2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
38 atomic_t perf_task_events __read_mostly
;
39 static atomic_t nr_mmap_events __read_mostly
;
40 static atomic_t nr_comm_events __read_mostly
;
41 static atomic_t nr_task_events __read_mostly
;
43 static LIST_HEAD(pmus
);
44 static DEFINE_MUTEX(pmus_lock
);
45 static struct srcu_struct pmus_srcu
;
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
54 int sysctl_perf_event_paranoid __read_mostly
= 1;
56 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
59 * max perf event sample rate
61 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
63 static atomic64_t perf_event_id
;
65 void __weak
perf_event_print_debug(void) { }
67 extern __weak
const char *perf_pmu_name(void)
72 void perf_pmu_disable(struct pmu
*pmu
)
74 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
76 pmu
->pmu_disable(pmu
);
79 void perf_pmu_enable(struct pmu
*pmu
)
81 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
86 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
93 static void perf_pmu_rotate_start(struct pmu
*pmu
)
95 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
96 struct list_head
*head
= &__get_cpu_var(rotation_list
);
98 WARN_ON(!irqs_disabled());
100 if (list_empty(&cpuctx
->rotation_list
))
101 list_add(&cpuctx
->rotation_list
, head
);
104 static void get_ctx(struct perf_event_context
*ctx
)
106 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
109 static void free_ctx(struct rcu_head
*head
)
111 struct perf_event_context
*ctx
;
113 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
117 static void put_ctx(struct perf_event_context
*ctx
)
119 if (atomic_dec_and_test(&ctx
->refcount
)) {
121 put_ctx(ctx
->parent_ctx
);
123 put_task_struct(ctx
->task
);
124 call_rcu(&ctx
->rcu_head
, free_ctx
);
128 static void unclone_ctx(struct perf_event_context
*ctx
)
130 if (ctx
->parent_ctx
) {
131 put_ctx(ctx
->parent_ctx
);
132 ctx
->parent_ctx
= NULL
;
137 * If we inherit events we want to return the parent event id
140 static u64
primary_event_id(struct perf_event
*event
)
145 id
= event
->parent
->id
;
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
155 static struct perf_event_context
*
156 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
158 struct perf_event_context
*ctx
;
162 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
174 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
175 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
176 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
180 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
181 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
194 static struct perf_event_context
*
195 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
197 struct perf_event_context
*ctx
;
200 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
203 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
208 static void perf_unpin_context(struct perf_event_context
*ctx
)
212 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
214 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
218 static inline u64
perf_clock(void)
220 return local_clock();
224 * Update the record of the current time in a context.
226 static void update_context_time(struct perf_event_context
*ctx
)
228 u64 now
= perf_clock();
230 ctx
->time
+= now
- ctx
->timestamp
;
231 ctx
->timestamp
= now
;
235 * Update the total_time_enabled and total_time_running fields for a event.
237 static void update_event_times(struct perf_event
*event
)
239 struct perf_event_context
*ctx
= event
->ctx
;
242 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
243 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
249 run_end
= event
->tstamp_stopped
;
251 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
253 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
254 run_end
= event
->tstamp_stopped
;
258 event
->total_time_running
= run_end
- event
->tstamp_running
;
262 * Update total_time_enabled and total_time_running for all events in a group.
264 static void update_group_times(struct perf_event
*leader
)
266 struct perf_event
*event
;
268 update_event_times(leader
);
269 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
270 update_event_times(event
);
273 static struct list_head
*
274 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
276 if (event
->attr
.pinned
)
277 return &ctx
->pinned_groups
;
279 return &ctx
->flexible_groups
;
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
287 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
289 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
290 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
297 if (event
->group_leader
== event
) {
298 struct list_head
*list
;
300 if (is_software_event(event
))
301 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
303 list
= ctx_group_list(event
, ctx
);
304 list_add_tail(&event
->group_entry
, list
);
307 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
309 perf_pmu_rotate_start(ctx
->pmu
);
311 if (event
->attr
.inherit_stat
)
315 static void perf_group_attach(struct perf_event
*event
)
317 struct perf_event
*group_leader
= event
->group_leader
;
320 * We can have double attach due to group movement in perf_event_open.
322 if (event
->attach_state
& PERF_ATTACH_GROUP
)
325 event
->attach_state
|= PERF_ATTACH_GROUP
;
327 if (group_leader
== event
)
330 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
331 !is_software_event(event
))
332 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
334 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
335 group_leader
->nr_siblings
++;
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
343 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
346 * We can have double detach due to exit/hot-unplug + close.
348 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
351 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
354 if (event
->attr
.inherit_stat
)
357 list_del_rcu(&event
->event_entry
);
359 if (event
->group_leader
== event
)
360 list_del_init(&event
->group_entry
);
362 update_group_times(event
);
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
371 if (event
->state
> PERF_EVENT_STATE_OFF
)
372 event
->state
= PERF_EVENT_STATE_OFF
;
375 static void perf_group_detach(struct perf_event
*event
)
377 struct perf_event
*sibling
, *tmp
;
378 struct list_head
*list
= NULL
;
381 * We can have double detach due to exit/hot-unplug + close.
383 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
386 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
389 * If this is a sibling, remove it from its group.
391 if (event
->group_leader
!= event
) {
392 list_del_init(&event
->group_entry
);
393 event
->group_leader
->nr_siblings
--;
397 if (!list_empty(&event
->group_entry
))
398 list
= &event
->group_entry
;
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
405 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
407 list_move_tail(&sibling
->group_entry
, list
);
408 sibling
->group_leader
= sibling
;
410 /* Inherit group flags from the previous leader */
411 sibling
->group_flags
= event
->group_flags
;
416 event_filter_match(struct perf_event
*event
)
418 return event
->cpu
== -1 || event
->cpu
== smp_processor_id();
422 event_sched_out(struct perf_event
*event
,
423 struct perf_cpu_context
*cpuctx
,
424 struct perf_event_context
*ctx
)
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
433 if (event
->state
== PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event
)) {
435 delta
= ctx
->time
- event
->tstamp_stopped
;
436 event
->tstamp_running
+= delta
;
437 event
->tstamp_stopped
= ctx
->time
;
440 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
443 event
->state
= PERF_EVENT_STATE_INACTIVE
;
444 if (event
->pending_disable
) {
445 event
->pending_disable
= 0;
446 event
->state
= PERF_EVENT_STATE_OFF
;
448 event
->tstamp_stopped
= ctx
->time
;
449 event
->pmu
->del(event
, 0);
452 if (!is_software_event(event
))
453 cpuctx
->active_oncpu
--;
455 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
456 cpuctx
->exclusive
= 0;
460 group_sched_out(struct perf_event
*group_event
,
461 struct perf_cpu_context
*cpuctx
,
462 struct perf_event_context
*ctx
)
464 struct perf_event
*event
;
465 int state
= group_event
->state
;
467 event_sched_out(group_event
, cpuctx
, ctx
);
470 * Schedule out siblings (if any):
472 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
473 event_sched_out(event
, cpuctx
, ctx
);
475 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
476 cpuctx
->exclusive
= 0;
479 static inline struct perf_cpu_context
*
480 __get_cpu_context(struct perf_event_context
*ctx
)
482 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
486 * Cross CPU call to remove a performance event
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
491 static void __perf_event_remove_from_context(void *info
)
493 struct perf_event
*event
= info
;
494 struct perf_event_context
*ctx
= event
->ctx
;
495 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
502 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
505 raw_spin_lock(&ctx
->lock
);
507 event_sched_out(event
, cpuctx
, ctx
);
509 list_del_event(event
, ctx
);
511 raw_spin_unlock(&ctx
->lock
);
516 * Remove the event from a task's (or a CPU's) list of events.
518 * Must be called with ctx->mutex held.
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
530 static void perf_event_remove_from_context(struct perf_event
*event
)
532 struct perf_event_context
*ctx
= event
->ctx
;
533 struct task_struct
*task
= ctx
->task
;
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
540 smp_call_function_single(event
->cpu
,
541 __perf_event_remove_from_context
,
547 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
550 raw_spin_lock_irq(&ctx
->lock
);
552 * If the context is active we need to retry the smp call.
554 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
555 raw_spin_unlock_irq(&ctx
->lock
);
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
564 if (!list_empty(&event
->group_entry
))
565 list_del_event(event
, ctx
);
566 raw_spin_unlock_irq(&ctx
->lock
);
570 * Cross CPU call to disable a performance event
572 static void __perf_event_disable(void *info
)
574 struct perf_event
*event
= info
;
575 struct perf_event_context
*ctx
= event
->ctx
;
576 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
582 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
585 raw_spin_lock(&ctx
->lock
);
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
591 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
592 update_context_time(ctx
);
593 update_group_times(event
);
594 if (event
== event
->group_leader
)
595 group_sched_out(event
, cpuctx
, ctx
);
597 event_sched_out(event
, cpuctx
, ctx
);
598 event
->state
= PERF_EVENT_STATE_OFF
;
601 raw_spin_unlock(&ctx
->lock
);
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
617 void perf_event_disable(struct perf_event
*event
)
619 struct perf_event_context
*ctx
= event
->ctx
;
620 struct task_struct
*task
= ctx
->task
;
624 * Disable the event on the cpu that it's on
626 smp_call_function_single(event
->cpu
, __perf_event_disable
,
632 task_oncpu_function_call(task
, __perf_event_disable
, event
);
634 raw_spin_lock_irq(&ctx
->lock
);
636 * If the event is still active, we need to retry the cross-call.
638 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
639 raw_spin_unlock_irq(&ctx
->lock
);
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
647 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
648 update_group_times(event
);
649 event
->state
= PERF_EVENT_STATE_OFF
;
652 raw_spin_unlock_irq(&ctx
->lock
);
656 event_sched_in(struct perf_event
*event
,
657 struct perf_cpu_context
*cpuctx
,
658 struct perf_event_context
*ctx
)
660 if (event
->state
<= PERF_EVENT_STATE_OFF
)
663 event
->state
= PERF_EVENT_STATE_ACTIVE
;
664 event
->oncpu
= smp_processor_id();
666 * The new state must be visible before we turn it on in the hardware:
670 if (event
->pmu
->add(event
, PERF_EF_START
)) {
671 event
->state
= PERF_EVENT_STATE_INACTIVE
;
676 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
678 event
->shadow_ctx_time
= ctx
->time
- ctx
->timestamp
;
680 if (!is_software_event(event
))
681 cpuctx
->active_oncpu
++;
684 if (event
->attr
.exclusive
)
685 cpuctx
->exclusive
= 1;
691 group_sched_in(struct perf_event
*group_event
,
692 struct perf_cpu_context
*cpuctx
,
693 struct perf_event_context
*ctx
)
695 struct perf_event
*event
, *partial_group
= NULL
;
696 struct pmu
*pmu
= group_event
->pmu
;
698 bool simulate
= false;
700 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
705 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
706 pmu
->cancel_txn(pmu
);
711 * Schedule in siblings as one group (if any):
713 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
714 if (event_sched_in(event
, cpuctx
, ctx
)) {
715 partial_group
= event
;
720 if (!pmu
->commit_txn(pmu
))
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
738 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
739 if (event
== partial_group
)
743 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
744 event
->tstamp_stopped
= now
;
746 event_sched_out(event
, cpuctx
, ctx
);
749 event_sched_out(group_event
, cpuctx
, ctx
);
751 pmu
->cancel_txn(pmu
);
757 * Work out whether we can put this event group on the CPU now.
759 static int group_can_go_on(struct perf_event
*event
,
760 struct perf_cpu_context
*cpuctx
,
764 * Groups consisting entirely of software events can always go on.
766 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
769 * If an exclusive group is already on, no other hardware
772 if (cpuctx
->exclusive
)
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
778 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
781 * Otherwise, try to add it if all previous groups were able
787 static void add_event_to_ctx(struct perf_event
*event
,
788 struct perf_event_context
*ctx
)
790 list_add_event(event
, ctx
);
791 perf_group_attach(event
);
792 event
->tstamp_enabled
= ctx
->time
;
793 event
->tstamp_running
= ctx
->time
;
794 event
->tstamp_stopped
= ctx
->time
;
798 * Cross CPU call to install and enable a performance event
800 * Must be called with ctx->mutex held
802 static void __perf_install_in_context(void *info
)
804 struct perf_event
*event
= info
;
805 struct perf_event_context
*ctx
= event
->ctx
;
806 struct perf_event
*leader
= event
->group_leader
;
807 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
817 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
818 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
820 cpuctx
->task_ctx
= ctx
;
823 raw_spin_lock(&ctx
->lock
);
825 update_context_time(ctx
);
827 add_event_to_ctx(event
, ctx
);
829 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
836 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
837 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
845 if (!group_can_go_on(event
, cpuctx
, 1))
848 err
= event_sched_in(event
, cpuctx
, ctx
);
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
857 group_sched_out(leader
, cpuctx
, ctx
);
858 if (leader
->attr
.pinned
) {
859 update_group_times(leader
);
860 leader
->state
= PERF_EVENT_STATE_ERROR
;
865 raw_spin_unlock(&ctx
->lock
);
869 * Attach a performance event to a context
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
878 * Must be called with ctx->mutex held.
881 perf_install_in_context(struct perf_event_context
*ctx
,
882 struct perf_event
*event
,
885 struct task_struct
*task
= ctx
->task
;
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
894 smp_call_function_single(cpu
, __perf_install_in_context
,
900 task_oncpu_function_call(task
, __perf_install_in_context
,
903 raw_spin_lock_irq(&ctx
->lock
);
905 * we need to retry the smp call.
