
1669 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1671 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1672 mp
->m_sb
.sb_blocksize
;
1673 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1674 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1677 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1678 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1679 XFS_INO_TO_AGBNO(mp
, inum
));
1682 * We obtain and lock the backing buffer first in the process
1683 * here, as we have to ensure that any dirty inode that we
1684 * can't get the flush lock on is attached to the buffer.
1685 * If we scan the in-memory inodes first, then buffer IO can
1686 * complete before we get a lock on it, and hence we may fail
1687 * to mark all the active inodes on the buffer stale.
1689 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1690 mp
->m_bsize
* blks_per_cluster
,
1694 * Walk the inodes already attached to the buffer and mark them
1695 * stale. These will all have the flush locks held, so an
1696 * in-memory inode walk can't lock them. By marking them all
1697 * stale first, we will not attempt to lock them in the loop
1698 * below as the XFS_ISTALE flag will be set.
1702 if (lip
->li_type
== XFS_LI_INODE
) {
1703 iip
= (xfs_inode_log_item_t
*)lip
;
1704 ASSERT(iip
->ili_logged
== 1);
1705 lip
->li_cb
= xfs_istale_done
;
1706 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1707 &iip
->ili_flush_lsn
,
1708 &iip
->ili_item
.li_lsn
);
1709 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1711 lip
= lip
->li_bio_list
;
1716 * For each inode in memory attempt to add it to the inode
1717 * buffer and set it up for being staled on buffer IO
1718 * completion. This is safe as we've locked out tail pushing
1719 * and flushing by locking the buffer.
1721 * We have already marked every inode that was part of a
1722 * transaction stale above, which means there is no point in
1723 * even trying to lock them.
1725 for (i
= 0; i
< ninodes
; i
++) {
1728 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1729 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1731 /* Inode not in memory, nothing to do */
1738 * because this is an RCU protected lookup, we could
1739 * find a recently freed or even reallocated inode
1740 * during the lookup. We need to check under the
1741 * i_flags_lock for a valid inode here. Skip it if it
1742 * is not valid, the wrong inode or stale.
1744 spin_lock(&ip
->i_flags_lock
);
1745 if (ip
->i_ino
!= inum
+ i
||
1746 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
1747 spin_unlock(&ip
->i_flags_lock
);
1751 spin_unlock(&ip
->i_flags_lock
);
1754 * Don't try to lock/unlock the current inode, but we
1755 * _cannot_ skip the other inodes that we did not find
1756 * in the list attached to the buffer and are not
1757 * already marked stale. If we can't lock it, back off
1760 if (ip
!= free_ip
&&
1761 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
1769 xfs_iflags_set(ip
, XFS_ISTALE
);
1772 * we don't need to attach clean inodes or those only
1773 * with unlogged changes (which we throw away, anyway).
1776 if (!iip
|| xfs_inode_clean(ip
)) {
1777 ASSERT(ip
!= free_ip
);
1778 ip
->i_update_core
= 0;
1780 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1784 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
1785 iip
->ili_format
.ilf_fields
= 0;
1786 iip
->ili_logged
= 1;
1787 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
1788 &iip
->ili_item
.li_lsn
);
1790 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
1794 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1797 xfs_trans_stale_inode_buf(tp
, bp
);
1798 xfs_trans_binval(tp
, bp
);
1805 * This is called to return an inode to the inode free list.
1806 * The inode should already be truncated to 0 length and have
1807 * no pages associated with it. This routine also assumes that
1808 * the inode is already a part of the transaction.
1810 * The on-disk copy of the inode will have been added to the list
1811 * of unlinked inodes in the AGI. We need to remove the inode from
1812 * that list atomically with respect to freeing it here.
1818 xfs_bmap_free_t
*flist
)
1822 xfs_ino_t first_ino
;
1826 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1827 ASSERT(ip
->i_d
.di_nlink
== 0);
1828 ASSERT(ip
->i_d
.di_nextents
== 0);
1829 ASSERT(ip
->i_d
.di_anextents
== 0);
1830 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
1831 (!S_ISREG(ip
->i_d
.di_mode
)));
1832 ASSERT(ip
->i_d
.di_nblocks
== 0);
1835 * Pull the on-disk inode from the AGI unlinked list.
1837 error
= xfs_iunlink_remove(tp
, ip
);
1842 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
1846 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
1847 ip
->i_d
.di_flags
= 0;
1848 ip
->i_d
.di_dmevmask
= 0;
1849 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
1850 ip
->i_df
.if_ext_max
=
1851 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
1852 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1853 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1855 * Bump the generation count so no one will be confused
1856 * by reincarnations of this inode.
1860 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1862 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1867 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1868 * from picking up this inode when it is reclaimed (its incore state
1869 * initialzed but not flushed to disk yet). The in-core di_mode is
1870 * already cleared and a corresponding transaction logged.
1871 * The hack here just synchronizes the in-core to on-disk
1872 * di_mode value in advance before the actual inode sync to disk.
1873 * This is OK because the inode is already unlinked and would never
1874 * change its di_mode again for this inode generation.
1875 * This is a temporary hack that would require a proper fix
1881 xfs_ifree_cluster(ip
, tp
, first_ino
);
1888 * Reallocate the space for if_broot based on the number of records
1889 * being added or deleted as indicated in rec_diff. Move the records
1890 * and pointers in if_broot to fit the new size. When shrinking this
1891 * will eliminate holes between the records and pointers created by
1892 * the caller. When growing this will create holes to be filled in
1895 * The caller must not request to add more records than would fit in
1896 * the on-disk inode root. If the if_broot is currently NULL, then
1897 * if we adding records one will be allocated. The caller must also
1898 * not request that the number of records go below zero, although
1899 * it can go to zero.
1901 * ip -- the inode whose if_broot area is changing
1902 * ext_diff -- the change in the number of records, positive or negative,
1903 * requested for the if_broot array.
1911 struct xfs_mount
*mp
= ip
->i_mount
;
1914 struct xfs_btree_block
*new_broot
;
1921 * Handle the degenerate case quietly.
1923 if (rec_diff
== 0) {
1927 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1930 * If there wasn't any memory allocated before, just
1931 * allocate it now and get out.
1933 if (ifp
->if_broot_bytes
== 0) {
1934 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
1935 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1936 ifp
->if_broot_bytes
= (int)new_size
;
1941 * If there is already an existing if_broot, then we need
1942 * to realloc() it and shift the pointers to their new
1943 * location. The records don't change location because
1944 * they are kept butted up against the btree block header.
