2 * linux/fs/jbd2/commit.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal commit routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
16 #include <linux/time.h>
18 #include <linux/jbd2.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/crc32.h>
25 #include <linux/writeback.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/bitops.h>
30 #include <trace/events/jbd2.h>
31 #include <asm/system.h>
34 * Default IO end handler for temporary BJ_IO buffer_heads.
36 static void journal_end_buffer_io_sync(struct buffer_head
*bh
, int uptodate
)
40 set_buffer_uptodate(bh
);
42 clear_buffer_uptodate(bh
);
47 * When an ext4 file is truncated, it is possible that some pages are not
48 * successfully freed, because they are attached to a committing transaction.
49 * After the transaction commits, these pages are left on the LRU, with no
50 * ->mapping, and with attached buffers. These pages are trivially reclaimable
51 * by the VM, but their apparent absence upsets the VM accounting, and it makes
52 * the numbers in /proc/meminfo look odd.
54 * So here, we have a buffer which has just come off the forget list. Look to
55 * see if we can strip all buffers from the backing page.
57 * Called under lock_journal(), and possibly under journal_datalist_lock. The
58 * caller provided us with a ref against the buffer, and we drop that here.
60 static void release_buffer_page(struct buffer_head
*bh
)
66 if (atomic_read(&bh
->b_count
) != 1)
74 /* OK, it's a truncated page */
75 if (!trylock_page(page
))
80 try_to_free_buffers(page
);
82 page_cache_release(page
);
90 * Done it all: now submit the commit record. We should have
91 * cleaned up our previous buffers by now, so if we are in abort
92 * mode we can now just skip the rest of the journal write
95 * Returns 1 if the journal needs to be aborted or 0 on success
97 static int journal_submit_commit_record(journal_t
*journal
,
98 transaction_t
*commit_transaction
,
99 struct buffer_head
**cbh
,
102 struct journal_head
*descriptor
;
103 struct commit_header
*tmp
;
104 struct buffer_head
*bh
;
106 struct timespec now
= current_kernel_time();
110 if (is_journal_aborted(journal
))
113 descriptor
= jbd2_journal_get_descriptor_buffer(journal
);
117 bh
= jh2bh(descriptor
);
119 tmp
= (struct commit_header
*)bh
->b_data
;
120 tmp
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
121 tmp
->h_blocktype
= cpu_to_be32(JBD2_COMMIT_BLOCK
);
122 tmp
->h_sequence
= cpu_to_be32(commit_transaction
->t_tid
);
123 tmp
->h_commit_sec
= cpu_to_be64(now
.tv_sec
);
124 tmp
->h_commit_nsec
= cpu_to_be32(now
.tv_nsec
);
126 if (JBD2_HAS_COMPAT_FEATURE(journal
,
127 JBD2_FEATURE_COMPAT_CHECKSUM
)) {
128 tmp
->h_chksum_type
= JBD2_CRC32_CHKSUM
;
129 tmp
->h_chksum_size
= JBD2_CRC32_CHKSUM_SIZE
;
130 tmp
->h_chksum
[0] = cpu_to_be32(crc32_sum
);
133 JBUFFER_TRACE(descriptor
, "submit commit block");
135 clear_buffer_dirty(bh
);
136 set_buffer_uptodate(bh
);
137 bh
->b_end_io
= journal_end_buffer_io_sync
;
139 if (journal
->j_flags
& JBD2_BARRIER
&&
140 !JBD2_HAS_INCOMPAT_FEATURE(journal
,
141 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
))
142 ret
= submit_bh(WRITE_SYNC
| WRITE_FLUSH_FUA
, bh
);
144 ret
= submit_bh(WRITE_SYNC
, bh
);
151 * This function along with journal_submit_commit_record
152 * allows to write the commit record asynchronously.
154 static int journal_wait_on_commit_record(journal_t
*journal
,
155 struct buffer_head
*bh
)
159 clear_buffer_dirty(bh
);
162 if (unlikely(!buffer_uptodate(bh
)))
164 put_bh(bh
); /* One for getblk() */
165 jbd2_journal_put_journal_head(bh2jh(bh
));
171 * write the filemap data using writepage() address_space_operations.
172 * We don't do block allocation here even for delalloc. We don't
173 * use writepages() because with dealyed allocation we may be doing
174 * block allocation in writepages().