907 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
908 raw_spin_unlock_irq(&ctx
->lock
);
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
917 if (list_empty(&event
->group_entry
))
918 add_event_to_ctx(event
, ctx
);
919 raw_spin_unlock_irq(&ctx
->lock
);
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
930 static void __perf_event_mark_enabled(struct perf_event
*event
,
931 struct perf_event_context
*ctx
)
933 struct perf_event
*sub
;
935 event
->state
= PERF_EVENT_STATE_INACTIVE
;
936 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
937 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
938 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
939 sub
->tstamp_enabled
=
940 ctx
->time
- sub
->total_time_enabled
;
946 * Cross CPU call to enable a performance event
948 static void __perf_event_enable(void *info
)
950 struct perf_event
*event
= info
;
951 struct perf_event_context
*ctx
= event
->ctx
;
952 struct perf_event
*leader
= event
->group_leader
;
953 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
960 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
961 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
963 cpuctx
->task_ctx
= ctx
;
966 raw_spin_lock(&ctx
->lock
);
968 update_context_time(ctx
);
970 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
972 __perf_event_mark_enabled(event
, ctx
);
974 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
981 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
984 if (!group_can_go_on(event
, cpuctx
, 1)) {
988 err
= group_sched_in(event
, cpuctx
, ctx
);
990 err
= event_sched_in(event
, cpuctx
, ctx
);
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
999 group_sched_out(leader
, cpuctx
, ctx
);
1000 if (leader
->attr
.pinned
) {
1001 update_group_times(leader
);
1002 leader
->state
= PERF_EVENT_STATE_ERROR
;
1007 raw_spin_unlock(&ctx
->lock
);
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1019 void perf_event_enable(struct perf_event
*event
)
1021 struct perf_event_context
*ctx
= event
->ctx
;
1022 struct task_struct
*task
= ctx
->task
;
1026 * Enable the event on the cpu that it's on
1028 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1033 raw_spin_lock_irq(&ctx
->lock
);
1034 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1044 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1045 event
->state
= PERF_EVENT_STATE_OFF
;
1048 raw_spin_unlock_irq(&ctx
->lock
);
1049 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1051 raw_spin_lock_irq(&ctx
->lock
);
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1057 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1064 if (event
->state
== PERF_EVENT_STATE_OFF
)
1065 __perf_event_mark_enabled(event
, ctx
);
1068 raw_spin_unlock_irq(&ctx
->lock
);
1071 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1074 * not supported on inherited events
1076 if (event
->attr
.inherit
)
1079 atomic_add(refresh
, &event
->event_limit
);
1080 perf_event_enable(event
);
1086 EVENT_FLEXIBLE
= 0x1,
1088 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1091 static void ctx_sched_out(struct perf_event_context
*ctx
,
1092 struct perf_cpu_context
*cpuctx
,
1093 enum event_type_t event_type
)
1095 struct perf_event
*event
;
1097 raw_spin_lock(&ctx
->lock
);
1098 perf_pmu_disable(ctx
->pmu
);
1100 if (likely(!ctx
->nr_events
))
1102 update_context_time(ctx
);
1104 if (!ctx
->nr_active
)
1107 if (event_type
& EVENT_PINNED
) {
1108 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1109 group_sched_out(event
, cpuctx
, ctx
);
1112 if (event_type
& EVENT_FLEXIBLE
) {
1113 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1114 group_sched_out(event
, cpuctx
, ctx
);
1117 perf_pmu_enable(ctx
->pmu
);
1118 raw_spin_unlock(&ctx
->lock
);
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1132 static int context_equiv(struct perf_event_context
*ctx1
,
1133 struct perf_event_context
*ctx2
)
1135 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1136 && ctx1
->parent_gen
== ctx2
->parent_gen
1137 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1140 static void __perf_event_sync_stat(struct perf_event
*event
,
1141 struct perf_event
*next_event
)
1145 if (!event
->attr
.inherit_stat
)
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1155 switch (event
->state
) {
1156 case PERF_EVENT_STATE_ACTIVE
:
1157 event
->pmu
->read(event
);
1160 case PERF_EVENT_STATE_INACTIVE
:
1161 update_event_times(event
);
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1172 value
= local64_read(&next_event
->count
);
1173 value
= local64_xchg(&event
->count
, value
);
1174 local64_set(&next_event
->count
, value
);
1176 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1177 swap(event
->total_time_running
, next_event
->total_time_running
);
1180 * Since we swizzled the values, update the user visible data too.
1182 perf_event_update_userpage(event
);
1183 perf_event_update_userpage(next_event
);
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1189 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1190 struct perf_event_context
*next_ctx
)
1192 struct perf_event
*event
, *next_event
;
1197 update_context_time(ctx
);
1199 event
= list_first_entry(&ctx
->event_list
,
1200 struct perf_event
, event_entry
);
1202 next_event
= list_first_entry(&next_ctx
->event_list
,
1203 struct perf_event
, event_entry
);
1205 while (&event
->event_entry
!= &ctx
->event_list
&&
1206 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1208 __perf_event_sync_stat(event
, next_event
);
1210 event
= list_next_entry(event
, event_entry
);
1211 next_event
= list_next_entry(next_event
, event_entry
);
1215 void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1216 struct task_struct
*next
)
1218 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1219 struct perf_event_context
*next_ctx
;
1220 struct perf_event_context
*parent
;
1221 struct perf_cpu_context
*cpuctx
;
1227 cpuctx
= __get_cpu_context(ctx
);
1228 if (!cpuctx
->task_ctx
)
1232 parent
= rcu_dereference(ctx
->parent_ctx
);
1233 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1234 if (parent
&& next_ctx
&&
1235 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1245 raw_spin_lock(&ctx
->lock
);
1246 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1247 if (context_equiv(ctx
, next_ctx
)) {
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1252 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1253 next
->perf_event_ctxp
[ctxn
] = ctx
;
1255 next_ctx
->task
= task
;
1258 perf_event_sync_stat(ctx
, next_ctx
);
1260 raw_spin_unlock(&next_ctx
->lock
);
1261 raw_spin_unlock(&ctx
->lock
);
1266 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1267 cpuctx
->task_ctx
= NULL
;
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1278 * We stop each event and update the event value in event->count.
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1285 void __perf_event_task_sched_out(struct task_struct
*task
,
1286 struct task_struct
*next
)
1290 for_each_task_context_nr(ctxn
)
1291 perf_event_context_sched_out(task
, ctxn
, next
);
1294 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1295 enum event_type_t event_type
)
1297 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1299 if (!cpuctx
->task_ctx
)
1302 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1305 ctx_sched_out(ctx
, cpuctx
, event_type
);
1306 cpuctx
->task_ctx
= NULL
;
1310 * Called with IRQs disabled
1312 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1313 enum event_type_t event_type
)
1315 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1319 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1320 struct perf_cpu_context
*cpuctx
)
1322 struct perf_event
*event
;
1324 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1325 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1327 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1330 if (group_can_go_on(event
, cpuctx
, 1))
1331 group_sched_in(event
, cpuctx
, ctx
);
1334 * If this pinned group hasn't been scheduled,
1335 * put it in error state.
1337 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1338 update_group_times(event
);
1339 event
->state
= PERF_EVENT_STATE_ERROR
;
1345 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1346 struct perf_cpu_context
*cpuctx
)
1348 struct perf_event
*event
;
1351 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1352 /* Ignore events in OFF or ERROR state */
1353 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1356 * Listen to the 'cpu' scheduling filter constraint
1359 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1362 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1363 if (group_sched_in(event
, cpuctx
, ctx
))
1370 ctx_sched_in(struct perf_event_context
*ctx
,
1371 struct perf_cpu_context
*cpuctx
,
1372 enum event_type_t event_type
)
1374 raw_spin_lock(&ctx
->lock
);
1376 if (likely(!ctx
->nr_events
))
1379 ctx
->timestamp
= perf_clock();
1382 * First go through the list and put on any pinned groups
1383 * in order to give them the best chance of going on.
1385 if (event_type
& EVENT_PINNED
)
1386 ctx_pinned_sched_in(ctx
, cpuctx
);
1388 /* Then walk through the lower prio flexible groups */
1389 if (event_type
& EVENT_FLEXIBLE
)
1390 ctx_flexible_sched_in(ctx
, cpuctx
);
1393 raw_spin_unlock(&ctx
->lock
);
1396 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1397 enum event_type_t event_type
)
1399 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1401 ctx_sched_in(ctx
, cpuctx
, event_type
);
1404 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
1405 enum event_type_t event_type
)
1407 struct perf_cpu_context
*cpuctx
;
1409 cpuctx
= __get_cpu_context(ctx
);
1410 if (cpuctx
->task_ctx
== ctx
)
1413 ctx_sched_in(ctx
, cpuctx
, event_type
);
1414 cpuctx
->task_ctx
= ctx
;
1417 void perf_event_context_sched_in(struct perf_event_context
*ctx
)
1419 struct perf_cpu_context
*cpuctx
;
1421 cpuctx
= __get_cpu_context(ctx
);
1422 if (cpuctx
->task_ctx
== ctx
)
1425 perf_pmu_disable(ctx
->pmu
);
1427 * We want to keep the following priority order:
1428 * cpu pinned (that don't need to move), task pinned,
1429 * cpu flexible, task flexible.
1431 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1433 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1434 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1435 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1437 cpuctx
->task_ctx
= ctx
;
1440 * Since these rotations are per-cpu, we need to ensure the
1441 * cpu-context we got scheduled on is actually rotating.
1443 perf_pmu_rotate_start(ctx
->pmu
);
1444 perf_pmu_enable(ctx
->pmu
);
1448 * Called from scheduler to add the events of the current task
1449 * with interrupts disabled.
1451 * We restore the event value and then enable it.
1453 * This does not protect us against NMI, but enable()
1454 * sets the enabled bit in the control field of event _before_
1455 * accessing the event control register. If a NMI hits, then it will
1456 * keep the event running.
1458 void __perf_event_task_sched_in(struct task_struct
*task
)
1460 struct perf_event_context
*ctx
;
1463 for_each_task_context_nr(ctxn
) {
1464 ctx
= task
->perf_event_ctxp
[ctxn
];
1468 perf_event_context_sched_in(ctx
);
1472 #define MAX_INTERRUPTS (~0ULL)
1474 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1476 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1478 u64 frequency
= event
->attr
.sample_freq
;
1479 u64 sec
= NSEC_PER_SEC
;
1480 u64 divisor
, dividend
;
1482 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1484 count_fls
= fls64(count
);
1485 nsec_fls
= fls64(nsec
);
1486 frequency_fls
= fls64(frequency
);
1490 * We got @count in @nsec, with a target of sample_freq HZ
1491 * the target period becomes:
1494 * period = -------------------
1495 * @nsec * sample_freq
1500 * Reduce accuracy by one bit such that @a and @b converge
1501 * to a similar magnitude.
1503 #define REDUCE_FLS(a, b) \
1505 if (a##_fls > b##_fls) { \
1515 * Reduce accuracy until either term fits in a u64, then proceed with
1516 * the other, so that finally we can do a u64/u64 division.
1518 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1519 REDUCE_FLS(nsec
, frequency
);
1520 REDUCE_FLS(sec
, count
);
1523 if (count_fls
+ sec_fls
> 64) {
1524 divisor
= nsec
* frequency
;
1526 while (count_fls
+ sec_fls
> 64) {
1527 REDUCE_FLS(count
, sec
);
1531 dividend
= count
* sec
;
1533 dividend
= count
* sec
;
1535 while (nsec_fls
+ frequency_fls
> 64) {
1536 REDUCE_FLS(nsec
, frequency
);
1540 divisor
= nsec
* frequency
;
1546 return div64_u64(dividend
, divisor
);
1549 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1551 struct hw_perf_event
*hwc
= &event
->hw
;
1552 s64 period
, sample_period
;
1555 period
= perf_calculate_period(event
, nsec
, count
);
1557 delta
= (s64
)(period
- hwc
->sample_period
);
1558 delta
= (delta
+ 7) / 8; /* low pass filter */
1560 sample_period
= hwc
->sample_period
+ delta
;
1565 hwc
->sample_period
= sample_period
;
1567 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
1568 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
1569 local64_set(&hwc
->period_left
, 0);
1570 event
->pmu
->start(event
, PERF_EF_RELOAD
);
1574 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
1576 struct perf_event
*event
;
1577 struct hw_perf_event
*hwc
;
1578 u64 interrupts
, now
;
1581 raw_spin_lock(&ctx
->lock
);
1582 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1583 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1586 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1591 interrupts
= hwc
->interrupts
;
1592 hwc
->interrupts
= 0;
1595 * unthrottle events on the tick
1597 if (interrupts
== MAX_INTERRUPTS
) {
1598 perf_log_throttle(event
, 1);
1599 event
->pmu
->start(event
, 0);
1602 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1605 event
->pmu
->read(event
);
1606 now
= local64_read(&event
->count
);
1607 delta
= now
- hwc
->freq_count_stamp
;
1608 hwc
->freq_count_stamp
= now
;
1611 perf_adjust_period(event
, period
, delta
);
1613 raw_spin_unlock(&ctx
->lock
);
1617 * Round-robin a context's events:
1619 static void rotate_ctx(struct perf_event_context
*ctx
)
1621 raw_spin_lock(&ctx
->lock
);
1624 * Rotate the first entry last of non-pinned groups. Rotation might be
1625 * disabled by the inheritance code.
1627 if (!ctx
->rotate_disable
)
1628 list_rotate_left(&ctx
->flexible_groups
);
1630 raw_spin_unlock(&ctx
->lock
);
1634 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1635 * because they're strictly cpu affine and rotate_start is called with IRQs
1636 * disabled, while rotate_context is called from IRQ context.
1638 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
1640 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
1641 struct perf_event_context
*ctx
= NULL
;
1642 int rotate
= 0, remove
= 1;
1644 if (cpuctx
->ctx
.nr_events
) {
1646 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1650 ctx
= cpuctx
->task_ctx
;
1651 if (ctx
&& ctx
->nr_events
) {
1653 if (ctx
->nr_events
!= ctx
->nr_active
)
1657 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1658 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
1660 perf_ctx_adjust_freq(ctx
, interval
);
1665 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1667 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1669 rotate_ctx(&cpuctx
->ctx
);
1673 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1675 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
1679 list_del_init(&cpuctx
->rotation_list
);
1681 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1684 void perf_event_task_tick(void)
1686 struct list_head
*head
= &__get_cpu_var(rotation_list
);
1687 struct perf_cpu_context
*cpuctx
, *tmp
;
1689 WARN_ON(!irqs_disabled());
1691 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
1692 if (cpuctx
->jiffies_interval
== 1 ||
1693 !(jiffies
% cpuctx
->jiffies_interval
))
1694 perf_rotate_context(cpuctx
);
1698 static int event_enable_on_exec(struct perf_event
*event
,
1699 struct perf_event_context
*ctx
)
1701 if (!event
->attr
.enable_on_exec
)
1704 event
->attr
.enable_on_exec
= 0;
1705 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1708 __perf_event_mark_enabled(event
, ctx
);
1714 * Enable all of a task's events that have been marked enable-on-exec.