1946 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1947 new_max
= cur_max
+ rec_diff
;
1948 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1949 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
1950 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
1951 KM_SLEEP
| KM_NOFS
);
1952 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1953 ifp
->if_broot_bytes
);
1954 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1956 ifp
->if_broot_bytes
= (int)new_size
;
1957 ASSERT(ifp
->if_broot_bytes
<=
1958 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
1959 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
1964 * rec_diff is less than 0. In this case, we are shrinking the
1965 * if_broot buffer. It must already exist. If we go to zero
1966 * records, just get rid of the root and clear the status bit.
1968 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
1969 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1970 new_max
= cur_max
+ rec_diff
;
1971 ASSERT(new_max
>= 0);
1973 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1977 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1979 * First copy over the btree block header.
1981 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
1984 ifp
->if_flags
&= ~XFS_IFBROOT
;
1988 * Only copy the records and pointers if there are any.
1992 * First copy the records.
1994 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
1995 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
1996 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
1999 * Then copy the pointers.
2001 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2002 ifp
->if_broot_bytes
);
2003 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2005 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2007 kmem_free(ifp
->if_broot
);
2008 ifp
->if_broot
= new_broot
;
2009 ifp
->if_broot_bytes
= (int)new_size
;
2010 ASSERT(ifp
->if_broot_bytes
<=
2011 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2017 * This is called when the amount of space needed for if_data
2018 * is increased or decreased. The change in size is indicated by
2019 * the number of bytes that need to be added or deleted in the
2020 * byte_diff parameter.
2022 * If the amount of space needed has decreased below the size of the
2023 * inline buffer, then switch to using the inline buffer. Otherwise,
2024 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2025 * to what is needed.
2027 * ip -- the inode whose if_data area is changing
2028 * byte_diff -- the change in the number of bytes, positive or negative,
2029 * requested for the if_data array.
2041 if (byte_diff
== 0) {
2045 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2046 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2047 ASSERT(new_size
>= 0);
2049 if (new_size
== 0) {
2050 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2051 kmem_free(ifp
->if_u1
.if_data
);
2053 ifp
->if_u1
.if_data
= NULL
;
2055 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2057 * If the valid extents/data can fit in if_inline_ext/data,
2058 * copy them from the malloc'd vector and free it.
2060 if (ifp
->if_u1
.if_data
== NULL
) {
2061 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2062 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2063 ASSERT(ifp
->if_real_bytes
!= 0);
2064 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2066 kmem_free(ifp
->if_u1
.if_data
);
2067 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2072 * Stuck with malloc/realloc.
2073 * For inline data, the underlying buffer must be
2074 * a multiple of 4 bytes in size so that it can be
2075 * logged and stay on word boundaries. We enforce
2078 real_size
= roundup(new_size
, 4);
2079 if (ifp
->if_u1
.if_data
== NULL
) {
2080 ASSERT(ifp
->if_real_bytes
== 0);
2081 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2082 KM_SLEEP
| KM_NOFS
);
2083 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2085 * Only do the realloc if the underlying size
2086 * is really changing.
2088 if (ifp
->if_real_bytes
!= real_size
) {
2089 ifp
->if_u1
.if_data
=
2090 kmem_realloc(ifp
->if_u1
.if_data
,
2093 KM_SLEEP
| KM_NOFS
);
2096 ASSERT(ifp
->if_real_bytes
== 0);
2097 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2098 KM_SLEEP
| KM_NOFS
);
2099 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2103 ifp
->if_real_bytes
= real_size
;
2104 ifp
->if_bytes
= new_size
;
2105 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2115 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2116 if (ifp
->if_broot
!= NULL
) {
2117 kmem_free(ifp
->if_broot
);
2118 ifp
->if_broot
= NULL
;
2122 * If the format is local, then we can't have an extents
2123 * array so just look for an inline data array. If we're
2124 * not local then we may or may not have an extents list,
2125 * so check and free it up if we do.
2127 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2128 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2129 (ifp
->if_u1
.if_data
!= NULL
)) {
2130 ASSERT(ifp
->if_real_bytes
!= 0);
2131 kmem_free(ifp
->if_u1
.if_data
);
2132 ifp
->if_u1
.if_data
= NULL
;
2133 ifp
->if_real_bytes
= 0;
2135 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2136 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2137 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2138 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2139 ASSERT(ifp
->if_real_bytes
!= 0);
2140 xfs_iext_destroy(ifp
);
2142 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2143 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2144 ASSERT(ifp
->if_real_bytes
== 0);
2145 if (whichfork
== XFS_ATTR_FORK
) {
2146 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2152 * This is called to unpin an inode. The caller must have the inode locked
2153 * in at least shared mode so that the buffer cannot be subsequently pinned
2154 * once someone is waiting for it to be unpinned.
2158 struct xfs_inode
*ip
)
2160 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2162 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2164 /* Give the log a push to start the unpinning I/O */
2165 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2171 struct xfs_inode
*ip
)
2173 if (xfs_ipincount(ip
)) {
2174 xfs_iunpin_nowait(ip
);
2175 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2180 * xfs_iextents_copy()
2182 * This is called to copy the REAL extents (as opposed to the delayed
2183 * allocation extents) from the inode into the given buffer. It
2184 * returns the number of bytes copied into the buffer.
2186 * If there are no delayed allocation extents, then we can just
2187 * memcpy() the extents into the buffer. Otherwise, we need to
2188 * examine each extent in turn and skip those which are delayed.
2200 xfs_fsblock_t start_block
;
2202 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2203 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2204 ASSERT(ifp
->if_bytes
> 0);
2206 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2207 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2211 * There are some delayed allocation extents in the
2212 * inode, so copy the extents one at a time and skip
2213 * the delayed ones. There must be at least one
2214 * non-delayed extent.
2217 for (i
= 0; i
< nrecs
; i
++) {
2218 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2219 start_block
= xfs_bmbt_get_startblock(ep
);
2220 if (isnullstartblock(start_block
)) {
2222 * It's a delayed allocation extent, so skip it.
2227 /* Translate to on disk format */
2228 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2229 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2233 ASSERT(copied
!= 0);
2234 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2236 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2240 * Each of the following cases stores data into the same region
2241 * of the on-disk inode, so only one of them can be valid at
2242 * any given time. While it is possible to have conflicting formats
2243 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2244 * in EXTENTS format, this can only happen when the fork has
2245 * changed formats after being modified but before being flushed.
2246 * In these cases, the format always takes precedence, because the
2247 * format indicates the current state of the fork.