176 static int journal_submit_inode_data_buffers(struct address_space
*mapping
)
179 struct writeback_control wbc
= {
180 .sync_mode
= WB_SYNC_ALL
,
181 .nr_to_write
= mapping
->nrpages
* 2,
183 .range_end
= i_size_read(mapping
->host
),
186 ret
= generic_writepages(mapping
, &wbc
);
191 * Submit all the data buffers of inode associated with the transaction to
194 * We are in a committing transaction. Therefore no new inode can be added to
195 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
196 * operate on from being released while we write out pages.
198 static int journal_submit_data_buffers(journal_t
*journal
,
199 transaction_t
*commit_transaction
)
201 struct jbd2_inode
*jinode
;
203 struct address_space
*mapping
;
205 spin_lock(&journal
->j_list_lock
);
206 list_for_each_entry(jinode
, &commit_transaction
->t_inode_list
, i_list
) {
207 mapping
= jinode
->i_vfs_inode
->i_mapping
;
208 set_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
);
209 spin_unlock(&journal
->j_list_lock
);
211 * submit the inode data buffers. We use writepage
212 * instead of writepages. Because writepages can do
213 * block allocation with delalloc. We need to write
214 * only allocated blocks here.
216 trace_jbd2_submit_inode_data(jinode
->i_vfs_inode
);
217 err
= journal_submit_inode_data_buffers(mapping
);
220 spin_lock(&journal
->j_list_lock
);
221 J_ASSERT(jinode
->i_transaction
== commit_transaction
);
222 clear_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
);
223 smp_mb__after_clear_bit();
224 wake_up_bit(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
226 spin_unlock(&journal
->j_list_lock
);
231 * Wait for data submitted for writeout, refile inodes to proper
232 * transaction if needed.
235 static int journal_finish_inode_data_buffers(journal_t
*journal
,
236 transaction_t
*commit_transaction
)
238 struct jbd2_inode
*jinode
, *next_i
;
241 /* For locking, see the comment in journal_submit_data_buffers() */
242 spin_lock(&journal
->j_list_lock
);
243 list_for_each_entry(jinode
, &commit_transaction
->t_inode_list
, i_list
) {
244 set_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
);
245 spin_unlock(&journal
->j_list_lock
);
246 err
= filemap_fdatawait(jinode
->i_vfs_inode
->i_mapping
);
249 * Because AS_EIO is cleared by
250 * filemap_fdatawait_range(), set it again so
251 * that user process can get -EIO from fsync().
254 &jinode
->i_vfs_inode
->i_mapping
->flags
);
259 spin_lock(&journal
->j_list_lock
);
260 clear_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
);
261 smp_mb__after_clear_bit();
262 wake_up_bit(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
265 /* Now refile inode to proper lists */
266 list_for_each_entry_safe(jinode
, next_i
,
267 &commit_transaction
->t_inode_list
, i_list
) {
268 list_del(&jinode
->i_list
);
269 if (jinode
->i_next_transaction
) {
270 jinode
->i_transaction
= jinode
->i_next_transaction
;
271 jinode
->i_next_transaction
= NULL
;
272 list_add(&jinode
->i_list
,
273 &jinode
->i_transaction
->t_inode_list
);
275 jinode
->i_transaction
= NULL
;
278 spin_unlock(&journal
->j_list_lock
);
283 static __u32
jbd2_checksum_data(__u32 crc32_sum
, struct buffer_head
*bh
)
285 struct page
*page
= bh
->b_page
;
289 addr
= kmap_atomic(page
, KM_USER0
);
290 checksum
= crc32_be(crc32_sum
,
291 (void *)(addr
+ offset_in_page(bh
->b_data
)), bh
->b_size
);
292 kunmap_atomic(addr
, KM_USER0
);
297 static void write_tag_block(int tag_bytes
, journal_block_tag_t
*tag
,
298 unsigned long long block
)
300 tag
->t_blocknr
= cpu_to_be32(block
& (u32
)~0);
301 if (tag_bytes
> JBD2_TAG_SIZE32
)
302 tag
->t_blocknr_high
= cpu_to_be32((block
>> 31) >> 1);
306 * jbd2_journal_commit_transaction
308 * The primary function for committing a transaction to the log. This
309 * function is called by the journal thread to begin a complete commit.