1715 * This expects task == current.
1717 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
1719 struct perf_event
*event
;
1720 unsigned long flags
;
1724 local_irq_save(flags
);
1725 if (!ctx
|| !ctx
->nr_events
)
1728 task_ctx_sched_out(ctx
, EVENT_ALL
);
1730 raw_spin_lock(&ctx
->lock
);
1732 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1733 ret
= event_enable_on_exec(event
, ctx
);
1738 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1739 ret
= event_enable_on_exec(event
, ctx
);
1745 * Unclone this context if we enabled any event.
1750 raw_spin_unlock(&ctx
->lock
);
1752 perf_event_context_sched_in(ctx
);
1754 local_irq_restore(flags
);
1758 * Cross CPU call to read the hardware event
1760 static void __perf_event_read(void *info
)
1762 struct perf_event
*event
= info
;
1763 struct perf_event_context
*ctx
= event
->ctx
;
1764 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1767 * If this is a task context, we need to check whether it is
1768 * the current task context of this cpu. If not it has been
1769 * scheduled out before the smp call arrived. In that case
1770 * event->count would have been updated to a recent sample
1771 * when the event was scheduled out.
1773 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1776 raw_spin_lock(&ctx
->lock
);
1777 update_context_time(ctx
);
1778 update_event_times(event
);
1779 raw_spin_unlock(&ctx
->lock
);
1781 event
->pmu
->read(event
);
1784 static inline u64
perf_event_count(struct perf_event
*event
)
1786 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
1789 static u64
perf_event_read(struct perf_event
*event
)
1792 * If event is enabled and currently active on a CPU, update the
1793 * value in the event structure:
1795 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1796 smp_call_function_single(event
->oncpu
,
1797 __perf_event_read
, event
, 1);
1798 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1799 struct perf_event_context
*ctx
= event
->ctx
;
1800 unsigned long flags
;
1802 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1804 * may read while context is not active
1805 * (e.g., thread is blocked), in that case
1806 * we cannot update context time
1809 update_context_time(ctx
);
1810 update_event_times(event
);
1811 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1814 return perf_event_count(event
);
1821 struct callchain_cpus_entries
{
1822 struct rcu_head rcu_head
;
1823 struct perf_callchain_entry
*cpu_entries
[0];
1826 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
1827 static atomic_t nr_callchain_events
;
1828 static DEFINE_MUTEX(callchain_mutex
);
1829 struct callchain_cpus_entries
*callchain_cpus_entries
;
1832 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1833 struct pt_regs
*regs
)
1837 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
1838 struct pt_regs
*regs
)
1842 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
1844 struct callchain_cpus_entries
*entries
;
1847 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
1849 for_each_possible_cpu(cpu
)
1850 kfree(entries
->cpu_entries
[cpu
]);
1855 static void release_callchain_buffers(void)
1857 struct callchain_cpus_entries
*entries
;
1859 entries
= callchain_cpus_entries
;
1860 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
1861 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
1864 static int alloc_callchain_buffers(void)
1868 struct callchain_cpus_entries
*entries
;
1871 * We can't use the percpu allocation API for data that can be
1872 * accessed from NMI. Use a temporary manual per cpu allocation
1873 * until that gets sorted out.
1875 size
= sizeof(*entries
) + sizeof(struct perf_callchain_entry
*) *
1876 num_possible_cpus();
1878 entries
= kzalloc(size
, GFP_KERNEL
);
1882 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
1884 for_each_possible_cpu(cpu
) {
1885 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
1887 if (!entries
->cpu_entries
[cpu
])
1891 rcu_assign_pointer(callchain_cpus_entries
, entries
);
1896 for_each_possible_cpu(cpu
)
1897 kfree(entries
->cpu_entries
[cpu
]);
1903 static int get_callchain_buffers(void)
1908 mutex_lock(&callchain_mutex
);
1910 count
= atomic_inc_return(&nr_callchain_events
);
1911 if (WARN_ON_ONCE(count
< 1)) {
1917 /* If the allocation failed, give up */
1918 if (!callchain_cpus_entries
)
1923 err
= alloc_callchain_buffers();
1925 release_callchain_buffers();
1927 mutex_unlock(&callchain_mutex
);
1932 static void put_callchain_buffers(void)
1934 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
1935 release_callchain_buffers();
1936 mutex_unlock(&callchain_mutex
);
1940 static int get_recursion_context(int *recursion
)
1948 else if (in_softirq())
1953 if (recursion
[rctx
])
1962 static inline void put_recursion_context(int *recursion
, int rctx
)
1968 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
1971 struct callchain_cpus_entries
*entries
;
1973 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
1977 entries
= rcu_dereference(callchain_cpus_entries
);
1981 cpu
= smp_processor_id();
1983 return &entries
->cpu_entries
[cpu
][*rctx
];
1987 put_callchain_entry(int rctx
)
1989 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
1992 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
1995 struct perf_callchain_entry
*entry
;
1998 entry
= get_callchain_entry(&rctx
);
2007 if (!user_mode(regs
)) {
2008 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2009 perf_callchain_kernel(entry
, regs
);
2011 regs
= task_pt_regs(current
);
2017 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2018 perf_callchain_user(entry
, regs
);
2022 put_callchain_entry(rctx
);
2028 * Initialize the perf_event context in a task_struct:
2030 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2032 raw_spin_lock_init(&ctx
->lock
);
2033 mutex_init(&ctx
->mutex
);
2034 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2035 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2036 INIT_LIST_HEAD(&ctx
->event_list
);
2037 atomic_set(&ctx
->refcount
, 1);
2040 static struct perf_event_context
*
2041 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2043 struct perf_event_context
*ctx
;
2045 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2049 __perf_event_init_context(ctx
);
2052 get_task_struct(task
);
2059 static struct task_struct
*
2060 find_lively_task_by_vpid(pid_t vpid
)
2062 struct task_struct
*task
;
2069 task
= find_task_by_vpid(vpid
);
2071 get_task_struct(task
);
2075 return ERR_PTR(-ESRCH
);
2078 * Can't attach events to a dying task.
2081 if (task
->flags
& PF_EXITING
)
2084 /* Reuse ptrace permission checks for now. */
2086 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2091 put_task_struct(task
);
2092 return ERR_PTR(err
);
2096 static struct perf_event_context
*
2097 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2099 struct perf_event_context
*ctx
;
2100 struct perf_cpu_context
*cpuctx
;
2101 unsigned long flags
;
2104 if (!task
&& cpu
!= -1) {
2105 /* Must be root to operate on a CPU event: */
2106 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2107 return ERR_PTR(-EACCES
);
2109 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
2110 return ERR_PTR(-EINVAL
);
2113 * We could be clever and allow to attach a event to an
2114 * offline CPU and activate it when the CPU comes up, but
2117 if (!cpu_online(cpu
))
2118 return ERR_PTR(-ENODEV
);
2120 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2128 ctxn
= pmu
->task_ctx_nr
;
2133 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2136 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2140 ctx
= alloc_perf_context(pmu
, task
);
2147 if (cmpxchg(&task
->perf_event_ctxp
[ctxn
], NULL
, ctx
)) {
2149 * We raced with some other task; use
2150 * the context they set.
2152 put_task_struct(task
);
2161 return ERR_PTR(err
);
2164 static void perf_event_free_filter(struct perf_event
*event
);
2166 static void free_event_rcu(struct rcu_head
*head
)
2168 struct perf_event
*event
;
2170 event
= container_of(head
, struct perf_event
, rcu_head
);
2172 put_pid_ns(event
->ns
);
2173 perf_event_free_filter(event
);
2177 static void perf_buffer_put(struct perf_buffer
*buffer
);
2179 static void free_event(struct perf_event
*event
)
2181 irq_work_sync(&event
->pending
);
2183 if (!event
->parent
) {
2184 if (event
->attach_state
& PERF_ATTACH_TASK
)
2185 jump_label_dec(&perf_task_events
);
2186 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2187 atomic_dec(&nr_mmap_events
);
2188 if (event
->attr
.comm
)
2189 atomic_dec(&nr_comm_events
);
2190 if (event
->attr
.task
)
2191 atomic_dec(&nr_task_events
);
2192 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2193 put_callchain_buffers();
2196 if (event
->buffer
) {
2197 perf_buffer_put(event
->buffer
);
2198 event
->buffer
= NULL
;
2202 event
->destroy(event
);
2205 put_ctx(event
->ctx
);
2207 call_rcu(&event
->rcu_head
, free_event_rcu
);
2210 int perf_event_release_kernel(struct perf_event
*event
)
2212 struct perf_event_context
*ctx
= event
->ctx
;
2215 * Remove from the PMU, can't get re-enabled since we got
2216 * here because the last ref went.
2218 perf_event_disable(event
);
2220 WARN_ON_ONCE(ctx
->parent_ctx
);
2222 * There are two ways this annotation is useful:
2224 * 1) there is a lock recursion from perf_event_exit_task
2225 * see the comment there.
2227 * 2) there is a lock-inversion with mmap_sem through
2228 * perf_event_read_group(), which takes faults while
2229 * holding ctx->mutex, however this is called after
2230 * the last filedesc died, so there is no possibility
2231 * to trigger the AB-BA case.
2233 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2234 raw_spin_lock_irq(&ctx
->lock
);
2235 perf_group_detach(event
);
2236 list_del_event(event
, ctx
);
2237 raw_spin_unlock_irq(&ctx
->lock
);
2238 mutex_unlock(&ctx
->mutex
);
2244 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2247 * Called when the last reference to the file is gone.
2249 static int perf_release(struct inode
*inode
, struct file
*file
)
2251 struct perf_event
*event
= file
->private_data
;
2252 struct task_struct
*owner
;
2254 file
->private_data
= NULL
;
2257 owner
= ACCESS_ONCE(event
->owner
);
2259 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2260 * !owner it means the list deletion is complete and we can indeed
2261 * free this event, otherwise we need to serialize on
2262 * owner->perf_event_mutex.
2264 smp_read_barrier_depends();
2267 * Since delayed_put_task_struct() also drops the last
2268 * task reference we can safely take a new reference
2269 * while holding the rcu_read_lock().
2271 get_task_struct(owner
);
2276 mutex_lock(&owner
->perf_event_mutex
);
2278 * We have to re-check the event->owner field, if it is cleared
2279 * we raced with perf_event_exit_task(), acquiring the mutex
2280 * ensured they're done, and we can proceed with freeing the
2284 list_del_init(&event
->owner_entry
);
2285 mutex_unlock(&owner
->perf_event_mutex
);
2286 put_task_struct(owner
);
2289 return perf_event_release_kernel(event
);
2292 static int perf_event_read_size(struct perf_event
*event
)
2294 int entry
= sizeof(u64
); /* value */
2298 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2299 size
+= sizeof(u64
);
2301 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2302 size
+= sizeof(u64
);
2304 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
2305 entry
+= sizeof(u64
);
2307 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
2308 nr
+= event
->group_leader
->nr_siblings
;
2309 size
+= sizeof(u64
);
2317 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2319 struct perf_event
*child
;
2325 mutex_lock(&event
->child_mutex
);
2326 total
+= perf_event_read(event
);
2327 *enabled
+= event
->total_time_enabled
+
2328 atomic64_read(&event
->child_total_time_enabled
);
2329 *running
+= event
->total_time_running
+
2330 atomic64_read(&event
->child_total_time_running
);
2332 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2333 total
+= perf_event_read(child
);
2334 *enabled
+= child
->total_time_enabled
;
2335 *running
+= child
->total_time_running
;
2337 mutex_unlock(&event
->child_mutex
);
2341 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2343 static int perf_event_read_group(struct perf_event
*event
,
2344 u64 read_format
, char __user
*buf
)
2346 struct perf_event
*leader
= event
->group_leader
, *sub
;
2347 int n
= 0, size
= 0, ret
= -EFAULT
;
2348 struct perf_event_context
*ctx
= leader
->ctx
;
2350 u64 count
, enabled
, running
;
2352 mutex_lock(&ctx
->mutex
);
2353 count
= perf_event_read_value(leader
, &enabled
, &running
);
2355 values
[n
++] = 1 + leader
->nr_siblings
;
2356 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2357 values
[n
++] = enabled
;
2358 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2359 values
[n
++] = running
;
2360 values
[n
++] = count
;
2361 if (read_format
& PERF_FORMAT_ID
)
2362 values
[n
++] = primary_event_id(leader
);
2364 size
= n
* sizeof(u64
);
2366 if (copy_to_user(buf
, values
, size
))
2371 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2374 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2375 if (read_format
& PERF_FORMAT_ID
)
2376 values
[n
++] = primary_event_id(sub
);
2378 size
= n
* sizeof(u64
);
2380 if (copy_to_user(buf
+ ret
, values
, size
)) {
2388 mutex_unlock(&ctx
->mutex
);
2393 static int perf_event_read_one(struct perf_event
*event
,
2394 u64 read_format
, char __user
*buf
)
2396 u64 enabled
, running
;
2400 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2401 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2402 values
[n
++] = enabled
;
2403 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2404 values
[n
++] = running
;
2405 if (read_format
& PERF_FORMAT_ID
)
2406 values
[n
++] = primary_event_id(event
);
2408 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2411 return n
* sizeof(u64
);
2415 * Read the performance event - simple non blocking version for now
2418 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2420 u64 read_format
= event
->attr
.read_format
;
2424 * Return end-of-file for a read on a event that is in
2425 * error state (i.e. because it was pinned but it couldn't be
2426 * scheduled on to the CPU at some point).
2428 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2431 if (count
< perf_event_read_size(event
))
2434 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2435 if (read_format
& PERF_FORMAT_GROUP
)
2436 ret
= perf_event_read_group(event
, read_format
, buf
);
2438 ret
= perf_event_read_one(event
, read_format
, buf
);
2444 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2446 struct perf_event
*event
= file
->private_data
;
2448 return perf_read_hw(event
, buf
, count
);
2451 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2453 struct perf_event
*event
= file
->private_data
;
2454 struct perf_buffer
*buffer
;
2455 unsigned int events
= POLL_HUP
;
2458 buffer
= rcu_dereference(event
->buffer
);
2460 events
= atomic_xchg(&buffer
->poll
, 0);
2463 poll_wait(file
, &event
->waitq
, wait
);
2468 static void perf_event_reset(struct perf_event
*event
)
2470 (void)perf_event_read(event
);
2471 local64_set(&event
->count
, 0);
2472 perf_event_update_userpage(event
);
2476 * Holding the top-level event's child_mutex means that any
2477 * descendant process that has inherited this event will block
2478 * in sync_child_event if it goes to exit, thus satisfying the
2479 * task existence requirements of perf_event_enable/disable.