2254 xfs_inode_log_item_t
*iip
,
2261 #ifdef XFS_TRANS_DEBUG
2264 static const short brootflag
[2] =
2265 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2266 static const short dataflag
[2] =
2267 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2268 static const short extflag
[2] =
2269 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2273 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2275 * This can happen if we gave up in iformat in an error path,
2276 * for the attribute fork.
2279 ASSERT(whichfork
== XFS_ATTR_FORK
);
2282 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2284 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2285 case XFS_DINODE_FMT_LOCAL
:
2286 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2287 (ifp
->if_bytes
> 0)) {
2288 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2289 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2290 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2294 case XFS_DINODE_FMT_EXTENTS
:
2295 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2296 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2297 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2298 (ifp
->if_bytes
> 0)) {
2299 ASSERT(xfs_iext_get_ext(ifp
, 0));
2300 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2301 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2306 case XFS_DINODE_FMT_BTREE
:
2307 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2308 (ifp
->if_broot_bytes
> 0)) {
2309 ASSERT(ifp
->if_broot
!= NULL
);
2310 ASSERT(ifp
->if_broot_bytes
<=
2311 (XFS_IFORK_SIZE(ip
, whichfork
) +
2312 XFS_BROOT_SIZE_ADJ
));
2313 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2314 (xfs_bmdr_block_t
*)cp
,
2315 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2319 case XFS_DINODE_FMT_DEV
:
2320 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2321 ASSERT(whichfork
== XFS_DATA_FORK
);
2322 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2326 case XFS_DINODE_FMT_UUID
:
2327 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2328 ASSERT(whichfork
== XFS_DATA_FORK
);
2329 memcpy(XFS_DFORK_DPTR(dip
),
2330 &ip
->i_df
.if_u2
.if_uuid
,
2346 xfs_mount_t
*mp
= ip
->i_mount
;
2347 struct xfs_perag
*pag
;
2348 unsigned long first_index
, mask
;
2349 unsigned long inodes_per_cluster
;
2351 xfs_inode_t
**ilist
;
2358 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2360 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2361 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2362 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2366 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2367 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2369 /* really need a gang lookup range call here */
2370 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2371 first_index
, inodes_per_cluster
);
2375 for (i
= 0; i
< nr_found
; i
++) {
2381 * because this is an RCU protected lookup, we could find a
2382 * recently freed or even reallocated inode during the lookup.
2383 * We need to check under the i_flags_lock for a valid inode
2384 * here. Skip it if it is not valid or the wrong inode.
2386 spin_lock(&ip
->i_flags_lock
);
2388 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2389 spin_unlock(&ip
->i_flags_lock
);
2392 spin_unlock(&ip
->i_flags_lock
);
2395 * Do an un-protected check to see if the inode is dirty and
2396 * is a candidate for flushing. These checks will be repeated
2397 * later after the appropriate locks are acquired.
2399 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2403 * Try to get locks. If any are unavailable or it is pinned,
2404 * then this inode cannot be flushed and is skipped.
2407 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2409 if (!xfs_iflock_nowait(iq
)) {
2410 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2413 if (xfs_ipincount(iq
)) {
2415 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2420 * arriving here means that this inode can be flushed. First
2421 * re-check that it's dirty before flushing.
2423 if (!xfs_inode_clean(iq
)) {
2425 error
= xfs_iflush_int(iq
, bp
);
2427 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2428 goto cluster_corrupt_out
;
2434 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2438 XFS_STATS_INC(xs_icluster_flushcnt
);
2439 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2450 cluster_corrupt_out
:
2452 * Corruption detected in the clustering loop. Invalidate the
2453 * inode buffer and shut down the filesystem.
2457 * Clean up the buffer. If it was B_DELWRI, just release it --
2458 * brelse can handle it with no problems. If not, shut down the
2459 * filesystem before releasing the buffer.
2461 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2465 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2467 if (!bufwasdelwri
) {
2469 * Just like incore_relse: if we have b_iodone functions,
2470 * mark the buffer as an error and call them. Otherwise
2471 * mark it as stale and brelse.
2476 xfs_buf_ioerror(bp
, EIO
);
2477 xfs_buf_ioend(bp
, 0);
2485 * Unlocks the flush lock
2487 xfs_iflush_abort(iq
);
2490 return XFS_ERROR(EFSCORRUPTED
);
2494 * xfs_iflush() will write a modified inode's changes out to the
2495 * inode's on disk home. The caller must have the inode lock held
2496 * in at least shared mode and the inode flush completion must be
2497 * active as well. The inode lock will still be held upon return from
2498 * the call and the caller is free to unlock it.
2499 * The inode flush will be completed when the inode reaches the disk.
2500 * The flags indicate how the inode's buffer should be written out.
2507 xfs_inode_log_item_t
*iip
;
2513 XFS_STATS_INC(xs_iflush_count
);
2515 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2516 ASSERT(!completion_done(&ip
->i_flush
));
2517 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2518 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2524 * We can't flush the inode until it is unpinned, so wait for it if we
2525 * are allowed to block. We know no one new can pin it, because we are
2526 * holding the inode lock shared and you need to hold it exclusively to
2529 * If we are not allowed to block, force the log out asynchronously so
2530 * that when we come back the inode will be unpinned. If other inodes
2531 * in the same cluster are dirty, they will probably write the inode
2532 * out for us if they occur after the log force completes.
2534 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2535 xfs_iunpin_nowait(ip
);
2539 xfs_iunpin_wait(ip
);
2542 * For stale inodes we cannot rely on the backing buffer remaining
2543 * stale in cache for the remaining life of the stale inode and so
2544 * xfs_itobp() below may give us a buffer that no longer contains
2545 * inodes below. We have to check this after ensuring the inode is
2546 * unpinned so that it is safe to reclaim the stale inode after the
2549 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2555 * This may have been unpinned because the filesystem is shutting
2556 * down forcibly. If that's the case we must not write this inode
2557 * to disk, because the log record didn't make it to disk!
2559 if (XFS_FORCED_SHUTDOWN(mp
)) {
2560 ip
->i_update_core
= 0;
2562 iip
->ili_format
.ilf_fields
= 0;
2564 return XFS_ERROR(EIO
);
2568 * Get the buffer containing the on-disk inode.
2570 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2571 (flags
& SYNC_TRYLOCK
) ? XBF_TRYLOCK
: XBF_LOCK
);
2578 * First flush out the inode that xfs_iflush was called with.
2580 error
= xfs_iflush_int(ip
, bp
);
2585 * If the buffer is pinned then push on the log now so we won't
2586 * get stuck waiting in the write for too long.