311 void jbd2_journal_commit_transaction(journal_t
*journal
)
313 struct transaction_stats_s stats
;
314 transaction_t
*commit_transaction
;
315 struct journal_head
*jh
, *new_jh
, *descriptor
;
316 struct buffer_head
**wbuf
= journal
->j_wbuf
;
320 unsigned long long blocknr
;
324 journal_header_t
*header
;
325 journal_block_tag_t
*tag
= NULL
;
330 int tag_bytes
= journal_tag_bytes(journal
);
331 struct buffer_head
*cbh
= NULL
; /* For transactional checksums */
332 __u32 crc32_sum
= ~0;
333 struct blk_plug plug
;
336 * First job: lock down the current transaction and wait for
337 * all outstanding updates to complete.
340 /* Do we need to erase the effects of a prior jbd2_journal_flush? */
341 if (journal
->j_flags
& JBD2_FLUSHED
) {
342 jbd_debug(3, "super block updated\n");
343 jbd2_journal_update_superblock(journal
, 1);
345 jbd_debug(3, "superblock not updated\n");
348 J_ASSERT(journal
->j_running_transaction
!= NULL
);
349 J_ASSERT(journal
->j_committing_transaction
== NULL
);
351 commit_transaction
= journal
->j_running_transaction
;
352 J_ASSERT(commit_transaction
->t_state
== T_RUNNING
);
354 trace_jbd2_start_commit(journal
, commit_transaction
);
355 jbd_debug(1, "JBD: starting commit of transaction %d\n",
356 commit_transaction
->t_tid
);
358 write_lock(&journal
->j_state_lock
);
359 commit_transaction
->t_state
= T_LOCKED
;
361 trace_jbd2_commit_locking(journal
, commit_transaction
);
362 stats
.run
.rs_wait
= commit_transaction
->t_max_wait
;
363 stats
.run
.rs_locked
= jiffies
;
364 stats
.run
.rs_running
= jbd2_time_diff(commit_transaction
->t_start
,
365 stats
.run
.rs_locked
);
367 spin_lock(&commit_transaction
->t_handle_lock
);
368 while (atomic_read(&commit_transaction
->t_updates
)) {
371 prepare_to_wait(&journal
->j_wait_updates
, &wait
,
372 TASK_UNINTERRUPTIBLE
);
373 if (atomic_read(&commit_transaction
->t_updates
)) {
374 spin_unlock(&commit_transaction
->t_handle_lock
);
375 write_unlock(&journal
->j_state_lock
);
377 write_lock(&journal
->j_state_lock
);
378 spin_lock(&commit_transaction
->t_handle_lock
);
380 finish_wait(&journal
->j_wait_updates
, &wait
);
382 spin_unlock(&commit_transaction
->t_handle_lock
);
384 J_ASSERT (atomic_read(&commit_transaction
->t_outstanding_credits
) <=
385 journal
->j_max_transaction_buffers
);
388 * First thing we are allowed to do is to discard any remaining
389 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
390 * that there are no such buffers: if a large filesystem
391 * operation like a truncate needs to split itself over multiple
392 * transactions, then it may try to do a jbd2_journal_restart() while
393 * there are still BJ_Reserved buffers outstanding. These must
394 * be released cleanly from the current transaction.
396 * In this case, the filesystem must still reserve write access
397 * again before modifying the buffer in the new transaction, but
398 * we do not require it to remember exactly which old buffers it
399 * has reserved. This is consistent with the existing behaviour
400 * that multiple jbd2_journal_get_write_access() calls to the same
401 * buffer are perfectly permissible.
403 while (commit_transaction
->t_reserved_list
) {
404 jh
= commit_transaction
->t_reserved_list
;
405 JBUFFER_TRACE(jh
, "reserved, unused: refile");
407 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
408 * leave undo-committed data.
410 if (jh
->b_committed_data
) {
411 struct buffer_head
*bh
= jh2bh(jh
);
413 jbd_lock_bh_state(bh
);
414 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
415 jh
->b_committed_data
= NULL
;
416 jbd_unlock_bh_state(bh
);
418 jbd2_journal_refile_buffer(journal
, jh
);
422 * Now try to drop any written-back buffers from the journal's
423 * checkpoint lists. We do this *before* commit because it potentially
426 spin_lock(&journal
->j_list_lock
);
427 __jbd2_journal_clean_checkpoint_list(journal
);
428 spin_unlock(&journal
->j_list_lock
);
430 jbd_debug (3, "JBD: commit phase 1\n");
433 * Switch to a new revoke table.
