1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 /* structs and defines to help the user use the ptrace system call. */
6 /* has the defines to get at the registers. */
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
17 #define PTRACE_SINGLESTEP 9
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
22 #define PTRACE_SYSCALL 24
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
50 #define PTRACE_SEIZE 0x4206
51 #define PTRACE_INTERRUPT 0x4207
52 #define PTRACE_LISTEN 0x4208
54 /* flags in @data for PTRACE_SEIZE */
55 #define PTRACE_SEIZE_DEVEL 0x80000000 /* temp flag for development */
57 /* options set using PTRACE_SETOPTIONS */
58 #define PTRACE_O_TRACESYSGOOD 0x00000001
59 #define PTRACE_O_TRACEFORK 0x00000002
60 #define PTRACE_O_TRACEVFORK 0x00000004
61 #define PTRACE_O_TRACECLONE 0x00000008
62 #define PTRACE_O_TRACEEXEC 0x00000010
63 #define PTRACE_O_TRACEVFORKDONE 0x00000020
64 #define PTRACE_O_TRACEEXIT 0x00000040
66 #define PTRACE_O_MASK 0x0000007f
68 /* Wait extended result codes for the above trace options. */
69 #define PTRACE_EVENT_FORK 1
70 #define PTRACE_EVENT_VFORK 2
71 #define PTRACE_EVENT_CLONE 3
72 #define PTRACE_EVENT_EXEC 4
73 #define PTRACE_EVENT_VFORK_DONE 5
74 #define PTRACE_EVENT_EXIT 6
75 #define PTRACE_EVENT_STOP 7
77 #include <asm/ptrace.h>
83 * The owner ship rules for task->ptrace which holds the ptrace
84 * flags is simple. When a task is running it owns it's task->ptrace
85 * flags. When the a task is stopped the ptracer owns task->ptrace.
88 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
89 #define PT_PTRACED 0x00000001
90 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
91 #define PT_TRACESYSGOOD 0x00000004
92 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
94 /* PT_TRACE_* event enable flags */
95 #define PT_EVENT_FLAG_SHIFT 4
96 #define PT_EVENT_FLAG(event) (1 << (PT_EVENT_FLAG_SHIFT + (event) - 1))
98 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
99 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
100 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
101 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
102 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
103 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
105 #define PT_TRACE_MASK 0x000003f4
107 /* single stepping state bits (used on ARM and PA-RISC) */
108 #define PT_SINGLESTEP_BIT 31
109 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
110 #define PT_BLOCKSTEP_BIT 30
111 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
113 #include <linux/compiler.h> /* For unlikely. */
114 #include <linux/sched.h> /* For struct task_struct. */
115 #include <linux/err.h> /* for IS_ERR_VALUE */
118 extern long arch_ptrace(struct task_struct
*child
, long request
,
119 unsigned long addr
, unsigned long data
);
120 extern int ptrace_readdata(struct task_struct
*tsk
, unsigned long src
, char __user
*dst
, int len
);
121 extern int ptrace_writedata(struct task_struct
*tsk
, char __user
*src
, unsigned long dst
, int len
);
122 extern void ptrace_disable(struct task_struct
*);
123 extern int ptrace_check_attach(struct task_struct
*task
, bool ignore_state
);
124 extern int ptrace_request(struct task_struct
*child
, long request
,
125 unsigned long addr
, unsigned long data
);
126 extern void ptrace_notify(int exit_code
);
127 extern void __ptrace_link(struct task_struct
*child
,
128 struct task_struct
*new_parent
);
129 extern void __ptrace_unlink(struct task_struct
*child
);
130 extern void exit_ptrace(struct task_struct
*tracer
);
131 #define PTRACE_MODE_READ 0x01
132 #define PTRACE_MODE_ATTACH 0x02
133 #define PTRACE_MODE_NOAUDIT 0x04
134 /* Returns 0 on success, -errno on denial. */
135 extern int __ptrace_may_access(struct task_struct
*task
, unsigned int mode
);
136 /* Returns true on success, false on denial. */
137 extern bool ptrace_may_access(struct task_struct
*task
, unsigned int mode
);
139 static inline int ptrace_reparented(struct task_struct
*child
)
141 return !same_thread_group(child
->real_parent
, child
->parent
);
144 static inline void ptrace_unlink(struct task_struct
*child
)
146 if (unlikely(child
->ptrace
))
147 __ptrace_unlink(child
);
150 int generic_ptrace_peekdata(struct task_struct
*tsk
, unsigned long addr
,
152 int generic_ptrace_pokedata(struct task_struct
*tsk
, unsigned long addr
,
156 * ptrace_parent - return the task that is tracing the given task
157 * @task: task to consider
159 * Returns %NULL if no one is tracing @task, or the &struct task_struct
160 * pointer to its tracer.