2588 if (xfs_buf_ispinned(bp
))
2589 xfs_log_force(mp
, 0);
2593 * see if other inodes can be gathered into this write
2595 error
= xfs_iflush_cluster(ip
, bp
);
2597 goto cluster_corrupt_out
;
2599 if (flags
& SYNC_WAIT
)
2600 error
= xfs_bwrite(mp
, bp
);
2602 xfs_bdwrite(mp
, bp
);
2607 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2608 cluster_corrupt_out
:
2610 * Unlocks the flush lock
2612 xfs_iflush_abort(ip
);
2613 return XFS_ERROR(EFSCORRUPTED
);
2622 xfs_inode_log_item_t
*iip
;
2625 #ifdef XFS_TRANS_DEBUG
2629 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2630 ASSERT(!completion_done(&ip
->i_flush
));
2631 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2632 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2637 /* set *dip = inode's place in the buffer */
2638 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2641 * Clear i_update_core before copying out the data.
2642 * This is for coordination with our timestamp updates
2643 * that don't hold the inode lock. They will always
2644 * update the timestamps BEFORE setting i_update_core,
2645 * so if we clear i_update_core after they set it we
2646 * are guaranteed to see their updates to the timestamps.
2647 * I believe that this depends on strongly ordered memory
2648 * semantics, but we have that. We use the SYNCHRONIZE
2649 * macro to make sure that the compiler does not reorder
2650 * the i_update_core access below the data copy below.
2652 ip
->i_update_core
= 0;
2656 * Make sure to get the latest timestamps from the Linux inode.
2658 xfs_synchronize_times(ip
);
2660 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
2661 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2662 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2663 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2664 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2667 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2668 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2669 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2670 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2671 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2674 if (S_ISREG(ip
->i_d
.di_mode
)) {
2676 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2677 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2678 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2679 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2680 "%s: Bad regular inode %Lu, ptr 0x%p",
2681 __func__
, ip
->i_ino
, ip
);
2684 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
2686 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2687 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2688 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2689 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2690 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2691 "%s: Bad directory inode %Lu, ptr 0x%p",
2692 __func__
, ip
->i_ino
, ip
);
2696 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2697 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2698 XFS_RANDOM_IFLUSH_5
)) {
2699 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2700 "%s: detected corrupt incore inode %Lu, "
2701 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2702 __func__
, ip
->i_ino
,
2703 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2704 ip
->i_d
.di_nblocks
, ip
);
2707 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2708 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2709 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2710 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2711 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2715 * bump the flush iteration count, used to detect flushes which
2716 * postdate a log record during recovery.
2719 ip
->i_d
.di_flushiter
++;
2722 * Copy the dirty parts of the inode into the on-disk
2723 * inode. We always copy out the core of the inode,
2724 * because if the inode is dirty at all the core must
2727 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2729 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2730 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2731 ip
->i_d
.di_flushiter
= 0;
2734 * If this is really an old format inode and the superblock version
2735 * has not been updated to support only new format inodes, then
2736 * convert back to the old inode format. If the superblock version
2737 * has been updated, then make the conversion permanent.
2739 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
2740 if (ip
->i_d
.di_version
== 1) {
2741 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
2745 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
2746 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
2749 * The superblock version has already been bumped,
2750 * so just make the conversion to the new inode
2753 ip
->i_d
.di_version
= 2;
2754 dip
->di_version
= 2;
2755 ip
->i_d
.di_onlink
= 0;
2757 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
2758 memset(&(dip
->di_pad
[0]), 0,
2759 sizeof(dip
->di_pad
));
2760 ASSERT(xfs_get_projid(ip
) == 0);
2764 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
2765 if (XFS_IFORK_Q(ip
))
2766 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
2767 xfs_inobp_check(mp
, bp
);
2770 * We've recorded everything logged in the inode, so we'd
2771 * like to clear the ilf_fields bits so we don't log and
2772 * flush things unnecessarily. However, we can't stop
2773 * logging all this information until the data we've copied
2774 * into the disk buffer is written to disk. If we did we might
2775 * overwrite the copy of the inode in the log with all the
2776 * data after re-logging only part of it, and in the face of
2777 * a crash we wouldn't have all the data we need to recover.
2779 * What we do is move the bits to the ili_last_fields field.
2780 * When logging the inode, these bits are moved back to the
2781 * ilf_fields field. In the xfs_iflush_done() routine we
2782 * clear ili_last_fields, since we know that the information
2783 * those bits represent is permanently on disk. As long as
2784 * the flush completes before the inode is logged again, then
2785 * both ilf_fields and ili_last_fields will be cleared.
2787 * We can play with the ilf_fields bits here, because the inode
2788 * lock must be held exclusively in order to set bits there
2789 * and the flush lock protects the ili_last_fields bits.
2790 * Set ili_logged so the flush done
2791 * routine can tell whether or not to look in the AIL.
2792 * Also, store the current LSN of the inode so that we can tell
2793 * whether the item has moved in the AIL from xfs_iflush_done().
2794 * In order to read the lsn we need the AIL lock, because
2795 * it is a 64 bit value that cannot be read atomically.
2797 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
2798 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2799 iip
->ili_format
.ilf_fields
= 0;
2800 iip
->ili_logged
= 1;
2802 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2803 &iip
->ili_item
.li_lsn
);
2806 * Attach the function xfs_iflush_done to the inode's
2807 * buffer. This will remove the inode from the AIL
2808 * and unlock the inode's flush lock when the inode is
2809 * completely written to disk.
2811 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
2813 ASSERT(bp
->b_fspriv
!= NULL
);
2814 ASSERT(bp
->b_iodone
!= NULL
);
2817 * We're flushing an inode which is not in the AIL and has
2818 * not been logged but has i_update_core set. For this
2819 * case we can use a B_DELWRI flush and immediately drop
2820 * the inode flush lock because we can avoid the whole
2821 * AIL state thing. It's OK to drop the flush lock now,
2822 * because we've already locked the buffer and to do anything
2823 * you really need both.
2826 ASSERT(iip
->ili_logged
== 0);
2827 ASSERT(iip
->ili_last_fields
== 0);
2828 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
2836 return XFS_ERROR(EFSCORRUPTED
);
2840 * Return a pointer to the extent record at file index idx.