435 jbd2_journal_switch_revoke_table(journal
);
437 trace_jbd2_commit_flushing(journal
, commit_transaction
);
438 stats
.run
.rs_flushing
= jiffies
;
439 stats
.run
.rs_locked
= jbd2_time_diff(stats
.run
.rs_locked
,
440 stats
.run
.rs_flushing
);
442 commit_transaction
->t_state
= T_FLUSH
;
443 journal
->j_committing_transaction
= commit_transaction
;
444 journal
->j_running_transaction
= NULL
;
445 start_time
= ktime_get();
446 commit_transaction
->t_log_start
= journal
->j_head
;
447 wake_up(&journal
->j_wait_transaction_locked
);
448 write_unlock(&journal
->j_state_lock
);
450 jbd_debug (3, "JBD: commit phase 2\n");
453 * Now start flushing things to disk, in the order they appear
454 * on the transaction lists. Data blocks go first.
456 err
= journal_submit_data_buffers(journal
, commit_transaction
);
458 jbd2_journal_abort(journal
, err
);
460 blk_start_plug(&plug
);
461 jbd2_journal_write_revoke_records(journal
, commit_transaction
,
463 blk_finish_plug(&plug
);
465 jbd_debug(3, "JBD: commit phase 2\n");
468 * Way to go: we have now written out all of the data for a
469 * transaction! Now comes the tricky part: we need to write out
470 * metadata. Loop over the transaction's entire buffer list:
472 write_lock(&journal
->j_state_lock
);
473 commit_transaction
->t_state
= T_COMMIT
;
474 write_unlock(&journal
->j_state_lock
);
476 trace_jbd2_commit_logging(journal
, commit_transaction
);
477 stats
.run
.rs_logging
= jiffies
;
478 stats
.run
.rs_flushing
= jbd2_time_diff(stats
.run
.rs_flushing
,
479 stats
.run
.rs_logging
);
480 stats
.run
.rs_blocks
=
481 atomic_read(&commit_transaction
->t_outstanding_credits
);
482 stats
.run
.rs_blocks_logged
= 0;
484 J_ASSERT(commit_transaction
->t_nr_buffers
<=
485 atomic_read(&commit_transaction
->t_outstanding_credits
));
490 blk_start_plug(&plug
);
491 while (commit_transaction
->t_buffers
) {
493 /* Find the next buffer to be journaled... */
495 jh
= commit_transaction
->t_buffers
;
497 /* If we're in abort mode, we just un-journal the buffer and
500 if (is_journal_aborted(journal
)) {
501 clear_buffer_jbddirty(jh2bh(jh
));
502 JBUFFER_TRACE(jh
, "journal is aborting: refile");
503 jbd2_buffer_abort_trigger(jh
,
505 jh
->b_frozen_triggers
:
507 jbd2_journal_refile_buffer(journal
, jh
);
508 /* If that was the last one, we need to clean up
509 * any descriptor buffers which may have been
510 * already allocated, even if we are now
512 if (!commit_transaction
->t_buffers
)
513 goto start_journal_io
;
517 /* Make sure we have a descriptor block in which to
518 record the metadata buffer. */
521 struct buffer_head
*bh
;
523 J_ASSERT (bufs
== 0);
525 jbd_debug(4, "JBD: get descriptor\n");
527 descriptor
= jbd2_journal_get_descriptor_buffer(journal
);
529 jbd2_journal_abort(journal
, -EIO
);
533 bh
= jh2bh(descriptor
);
534 jbd_debug(4, "JBD: got buffer %llu (%p)\n",
535 (unsigned long long)bh
->b_blocknr
, bh
->b_data
);
536 header
= (journal_header_t
*)&bh
->b_data
[0];
537 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
538 header
->h_blocktype
= cpu_to_be32(JBD2_DESCRIPTOR_BLOCK
);
539 header
->h_sequence
= cpu_to_be32(commit_transaction
->t_tid
);
541 tagp
= &bh
->b_data
[sizeof(journal_header_t
)];
542 space_left
= bh
->b_size
- sizeof(journal_header_t
);
544 set_buffer_jwrite(bh
);
545 set_buffer_dirty(bh
);
548 /* Record it so that we can wait for IO
550 BUFFER_TRACE(bh
, "ph3: file as descriptor");
551 jbd2_journal_file_buffer(descriptor
, commit_transaction
,
555 /* Where is the buffer to be written? */
557 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
558 /* If the block mapping failed, just abandon the buffer
559 and repeat this loop: we'll fall into the
560 refile-on-abort condition above. */
562 jbd2_journal_abort(journal
, err
);
567 * start_this_handle() uses t_outstanding_credits to determine
568 * the free space in the log, but this counter is changed
569 * by jbd2_journal_next_log_block() also.
