ARM: pgtable: group pgd functions and data together
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / include / asm / pgtable.h
blob8ee9dce10b831d059365fd37b2722b97ffad45d4
1 /*
2 * arch/arm/include/asm/pgtable.h
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
13 #include <asm-generic/4level-fixup.h>
14 #include <asm/proc-fns.h>
16 #ifndef CONFIG_MMU
18 #include "pgtable-nommu.h"
20 #else
22 #include <asm/memory.h>
23 #include <mach/vmalloc.h>
24 #include <asm/pgtable-hwdef.h>
27 * Just any arbitrary offset to the start of the vmalloc VM area: the
28 * current 8MB value just means that there will be a 8MB "hole" after the
29 * physical memory until the kernel virtual memory starts. That means that
30 * any out-of-bounds memory accesses will hopefully be caught.
31 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
32 * area for the same reason. ;)
34 * Note that platforms may override VMALLOC_START, but they must provide
35 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
36 * which may not overlap IO space.
38 #ifndef VMALLOC_START
39 #define VMALLOC_OFFSET (8*1024*1024)
40 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
41 #endif
44 * Hardware-wise, we have a two level page table structure, where the first
45 * level has 4096 entries, and the second level has 256 entries. Each entry
46 * is one 32-bit word. Most of the bits in the second level entry are used
47 * by hardware, and there aren't any "accessed" and "dirty" bits.
49 * Linux on the other hand has a three level page table structure, which can
50 * be wrapped to fit a two level page table structure easily - using the PGD
51 * and PTE only. However, Linux also expects one "PTE" table per page, and
52 * at least a "dirty" bit.
54 * Therefore, we tweak the implementation slightly - we tell Linux that we
55 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
56 * hardware pointers to the second level.) The second level contains two
57 * hardware PTE tables arranged contiguously, followed by Linux versions
58 * which contain the state information Linux needs. We, therefore, end up
59 * with 512 entries in the "PTE" level.
61 * This leads to the page tables having the following layout:
63 * pgd pte
64 * | |
65 * +--------+ +0
66 * | |-----> +------------+ +0
67 * +- - - - + +4 | h/w pt 0 |
68 * | |-----> +------------+ +1024
69 * +--------+ +8 | h/w pt 1 |
70 * | | +------------+ +2048
71 * +- - - - + | Linux pt 0 |
72 * | | +------------+ +3072
73 * +--------+ | Linux pt 1 |
74 * | | +------------+ +4096
76 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
77 * PTE_xxx for definitions of bits appearing in the "h/w pt".
79 * PMD_xxx definitions refer to bits in the first level page table.
81 * The "dirty" bit is emulated by only granting hardware write permission
82 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
83 * means that a write to a clean page will cause a permission fault, and
84 * the Linux MM layer will mark the page dirty via handle_pte_fault().
85 * For the hardware to notice the permission change, the TLB entry must
86 * be flushed, and ptep_set_access_flags() does that for us.
88 * The "accessed" or "young" bit is emulated by a similar method; we only
89 * allow accesses to the page if the "young" bit is set. Accesses to the
90 * page will cause a fault, and handle_pte_fault() will set the young bit
91 * for us as long as the page is marked present in the corresponding Linux
92 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
93 * up to date.
95 * However, when the "young" bit is cleared, we deny access to the page
96 * by clearing the hardware PTE. Currently Linux does not flush the TLB
97 * for us in this case, which means the TLB will retain the transation
98 * until either the TLB entry is evicted under pressure, or a context
99 * switch which changes the user space mapping occurs.
101 #define PTRS_PER_PTE 512
102 #define PTRS_PER_PMD 1
103 #define PTRS_PER_PGD 2048
106 * PMD_SHIFT determines the size of the area a second-level page table can map
107 * PGDIR_SHIFT determines what a third-level page table entry can map
109 #define PMD_SHIFT 21
110 #define PGDIR_SHIFT 21
112 #define LIBRARY_TEXT_START 0x0c000000
114 #ifndef __ASSEMBLY__
115 extern void __pte_error(const char *file, int line, unsigned long val);
116 extern void __pmd_error(const char *file, int line, unsigned long val);
117 extern void __pgd_error(const char *file, int line, unsigned long val);
119 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
120 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
121 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
122 #endif /* !__ASSEMBLY__ */
124 #define PMD_SIZE (1UL << PMD_SHIFT)
125 #define PMD_MASK (~(PMD_SIZE-1))
126 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
127 #define PGDIR_MASK (~(PGDIR_SIZE-1))
130 * This is the lowest virtual address we can permit any user space
131 * mapping to be mapped at. This is particularly important for
132 * non-high vector CPUs.