2481 static void perf_event_for_each_child(struct perf_event
*event
,
2482 void (*func
)(struct perf_event
*))
2484 struct perf_event
*child
;
2486 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2487 mutex_lock(&event
->child_mutex
);
2489 list_for_each_entry(child
, &event
->child_list
, child_list
)
2491 mutex_unlock(&event
->child_mutex
);
2494 static void perf_event_for_each(struct perf_event
*event
,
2495 void (*func
)(struct perf_event
*))
2497 struct perf_event_context
*ctx
= event
->ctx
;
2498 struct perf_event
*sibling
;
2500 WARN_ON_ONCE(ctx
->parent_ctx
);
2501 mutex_lock(&ctx
->mutex
);
2502 event
= event
->group_leader
;
2504 perf_event_for_each_child(event
, func
);
2506 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2507 perf_event_for_each_child(event
, func
);
2508 mutex_unlock(&ctx
->mutex
);
2511 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2513 struct perf_event_context
*ctx
= event
->ctx
;
2517 if (!event
->attr
.sample_period
)
2520 if (copy_from_user(&value
, arg
, sizeof(value
)))
2526 raw_spin_lock_irq(&ctx
->lock
);
2527 if (event
->attr
.freq
) {
2528 if (value
> sysctl_perf_event_sample_rate
) {
2533 event
->attr
.sample_freq
= value
;
2535 event
->attr
.sample_period
= value
;
2536 event
->hw
.sample_period
= value
;
2539 raw_spin_unlock_irq(&ctx
->lock
);
2544 static const struct file_operations perf_fops
;
2546 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2550 file
= fget_light(fd
, fput_needed
);
2552 return ERR_PTR(-EBADF
);
2554 if (file
->f_op
!= &perf_fops
) {
2555 fput_light(file
, *fput_needed
);
2557 return ERR_PTR(-EBADF
);
2560 return file
->private_data
;
2563 static int perf_event_set_output(struct perf_event
*event
,
2564 struct perf_event
*output_event
);
2565 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2567 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2569 struct perf_event
*event
= file
->private_data
;
2570 void (*func
)(struct perf_event
*);
2574 case PERF_EVENT_IOC_ENABLE
:
2575 func
= perf_event_enable
;
2577 case PERF_EVENT_IOC_DISABLE
:
2578 func
= perf_event_disable
;
2580 case PERF_EVENT_IOC_RESET
:
2581 func
= perf_event_reset
;
2584 case PERF_EVENT_IOC_REFRESH
:
2585 return perf_event_refresh(event
, arg
);
2587 case PERF_EVENT_IOC_PERIOD
:
2588 return perf_event_period(event
, (u64 __user
*)arg
);
2590 case PERF_EVENT_IOC_SET_OUTPUT
:
2592 struct perf_event
*output_event
= NULL
;
2593 int fput_needed
= 0;
2597 output_event
= perf_fget_light(arg
, &fput_needed
);
2598 if (IS_ERR(output_event
))
2599 return PTR_ERR(output_event
);
2602 ret
= perf_event_set_output(event
, output_event
);
2604 fput_light(output_event
->filp
, fput_needed
);
2609 case PERF_EVENT_IOC_SET_FILTER
:
2610 return perf_event_set_filter(event
, (void __user
*)arg
);
2616 if (flags
& PERF_IOC_FLAG_GROUP
)
2617 perf_event_for_each(event
, func
);
2619 perf_event_for_each_child(event
, func
);
2624 int perf_event_task_enable(void)
2626 struct perf_event
*event
;
2628 mutex_lock(¤t
->perf_event_mutex
);
2629 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2630 perf_event_for_each_child(event
, perf_event_enable
);
2631 mutex_unlock(¤t
->perf_event_mutex
);
2636 int perf_event_task_disable(void)
2638 struct perf_event
*event
;
2640 mutex_lock(¤t
->perf_event_mutex
);
2641 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2642 perf_event_for_each_child(event
, perf_event_disable
);
2643 mutex_unlock(¤t
->perf_event_mutex
);
2648 #ifndef PERF_EVENT_INDEX_OFFSET
2649 # define PERF_EVENT_INDEX_OFFSET 0
2652 static int perf_event_index(struct perf_event
*event
)
2654 if (event
->hw
.state
& PERF_HES_STOPPED
)
2657 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2660 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2664 * Callers need to ensure there can be no nesting of this function, otherwise
2665 * the seqlock logic goes bad. We can not serialize this because the arch
2666 * code calls this from NMI context.
2668 void perf_event_update_userpage(struct perf_event
*event
)
2670 struct perf_event_mmap_page
*userpg
;
2671 struct perf_buffer
*buffer
;
2674 buffer
= rcu_dereference(event
->buffer
);
2678 userpg
= buffer
->user_page
;
2681 * Disable preemption so as to not let the corresponding user-space
2682 * spin too long if we get preempted.
2687 userpg
->index
= perf_event_index(event
);
2688 userpg
->offset
= perf_event_count(event
);
2689 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2690 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
2692 userpg
->time_enabled
= event
->total_time_enabled
+
2693 atomic64_read(&event
->child_total_time_enabled
);
2695 userpg
->time_running
= event
->total_time_running
+
2696 atomic64_read(&event
->child_total_time_running
);
2705 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
2708 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
2710 long max_size
= perf_data_size(buffer
);
2713 buffer
->watermark
= min(max_size
, watermark
);
2715 if (!buffer
->watermark
)
2716 buffer
->watermark
= max_size
/ 2;
2718 if (flags
& PERF_BUFFER_WRITABLE
)
2719 buffer
->writable
= 1;
2721 atomic_set(&buffer
->refcount
, 1);
2724 #ifndef CONFIG_PERF_USE_VMALLOC
2727 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2730 static struct page
*
2731 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2733 if (pgoff
> buffer
->nr_pages
)
2737 return virt_to_page(buffer
->user_page
);
2739 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
2742 static void *perf_mmap_alloc_page(int cpu
)
2747 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2748 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2752 return page_address(page
);
2755 static struct perf_buffer
*
2756 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2758 struct perf_buffer
*buffer
;
2762 size
= sizeof(struct perf_buffer
);
2763 size
+= nr_pages
* sizeof(void *);
2765 buffer
= kzalloc(size
, GFP_KERNEL
);
2769 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
2770 if (!buffer
->user_page
)
2771 goto fail_user_page
;
2773 for (i
= 0; i
< nr_pages
; i
++) {
2774 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
2775 if (!buffer
->data_pages
[i
])
2776 goto fail_data_pages
;
2779 buffer
->nr_pages
= nr_pages
;
2781 perf_buffer_init(buffer
, watermark
, flags
);
2786 for (i
--; i
>= 0; i
--)
2787 free_page((unsigned long)buffer
->data_pages
[i
]);
2789 free_page((unsigned long)buffer
->user_page
);
2798 static void perf_mmap_free_page(unsigned long addr
)
2800 struct page
*page
= virt_to_page((void *)addr
);
2802 page
->mapping
= NULL
;
2806 static void perf_buffer_free(struct perf_buffer
*buffer
)
2810 perf_mmap_free_page((unsigned long)buffer
->user_page
);
2811 for (i
= 0; i
< buffer
->nr_pages
; i
++)
2812 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
2816 static inline int page_order(struct perf_buffer
*buffer
)
2824 * Back perf_mmap() with vmalloc memory.
2826 * Required for architectures that have d-cache aliasing issues.
2829 static inline int page_order(struct perf_buffer
*buffer
)
2831 return buffer
->page_order
;
2834 static struct page
*
2835 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2837 if (pgoff
> (1UL << page_order(buffer
)))
2840 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
2843 static void perf_mmap_unmark_page(void *addr
)
2845 struct page
*page
= vmalloc_to_page(addr
);
2847 page
->mapping
= NULL
;
2850 static void perf_buffer_free_work(struct work_struct
*work
)
2852 struct perf_buffer
*buffer
;
2856 buffer
= container_of(work
, struct perf_buffer
, work
);
2857 nr
= 1 << page_order(buffer
);
2859 base
= buffer
->user_page
;
2860 for (i
= 0; i
< nr
+ 1; i
++)
2861 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2867 static void perf_buffer_free(struct perf_buffer
*buffer
)
2869 schedule_work(&buffer
->work
);
2872 static struct perf_buffer
*
2873 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2875 struct perf_buffer
*buffer
;
2879 size
= sizeof(struct perf_buffer
);
2880 size
+= sizeof(void *);
2882 buffer
= kzalloc(size
, GFP_KERNEL
);
2886 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
2888 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2892 buffer
->user_page
= all_buf
;
2893 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2894 buffer
->page_order
= ilog2(nr_pages
);
2895 buffer
->nr_pages
= 1;
2897 perf_buffer_init(buffer
, watermark
, flags
);
2910 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
2912 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
2915 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2917 struct perf_event
*event
= vma
->vm_file
->private_data
;
2918 struct perf_buffer
*buffer
;
2919 int ret
= VM_FAULT_SIGBUS
;
2921 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2922 if (vmf
->pgoff
== 0)
2928 buffer
= rcu_dereference(event
->buffer
);
2932 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2935 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
2939 get_page(vmf
->page
);
2940 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2941 vmf
->page
->index
= vmf
->pgoff
;
2950 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
2952 struct perf_buffer
*buffer
;
2954 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
2955 perf_buffer_free(buffer
);
2958 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
2960 struct perf_buffer
*buffer
;
2963 buffer
= rcu_dereference(event
->buffer
);
2965 if (!atomic_inc_not_zero(&buffer
->refcount
))
2973 static void perf_buffer_put(struct perf_buffer
*buffer
)
2975 if (!atomic_dec_and_test(&buffer
->refcount
))
2978 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
2981 static void perf_mmap_open(struct vm_area_struct
*vma
)
2983 struct perf_event
*event
= vma
->vm_file
->private_data
;
2985 atomic_inc(&event
->mmap_count
);
2988 static void perf_mmap_close(struct vm_area_struct
*vma
)
2990 struct perf_event
*event
= vma
->vm_file
->private_data
;
2992 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2993 unsigned long size
= perf_data_size(event
->buffer
);
2994 struct user_struct
*user
= event
->mmap_user
;
2995 struct perf_buffer
*buffer
= event
->buffer
;
2997 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2998 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
2999 rcu_assign_pointer(event
->buffer
, NULL
);
3000 mutex_unlock(&event
->mmap_mutex
);
3002 perf_buffer_put(buffer
);
3007 static const struct vm_operations_struct perf_mmap_vmops
= {
3008 .open
= perf_mmap_open
,
3009 .close
= perf_mmap_close
,
3010 .fault
= perf_mmap_fault
,
3011 .page_mkwrite
= perf_mmap_fault
,
3014 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3016 struct perf_event
*event
= file
->private_data
;
3017 unsigned long user_locked
, user_lock_limit
;
3018 struct user_struct
*user
= current_user();
3019 unsigned long locked
, lock_limit
;
3020 struct perf_buffer
*buffer
;
3021 unsigned long vma_size
;
3022 unsigned long nr_pages
;
3023 long user_extra
, extra
;
3024 int ret
= 0, flags
= 0;
3027 * Don't allow mmap() of inherited per-task counters. This would
3028 * create a performance issue due to all children writing to the
3031 if (event
->cpu
== -1 && event
->attr
.inherit
)
3034 if (!(vma
->vm_flags
& VM_SHARED
))
3037 vma_size
= vma
->vm_end
- vma
->vm_start
;
3038 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3041 * If we have buffer pages ensure they're a power-of-two number, so we
3042 * can do bitmasks instead of modulo.
3044 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3047 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3050 if (vma
->vm_pgoff
!= 0)
3053 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3054 mutex_lock(&event
->mmap_mutex
);
3055 if (event
->buffer
) {
3056 if (event
->buffer
->nr_pages
== nr_pages
)
3057 atomic_inc(&event
->buffer
->refcount
);
3063 user_extra
= nr_pages
+ 1;
3064 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3067 * Increase the limit linearly with more CPUs:
3069 user_lock_limit
*= num_online_cpus();
3071 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3074 if (user_locked
> user_lock_limit
)
3075 extra
= user_locked
- user_lock_limit
;
3077 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3078 lock_limit
>>= PAGE_SHIFT
;
3079 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3081 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3082 !capable(CAP_IPC_LOCK
)) {
3087 WARN_ON(event
->buffer
);
3089 if (vma
->vm_flags
& VM_WRITE
)
3090 flags
|= PERF_BUFFER_WRITABLE
;
3092 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3098 rcu_assign_pointer(event
->buffer
, buffer
);
3100 atomic_long_add(user_extra
, &user
->locked_vm
);
3101 event
->mmap_locked
= extra
;
3102 event
->mmap_user
= get_current_user();
3103 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3107 atomic_inc(&event
->mmap_count
);
3108 mutex_unlock(&event
->mmap_mutex
);
3110 vma
->vm_flags
|= VM_RESERVED
;
3111 vma
->vm_ops
= &perf_mmap_vmops
;
3116 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3118 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3119 struct perf_event
*event
= filp
->private_data
;
3122 mutex_lock(&inode
->i_mutex
);
3123 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3124 mutex_unlock(&inode
->i_mutex
);
3132 static const struct file_operations perf_fops
= {
3133 .llseek
= no_llseek
,
3134 .release
= perf_release
,
3137 .unlocked_ioctl
= perf_ioctl
,
3138 .compat_ioctl
= perf_ioctl
,
3140 .fasync
= perf_fasync
,
3146 * If there's data, ensure we set the poll() state and publish everything
3147 * to user-space before waking everybody up.