162 * Must called under rcu_read_lock(). The pointer returned might be kept
163 * live only by RCU. During exec, this may be called with task_lock() held
164 * on @task, still held from when check_unsafe_exec() was called.
166 static inline struct task_struct
*ptrace_parent(struct task_struct
*task
)
168 if (unlikely(task
->ptrace
))
169 return rcu_dereference(task
->parent
);
174 * ptrace_event_enabled - test whether a ptrace event is enabled
175 * @task: ptracee of interest
176 * @event: %PTRACE_EVENT_* to test
178 * Test whether @event is enabled for ptracee @task.
180 * Returns %true if @event is enabled, %false otherwise.
182 static inline bool ptrace_event_enabled(struct task_struct
*task
, int event
)
184 return task
->ptrace
& PT_EVENT_FLAG(event
);
188 * ptrace_event - possibly stop for a ptrace event notification
189 * @event: %PTRACE_EVENT_* value to report
190 * @message: value for %PTRACE_GETEVENTMSG to return
192 * Check whether @event is enabled and, if so, report @event and @message
193 * to the ptrace parent.
195 * Called without locks.
197 static inline void ptrace_event(int event
, unsigned long message
)
199 if (unlikely(ptrace_event_enabled(current
, event
))) {
200 current
->ptrace_message
= message
;
201 ptrace_notify((event
<< 8) | SIGTRAP
);
202 } else if (event
== PTRACE_EVENT_EXEC
&& unlikely(current
->ptrace
)) {
203 /* legacy EXEC report via SIGTRAP */
204 send_sig(SIGTRAP
, current
, 0);
209 * ptrace_init_task - initialize ptrace state for a new child
210 * @child: new child task
211 * @ptrace: true if child should be ptrace'd by parent's tracer
213 * This is called immediately after adding @child to its parent's children
214 * list. @ptrace is false in the normal case, and true to ptrace @child.
216 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
218 static inline void ptrace_init_task(struct task_struct
*child
, bool ptrace
)
220 INIT_LIST_HEAD(&child
->ptrace_entry
);
221 INIT_LIST_HEAD(&child
->ptraced
);
222 #ifdef CONFIG_HAVE_HW_BREAKPOINT
223 atomic_set(&child
->ptrace_bp_refcnt
, 1);
227 child
->parent
= child
->real_parent
;
229 if (unlikely(ptrace
) && current
->ptrace
) {
230 child
->ptrace
= current
->ptrace
;
231 __ptrace_link(child
, current
->parent
);
233 if (child
->ptrace
& PT_SEIZED
)
234 task_set_jobctl_pending(child
, JOBCTL_TRAP_STOP
);
236 sigaddset(&child
->pending
.signal
, SIGSTOP
);
238 set_tsk_thread_flag(child
, TIF_SIGPENDING
);
243 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
244 * @task: task in %EXIT_DEAD state
246 * Called with write_lock(&tasklist_lock) held.
248 static inline void ptrace_release_task(struct task_struct
*task
)
250 BUG_ON(!list_empty(&task
->ptraced
));
252 BUG_ON(!list_empty(&task
->ptrace_entry
));
255 #ifndef force_successful_syscall_return
257 * System call handlers that, upon successful completion, need to return a
258 * negative value should call force_successful_syscall_return() right before
259 * returning. On architectures where the syscall convention provides for a
260 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
261 * others), this macro can be used to ensure that the error flag will not get
262 * set. On architectures which do not support a separate error flag, the macro
263 * is a no-op and the spurious error condition needs to be filtered out by some
264 * other means (e.g., in user-level, by passing an extra argument to the
265 * syscall handler, or something along those lines).
267 #define force_successful_syscall_return() do { } while (0)
270 #ifndef is_syscall_success
272 * On most systems we can tell if a syscall is a success based on if the retval
273 * is an error value. On some systems like ia64 and powerpc they have different
274 * indicators of success/failure and must define their own.
276 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
280 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
282 * These do-nothing inlines are used when the arch does not
283 * implement single-step. The kerneldoc comments are here
284 * to document the interface for all arch definitions.
287 #ifndef arch_has_single_step
289 * arch_has_single_step - does this CPU support user-mode single-step?
291 * If this is defined, then there must be function declarations or
292 * inlines for user_enable_single_step() and user_disable_single_step().