571 atomic_dec(&commit_transaction
->t_outstanding_credits
);
573 /* Bump b_count to prevent truncate from stumbling over
574 the shadowed buffer! @@@ This can go if we ever get
575 rid of the BJ_IO/BJ_Shadow pairing of buffers. */
576 atomic_inc(&jh2bh(jh
)->b_count
);
578 /* Make a temporary IO buffer with which to write it out
579 (this will requeue both the metadata buffer and the
580 temporary IO buffer). new_bh goes on BJ_IO*/
582 set_bit(BH_JWrite
, &jh2bh(jh
)->b_state
);
584 * akpm: jbd2_journal_write_metadata_buffer() sets
585 * new_bh->b_transaction to commit_transaction.
586 * We need to clean this up before we release new_bh
587 * (which is of type BJ_IO)
589 JBUFFER_TRACE(jh
, "ph3: write metadata");
590 flags
= jbd2_journal_write_metadata_buffer(commit_transaction
,
591 jh
, &new_jh
, blocknr
);
593 jbd2_journal_abort(journal
, flags
);
596 set_bit(BH_JWrite
, &jh2bh(new_jh
)->b_state
);
597 wbuf
[bufs
++] = jh2bh(new_jh
);
599 /* Record the new block's tag in the current descriptor
604 tag_flag
|= JBD2_FLAG_ESCAPE
;
606 tag_flag
|= JBD2_FLAG_SAME_UUID
;
608 tag
= (journal_block_tag_t
*) tagp
;
609 write_tag_block(tag_bytes
, tag
, jh2bh(jh
)->b_blocknr
);
610 tag
->t_flags
= cpu_to_be32(tag_flag
);
612 space_left
-= tag_bytes
;
615 memcpy (tagp
, journal
->j_uuid
, 16);
621 /* If there's no more to do, or if the descriptor is full,
624 if (bufs
== journal
->j_wbufsize
||
625 commit_transaction
->t_buffers
== NULL
||
626 space_left
< tag_bytes
+ 16) {
628 jbd_debug(4, "JBD: Submit %d IOs\n", bufs
);
630 /* Write an end-of-descriptor marker before
631 submitting the IOs. "tag" still points to
632 the last tag we set up. */
634 tag
->t_flags
|= cpu_to_be32(JBD2_FLAG_LAST_TAG
);
637 for (i
= 0; i
< bufs
; i
++) {
638 struct buffer_head
*bh
= wbuf
[i
];
642 if (JBD2_HAS_COMPAT_FEATURE(journal
,
643 JBD2_FEATURE_COMPAT_CHECKSUM
)) {
645 jbd2_checksum_data(crc32_sum
, bh
);
649 clear_buffer_dirty(bh
);
650 set_buffer_uptodate(bh
);
651 bh
->b_end_io
= journal_end_buffer_io_sync
;
652 submit_bh(WRITE_SYNC
, bh
);
655 stats
.run
.rs_blocks_logged
+= bufs
;
657 /* Force a new descriptor to be generated next
658 time round the loop. */
664 err
= journal_finish_inode_data_buffers(journal
, commit_transaction
);
667 "JBD2: Detected IO errors while flushing file data "
668 "on %s\n", journal
->j_devname
);
669 if (journal
->j_flags
& JBD2_ABORT_ON_SYNCDATA_ERR
)
670 jbd2_journal_abort(journal
, err
);
674 write_lock(&journal
->j_state_lock
);
675 J_ASSERT(commit_transaction
->t_state
== T_COMMIT
);
676 commit_transaction
->t_state
= T_COMMIT_DFLUSH
;
677 write_unlock(&journal
->j_state_lock
);
679 * If the journal is not located on the file system device,
680 * then we must flush the file system device before we issue
683 if (commit_transaction
->t_need_data_flush
&&
684 (journal
->j_fs_dev
!= journal
->j_dev
) &&
685 (journal
->j_flags
& JBD2_BARRIER
))
686 blkdev_issue_flush(journal
->j_fs_dev
, GFP_KERNEL
, NULL
);
688 /* Done it all: now write the commit record asynchronously. */
689 if (JBD2_HAS_INCOMPAT_FEATURE(journal
,
690 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
)) {
691 err
= journal_submit_commit_record(journal
, commit_transaction
,
694 __jbd2_journal_abort_hard(journal
);
697 blk_finish_plug(&plug
);
699 /* Lo and behold: we have just managed to send a transaction to
700 the log. Before we can commit it, wait for the IO so far to
701 complete. Control buffers being written are on the
702 transaction's t_log_list queue, and metadata buffers are on
703 the t_iobuf_list queue.