2842 xfs_bmbt_rec_host_t
*
2844 xfs_ifork_t
*ifp
, /* inode fork pointer */
2845 xfs_extnum_t idx
) /* index of target extent */
2848 ASSERT(idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
2850 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
2851 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
2852 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2853 xfs_ext_irec_t
*erp
; /* irec pointer */
2854 int erp_idx
= 0; /* irec index */
2855 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
2857 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
2858 return &erp
->er_extbuf
[page_idx
];
2859 } else if (ifp
->if_bytes
) {
2860 return &ifp
->if_u1
.if_extents
[idx
];
2867 * Insert new item(s) into the extent records for incore inode
2868 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2872 xfs_inode_t
*ip
, /* incore inode pointer */
2873 xfs_extnum_t idx
, /* starting index of new items */
2874 xfs_extnum_t count
, /* number of inserted items */
2875 xfs_bmbt_irec_t
*new, /* items to insert */
2876 int state
) /* type of extent conversion */
2878 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
2879 xfs_extnum_t i
; /* extent record index */
2881 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
2883 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
2884 xfs_iext_add(ifp
, idx
, count
);
2885 for (i
= idx
; i
< idx
+ count
; i
++, new++)
2886 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
2890 * This is called when the amount of space required for incore file
2891 * extents needs to be increased. The ext_diff parameter stores the
2892 * number of new extents being added and the idx parameter contains
2893 * the extent index where the new extents will be added. If the new
2894 * extents are being appended, then we just need to (re)allocate and
2895 * initialize the space. Otherwise, if the new extents are being
2896 * inserted into the middle of the existing entries, a bit more work
2897 * is required to make room for the new extents to be inserted. The
2898 * caller is responsible for filling in the new extent entries upon
2903 xfs_ifork_t
*ifp
, /* inode fork pointer */
2904 xfs_extnum_t idx
, /* index to begin adding exts */
2905 int ext_diff
) /* number of extents to add */
2907 int byte_diff
; /* new bytes being added */
2908 int new_size
; /* size of extents after adding */
2909 xfs_extnum_t nextents
; /* number of extents in file */
2911 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2912 ASSERT((idx
>= 0) && (idx
<= nextents
));
2913 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
2914 new_size
= ifp
->if_bytes
+ byte_diff
;
2916 * If the new number of extents (nextents + ext_diff)
2917 * fits inside the inode, then continue to use the inline
2920 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
2921 if (idx
< nextents
) {
2922 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
2923 &ifp
->if_u2
.if_inline_ext
[idx
],
2924 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2925 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
2927 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
2928 ifp
->if_real_bytes
= 0;
2931 * Otherwise use a linear (direct) extent list.
2932 * If the extents are currently inside the inode,
2933 * xfs_iext_realloc_direct will switch us from
2934 * inline to direct extent allocation mode.
2936 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2937 xfs_iext_realloc_direct(ifp
, new_size
);
2938 if (idx
< nextents
) {
2939 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
2940 &ifp
->if_u1
.if_extents
[idx
],
2941 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2942 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
2945 /* Indirection array */
2947 xfs_ext_irec_t
*erp
;
2951 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
2952 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2953 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
2955 xfs_iext_irec_init(ifp
);
2956 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
2957 erp
= ifp
->if_u1
.if_ext_irec
;
2959 /* Extents fit in target extent page */
2960 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2961 if (page_idx
< erp
->er_extcount
) {
2962 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
2963 &erp
->er_extbuf
[page_idx
],
2964 (erp
->er_extcount
- page_idx
) *
2965 sizeof(xfs_bmbt_rec_t
));
2966 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
2968 erp
->er_extcount
+= ext_diff
;
2969 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2971 /* Insert a new extent page */
2973 xfs_iext_add_indirect_multi(ifp
,
2974 erp_idx
, page_idx
, ext_diff
);
2977 * If extent(s) are being appended to the last page in
2978 * the indirection array and the new extent(s) don't fit
2979 * in the page, then erp is NULL and erp_idx is set to
2980 * the next index needed in the indirection array.
2983 int count
= ext_diff
;
2986 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2987 erp
->er_extcount
= count
;
2988 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
2995 ifp
->if_bytes
= new_size
;
2999 * This is called when incore extents are being added to the indirection
3000 * array and the new extents do not fit in the target extent list. The
3001 * erp_idx parameter contains the irec index for the target extent list
3002 * in the indirection array, and the idx parameter contains the extent
3003 * index within the list. The number of extents being added is stored
3004 * in the count parameter.
3006 * |-------| |-------|
3007 * | | | | idx - number of extents before idx
3009 * | | | | count - number of extents being inserted at idx
3010 * |-------| |-------|
3011 * | count | | nex2 | nex2 - number of extents after idx + count
3012 * |-------| |-------|
3015 xfs_iext_add_indirect_multi(
3016 xfs_ifork_t
*ifp
, /* inode fork pointer */
3017 int erp_idx
, /* target extent irec index */
3018 xfs_extnum_t idx
, /* index within target list */
3019 int count
) /* new extents being added */
3021 int byte_diff
; /* new bytes being added */
3022 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3023 xfs_extnum_t ext_diff
; /* number of extents to add */
3024 xfs_extnum_t ext_cnt
; /* new extents still needed */
3025 xfs_extnum_t nex2
; /* extents after idx + count */
3026 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3027 int nlists
; /* number of irec's (lists) */
3029 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3030 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3031 nex2
= erp
->er_extcount
- idx
;
3032 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3035 * Save second part of target extent list
3036 * (all extents past */
3038 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3039 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3040 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3041 erp
->er_extcount
-= nex2
;
3042 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3043 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3047 * Add the new extents to the end of the target
3048 * list, then allocate new irec record(s) and
3049 * extent buffer(s) as needed to store the rest
3050 * of the new extents.
3053 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3055 erp
->er_extcount
+= ext_diff
;
3056 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3057 ext_cnt
-= ext_diff
;
3061 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3062 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3063 erp
->er_extcount
= ext_diff
;
3064 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3065 ext_cnt
-= ext_diff
;
3068 /* Add nex2 extents back to indirection array */
3070 xfs_extnum_t ext_avail
;
3073 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3074 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3077 * If nex2 extents fit in the current page, append
3078 * nex2_ep after the new extents.
3080 if (nex2
<= ext_avail
) {
3081 i
= erp
->er_extcount
;
3084 * Otherwise, check if space is available in the
3087 else if ((erp_idx
< nlists
- 1) &&
3088 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3089 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3092 /* Create a hole for nex2 extents */
3093 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3094 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3097 * Final choice, create a new extent page for
3102 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3104 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3106 erp
->er_extcount
+= nex2
;
3107 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3112 * This is called when the amount of space required for incore file
3113 * extents needs to be decreased. The ext_diff parameter stores the
3114 * number of extents to be removed and the idx parameter contains
3115 * the extent index where the extents will be removed from.
3117 * If the amount of space needed has decreased below the linear
3118 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3119 * extent array. Otherwise, use kmem_realloc() to adjust the
3120 * size to what is needed.