3150 void perf_event_wakeup(struct perf_event
*event
)
3152 wake_up_all(&event
->waitq
);
3154 if (event
->pending_kill
) {
3155 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3156 event
->pending_kill
= 0;
3160 static void perf_pending_event(struct irq_work
*entry
)
3162 struct perf_event
*event
= container_of(entry
,
3163 struct perf_event
, pending
);
3165 if (event
->pending_disable
) {
3166 event
->pending_disable
= 0;
3167 __perf_event_disable(event
);
3170 if (event
->pending_wakeup
) {
3171 event
->pending_wakeup
= 0;
3172 perf_event_wakeup(event
);
3177 * We assume there is only KVM supporting the callbacks.
3178 * Later on, we might change it to a list if there is
3179 * another virtualization implementation supporting the callbacks.
3181 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3183 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3185 perf_guest_cbs
= cbs
;
3188 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3190 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3192 perf_guest_cbs
= NULL
;
3195 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3200 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3201 unsigned long offset
, unsigned long head
)
3205 if (!buffer
->writable
)
3208 mask
= perf_data_size(buffer
) - 1;
3210 offset
= (offset
- tail
) & mask
;
3211 head
= (head
- tail
) & mask
;
3213 if ((int)(head
- offset
) < 0)
3219 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3221 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3224 handle
->event
->pending_wakeup
= 1;
3225 irq_work_queue(&handle
->event
->pending
);
3227 perf_event_wakeup(handle
->event
);
3231 * We need to ensure a later event_id doesn't publish a head when a former
3232 * event isn't done writing. However since we need to deal with NMIs we
3233 * cannot fully serialize things.
3235 * We only publish the head (and generate a wakeup) when the outer-most
3238 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3240 struct perf_buffer
*buffer
= handle
->buffer
;
3243 local_inc(&buffer
->nest
);
3244 handle
->wakeup
= local_read(&buffer
->wakeup
);
3247 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3249 struct perf_buffer
*buffer
= handle
->buffer
;
3253 head
= local_read(&buffer
->head
);
3256 * IRQ/NMI can happen here, which means we can miss a head update.
3259 if (!local_dec_and_test(&buffer
->nest
))
3263 * Publish the known good head. Rely on the full barrier implied
3264 * by atomic_dec_and_test() order the buffer->head read and this
3267 buffer
->user_page
->data_head
= head
;
3270 * Now check if we missed an update, rely on the (compiler)
3271 * barrier in atomic_dec_and_test() to re-read buffer->head.
3273 if (unlikely(head
!= local_read(&buffer
->head
))) {
3274 local_inc(&buffer
->nest
);
3278 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3279 perf_output_wakeup(handle
);
3285 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3286 const void *buf
, unsigned int len
)
3289 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3291 memcpy(handle
->addr
, buf
, size
);
3294 handle
->addr
+= size
;
3296 handle
->size
-= size
;
3297 if (!handle
->size
) {
3298 struct perf_buffer
*buffer
= handle
->buffer
;
3301 handle
->page
&= buffer
->nr_pages
- 1;
3302 handle
->addr
= buffer
->data_pages
[handle
->page
];
3303 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
3308 int perf_output_begin(struct perf_output_handle
*handle
,
3309 struct perf_event
*event
, unsigned int size
,
3310 int nmi
, int sample
)
3312 struct perf_buffer
*buffer
;
3313 unsigned long tail
, offset
, head
;
3316 struct perf_event_header header
;
3323 * For inherited events we send all the output towards the parent.
3326 event
= event
->parent
;
3328 buffer
= rcu_dereference(event
->buffer
);
3332 handle
->buffer
= buffer
;
3333 handle
->event
= event
;
3335 handle
->sample
= sample
;
3337 if (!buffer
->nr_pages
)
3340 have_lost
= local_read(&buffer
->lost
);
3342 size
+= sizeof(lost_event
);
3344 perf_output_get_handle(handle
);
3348 * Userspace could choose to issue a mb() before updating the
3349 * tail pointer. So that all reads will be completed before the
3352 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
3354 offset
= head
= local_read(&buffer
->head
);
3356 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
3358 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
3360 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
3361 local_add(buffer
->watermark
, &buffer
->wakeup
);
3363 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
3364 handle
->page
&= buffer
->nr_pages
- 1;
3365 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
3366 handle
->addr
= buffer
->data_pages
[handle
->page
];
3367 handle
->addr
+= handle
->size
;
3368 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
3371 lost_event
.header
.type
= PERF_RECORD_LOST
;
3372 lost_event
.header
.misc
= 0;
3373 lost_event
.header
.size
= sizeof(lost_event
);
3374 lost_event
.id
= event
->id
;
3375 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
3377 perf_output_put(handle
, lost_event
);
3383 local_inc(&buffer
->lost
);
3384 perf_output_put_handle(handle
);
3391 void perf_output_end(struct perf_output_handle
*handle
)
3393 struct perf_event
*event
= handle
->event
;
3394 struct perf_buffer
*buffer
= handle
->buffer
;
3396 int wakeup_events
= event
->attr
.wakeup_events
;
3398 if (handle
->sample
&& wakeup_events
) {
3399 int events
= local_inc_return(&buffer
->events
);
3400 if (events
>= wakeup_events
) {
3401 local_sub(wakeup_events
, &buffer
->events
);
3402 local_inc(&buffer
->wakeup
);
3406 perf_output_put_handle(handle
);
3410 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3413 * only top level events have the pid namespace they were created in
3416 event
= event
->parent
;
3418 return task_tgid_nr_ns(p
, event
->ns
);
3421 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3424 * only top level events have the pid namespace they were created in
3427 event
= event
->parent
;
3429 return task_pid_nr_ns(p
, event
->ns
);
3432 static void perf_output_read_one(struct perf_output_handle
*handle
,
3433 struct perf_event
*event
,
3434 u64 enabled
, u64 running
)
3436 u64 read_format
= event
->attr
.read_format
;
3440 values
[n
++] = perf_event_count(event
);
3441 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3442 values
[n
++] = enabled
+
3443 atomic64_read(&event
->child_total_time_enabled
);
3445 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3446 values
[n
++] = running
+
3447 atomic64_read(&event
->child_total_time_running
);
3449 if (read_format
& PERF_FORMAT_ID
)
3450 values
[n
++] = primary_event_id(event
);
3452 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3456 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3458 static void perf_output_read_group(struct perf_output_handle
*handle
,
3459 struct perf_event
*event
,
3460 u64 enabled
, u64 running
)
3462 struct perf_event
*leader
= event
->group_leader
, *sub
;
3463 u64 read_format
= event
->attr
.read_format
;
3467 values
[n
++] = 1 + leader
->nr_siblings
;
3469 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3470 values
[n
++] = enabled
;
3472 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3473 values
[n
++] = running
;
3475 if (leader
!= event
)
3476 leader
->pmu
->read(leader
);
3478 values
[n
++] = perf_event_count(leader
);
3479 if (read_format
& PERF_FORMAT_ID
)
3480 values
[n
++] = primary_event_id(leader
);
3482 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3484 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3488 sub
->pmu
->read(sub
);
3490 values
[n
++] = perf_event_count(sub
);
3491 if (read_format
& PERF_FORMAT_ID
)
3492 values
[n
++] = primary_event_id(sub
);
3494 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3498 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3499 PERF_FORMAT_TOTAL_TIME_RUNNING)
3501 static void perf_output_read(struct perf_output_handle
*handle
,
3502 struct perf_event
*event
)
3504 u64 enabled
= 0, running
= 0, now
, ctx_time
;
3505 u64 read_format
= event
->attr
.read_format
;
3508 * compute total_time_enabled, total_time_running
3509 * based on snapshot values taken when the event
3510 * was last scheduled in.
3512 * we cannot simply called update_context_time()
3513 * because of locking issue as we are called in
3516 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
3518 ctx_time
= event
->shadow_ctx_time
+ now
;
3519 enabled
= ctx_time
- event
->tstamp_enabled
;
3520 running
= ctx_time
- event
->tstamp_running
;
3523 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3524 perf_output_read_group(handle
, event
, enabled
, running
);
3526 perf_output_read_one(handle
, event
, enabled
, running
);
3529 void perf_output_sample(struct perf_output_handle
*handle
,
3530 struct perf_event_header
*header
,
3531 struct perf_sample_data
*data
,
3532 struct perf_event
*event
)
3534 u64 sample_type
= data
->type
;
3536 perf_output_put(handle
, *header
);
3538 if (sample_type
& PERF_SAMPLE_IP
)
3539 perf_output_put(handle
, data
->ip
);
3541 if (sample_type
& PERF_SAMPLE_TID
)
3542 perf_output_put(handle
, data
->tid_entry
);
3544 if (sample_type
& PERF_SAMPLE_TIME
)
3545 perf_output_put(handle
, data
->time
);
3547 if (sample_type
& PERF_SAMPLE_ADDR
)
3548 perf_output_put(handle
, data
->addr
);
3550 if (sample_type
& PERF_SAMPLE_ID
)
3551 perf_output_put(handle
, data
->id
);
3553 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3554 perf_output_put(handle
, data
->stream_id
);
3556 if (sample_type
& PERF_SAMPLE_CPU
)
3557 perf_output_put(handle
, data
->cpu_entry
);
3559 if (sample_type
& PERF_SAMPLE_PERIOD
)
3560 perf_output_put(handle
, data
->period
);
3562 if (sample_type
& PERF_SAMPLE_READ
)
3563 perf_output_read(handle
, event
);
3565 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3566 if (data
->callchain
) {
3569 if (data
->callchain
)
3570 size
+= data
->callchain
->nr
;
3572 size
*= sizeof(u64
);
3574 perf_output_copy(handle
, data
->callchain
, size
);
3577 perf_output_put(handle
, nr
);
3581 if (sample_type
& PERF_SAMPLE_RAW
) {
3583 perf_output_put(handle
, data
->raw
->size
);
3584 perf_output_copy(handle
, data
->raw
->data
,
3591 .size
= sizeof(u32
),
3594 perf_output_put(handle
, raw
);
3599 void perf_prepare_sample(struct perf_event_header
*header
,
3600 struct perf_sample_data
*data
,
3601 struct perf_event
*event
,
3602 struct pt_regs
*regs
)
3604 u64 sample_type
= event
->attr
.sample_type
;
3606 data
->type
= sample_type
;
3608 header
->type
= PERF_RECORD_SAMPLE
;
3609 header
->size
= sizeof(*header
);
3612 header
->misc
|= perf_misc_flags(regs
);
3614 if (sample_type
& PERF_SAMPLE_IP
) {
3615 data
->ip
= perf_instruction_pointer(regs
);
3617 header
->size
+= sizeof(data
->ip
);
3620 if (sample_type
& PERF_SAMPLE_TID
) {
3621 /* namespace issues */
3622 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3623 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3625 header
->size
+= sizeof(data
->tid_entry
);
3628 if (sample_type
& PERF_SAMPLE_TIME
) {
3629 data
->time
= perf_clock();
3631 header
->size
+= sizeof(data
->time
);
3634 if (sample_type
& PERF_SAMPLE_ADDR
)
3635 header
->size
+= sizeof(data
->addr
);
3637 if (sample_type
& PERF_SAMPLE_ID
) {
3638 data
->id
= primary_event_id(event
);
3640 header
->size
+= sizeof(data
->id
);
3643 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3644 data
->stream_id
= event
->id
;
3646 header
->size
+= sizeof(data
->stream_id
);
3649 if (sample_type
& PERF_SAMPLE_CPU
) {
3650 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3651 data
->cpu_entry
.reserved
= 0;
3653 header
->size
+= sizeof(data
->cpu_entry
);
3656 if (sample_type
& PERF_SAMPLE_PERIOD
)
3657 header
->size
+= sizeof(data
->period
);
3659 if (sample_type
& PERF_SAMPLE_READ
)
3660 header
->size
+= perf_event_read_size(event
);
3662 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3665 data
->callchain
= perf_callchain(regs
);
3667 if (data
->callchain
)
3668 size
+= data
->callchain
->nr
;
3670 header
->size
+= size
* sizeof(u64
);
3673 if (sample_type
& PERF_SAMPLE_RAW
) {
3674 int size
= sizeof(u32
);
3677 size
+= data
->raw
->size
;
3679 size
+= sizeof(u32
);
3681 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3682 header
->size
+= size
;
3686 static void perf_event_output(struct perf_event
*event
, int nmi
,
3687 struct perf_sample_data
*data
,
3688 struct pt_regs
*regs
)
3690 struct perf_output_handle handle
;
3691 struct perf_event_header header
;
3693 /* protect the callchain buffers */
3696 perf_prepare_sample(&header
, data
, event
, regs
);
3698 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3701 perf_output_sample(&handle
, &header
, data
, event
);
3703 perf_output_end(&handle
);
3713 struct perf_read_event
{
3714 struct perf_event_header header
;
3721 perf_event_read_event(struct perf_event
*event
,
3722 struct task_struct
*task
)
3724 struct perf_output_handle handle
;
3725 struct perf_read_event read_event
= {
3727 .type
= PERF_RECORD_READ
,
3729 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3731 .pid
= perf_event_pid(event
, task
),
3732 .tid
= perf_event_tid(event
, task
),
3736 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3740 perf_output_put(&handle
, read_event
);
3741 perf_output_read(&handle
, event
);
3743 perf_output_end(&handle
);
3747 * task tracking -- fork/exit
3749 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3752 struct perf_task_event
{
3753 struct task_struct
*task
;
3754 struct perf_event_context
*task_ctx
;
3757 struct perf_event_header header
;
3767 static void perf_event_task_output(struct perf_event
*event
,
3768 struct perf_task_event
*task_event
)
3770 struct perf_output_handle handle
;
3771 struct task_struct
*task
= task_event
->task
;
3774 size
= task_event
->event_id
.header
.size
;
3775 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3780 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3781 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3783 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3784 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3786 perf_output_put(&handle
, task_event
->event_id
);
3788 perf_output_end(&handle
);
3791 static int perf_event_task_match(struct perf_event
*event
)
3793 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3796 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3799 if (event
->attr
.comm
|| event
->attr
.mmap
||
3800 event
->attr
.mmap_data
|| event
->attr
.task
)
3806 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3807 struct perf_task_event
*task_event
)
3809 struct perf_event
*event
;
3811 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3812 if (perf_event_task_match(event
))
3813 perf_event_task_output(event
, task_event
);
3817 static void perf_event_task_event(struct perf_task_event
*task_event
)
3819 struct perf_cpu_context
*cpuctx
;
3820 struct perf_event_context
*ctx
;
3825 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3826 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3827 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3829 ctx
= task_event
->task_ctx
;
3831 ctxn
= pmu
->task_ctx_nr
;
3834 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3837 perf_event_task_ctx(ctx
, task_event
);
3839 put_cpu_ptr(pmu
->pmu_cpu_context
);
3844 static void perf_event_task(struct task_struct
*task
,
3845 struct perf_event_context
*task_ctx
,
3848 struct perf_task_event task_event
;
3850 if (!atomic_read(&nr_comm_events
) &&
3851 !atomic_read(&nr_mmap_events
) &&
3852 !atomic_read(&nr_task_events
))
3855 task_event
= (struct perf_task_event
){
3857 .task_ctx
= task_ctx
,
3860 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3862 .size
= sizeof(task_event
.event_id
),
3868 .time
= perf_clock(),
3872 perf_event_task_event(&task_event
);
3875 void perf_event_fork(struct task_struct
*task
)
3877 perf_event_task(task
, NULL
, 1);
3884 struct perf_comm_event
{
3885 struct task_struct
*task
;
3890 struct perf_event_header header
;
3897 static void perf_event_comm_output(struct perf_event
*event
,
3898 struct perf_comm_event
*comm_event
)
3900 struct perf_output_handle handle
;
3901 int size
= comm_event
->event_id
.header
.size
;
3902 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3907 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3908 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3910 perf_output_put(&handle
, comm_event
->event_id
);
3911 perf_output_copy(&handle
, comm_event
->comm
,
3912 comm_event
->comm_size
);
3913 perf_output_end(&handle
);