705 Wait for the buffers in reverse order. That way we are
706 less likely to be woken up until all IOs have completed, and
707 so we incur less scheduling load.
710 jbd_debug(3, "JBD: commit phase 3\n");
713 * akpm: these are BJ_IO, and j_list_lock is not needed.
714 * See __journal_try_to_free_buffer.
717 while (commit_transaction
->t_iobuf_list
!= NULL
) {
718 struct buffer_head
*bh
;
720 jh
= commit_transaction
->t_iobuf_list
->b_tprev
;
722 if (buffer_locked(bh
)) {
729 if (unlikely(!buffer_uptodate(bh
)))
732 clear_buffer_jwrite(bh
);
734 JBUFFER_TRACE(jh
, "ph4: unfile after journal write");
735 jbd2_journal_unfile_buffer(journal
, jh
);
738 * ->t_iobuf_list should contain only dummy buffer_heads
739 * which were created by jbd2_journal_write_metadata_buffer().
741 BUFFER_TRACE(bh
, "dumping temporary bh");
742 jbd2_journal_put_journal_head(jh
);
744 J_ASSERT_BH(bh
, atomic_read(&bh
->b_count
) == 0);
745 free_buffer_head(bh
);
747 /* We also have to unlock and free the corresponding
749 jh
= commit_transaction
->t_shadow_list
->b_tprev
;
751 clear_bit(BH_JWrite
, &bh
->b_state
);
752 J_ASSERT_BH(bh
, buffer_jbddirty(bh
));
754 /* The metadata is now released for reuse, but we need
755 to remember it against this transaction so that when
756 we finally commit, we can do any checkpointing
758 JBUFFER_TRACE(jh
, "file as BJ_Forget");
759 jbd2_journal_file_buffer(jh
, commit_transaction
, BJ_Forget
);
761 * Wake up any transactions which were waiting for this IO to
762 * complete. The barrier must be here so that changes by
763 * jbd2_journal_file_buffer() take effect before wake_up_bit()
764 * does the waitqueue check.
767 wake_up_bit(&bh
->b_state
, BH_Unshadow
);
768 JBUFFER_TRACE(jh
, "brelse shadowed buffer");
772 J_ASSERT (commit_transaction
->t_shadow_list
== NULL
);
774 jbd_debug(3, "JBD: commit phase 4\n");
776 /* Here we wait for the revoke record and descriptor record buffers */
778 while (commit_transaction
->t_log_list
!= NULL
) {
779 struct buffer_head
*bh
;
781 jh
= commit_transaction
->t_log_list
->b_tprev
;
783 if (buffer_locked(bh
)) {
785 goto wait_for_ctlbuf
;
788 goto wait_for_ctlbuf
;
790 if (unlikely(!buffer_uptodate(bh
)))
793 BUFFER_TRACE(bh
, "ph5: control buffer writeout done: unfile");
794 clear_buffer_jwrite(bh
);
795 jbd2_journal_unfile_buffer(journal
, jh
);
796 jbd2_journal_put_journal_head(jh
);
797 __brelse(bh
); /* One for getblk */
798 /* AKPM: bforget here */
802 jbd2_journal_abort(journal
, err
);
804 jbd_debug(3, "JBD: commit phase 5\n");
805 write_lock(&journal
->j_state_lock
);
806 J_ASSERT(commit_transaction
->t_state
== T_COMMIT_DFLUSH
);
807 commit_transaction
->t_state
= T_COMMIT_JFLUSH
;
808 write_unlock(&journal
->j_state_lock
);
810 if (!JBD2_HAS_INCOMPAT_FEATURE(journal
,
811 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
)) {
812 err
= journal_submit_commit_record(journal
, commit_transaction
,
815 __jbd2_journal_abort_hard(journal
);
818 err
= journal_wait_on_commit_record(journal
, cbh
);
819 if (JBD2_HAS_INCOMPAT_FEATURE(journal
,
820 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
) &&
821 journal
->j_flags
& JBD2_BARRIER
) {
822 blkdev_issue_flush(journal
->j_dev
, GFP_KERNEL
, NULL
);
826 jbd2_journal_abort(journal
, err
);
828 /* End of a transaction! Finally, we can do checkpoint
829 processing: any buffers committed as a result of this
830 transaction can be removed from any checkpoint list it was on
833 jbd_debug(3, "JBD: commit phase 6\n");
835 J_ASSERT(list_empty(&commit_transaction
->t_inode_list
));
836 J_ASSERT(commit_transaction
->t_buffers
== NULL
);
837 J_ASSERT(commit_transaction
->t_checkpoint_list
== NULL
);
838 J_ASSERT(commit_transaction
->t_iobuf_list
== NULL
);
839 J_ASSERT(commit_transaction
->t_shadow_list
== NULL
);
840 J_ASSERT(commit_transaction
->t_log_list
== NULL
);
844 * As there are other places (journal_unmap_buffer()) adding buffers
845 * to this list we have to be careful and hold the j_list_lock.