134 #define FIRST_USER_ADDRESS PAGE_SIZE
136 #define FIRST_USER_PGD_NR 1
137 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
140 * section address mask and size definitions.
142 #define SECTION_SHIFT 20
143 #define SECTION_SIZE (1UL << SECTION_SHIFT)
144 #define SECTION_MASK (~(SECTION_SIZE-1))
147 * ARMv6 supersection address mask and size definitions.
149 #define SUPERSECTION_SHIFT 24
150 #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
151 #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
154 * "Linux" PTE definitions.
156 * We keep two sets of PTEs - the hardware and the linux version.
157 * This allows greater flexibility in the way we map the Linux bits
158 * onto the hardware tables, and allows us to have YOUNG and DIRTY
159 * bits.
161 * The PTE table pointer refers to the hardware entries; the "Linux"
162 * entries are stored 1024 bytes below.
164 #define L_PTE_PRESENT (1 << 0)
165 #define L_PTE_YOUNG (1 << 1)
166 #define L_PTE_FILE (1 << 2) /* only when !PRESENT */
167 #define L_PTE_DIRTY (1 << 6)
168 #define L_PTE_WRITE (1 << 7)
169 #define L_PTE_USER (1 << 8)
170 #define L_PTE_EXEC (1 << 9)
171 #define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */
174 * These are the memory types, defined to be compatible with
175 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
177 #define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */
178 #define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */
179 #define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */
180 #define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */
181 #define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */
182 #define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */
183 #define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */
184 #define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */
185 #define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */
186 #define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */
187 #define L_PTE_MT_MASK (0x0f << 2)
189 #ifndef __ASSEMBLY__
192 * The pgprot_* and protection_map entries will be fixed up in runtime
193 * to include the cachable and bufferable bits based on memory policy,
194 * as well as any architecture dependent bits like global/ASID and SMP
195 * shared mapping bits.
197 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
199 extern pgprot_t pgprot_user;
200 extern pgprot_t pgprot_kernel;
202 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
204 #define PAGE_NONE pgprot_user
205 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
206 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
207 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
208 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
209 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
210 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
211 #define PAGE_KERNEL pgprot_kernel
212 #define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
214 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
215 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
216 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
217 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
218 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
219 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
220 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
222 #define __pgprot_modify(prot,mask,bits) \
223 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
225 #define pgprot_noncached(prot) \
226 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
228 #define pgprot_writecombine(prot) \
229 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
231 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
232 #define pgprot_dmacoherent(prot) \
233 __pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_BUFFERABLE)
234 #define __HAVE_PHYS_MEM_ACCESS_PROT
235 struct file;
236 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
237 unsigned long size, pgprot_t vma_prot);
238 #else
239 #define pgprot_dmacoherent(prot) \
240 __pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_UNCACHED)
241 #endif
243 #endif /* __ASSEMBLY__ */
246 * The table below defines the page protection levels that we insert into our
247 * Linux page table version. These get translated into the best that the
248 * architecture can perform. Note that on most ARM hardware:
249 * 1) We cannot do execute protection
250 * 2) If we could do execute protection, then read is implied
251 * 3) write implies read permissions
253 #define __P000 __PAGE_NONE
254 #define __P001 __PAGE_READONLY
255 #define __P010 __PAGE_COPY
256 #define __P011 __PAGE_COPY
257 #define __P100 __PAGE_READONLY_EXEC
258 #define __P101 __PAGE_READONLY_EXEC
259 #define __P110 __PAGE_COPY_EXEC
260 #define __P111 __PAGE_COPY_EXEC
262 #define __S000 __PAGE_NONE
263 #define __S001 __PAGE_READONLY
264 #define __S010 __PAGE_SHARED
265 #define __S011 __PAGE_SHARED
266 #define __S100 __PAGE_READONLY_EXEC
267 #define __S101 __PAGE_READONLY_EXEC
268 #define __S110 __PAGE_SHARED_EXEC
269 #define __S111 __PAGE_SHARED_EXEC
271 #ifndef __ASSEMBLY__
273 * ZERO_PAGE is a global shared page that is always zero: used
274 * for zero-mapped memory areas etc..