3124 xfs_inode_t
*ip
, /* incore inode pointer */
3125 xfs_extnum_t idx
, /* index to begin removing exts */
3126 int ext_diff
, /* number of extents to remove */
3127 int state
) /* type of extent conversion */
3129 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3130 xfs_extnum_t nextents
; /* number of extents in file */
3131 int new_size
; /* size of extents after removal */
3133 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3135 ASSERT(ext_diff
> 0);
3136 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3137 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3139 if (new_size
== 0) {
3140 xfs_iext_destroy(ifp
);
3141 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3142 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3143 } else if (ifp
->if_real_bytes
) {
3144 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3146 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3148 ifp
->if_bytes
= new_size
;
3152 * This removes ext_diff extents from the inline buffer, beginning
3153 * at extent index idx.
3156 xfs_iext_remove_inline(
3157 xfs_ifork_t
*ifp
, /* inode fork pointer */
3158 xfs_extnum_t idx
, /* index to begin removing exts */
3159 int ext_diff
) /* number of extents to remove */
3161 int nextents
; /* number of extents in file */
3163 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3164 ASSERT(idx
< XFS_INLINE_EXTS
);
3165 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3166 ASSERT(((nextents
- ext_diff
) > 0) &&
3167 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3169 if (idx
+ ext_diff
< nextents
) {
3170 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3171 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3172 (nextents
- (idx
+ ext_diff
)) *
3173 sizeof(xfs_bmbt_rec_t
));
3174 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3175 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3177 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3178 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3183 * This removes ext_diff extents from a linear (direct) extent list,
3184 * beginning at extent index idx. If the extents are being removed
3185 * from the end of the list (ie. truncate) then we just need to re-
3186 * allocate the list to remove the extra space. Otherwise, if the
3187 * extents are being removed from the middle of the existing extent
3188 * entries, then we first need to move the extent records beginning
3189 * at idx + ext_diff up in the list to overwrite the records being
3190 * removed, then remove the extra space via kmem_realloc.
3193 xfs_iext_remove_direct(
3194 xfs_ifork_t
*ifp
, /* inode fork pointer */
3195 xfs_extnum_t idx
, /* index to begin removing exts */
3196 int ext_diff
) /* number of extents to remove */
3198 xfs_extnum_t nextents
; /* number of extents in file */
3199 int new_size
; /* size of extents after removal */
3201 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3202 new_size
= ifp
->if_bytes
-
3203 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3204 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3206 if (new_size
== 0) {
3207 xfs_iext_destroy(ifp
);
3210 /* Move extents up in the list (if needed) */
3211 if (idx
+ ext_diff
< nextents
) {
3212 memmove(&ifp
->if_u1
.if_extents
[idx
],
3213 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3214 (nextents
- (idx
+ ext_diff
)) *
3215 sizeof(xfs_bmbt_rec_t
));
3217 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3218 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3220 * Reallocate the direct extent list. If the extents
3221 * will fit inside the inode then xfs_iext_realloc_direct
3222 * will switch from direct to inline extent allocation
3225 xfs_iext_realloc_direct(ifp
, new_size
);
3226 ifp
->if_bytes
= new_size
;
3230 * This is called when incore extents are being removed from the
3231 * indirection array and the extents being removed span multiple extent
3232 * buffers. The idx parameter contains the file extent index where we
3233 * want to begin removing extents, and the count parameter contains
3234 * how many extents need to be removed.
3236 * |-------| |-------|
3237 * | nex1 | | | nex1 - number of extents before idx
3238 * |-------| | count |
3239 * | | | | count - number of extents being removed at idx
3240 * | count | |-------|
3241 * | | | nex2 | nex2 - number of extents after idx + count
3242 * |-------| |-------|
3245 xfs_iext_remove_indirect(
3246 xfs_ifork_t
*ifp
, /* inode fork pointer */
3247 xfs_extnum_t idx
, /* index to begin removing extents */
3248 int count
) /* number of extents to remove */
3250 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3251 int erp_idx
= 0; /* indirection array index */
3252 xfs_extnum_t ext_cnt
; /* extents left to remove */
3253 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3254 xfs_extnum_t nex1
; /* number of extents before idx */
3255 xfs_extnum_t nex2
; /* extents after idx + count */
3256 int page_idx
= idx
; /* index in target extent list */
3258 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3259 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3260 ASSERT(erp
!= NULL
);
3264 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3265 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3267 * Check for deletion of entire list;
3268 * xfs_iext_irec_remove() updates extent offsets.
3270 if (ext_diff
== erp
->er_extcount
) {
3271 xfs_iext_irec_remove(ifp
, erp_idx
);
3272 ext_cnt
-= ext_diff
;
3275 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3277 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3284 /* Move extents up (if needed) */
3286 memmove(&erp
->er_extbuf
[nex1
],
3287 &erp
->er_extbuf
[nex1
+ ext_diff
],
3288 nex2
* sizeof(xfs_bmbt_rec_t
));
3290 /* Zero out rest of page */
3291 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3292 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3293 /* Update remaining counters */
3294 erp
->er_extcount
-= ext_diff
;
3295 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3296 ext_cnt
-= ext_diff
;
3301 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3302 xfs_iext_irec_compact(ifp
);
3306 * Create, destroy, or resize a linear (direct) block of extents.
3309 xfs_iext_realloc_direct(
3310 xfs_ifork_t
*ifp
, /* inode fork pointer */
3311 int new_size
) /* new size of extents */
3313 int rnew_size
; /* real new size of extents */
3315 rnew_size
= new_size
;
3317 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3318 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3319 (new_size
!= ifp
->if_real_bytes
)));
3321 /* Free extent records */
3322 if (new_size
== 0) {
3323 xfs_iext_destroy(ifp
);
3325 /* Resize direct extent list and zero any new bytes */
3326 else if (ifp
->if_real_bytes
) {
3327 /* Check if extents will fit inside the inode */
3328 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3329 xfs_iext_direct_to_inline(ifp
, new_size
/
3330 (uint
)sizeof(xfs_bmbt_rec_t
));
3331 ifp
->if_bytes
= new_size
;
3334 if (!is_power_of_2(new_size
)){
3335 rnew_size
= roundup_pow_of_two(new_size
);
3337 if (rnew_size
!= ifp
->if_real_bytes
) {
3338 ifp
->if_u1
.if_extents
=
3339 kmem_realloc(ifp
->if_u1
.if_extents
,
3341 ifp
->if_real_bytes
, KM_NOFS
);
3343 if (rnew_size
> ifp
->if_real_bytes
) {
3344 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3345 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3346 rnew_size
- ifp
->if_real_bytes
);
3350 * Switch from the inline extent buffer to a direct
3351 * extent list. Be sure to include the inline extent
3352 * bytes in new_size.