847 spin_lock(&journal
->j_list_lock
);
848 while (commit_transaction
->t_forget
) {
849 transaction_t
*cp_transaction
;
850 struct buffer_head
*bh
;
853 jh
= commit_transaction
->t_forget
;
854 spin_unlock(&journal
->j_list_lock
);
857 * Get a reference so that bh cannot be freed before we are
861 jbd_lock_bh_state(bh
);
862 J_ASSERT_JH(jh
, jh
->b_transaction
== commit_transaction
);
865 * If there is undo-protected committed data against
866 * this buffer, then we can remove it now. If it is a
867 * buffer needing such protection, the old frozen_data
868 * field now points to a committed version of the
869 * buffer, so rotate that field to the new committed
872 * Otherwise, we can just throw away the frozen data now.
874 * We also know that the frozen data has already fired
875 * its triggers if they exist, so we can clear that too.
877 if (jh
->b_committed_data
) {
878 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
879 jh
->b_committed_data
= NULL
;
880 if (jh
->b_frozen_data
) {
881 jh
->b_committed_data
= jh
->b_frozen_data
;
882 jh
->b_frozen_data
= NULL
;
883 jh
->b_frozen_triggers
= NULL
;
885 } else if (jh
->b_frozen_data
) {
886 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
887 jh
->b_frozen_data
= NULL
;
888 jh
->b_frozen_triggers
= NULL
;
891 spin_lock(&journal
->j_list_lock
);
892 cp_transaction
= jh
->b_cp_transaction
;
893 if (cp_transaction
) {
894 JBUFFER_TRACE(jh
, "remove from old cp transaction");
895 cp_transaction
->t_chp_stats
.cs_dropped
++;
896 __jbd2_journal_remove_checkpoint(jh
);
899 /* Only re-checkpoint the buffer_head if it is marked
900 * dirty. If the buffer was added to the BJ_Forget list
901 * by jbd2_journal_forget, it may no longer be dirty and
902 * there's no point in keeping a checkpoint record for
905 /* A buffer which has been freed while still being
906 * journaled by a previous transaction may end up still
907 * being dirty here, but we want to avoid writing back
908 * that buffer in the future after the "add to orphan"
909 * operation been committed, That's not only a performance
910 * gain, it also stops aliasing problems if the buffer is
911 * left behind for writeback and gets reallocated for another
912 * use in a different page. */
913 if (buffer_freed(bh
) && !jh
->b_next_transaction
) {
914 clear_buffer_freed(bh
);
915 clear_buffer_jbddirty(bh
);
918 if (buffer_jbddirty(bh
)) {
919 JBUFFER_TRACE(jh
, "add to new checkpointing trans");
920 __jbd2_journal_insert_checkpoint(jh
, commit_transaction
);
921 if (is_journal_aborted(journal
))
922 clear_buffer_jbddirty(bh
);
924 J_ASSERT_BH(bh
, !buffer_dirty(bh
));
926 * The buffer on BJ_Forget list and not jbddirty means
927 * it has been freed by this transaction and hence it
928 * could not have been reallocated until this
929 * transaction has committed. *BUT* it could be
930 * reallocated once we have written all the data to
931 * disk and before we process the buffer on BJ_Forget
934 if (!jh
->b_next_transaction
)
937 JBUFFER_TRACE(jh
, "refile or unfile buffer");
938 __jbd2_journal_refile_buffer(jh
);
939 jbd_unlock_bh_state(bh
);
941 release_buffer_page(bh
); /* Drops bh reference */
944 cond_resched_lock(&journal
->j_list_lock
);
946 spin_unlock(&journal
->j_list_lock
);
948 * This is a bit sleazy. We use j_list_lock to protect transition
949 * of a transaction into T_FINISHED state and calling
950 * __jbd2_journal_drop_transaction(). Otherwise we could race with
951 * other checkpointing code processing the transaction...