293 * arch_has_single_step() should evaluate to nonzero iff the machine
294 * supports instruction single-step for user mode.
295 * It can be a constant or it can test a CPU feature bit.
297 #define arch_has_single_step() (0)
300 * user_enable_single_step - single-step in user-mode task
301 * @task: either current or a task stopped in %TASK_TRACED
303 * This can only be called when arch_has_single_step() has returned nonzero.
304 * Set @task so that when it returns to user mode, it will trap after the
305 * next single instruction executes. If arch_has_block_step() is defined,
306 * this must clear the effects of user_enable_block_step() too.
308 static inline void user_enable_single_step(struct task_struct
*task
)
310 BUG(); /* This can never be called. */
314 * user_disable_single_step - cancel user-mode single-step
315 * @task: either current or a task stopped in %TASK_TRACED
317 * Clear @task of the effects of user_enable_single_step() and
318 * user_enable_block_step(). This can be called whether or not either
319 * of those was ever called on @task, and even if arch_has_single_step()
322 static inline void user_disable_single_step(struct task_struct
*task
)
326 extern void user_enable_single_step(struct task_struct
*);
327 extern void user_disable_single_step(struct task_struct
*);
328 #endif /* arch_has_single_step */
330 #ifndef arch_has_block_step
332 * arch_has_block_step - does this CPU support user-mode block-step?
334 * If this is defined, then there must be a function declaration or inline
335 * for user_enable_block_step(), and arch_has_single_step() must be defined
336 * too. arch_has_block_step() should evaluate to nonzero iff the machine
337 * supports step-until-branch for user mode. It can be a constant or it
338 * can test a CPU feature bit.
340 #define arch_has_block_step() (0)
343 * user_enable_block_step - step until branch in user-mode task
344 * @task: either current or a task stopped in %TASK_TRACED
346 * This can only be called when arch_has_block_step() has returned nonzero,
347 * and will never be called when single-instruction stepping is being used.
348 * Set @task so that when it returns to user mode, it will trap after the
349 * next branch or trap taken.
351 static inline void user_enable_block_step(struct task_struct
*task
)
353 BUG(); /* This can never be called. */
356 extern void user_enable_block_step(struct task_struct
*);
357 #endif /* arch_has_block_step */
359 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
360 extern void user_single_step_siginfo(struct task_struct
*tsk
,
361 struct pt_regs
*regs
, siginfo_t
*info
);
363 static inline void user_single_step_siginfo(struct task_struct
*tsk
,
364 struct pt_regs
*regs
, siginfo_t
*info
)
366 memset(info
, 0, sizeof(*info
));
367 info
->si_signo
= SIGTRAP
;
371 #ifndef arch_ptrace_stop_needed
373 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
374 * @code: current->exit_code value ptrace will stop with
375 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
377 * This is called with the siglock held, to decide whether or not it's
378 * necessary to release the siglock and call arch_ptrace_stop() with the
379 * same @code and @info arguments. It can be defined to a constant if
380 * arch_ptrace_stop() is never required, or always is. On machines where
381 * this makes sense, it should be defined to a quick test to optimize out
382 * calling arch_ptrace_stop() when it would be superfluous. For example,
383 * if the thread has not been back to user mode since the last stop, the
384 * thread state might indicate that nothing needs to be done.
386 #define arch_ptrace_stop_needed(code, info) (0)
389 #ifndef arch_ptrace_stop
391 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
392 * @code: current->exit_code value ptrace will stop with
393 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
395 * This is called with no locks held when arch_ptrace_stop_needed() has
396 * just returned nonzero. It is allowed to block, e.g. for user memory
397 * access. The arch can have machine-specific work to be done before
398 * ptrace stops. On ia64, register backing store gets written back to user
399 * memory here. Since this can be costly (requires dropping the siglock),
400 * we only do it when the arch requires it for this particular stop, as
401 * indicated by arch_ptrace_stop_needed().
403 #define arch_ptrace_stop(code, info) do { } while (0)
406 extern int task_current_syscall(struct task_struct
*target
, long *callno
,
407 unsigned long args
[6], unsigned int maxargs
,
408 unsigned long *sp
, unsigned long *pc
);
410 #ifdef CONFIG_HAVE_HW_BREAKPOINT
411 extern int ptrace_get_breakpoints(struct task_struct
*tsk
);
412 extern void ptrace_put_breakpoints(struct task_struct
*tsk
);
414 static inline void ptrace_put_breakpoints(struct task_struct
*tsk
) { }
415 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
417 #endif /* __KERNEL */