3916 static int perf_event_comm_match(struct perf_event
*event
)
3918 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3921 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3924 if (event
->attr
.comm
)
3930 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3931 struct perf_comm_event
*comm_event
)
3933 struct perf_event
*event
;
3935 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3936 if (perf_event_comm_match(event
))
3937 perf_event_comm_output(event
, comm_event
);
3941 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3943 struct perf_cpu_context
*cpuctx
;
3944 struct perf_event_context
*ctx
;
3945 char comm
[TASK_COMM_LEN
];
3950 memset(comm
, 0, sizeof(comm
));
3951 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3952 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3954 comm_event
->comm
= comm
;
3955 comm_event
->comm_size
= size
;
3957 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3960 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3961 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3962 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3964 ctxn
= pmu
->task_ctx_nr
;
3968 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3970 perf_event_comm_ctx(ctx
, comm_event
);
3972 put_cpu_ptr(pmu
->pmu_cpu_context
);
3977 void perf_event_comm(struct task_struct
*task
)
3979 struct perf_comm_event comm_event
;
3980 struct perf_event_context
*ctx
;
3983 for_each_task_context_nr(ctxn
) {
3984 ctx
= task
->perf_event_ctxp
[ctxn
];
3988 perf_event_enable_on_exec(ctx
);
3991 if (!atomic_read(&nr_comm_events
))
3994 comm_event
= (struct perf_comm_event
){
4000 .type
= PERF_RECORD_COMM
,
4009 perf_event_comm_event(&comm_event
);
4016 struct perf_mmap_event
{
4017 struct vm_area_struct
*vma
;
4019 const char *file_name
;
4023 struct perf_event_header header
;
4033 static void perf_event_mmap_output(struct perf_event
*event
,
4034 struct perf_mmap_event
*mmap_event
)
4036 struct perf_output_handle handle
;
4037 int size
= mmap_event
->event_id
.header
.size
;
4038 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
4043 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4044 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4046 perf_output_put(&handle
, mmap_event
->event_id
);
4047 perf_output_copy(&handle
, mmap_event
->file_name
,
4048 mmap_event
->file_size
);
4049 perf_output_end(&handle
);
4052 static int perf_event_mmap_match(struct perf_event
*event
,
4053 struct perf_mmap_event
*mmap_event
,
4056 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4059 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
4062 if ((!executable
&& event
->attr
.mmap_data
) ||
4063 (executable
&& event
->attr
.mmap
))
4069 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4070 struct perf_mmap_event
*mmap_event
,
4073 struct perf_event
*event
;
4075 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4076 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4077 perf_event_mmap_output(event
, mmap_event
);
4081 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4083 struct perf_cpu_context
*cpuctx
;
4084 struct perf_event_context
*ctx
;
4085 struct vm_area_struct
*vma
= mmap_event
->vma
;
4086 struct file
*file
= vma
->vm_file
;
4094 memset(tmp
, 0, sizeof(tmp
));
4098 * d_path works from the end of the buffer backwards, so we
4099 * need to add enough zero bytes after the string to handle
4100 * the 64bit alignment we do later.
4102 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4104 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4107 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4109 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4113 if (arch_vma_name(mmap_event
->vma
)) {
4114 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4120 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4122 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4123 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4124 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4126 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4127 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4128 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4132 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4137 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4139 mmap_event
->file_name
= name
;
4140 mmap_event
->file_size
= size
;
4142 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4145 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4146 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4147 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4148 vma
->vm_flags
& VM_EXEC
);
4150 ctxn
= pmu
->task_ctx_nr
;
4154 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4156 perf_event_mmap_ctx(ctx
, mmap_event
,
4157 vma
->vm_flags
& VM_EXEC
);
4160 put_cpu_ptr(pmu
->pmu_cpu_context
);
4167 void perf_event_mmap(struct vm_area_struct
*vma
)
4169 struct perf_mmap_event mmap_event
;
4171 if (!atomic_read(&nr_mmap_events
))
4174 mmap_event
= (struct perf_mmap_event
){
4180 .type
= PERF_RECORD_MMAP
,
4181 .misc
= PERF_RECORD_MISC_USER
,
4186 .start
= vma
->vm_start
,
4187 .len
= vma
->vm_end
- vma
->vm_start
,
4188 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4192 perf_event_mmap_event(&mmap_event
);
4196 * IRQ throttle logging
4199 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4201 struct perf_output_handle handle
;
4205 struct perf_event_header header
;
4209 } throttle_event
= {
4211 .type
= PERF_RECORD_THROTTLE
,
4213 .size
= sizeof(throttle_event
),
4215 .time
= perf_clock(),
4216 .id
= primary_event_id(event
),
4217 .stream_id
= event
->id
,
4221 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4223 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
4227 perf_output_put(&handle
, throttle_event
);
4228 perf_output_end(&handle
);
4232 * Generic event overflow handling, sampling.
4235 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4236 int throttle
, struct perf_sample_data
*data
,
4237 struct pt_regs
*regs
)
4239 int events
= atomic_read(&event
->event_limit
);
4240 struct hw_perf_event
*hwc
= &event
->hw
;
4246 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
4248 if (HZ
* hwc
->interrupts
>
4249 (u64
)sysctl_perf_event_sample_rate
) {
4250 hwc
->interrupts
= MAX_INTERRUPTS
;
4251 perf_log_throttle(event
, 0);
4256 * Keep re-disabling events even though on the previous
4257 * pass we disabled it - just in case we raced with a
4258 * sched-in and the event got enabled again:
4264 if (event
->attr
.freq
) {
4265 u64 now
= perf_clock();
4266 s64 delta
= now
- hwc
->freq_time_stamp
;
4268 hwc
->freq_time_stamp
= now
;
4270 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4271 perf_adjust_period(event
, delta
, hwc
->last_period
);
4275 * XXX event_limit might not quite work as expected on inherited
4279 event
->pending_kill
= POLL_IN
;
4280 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4282 event
->pending_kill
= POLL_HUP
;
4284 event
->pending_disable
= 1;
4285 irq_work_queue(&event
->pending
);
4287 perf_event_disable(event
);
4290 if (event
->overflow_handler
)
4291 event
->overflow_handler(event
, nmi
, data
, regs
);
4293 perf_event_output(event
, nmi
, data
, regs
);
4298 int perf_event_overflow(struct perf_event
*event
, int nmi
,
4299 struct perf_sample_data
*data
,
4300 struct pt_regs
*regs
)
4302 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4306 * Generic software event infrastructure
4309 struct swevent_htable
{
4310 struct swevent_hlist
*swevent_hlist
;
4311 struct mutex hlist_mutex
;
4314 /* Recursion avoidance in each contexts */
4315 int recursion
[PERF_NR_CONTEXTS
];
4318 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4321 * We directly increment event->count and keep a second value in
4322 * event->hw.period_left to count intervals. This period event
4323 * is kept in the range [-sample_period, 0] so that we can use the
4327 static u64
perf_swevent_set_period(struct perf_event
*event
)
4329 struct hw_perf_event
*hwc
= &event
->hw
;
4330 u64 period
= hwc
->last_period
;
4334 hwc
->last_period
= hwc
->sample_period
;
4337 old
= val
= local64_read(&hwc
->period_left
);
4341 nr
= div64_u64(period
+ val
, period
);
4342 offset
= nr
* period
;
4344 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4350 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4351 int nmi
, struct perf_sample_data
*data
,
4352 struct pt_regs
*regs
)
4354 struct hw_perf_event
*hwc
= &event
->hw
;
4357 data
->period
= event
->hw
.last_period
;
4359 overflow
= perf_swevent_set_period(event
);
4361 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4364 for (; overflow
; overflow
--) {
4365 if (__perf_event_overflow(event
, nmi
, throttle
,
4368 * We inhibit the overflow from happening when
4369 * hwc->interrupts == MAX_INTERRUPTS.
4377 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4378 int nmi
, struct perf_sample_data
*data
,
4379 struct pt_regs
*regs
)
4381 struct hw_perf_event
*hwc
= &event
->hw
;
4383 local64_add(nr
, &event
->count
);
4388 if (!hwc
->sample_period
)
4391 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4392 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4394 if (local64_add_negative(nr
, &hwc
->period_left
))
4397 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4400 static int perf_exclude_event(struct perf_event
*event
,
4401 struct pt_regs
*regs
)
4403 if (event
->hw
.state
& PERF_HES_STOPPED
)
4407 if (event
->attr
.exclude_user
&& user_mode(regs
))
4410 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4417 static int perf_swevent_match(struct perf_event
*event
,
4418 enum perf_type_id type
,
4420 struct perf_sample_data
*data
,
4421 struct pt_regs
*regs
)
4423 if (event
->attr
.type
!= type
)
4426 if (event
->attr
.config
!= event_id
)
4429 if (perf_exclude_event(event
, regs
))
4435 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4437 u64 val
= event_id
| (type
<< 32);
4439 return hash_64(val
, SWEVENT_HLIST_BITS
);
4442 static inline struct hlist_head
*
4443 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4445 u64 hash
= swevent_hash(type
, event_id
);
4447 return &hlist
->heads
[hash
];
4450 /* For the read side: events when they trigger */
4451 static inline struct hlist_head
*
4452 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4454 struct swevent_hlist
*hlist
;
4456 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4460 return __find_swevent_head(hlist
, type
, event_id
);
4463 /* For the event head insertion and removal in the hlist */
4464 static inline struct hlist_head
*
4465 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4467 struct swevent_hlist
*hlist
;
4468 u32 event_id
= event
->attr
.config
;
4469 u64 type
= event
->attr
.type
;
4472 * Event scheduling is always serialized against hlist allocation
4473 * and release. Which makes the protected version suitable here.
4474 * The context lock guarantees that.
4476 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4477 lockdep_is_held(&event
->ctx
->lock
));
4481 return __find_swevent_head(hlist
, type
, event_id
);
4484 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4486 struct perf_sample_data
*data
,
4487 struct pt_regs
*regs
)
4489 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4490 struct perf_event
*event
;
4491 struct hlist_node
*node
;
4492 struct hlist_head
*head
;
4495 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4499 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4500 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4501 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
4507 int perf_swevent_get_recursion_context(void)
4509 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4511 return get_recursion_context(swhash
->recursion
);
4513 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4515 void inline perf_swevent_put_recursion_context(int rctx
)
4517 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4519 put_recursion_context(swhash
->recursion
, rctx
);
4522 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4523 struct pt_regs
*regs
, u64 addr
)
4525 struct perf_sample_data data
;
4528 preempt_disable_notrace();
4529 rctx
= perf_swevent_get_recursion_context();
4533 perf_sample_data_init(&data
, addr
);
4535 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4537 perf_swevent_put_recursion_context(rctx
);
4538 preempt_enable_notrace();
4541 static void perf_swevent_read(struct perf_event
*event
)
4545 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4547 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4548 struct hw_perf_event
*hwc
= &event
->hw
;
4549 struct hlist_head
*head
;
4551 if (hwc
->sample_period
) {
4552 hwc
->last_period
= hwc
->sample_period
;
4553 perf_swevent_set_period(event
);
4556 hwc
->state
= !(flags
& PERF_EF_START
);
4558 head
= find_swevent_head(swhash
, event
);
4559 if (WARN_ON_ONCE(!head
))
4562 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4567 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4569 hlist_del_rcu(&event
->hlist_entry
);
4572 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4574 event
->hw
.state
= 0;
4577 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4579 event
->hw
.state
= PERF_HES_STOPPED
;
4582 /* Deref the hlist from the update side */
4583 static inline struct swevent_hlist
*
4584 swevent_hlist_deref(struct swevent_htable
*swhash
)
4586 return rcu_dereference_protected(swhash
->swevent_hlist
,
4587 lockdep_is_held(&swhash
->hlist_mutex
));
4590 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4592 struct swevent_hlist
*hlist
;
4594 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4598 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4600 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4605 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4606 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4609 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4611 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4613 mutex_lock(&swhash
->hlist_mutex
);
4615 if (!--swhash
->hlist_refcount
)
4616 swevent_hlist_release(swhash
);
4618 mutex_unlock(&swhash
->hlist_mutex
);
4621 static void swevent_hlist_put(struct perf_event
*event
)
4625 if (event
->cpu
!= -1) {
4626 swevent_hlist_put_cpu(event
, event
->cpu
);
4630 for_each_possible_cpu(cpu
)
4631 swevent_hlist_put_cpu(event
, cpu
);
4634 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4636 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4639 mutex_lock(&swhash
->hlist_mutex
);
4641 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4642 struct swevent_hlist
*hlist
;
4644 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4649 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4651 swhash
->hlist_refcount
++;
4653 mutex_unlock(&swhash
->hlist_mutex
);
4658 static int swevent_hlist_get(struct perf_event
*event
)
4661 int cpu
, failed_cpu
;
4663 if (event
->cpu
!= -1)
4664 return swevent_hlist_get_cpu(event
, event
->cpu
);
4667 for_each_possible_cpu(cpu
) {
4668 err
= swevent_hlist_get_cpu(event
, cpu
);
4678 for_each_possible_cpu(cpu
) {
4679 if (cpu
== failed_cpu
)
4681 swevent_hlist_put_cpu(event
, cpu
);
4688 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4690 static void sw_perf_event_destroy(struct perf_event
*event
)
4692 u64 event_id
= event
->attr
.config
;
4694 WARN_ON(event
->parent
);
4696 jump_label_dec(&perf_swevent_enabled
[event_id
]);
4697 swevent_hlist_put(event
);
4700 static int perf_swevent_init(struct perf_event
*event
)
4702 int event_id
= event
->attr
.config
;
4704 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4708 case PERF_COUNT_SW_CPU_CLOCK
:
4709 case PERF_COUNT_SW_TASK_CLOCK
:
4716 if (event_id
> PERF_COUNT_SW_MAX
)
4719 if (!event
->parent
) {
4722 err
= swevent_hlist_get(event
);
4726 jump_label_inc(&perf_swevent_enabled
[event_id
]);
4727 event
->destroy
= sw_perf_event_destroy
;
4733 static struct pmu perf_swevent
= {
4734 .task_ctx_nr
= perf_sw_context
,
4736 .event_init
= perf_swevent_init
,
4737 .add
= perf_swevent_add
,
4738 .del
= perf_swevent_del
,
4739 .start
= perf_swevent_start
,
4740 .stop
= perf_swevent_stop
,
4741 .read
= perf_swevent_read
,
4744 #ifdef CONFIG_EVENT_TRACING
4746 static int perf_tp_filter_match(struct perf_event
*event
,
4747 struct perf_sample_data
*data
)
4749 void *record
= data
->raw
->data
;
4751 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4756 static int perf_tp_event_match(struct perf_event
*event
,
4757 struct perf_sample_data
*data
,
4758 struct pt_regs
*regs
)
4761 * All tracepoints are from kernel-space.