953 write_lock(&journal
->j_state_lock
);
954 spin_lock(&journal
->j_list_lock
);
956 * Now recheck if some buffers did not get attached to the transaction
957 * while the lock was dropped...
959 if (commit_transaction
->t_forget
) {
960 spin_unlock(&journal
->j_list_lock
);
961 write_unlock(&journal
->j_state_lock
);
965 /* Done with this transaction! */
967 jbd_debug(3, "JBD: commit phase 7\n");
969 J_ASSERT(commit_transaction
->t_state
== T_COMMIT_JFLUSH
);
971 commit_transaction
->t_start
= jiffies
;
972 stats
.run
.rs_logging
= jbd2_time_diff(stats
.run
.rs_logging
,
973 commit_transaction
->t_start
);
976 * File the transaction statistics
978 stats
.ts_tid
= commit_transaction
->t_tid
;
979 stats
.run
.rs_handle_count
=
980 atomic_read(&commit_transaction
->t_handle_count
);
981 trace_jbd2_run_stats(journal
->j_fs_dev
->bd_dev
,
982 commit_transaction
->t_tid
, &stats
.run
);
985 * Calculate overall stats
987 spin_lock(&journal
->j_history_lock
);
988 journal
->j_stats
.ts_tid
++;
989 journal
->j_stats
.run
.rs_wait
+= stats
.run
.rs_wait
;
990 journal
->j_stats
.run
.rs_running
+= stats
.run
.rs_running
;
991 journal
->j_stats
.run
.rs_locked
+= stats
.run
.rs_locked
;
992 journal
->j_stats
.run
.rs_flushing
+= stats
.run
.rs_flushing
;
993 journal
->j_stats
.run
.rs_logging
+= stats
.run
.rs_logging
;
994 journal
->j_stats
.run
.rs_handle_count
+= stats
.run
.rs_handle_count
;
995 journal
->j_stats
.run
.rs_blocks
+= stats
.run
.rs_blocks
;
996 journal
->j_stats
.run
.rs_blocks_logged
+= stats
.run
.rs_blocks_logged
;
997 spin_unlock(&journal
->j_history_lock
);
999 commit_transaction
->t_state
= T_FINISHED
;
1000 J_ASSERT(commit_transaction
== journal
->j_committing_transaction
);
1001 journal
->j_commit_sequence
= commit_transaction
->t_tid
;
1002 journal
->j_committing_transaction
= NULL
;
1003 commit_time
= ktime_to_ns(ktime_sub(ktime_get(), start_time
));
1006 * weight the commit time higher than the average time so we don't
1007 * react too strongly to vast changes in the commit time
1009 if (likely(journal
->j_average_commit_time
))
1010 journal
->j_average_commit_time
= (commit_time
+
1011 journal
->j_average_commit_time
*3) / 4;
1013 journal
->j_average_commit_time
= commit_time
;
1014 write_unlock(&journal
->j_state_lock
);
1016 if (commit_transaction
->t_checkpoint_list
== NULL
&&
1017 commit_transaction
->t_checkpoint_io_list
== NULL
) {
1018 __jbd2_journal_drop_transaction(journal
, commit_transaction
);
1021 if (journal
->j_checkpoint_transactions
== NULL
) {
1022 journal
->j_checkpoint_transactions
= commit_transaction
;
1023 commit_transaction
->t_cpnext
= commit_transaction
;
1024 commit_transaction
->t_cpprev
= commit_transaction
;
1026 commit_transaction
->t_cpnext
=
1027 journal
->j_checkpoint_transactions
;
1028 commit_transaction
->t_cpprev
=
1029 commit_transaction
->t_cpnext
->t_cpprev
;
1030 commit_transaction
->t_cpnext
->t_cpprev
=
1032 commit_transaction
->t_cpprev
->t_cpnext
=
1036 spin_unlock(&journal
->j_list_lock
);
1038 if (journal
->j_commit_callback
)
1039 journal
->j_commit_callback(journal
, commit_transaction
);
1041 trace_jbd2_end_commit(journal
, commit_transaction
);
1042 jbd_debug(1, "JBD: commit %d complete, head %d\n",
1043 journal
->j_commit_sequence
, journal
->j_tail_sequence
);
1045 kfree(commit_transaction
);
1047 wake_up(&journal
->j_wait_done_commit
);