3355 new_size
+= ifp
->if_bytes
;
3356 if (!is_power_of_2(new_size
)) {
3357 rnew_size
= roundup_pow_of_two(new_size
);
3359 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3361 ifp
->if_real_bytes
= rnew_size
;
3362 ifp
->if_bytes
= new_size
;
3366 * Switch from linear (direct) extent records to inline buffer.
3369 xfs_iext_direct_to_inline(
3370 xfs_ifork_t
*ifp
, /* inode fork pointer */
3371 xfs_extnum_t nextents
) /* number of extents in file */
3373 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3374 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3376 * The inline buffer was zeroed when we switched
3377 * from inline to direct extent allocation mode,
3378 * so we don't need to clear it here.
3380 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3381 nextents
* sizeof(xfs_bmbt_rec_t
));
3382 kmem_free(ifp
->if_u1
.if_extents
);
3383 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3384 ifp
->if_real_bytes
= 0;
3388 * Switch from inline buffer to linear (direct) extent records.
3389 * new_size should already be rounded up to the next power of 2
3390 * by the caller (when appropriate), so use new_size as it is.
3391 * However, since new_size may be rounded up, we can't update
3392 * if_bytes here. It is the caller's responsibility to update
3393 * if_bytes upon return.
3396 xfs_iext_inline_to_direct(
3397 xfs_ifork_t
*ifp
, /* inode fork pointer */
3398 int new_size
) /* number of extents in file */
3400 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3401 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3402 if (ifp
->if_bytes
) {
3403 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3405 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3406 sizeof(xfs_bmbt_rec_t
));
3408 ifp
->if_real_bytes
= new_size
;
3412 * Resize an extent indirection array to new_size bytes.
3415 xfs_iext_realloc_indirect(
3416 xfs_ifork_t
*ifp
, /* inode fork pointer */
3417 int new_size
) /* new indirection array size */
3419 int nlists
; /* number of irec's (ex lists) */
3420 int size
; /* current indirection array size */
3422 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3423 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3424 size
= nlists
* sizeof(xfs_ext_irec_t
);
3425 ASSERT(ifp
->if_real_bytes
);
3426 ASSERT((new_size
>= 0) && (new_size
!= size
));
3427 if (new_size
== 0) {
3428 xfs_iext_destroy(ifp
);
3430 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3431 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3432 new_size
, size
, KM_NOFS
);
3437 * Switch from indirection array to linear (direct) extent allocations.
3440 xfs_iext_indirect_to_direct(
3441 xfs_ifork_t
*ifp
) /* inode fork pointer */
3443 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3444 xfs_extnum_t nextents
; /* number of extents in file */
3445 int size
; /* size of file extents */
3447 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3448 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3449 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3450 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3452 xfs_iext_irec_compact_pages(ifp
);
3453 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3455 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3456 kmem_free(ifp
->if_u1
.if_ext_irec
);
3457 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3458 ifp
->if_u1
.if_extents
= ep
;
3459 ifp
->if_bytes
= size
;
3460 if (nextents
< XFS_LINEAR_EXTS
) {
3461 xfs_iext_realloc_direct(ifp
, size
);
3466 * Free incore file extents.
3470 xfs_ifork_t
*ifp
) /* inode fork pointer */
3472 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3476 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3477 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3478 xfs_iext_irec_remove(ifp
, erp_idx
);
3480 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3481 } else if (ifp
->if_real_bytes
) {
3482 kmem_free(ifp
->if_u1
.if_extents
);
3483 } else if (ifp
->if_bytes
) {
3484 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3485 sizeof(xfs_bmbt_rec_t
));
3487 ifp
->if_u1
.if_extents
= NULL
;
3488 ifp
->if_real_bytes
= 0;
3493 * Return a pointer to the extent record for file system block bno.
3495 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3496 xfs_iext_bno_to_ext(
3497 xfs_ifork_t
*ifp
, /* inode fork pointer */
3498 xfs_fileoff_t bno
, /* block number to search for */
3499 xfs_extnum_t
*idxp
) /* index of target extent */
3501 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3502 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3503 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3504 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3505 int high
; /* upper boundary in search */
3506 xfs_extnum_t idx
= 0; /* index of target extent */
3507 int low
; /* lower boundary in search */
3508 xfs_extnum_t nextents
; /* number of file extents */
3509 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3511 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3512 if (nextents
== 0) {
3517 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3518 /* Find target extent list */
3520 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3521 base
= erp
->er_extbuf
;
3522 high
= erp
->er_extcount
- 1;
3524 base
= ifp
->if_u1
.if_extents
;
3525 high
= nextents
- 1;
3527 /* Binary search extent records */
3528 while (low
<= high
) {
3529 idx
= (low
+ high
) >> 1;
3531 startoff
= xfs_bmbt_get_startoff(ep
);
3532 blockcount
= xfs_bmbt_get_blockcount(ep
);
3533 if (bno
< startoff
) {
3535 } else if (bno
>= startoff
+ blockcount
) {
3538 /* Convert back to file-based extent index */
3539 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3540 idx
+= erp
->er_extoff
;
3546 /* Convert back to file-based extent index */
3547 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3548 idx
+= erp
->er_extoff
;
3550 if (bno
>= startoff
+ blockcount
) {
3551 if (++idx
== nextents
) {
3554 ep
= xfs_iext_get_ext(ifp
, idx
);
3562 * Return a pointer to the indirection array entry containing the
3563 * extent record for filesystem block bno. Store the index of the
3564 * target irec in *erp_idxp.
3566 xfs_ext_irec_t
* /* pointer to found extent record */
3567 xfs_iext_bno_to_irec(
3568 xfs_ifork_t
*ifp
, /* inode fork pointer */
3569 xfs_fileoff_t bno
, /* block number to search for */
3570 int *erp_idxp
) /* irec index of target ext list */
3572 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3573 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3574 int erp_idx
; /* indirection array index */
3575 int nlists
; /* number of extent irec's (lists) */
3576 int high
; /* binary search upper limit */
3577 int low
; /* binary search lower limit */
3579 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3580 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3584 while (low
<= high
) {
3585 erp_idx
= (low
+ high
) >> 1;
3586 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3587 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3588 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3590 } else if (erp_next
&& bno
>=
3591 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3597 *erp_idxp
= erp_idx
;
3602 * Return a pointer to the indirection array entry containing the
3603 * extent record at file extent index *idxp. Store the index of the
3604 * target irec in *erp_idxp and store the page index of the target
3605 * extent record in *idxp.