4763 if (event
->attr
.exclude_kernel
)
4766 if (!perf_tp_filter_match(event
, data
))
4772 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4773 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
4775 struct perf_sample_data data
;
4776 struct perf_event
*event
;
4777 struct hlist_node
*node
;
4779 struct perf_raw_record raw
= {
4784 perf_sample_data_init(&data
, addr
);
4787 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4788 if (perf_tp_event_match(event
, &data
, regs
))
4789 perf_swevent_event(event
, count
, 1, &data
, regs
);
4792 perf_swevent_put_recursion_context(rctx
);
4794 EXPORT_SYMBOL_GPL(perf_tp_event
);
4796 static void tp_perf_event_destroy(struct perf_event
*event
)
4798 perf_trace_destroy(event
);
4801 static int perf_tp_event_init(struct perf_event
*event
)
4805 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4809 * Raw tracepoint data is a severe data leak, only allow root to
4812 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4813 perf_paranoid_tracepoint_raw() &&
4814 !capable(CAP_SYS_ADMIN
))
4817 err
= perf_trace_init(event
);
4821 event
->destroy
= tp_perf_event_destroy
;
4826 static struct pmu perf_tracepoint
= {
4827 .task_ctx_nr
= perf_sw_context
,
4829 .event_init
= perf_tp_event_init
,
4830 .add
= perf_trace_add
,
4831 .del
= perf_trace_del
,
4832 .start
= perf_swevent_start
,
4833 .stop
= perf_swevent_stop
,
4834 .read
= perf_swevent_read
,
4837 static inline void perf_tp_register(void)
4839 perf_pmu_register(&perf_tracepoint
);
4842 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4847 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4850 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4851 if (IS_ERR(filter_str
))
4852 return PTR_ERR(filter_str
);
4854 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4860 static void perf_event_free_filter(struct perf_event
*event
)
4862 ftrace_profile_free_filter(event
);
4867 static inline void perf_tp_register(void)
4871 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4876 static void perf_event_free_filter(struct perf_event
*event
)
4880 #endif /* CONFIG_EVENT_TRACING */
4882 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4883 void perf_bp_event(struct perf_event
*bp
, void *data
)
4885 struct perf_sample_data sample
;
4886 struct pt_regs
*regs
= data
;
4888 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4890 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
4891 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
4896 * hrtimer based swevent callback
4899 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4901 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4902 struct perf_sample_data data
;
4903 struct pt_regs
*regs
;
4904 struct perf_event
*event
;
4907 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4908 event
->pmu
->read(event
);
4910 perf_sample_data_init(&data
, 0);
4911 data
.period
= event
->hw
.last_period
;
4912 regs
= get_irq_regs();
4914 if (regs
&& !perf_exclude_event(event
, regs
)) {
4915 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4916 if (perf_event_overflow(event
, 0, &data
, regs
))
4917 ret
= HRTIMER_NORESTART
;
4920 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4921 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4926 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4928 struct hw_perf_event
*hwc
= &event
->hw
;
4930 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4931 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4932 if (hwc
->sample_period
) {
4933 s64 period
= local64_read(&hwc
->period_left
);
4939 local64_set(&hwc
->period_left
, 0);
4941 period
= max_t(u64
, 10000, hwc
->sample_period
);
4943 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4944 ns_to_ktime(period
), 0,
4945 HRTIMER_MODE_REL_PINNED
, 0);
4949 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4951 struct hw_perf_event
*hwc
= &event
->hw
;
4953 if (hwc
->sample_period
) {
4954 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4955 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
4957 hrtimer_cancel(&hwc
->hrtimer
);
4962 * Software event: cpu wall time clock
4965 static void cpu_clock_event_update(struct perf_event
*event
)
4970 now
= local_clock();
4971 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
4972 local64_add(now
- prev
, &event
->count
);
4975 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
4977 local64_set(&event
->hw
.prev_count
, local_clock());
4978 perf_swevent_start_hrtimer(event
);
4981 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
4983 perf_swevent_cancel_hrtimer(event
);
4984 cpu_clock_event_update(event
);
4987 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
4989 if (flags
& PERF_EF_START
)
4990 cpu_clock_event_start(event
, flags
);
4995 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
4997 cpu_clock_event_stop(event
, flags
);
5000 static void cpu_clock_event_read(struct perf_event
*event
)
5002 cpu_clock_event_update(event
);
5005 static int cpu_clock_event_init(struct perf_event
*event
)
5007 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5010 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5016 static struct pmu perf_cpu_clock
= {
5017 .task_ctx_nr
= perf_sw_context
,
5019 .event_init
= cpu_clock_event_init
,
5020 .add
= cpu_clock_event_add
,
5021 .del
= cpu_clock_event_del
,
5022 .start
= cpu_clock_event_start
,
5023 .stop
= cpu_clock_event_stop
,
5024 .read
= cpu_clock_event_read
,
5028 * Software event: task time clock
5031 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5036 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5038 local64_add(delta
, &event
->count
);
5041 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5043 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5044 perf_swevent_start_hrtimer(event
);
5047 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5049 perf_swevent_cancel_hrtimer(event
);
5050 task_clock_event_update(event
, event
->ctx
->time
);
5053 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5055 if (flags
& PERF_EF_START
)
5056 task_clock_event_start(event
, flags
);
5061 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5063 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5066 static void task_clock_event_read(struct perf_event
*event
)
5071 update_context_time(event
->ctx
);
5072 time
= event
->ctx
->time
;
5074 u64 now
= perf_clock();
5075 u64 delta
= now
- event
->ctx
->timestamp
;
5076 time
= event
->ctx
->time
+ delta
;
5079 task_clock_event_update(event
, time
);
5082 static int task_clock_event_init(struct perf_event
*event
)
5084 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5087 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5093 static struct pmu perf_task_clock
= {
5094 .task_ctx_nr
= perf_sw_context
,
5096 .event_init
= task_clock_event_init
,
5097 .add
= task_clock_event_add
,
5098 .del
= task_clock_event_del
,
5099 .start
= task_clock_event_start
,
5100 .stop
= task_clock_event_stop
,
5101 .read
= task_clock_event_read
,
5104 static void perf_pmu_nop_void(struct pmu
*pmu
)
5108 static int perf_pmu_nop_int(struct pmu
*pmu
)
5113 static void perf_pmu_start_txn(struct pmu
*pmu
)
5115 perf_pmu_disable(pmu
);
5118 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5120 perf_pmu_enable(pmu
);
5124 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5126 perf_pmu_enable(pmu
);
5130 * Ensures all contexts with the same task_ctx_nr have the same
5131 * pmu_cpu_context too.
5133 static void *find_pmu_context(int ctxn
)
5140 list_for_each_entry(pmu
, &pmus
, entry
) {
5141 if (pmu
->task_ctx_nr
== ctxn
)
5142 return pmu
->pmu_cpu_context
;
5148 static void free_pmu_context(void * __percpu cpu_context
)
5152 mutex_lock(&pmus_lock
);
5154 * Like a real lame refcount.
5156 list_for_each_entry(pmu
, &pmus
, entry
) {
5157 if (pmu
->pmu_cpu_context
== cpu_context
)
5161 free_percpu(cpu_context
);
5163 mutex_unlock(&pmus_lock
);
5166 int perf_pmu_register(struct pmu
*pmu
)
5170 mutex_lock(&pmus_lock
);
5172 pmu
->pmu_disable_count
= alloc_percpu(int);
5173 if (!pmu
->pmu_disable_count
)
5176 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5177 if (pmu
->pmu_cpu_context
)
5178 goto got_cpu_context
;
5180 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5181 if (!pmu
->pmu_cpu_context
)
5184 for_each_possible_cpu(cpu
) {
5185 struct perf_cpu_context
*cpuctx
;
5187 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5188 __perf_event_init_context(&cpuctx
->ctx
);
5189 cpuctx
->ctx
.type
= cpu_context
;
5190 cpuctx
->ctx
.pmu
= pmu
;
5191 cpuctx
->jiffies_interval
= 1;
5192 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5196 if (!pmu
->start_txn
) {
5197 if (pmu
->pmu_enable
) {
5199 * If we have pmu_enable/pmu_disable calls, install
5200 * transaction stubs that use that to try and batch
5201 * hardware accesses.
5203 pmu
->start_txn
= perf_pmu_start_txn
;
5204 pmu
->commit_txn
= perf_pmu_commit_txn
;
5205 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5207 pmu
->start_txn
= perf_pmu_nop_void
;
5208 pmu
->commit_txn
= perf_pmu_nop_int
;
5209 pmu
->cancel_txn
= perf_pmu_nop_void
;
5213 if (!pmu
->pmu_enable
) {
5214 pmu
->pmu_enable
= perf_pmu_nop_void
;
5215 pmu
->pmu_disable
= perf_pmu_nop_void
;
5218 list_add_rcu(&pmu
->entry
, &pmus
);
5221 mutex_unlock(&pmus_lock
);
5226 free_percpu(pmu
->pmu_disable_count
);
5230 void perf_pmu_unregister(struct pmu
*pmu
)
5232 mutex_lock(&pmus_lock
);
5233 list_del_rcu(&pmu
->entry
);
5234 mutex_unlock(&pmus_lock
);
5237 * We dereference the pmu list under both SRCU and regular RCU, so
5238 * synchronize against both of those.
5240 synchronize_srcu(&pmus_srcu
);
5243 free_percpu(pmu
->pmu_disable_count
);
5244 free_pmu_context(pmu
->pmu_cpu_context
);
5247 struct pmu
*perf_init_event(struct perf_event
*event
)
5249 struct pmu
*pmu
= NULL
;
5252 idx
= srcu_read_lock(&pmus_srcu
);
5253 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5254 int ret
= pmu
->event_init(event
);
5258 if (ret
!= -ENOENT
) {
5263 pmu
= ERR_PTR(-ENOENT
);
5265 srcu_read_unlock(&pmus_srcu
, idx
);
5271 * Allocate and initialize a event structure
5273 static struct perf_event
*
5274 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5275 struct task_struct
*task
,
5276 struct perf_event
*group_leader
,
5277 struct perf_event
*parent_event
,
5278 perf_overflow_handler_t overflow_handler
)
5281 struct perf_event
*event
;
5282 struct hw_perf_event
*hwc
;
5285 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5287 return ERR_PTR(-ENOMEM
);
5290 * Single events are their own group leaders, with an
5291 * empty sibling list:
5294 group_leader
= event
;
5296 mutex_init(&event
->child_mutex
);
5297 INIT_LIST_HEAD(&event
->child_list
);
5299 INIT_LIST_HEAD(&event
->group_entry
);
5300 INIT_LIST_HEAD(&event
->event_entry
);
5301 INIT_LIST_HEAD(&event
->sibling_list
);
5302 init_waitqueue_head(&event
->waitq
);
5303 init_irq_work(&event
->pending
, perf_pending_event
);
5305 mutex_init(&event
->mmap_mutex
);
5308 event
->attr
= *attr
;
5309 event
->group_leader
= group_leader
;
5313 event
->parent
= parent_event
;
5315 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5316 event
->id
= atomic64_inc_return(&perf_event_id
);
5318 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5321 event
->attach_state
= PERF_ATTACH_TASK
;
5322 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5324 * hw_breakpoint is a bit difficult here..
5326 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5327 event
->hw
.bp_target
= task
;
5331 if (!overflow_handler
&& parent_event
)
5332 overflow_handler
= parent_event
->overflow_handler
;
5334 event
->overflow_handler
= overflow_handler
;
5337 event
->state
= PERF_EVENT_STATE_OFF
;
5342 hwc
->sample_period
= attr
->sample_period
;
5343 if (attr
->freq
&& attr
->sample_freq
)
5344 hwc
->sample_period
= 1;
5345 hwc
->last_period
= hwc
->sample_period
;
5347 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5350 * we currently do not support PERF_FORMAT_GROUP on inherited events
5352 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5355 pmu
= perf_init_event(event
);
5361 else if (IS_ERR(pmu
))
5366 put_pid_ns(event
->ns
);
5368 return ERR_PTR(err
);
5373 if (!event
->parent
) {
5374 if (event
->attach_state
& PERF_ATTACH_TASK
)
5375 jump_label_inc(&perf_task_events
);
5376 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5377 atomic_inc(&nr_mmap_events
);
5378 if (event
->attr
.comm
)
5379 atomic_inc(&nr_comm_events
);
5380 if (event
->attr
.task
)
5381 atomic_inc(&nr_task_events
);
5382 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5383 err
= get_callchain_buffers();
5386 return ERR_PTR(err
);
5394 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5395 struct perf_event_attr
*attr
)
5400 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5404 * zero the full structure, so that a short copy will be nice.