276 extern struct page *empty_zero_page;
277 #define ZERO_PAGE(vaddr) (empty_zero_page)
280 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
282 /* to find an entry in a page-table-directory */
283 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
285 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
287 /* to find an entry in a kernel page-table-directory */
288 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
291 * The "pgd_xxx()" functions here are trivial for a folded two-level
292 * setup: the pgd is never bad, and a pmd always exists (as it's folded
293 * into the pgd entry)
295 #define pgd_none(pgd) (0)
296 #define pgd_bad(pgd) (0)
297 #define pgd_present(pgd) (1)
298 #define pgd_clear(pgdp) do { } while (0)
299 #define set_pgd(pgd,pgdp) do { } while (0)
302 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
303 #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
305 #define pte_none(pte) (!pte_val(pte))
306 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
307 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
308 #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
310 #define pte_offset_map(dir,addr) (__pte_map(dir) + __pte_index(addr))
311 #define pte_unmap(pte) __pte_unmap(pte)
313 #ifndef CONFIG_HIGHPTE
314 #define __pte_map(dir) pmd_page_vaddr(*(dir))
315 #define __pte_unmap(pte) do { } while (0)
316 #else
317 #define __pte_map(dir) ((pte_t *)kmap_atomic(pmd_page(*(dir))) + PTRS_PER_PTE)
318 #define __pte_unmap(pte) kunmap_atomic((pte - PTRS_PER_PTE))
319 #endif
321 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
323 #if __LINUX_ARM_ARCH__ < 6
324 static inline void __sync_icache_dcache(pte_t pteval)
327 #else
328 extern void __sync_icache_dcache(pte_t pteval);
329 #endif
331 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
332 pte_t *ptep, pte_t pteval)
334 if (addr >= TASK_SIZE)
335 set_pte_ext(ptep, pteval, 0);
336 else {
337 __sync_icache_dcache(pteval);
338 set_pte_ext(ptep, pteval, PTE_EXT_NG);
343 * The following only work if pte_present() is true.
344 * Undefined behaviour if not..
346 #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
347 #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
348 #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
349 #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
350 #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
351 #define pte_special(pte) (0)
353 #define pte_present_user(pte) \
354 ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
355 (L_PTE_PRESENT | L_PTE_USER))
357 #define PTE_BIT_FUNC(fn,op) \
358 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
360 PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
361 PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
362 PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
363 PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
364 PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
365 PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
367 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
369 #define pmd_none(pmd) (!pmd_val(pmd))
370 #define pmd_present(pmd) (pmd_val(pmd))
371 #define pmd_bad(pmd) (pmd_val(pmd) & 2)
373 #define copy_pmd(pmdpd,pmdps) \
374 do { \
375 pmdpd[0] = pmdps[0]; \
376 pmdpd[1] = pmdps[1]; \
377 flush_pmd_entry(pmdpd); \
378 } while (0)
380 #define pmd_clear(pmdp) \
381 do { \
382 pmdp[0] = __pmd(0); \
383 pmdp[1] = __pmd(0); \
384 clean_pmd_entry(pmdp); \
385 } while (0)
387 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
389 unsigned long ptr;
391 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
392 ptr += PTRS_PER_PTE * sizeof(void *);
394 return __va(ptr);
397 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
399 /* we don't need complex calculations here as the pmd is folded into the pgd */
400 #define pmd_addr_end(addr,end) (end)
403 * Conversion functions: convert a page and protection to a page entry,
404 * and a page entry and page directory to the page they refer to.
406 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
408 /* Find an entry in the second-level page table.. */
409 #define pmd_offset(dir, addr) ((pmd_t *)(dir))
411 /* Find an entry in the third-level page table.. */
412 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
414 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
416 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
417 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
418 return pte;
422 * Encode and decode a swap entry. Swap entries are stored in the Linux
423 * page tables as follows:
425 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
426 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
427 * <--------------- offset --------------------> <- type --> 0 0 0
429 * This gives us up to 63 swap files and 32GB per swap file. Note that
430 * the offset field is always non-zero.
432 #define __SWP_TYPE_SHIFT 3
433 #define __SWP_TYPE_BITS 6
434 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
435 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
437 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
438 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
439 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
441 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
442 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
445 * It is an error for the kernel to have more swap files than we can
446 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
447 * is increased beyond what we presently support.
449 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
452 * Encode and decode a file entry. File entries are stored in the Linux
453 * page tables as follows:
455 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
456 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
457 * <----------------------- offset ------------------------> 1 0 0
459 #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
460 #define pte_to_pgoff(x) (pte_val(x) >> 3)
461 #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
463 #define PTE_FILE_MAX_BITS 29
465 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
466 /* FIXME: this is not correct */
467 #define kern_addr_valid(addr) (1)
469 #include <asm-generic/pgtable.h>
472 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
474 #define HAVE_ARCH_UNMAPPED_AREA
477 * remap a physical page `pfn' of size `size' with page protection `prot'
478 * into virtual address `from'
480 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
481 remap_pfn_range(vma, from, pfn, size, prot)
483 #define pgtable_cache_init() do { } while (0)
485 #endif /* !__ASSEMBLY__ */
487 #endif /* CONFIG_MMU */
489 #endif /* _ASMARM_PGTABLE_H */