3608 xfs_iext_idx_to_irec(
3609 xfs_ifork_t
*ifp
, /* inode fork pointer */
3610 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3611 int *erp_idxp
, /* pointer to target irec */
3612 int realloc
) /* new bytes were just added */
3614 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3615 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3616 int erp_idx
; /* indirection array index */
3617 int nlists
; /* number of irec's (ex lists) */
3618 int high
; /* binary search upper limit */
3619 int low
; /* binary search lower limit */
3620 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3622 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3623 ASSERT(page_idx
>= 0);
3624 ASSERT(page_idx
<= ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3625 ASSERT(page_idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) || realloc
);
3627 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3632 /* Binary search extent irec's */
3633 while (low
<= high
) {
3634 erp_idx
= (low
+ high
) >> 1;
3635 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3636 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3637 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3638 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3640 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3641 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3644 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3645 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3649 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3652 page_idx
-= erp
->er_extoff
;
3657 *erp_idxp
= erp_idx
;
3662 * Allocate and initialize an indirection array once the space needed
3663 * for incore extents increases above XFS_IEXT_BUFSZ.
3667 xfs_ifork_t
*ifp
) /* inode fork pointer */
3669 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3670 xfs_extnum_t nextents
; /* number of extents in file */
3672 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3673 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3674 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3676 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3678 if (nextents
== 0) {
3679 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3680 } else if (!ifp
->if_real_bytes
) {
3681 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3682 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3683 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3685 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3686 erp
->er_extcount
= nextents
;
3689 ifp
->if_flags
|= XFS_IFEXTIREC
;
3690 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3691 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3692 ifp
->if_u1
.if_ext_irec
= erp
;
3698 * Allocate and initialize a new entry in the indirection array.
3702 xfs_ifork_t
*ifp
, /* inode fork pointer */
3703 int erp_idx
) /* index for new irec */
3705 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3706 int i
; /* loop counter */
3707 int nlists
; /* number of irec's (ex lists) */
3709 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3710 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3712 /* Resize indirection array */
3713 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3714 sizeof(xfs_ext_irec_t
));
3716 * Move records down in the array so the
3717 * new page can use erp_idx.
3719 erp
= ifp
->if_u1
.if_ext_irec
;
3720 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3721 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3723 ASSERT(i
== erp_idx
);
3725 /* Initialize new extent record */
3726 erp
= ifp
->if_u1
.if_ext_irec
;
3727 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3728 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3729 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3730 erp
[erp_idx
].er_extcount
= 0;
3731 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3732 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3733 return (&erp
[erp_idx
]);
3737 * Remove a record from the indirection array.
3740 xfs_iext_irec_remove(
3741 xfs_ifork_t
*ifp
, /* inode fork pointer */
3742 int erp_idx
) /* irec index to remove */
3744 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3745 int i
; /* loop counter */
3746 int nlists
; /* number of irec's (ex lists) */
3748 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3749 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3750 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3751 if (erp
->er_extbuf
) {
3752 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
3754 kmem_free(erp
->er_extbuf
);
3756 /* Compact extent records */
3757 erp
= ifp
->if_u1
.if_ext_irec
;
3758 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
3759 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
3762 * Manually free the last extent record from the indirection
3763 * array. A call to xfs_iext_realloc_indirect() with a size
3764 * of zero would result in a call to xfs_iext_destroy() which
3765 * would in turn call this function again, creating a nasty
3769 xfs_iext_realloc_indirect(ifp
,
3770 nlists
* sizeof(xfs_ext_irec_t
));
3772 kmem_free(ifp
->if_u1
.if_ext_irec
);
3774 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3778 * This is called to clean up large amounts of unused memory allocated
3779 * by the indirection array. Before compacting anything though, verify
3780 * that the indirection array is still needed and switch back to the
3781 * linear extent list (or even the inline buffer) if possible. The
3782 * compaction policy is as follows:
3784 * Full Compaction: Extents fit into a single page (or inline buffer)
3785 * Partial Compaction: Extents occupy less than 50% of allocated space
3786 * No Compaction: Extents occupy at least 50% of allocated space
3789 xfs_iext_irec_compact(
3790 xfs_ifork_t
*ifp
) /* inode fork pointer */
3792 xfs_extnum_t nextents
; /* number of extents in file */
3793 int nlists
; /* number of irec's (ex lists) */
3795 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3796 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3797 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3799 if (nextents
== 0) {
3800 xfs_iext_destroy(ifp
);
3801 } else if (nextents
<= XFS_INLINE_EXTS
) {
3802 xfs_iext_indirect_to_direct(ifp
);
3803 xfs_iext_direct_to_inline(ifp
, nextents
);
3804 } else if (nextents
<= XFS_LINEAR_EXTS
) {
3805 xfs_iext_indirect_to_direct(ifp
);
3806 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
3807 xfs_iext_irec_compact_pages(ifp
);
3812 * Combine extents from neighboring extent pages.
3815 xfs_iext_irec_compact_pages(
3816 xfs_ifork_t
*ifp
) /* inode fork pointer */
3818 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
3819 int erp_idx
= 0; /* indirection array index */
3820 int nlists
; /* number of irec's (ex lists) */
3822 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3823 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3824 while (erp_idx
< nlists
- 1) {
3825 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3827 if (erp_next
->er_extcount
<=
3828 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
3829 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
3830 erp_next
->er_extbuf
, erp_next
->er_extcount
*
3831 sizeof(xfs_bmbt_rec_t
));
3832 erp
->er_extcount
+= erp_next
->er_extcount
;
3834 * Free page before removing extent record
3835 * so er_extoffs don't get modified in
3836 * xfs_iext_irec_remove.
3838 kmem_free(erp_next
->er_extbuf
);
3839 erp_next
->er_extbuf
= NULL
;
3840 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
3841 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3849 * This is called to update the er_extoff field in the indirection
3850 * array when extents have been added or removed from one of the
3851 * extent lists. erp_idx contains the irec index to begin updating
3852 * at and ext_diff contains the number of extents that were added
3856 xfs_iext_irec_update_extoffs(
3857 xfs_ifork_t
*ifp
, /* inode fork pointer */
3858 int erp_idx
, /* irec index to update */
3859 int ext_diff
) /* number of new extents */
3861 int i
; /* loop counter */
3862 int nlists
; /* number of irec's (ex lists */
3864 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3865 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3866 for (i
= erp_idx
; i
< nlists
; i
++) {
3867 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;