5406 memset(attr
, 0, sizeof(*attr
));
5408 ret
= get_user(size
, &uattr
->size
);
5412 if (size
> PAGE_SIZE
) /* silly large */
5415 if (!size
) /* abi compat */
5416 size
= PERF_ATTR_SIZE_VER0
;
5418 if (size
< PERF_ATTR_SIZE_VER0
)
5422 * If we're handed a bigger struct than we know of,
5423 * ensure all the unknown bits are 0 - i.e. new
5424 * user-space does not rely on any kernel feature
5425 * extensions we dont know about yet.
5427 if (size
> sizeof(*attr
)) {
5428 unsigned char __user
*addr
;
5429 unsigned char __user
*end
;
5432 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5433 end
= (void __user
*)uattr
+ size
;
5435 for (; addr
< end
; addr
++) {
5436 ret
= get_user(val
, addr
);
5442 size
= sizeof(*attr
);
5445 ret
= copy_from_user(attr
, uattr
, size
);
5450 * If the type exists, the corresponding creation will verify
5453 if (attr
->type
>= PERF_TYPE_MAX
)
5456 if (attr
->__reserved_1
)
5459 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5462 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5469 put_user(sizeof(*attr
), &uattr
->size
);
5475 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5477 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
5483 /* don't allow circular references */
5484 if (event
== output_event
)
5488 * Don't allow cross-cpu buffers
5490 if (output_event
->cpu
!= event
->cpu
)
5494 * If its not a per-cpu buffer, it must be the same task.
5496 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5500 mutex_lock(&event
->mmap_mutex
);
5501 /* Can't redirect output if we've got an active mmap() */
5502 if (atomic_read(&event
->mmap_count
))
5506 /* get the buffer we want to redirect to */
5507 buffer
= perf_buffer_get(output_event
);
5512 old_buffer
= event
->buffer
;
5513 rcu_assign_pointer(event
->buffer
, buffer
);
5516 mutex_unlock(&event
->mmap_mutex
);
5519 perf_buffer_put(old_buffer
);
5525 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5527 * @attr_uptr: event_id type attributes for monitoring/sampling
5530 * @group_fd: group leader event fd
5532 SYSCALL_DEFINE5(perf_event_open
,
5533 struct perf_event_attr __user
*, attr_uptr
,
5534 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5536 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
5537 struct perf_event
*event
, *sibling
;
5538 struct perf_event_attr attr
;
5539 struct perf_event_context
*ctx
;
5540 struct file
*event_file
= NULL
;
5541 struct file
*group_file
= NULL
;
5542 struct task_struct
*task
= NULL
;
5546 int fput_needed
= 0;
5549 /* for future expandability... */
5550 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5553 err
= perf_copy_attr(attr_uptr
, &attr
);
5557 if (!attr
.exclude_kernel
) {
5558 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5563 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5567 event_fd
= get_unused_fd_flags(O_RDWR
);
5571 if (group_fd
!= -1) {
5572 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5573 if (IS_ERR(group_leader
)) {
5574 err
= PTR_ERR(group_leader
);
5577 group_file
= group_leader
->filp
;
5578 if (flags
& PERF_FLAG_FD_OUTPUT
)
5579 output_event
= group_leader
;
5580 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5581 group_leader
= NULL
;
5585 task
= find_lively_task_by_vpid(pid
);
5587 err
= PTR_ERR(task
);
5592 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
5593 if (IS_ERR(event
)) {
5594 err
= PTR_ERR(event
);
5599 * Special case software events and allow them to be part of
5600 * any hardware group.
5605 (is_software_event(event
) != is_software_event(group_leader
))) {
5606 if (is_software_event(event
)) {
5608 * If event and group_leader are not both a software
5609 * event, and event is, then group leader is not.
5611 * Allow the addition of software events to !software
5612 * groups, this is safe because software events never
5615 pmu
= group_leader
->pmu
;
5616 } else if (is_software_event(group_leader
) &&
5617 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
5619 * In case the group is a pure software group, and we
5620 * try to add a hardware event, move the whole group to
5621 * the hardware context.
5628 * Get the target context (task or percpu):
5630 ctx
= find_get_context(pmu
, task
, cpu
);
5637 * Look up the group leader (we will attach this event to it):
5643 * Do not allow a recursive hierarchy (this new sibling
5644 * becoming part of another group-sibling):
5646 if (group_leader
->group_leader
!= group_leader
)
5649 * Do not allow to attach to a group in a different
5650 * task or CPU context:
5653 if (group_leader
->ctx
->type
!= ctx
->type
)
5656 if (group_leader
->ctx
!= ctx
)
5661 * Only a group leader can be exclusive or pinned
5663 if (attr
.exclusive
|| attr
.pinned
)
5668 err
= perf_event_set_output(event
, output_event
);
5673 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5674 if (IS_ERR(event_file
)) {
5675 err
= PTR_ERR(event_file
);
5680 struct perf_event_context
*gctx
= group_leader
->ctx
;
5682 mutex_lock(&gctx
->mutex
);
5683 perf_event_remove_from_context(group_leader
);
5684 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5686 perf_event_remove_from_context(sibling
);
5689 mutex_unlock(&gctx
->mutex
);
5693 event
->filp
= event_file
;
5694 WARN_ON_ONCE(ctx
->parent_ctx
);
5695 mutex_lock(&ctx
->mutex
);
5698 perf_install_in_context(ctx
, group_leader
, cpu
);
5700 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5702 perf_install_in_context(ctx
, sibling
, cpu
);
5707 perf_install_in_context(ctx
, event
, cpu
);
5709 mutex_unlock(&ctx
->mutex
);
5711 event
->owner
= current
;
5713 mutex_lock(¤t
->perf_event_mutex
);
5714 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5715 mutex_unlock(¤t
->perf_event_mutex
);
5718 * Drop the reference on the group_event after placing the
5719 * new event on the sibling_list. This ensures destruction
5720 * of the group leader will find the pointer to itself in
5721 * perf_group_detach().
5723 fput_light(group_file
, fput_needed
);
5724 fd_install(event_fd
, event_file
);
5733 put_task_struct(task
);
5735 fput_light(group_file
, fput_needed
);
5737 put_unused_fd(event_fd
);
5742 * perf_event_create_kernel_counter
5744 * @attr: attributes of the counter to create
5745 * @cpu: cpu in which the counter is bound
5746 * @task: task to profile (NULL for percpu)
5749 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
5750 struct task_struct
*task
,
5751 perf_overflow_handler_t overflow_handler
)
5753 struct perf_event_context
*ctx
;
5754 struct perf_event
*event
;
5758 * Get the target context (task or percpu):
5761 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
5762 if (IS_ERR(event
)) {
5763 err
= PTR_ERR(event
);
5767 ctx
= find_get_context(event
->pmu
, task
, cpu
);
5774 WARN_ON_ONCE(ctx
->parent_ctx
);
5775 mutex_lock(&ctx
->mutex
);
5776 perf_install_in_context(ctx
, event
, cpu
);
5778 mutex_unlock(&ctx
->mutex
);
5785 return ERR_PTR(err
);
5787 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
5789 static void sync_child_event(struct perf_event
*child_event
,
5790 struct task_struct
*child
)
5792 struct perf_event
*parent_event
= child_event
->parent
;
5795 if (child_event
->attr
.inherit_stat
)
5796 perf_event_read_event(child_event
, child
);
5798 child_val
= perf_event_count(child_event
);
5801 * Add back the child's count to the parent's count:
5803 atomic64_add(child_val
, &parent_event
->child_count
);
5804 atomic64_add(child_event
->total_time_enabled
,
5805 &parent_event
->child_total_time_enabled
);
5806 atomic64_add(child_event
->total_time_running
,
5807 &parent_event
->child_total_time_running
);
5810 * Remove this event from the parent's list
5812 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5813 mutex_lock(&parent_event
->child_mutex
);
5814 list_del_init(&child_event
->child_list
);
5815 mutex_unlock(&parent_event
->child_mutex
);
5818 * Release the parent event, if this was the last
5821 fput(parent_event
->filp
);
5825 __perf_event_exit_task(struct perf_event
*child_event
,
5826 struct perf_event_context
*child_ctx
,
5827 struct task_struct
*child
)
5829 struct perf_event
*parent_event
;
5831 perf_event_remove_from_context(child_event
);
5833 parent_event
= child_event
->parent
;
5835 * It can happen that parent exits first, and has events
5836 * that are still around due to the child reference. These
5837 * events need to be zapped - but otherwise linger.
5840 sync_child_event(child_event
, child
);
5841 free_event(child_event
);
5845 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
5847 struct perf_event
*child_event
, *tmp
;
5848 struct perf_event_context
*child_ctx
;
5849 unsigned long flags
;
5851 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
5852 perf_event_task(child
, NULL
, 0);
5856 local_irq_save(flags
);
5858 * We can't reschedule here because interrupts are disabled,
5859 * and either child is current or it is a task that can't be
5860 * scheduled, so we are now safe from rescheduling changing
5863 child_ctx
= child
->perf_event_ctxp
[ctxn
];
5864 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
5867 * Take the context lock here so that if find_get_context is
5868 * reading child->perf_event_ctxp, we wait until it has
5869 * incremented the context's refcount before we do put_ctx below.
5871 raw_spin_lock(&child_ctx
->lock
);
5872 child
->perf_event_ctxp
[ctxn
] = NULL
;
5874 * If this context is a clone; unclone it so it can't get
5875 * swapped to another process while we're removing all
5876 * the events from it.
5878 unclone_ctx(child_ctx
);
5879 update_context_time(child_ctx
);
5880 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5883 * Report the task dead after unscheduling the events so that we
5884 * won't get any samples after PERF_RECORD_EXIT. We can however still
5885 * get a few PERF_RECORD_READ events.
5887 perf_event_task(child
, child_ctx
, 0);
5890 * We can recurse on the same lock type through:
5892 * __perf_event_exit_task()
5893 * sync_child_event()
5894 * fput(parent_event->filp)
5896 * mutex_lock(&ctx->mutex)
5898 * But since its the parent context it won't be the same instance.
5900 mutex_lock(&child_ctx
->mutex
);
5903 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5905 __perf_event_exit_task(child_event
, child_ctx
, child
);
5907 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5909 __perf_event_exit_task(child_event
, child_ctx
, child
);
5912 * If the last event was a group event, it will have appended all
5913 * its siblings to the list, but we obtained 'tmp' before that which
5914 * will still point to the list head terminating the iteration.
5916 if (!list_empty(&child_ctx
->pinned_groups
) ||
5917 !list_empty(&child_ctx
->flexible_groups
))
5920 mutex_unlock(&child_ctx
->mutex
);
5926 * When a child task exits, feed back event values to parent events.
5928 void perf_event_exit_task(struct task_struct
*child
)
5930 struct perf_event
*event
, *tmp
;
5933 mutex_lock(&child
->perf_event_mutex
);
5934 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
5936 list_del_init(&event
->owner_entry
);
5939 * Ensure the list deletion is visible before we clear
5940 * the owner, closes a race against perf_release() where
5941 * we need to serialize on the owner->perf_event_mutex.
5944 event
->owner
= NULL
;
5946 mutex_unlock(&child
->perf_event_mutex
);
5948 for_each_task_context_nr(ctxn
)
5949 perf_event_exit_task_context(child
, ctxn
);
5952 static void perf_free_event(struct perf_event
*event
,
5953 struct perf_event_context
*ctx
)
5955 struct perf_event
*parent
= event
->parent
;
5957 if (WARN_ON_ONCE(!parent
))
5960 mutex_lock(&parent
->child_mutex
);
5961 list_del_init(&event
->child_list
);
5962 mutex_unlock(&parent
->child_mutex
);
5966 perf_group_detach(event
);
5967 list_del_event(event
, ctx
);
5972 * free an unexposed, unused context as created by inheritance by
5973 * perf_event_init_task below, used by fork() in case of fail.
5975 void perf_event_free_task(struct task_struct
*task
)
5977 struct perf_event_context
*ctx
;
5978 struct perf_event
*event
, *tmp
;
5981 for_each_task_context_nr(ctxn
) {
5982 ctx
= task
->perf_event_ctxp
[ctxn
];
5986 mutex_lock(&ctx
->mutex
);
5988 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
5990 perf_free_event(event
, ctx
);
5992 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5994 perf_free_event(event
, ctx
);
5996 if (!list_empty(&ctx
->pinned_groups
) ||
5997 !list_empty(&ctx
->flexible_groups
))
6000 mutex_unlock(&ctx
->mutex
);
6006 void perf_event_delayed_put(struct task_struct
*task
)
6010 for_each_task_context_nr(ctxn
)
6011 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6015 * inherit a event from parent task to child task:
6017 static struct perf_event
*
6018 inherit_event(struct perf_event
*parent_event
,
6019 struct task_struct
*parent
,
6020 struct perf_event_context
*parent_ctx
,
6021 struct task_struct
*child
,
6022 struct perf_event
*group_leader
,
6023 struct perf_event_context
*child_ctx
)
6025 struct perf_event
*child_event
;
6026 unsigned long flags
;
6029 * Instead of creating recursive hierarchies of events,
6030 * we link inherited events back to the original parent,
6031 * which has a filp for sure, which we use as the reference
6034 if (parent_event
->parent
)
6035 parent_event
= parent_event
->parent
;
6037 child_event
= perf_event_alloc(&parent_event
->attr
,
6040 group_leader
, parent_event
,
6042 if (IS_ERR(child_event
))
6047 * Make the child state follow the state of the parent event,
6048 * not its attr.disabled bit. We hold the parent's mutex,
6049 * so we won't race with perf_event_{en, dis}able_family.
6051 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6052 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6054 child_event
->state
= PERF_EVENT_STATE_OFF
;
6056 if (parent_event
->attr
.freq
) {
6057 u64 sample_period
= parent_event
->hw
.sample_period
;
6058 struct hw_perf_event
*hwc
= &child_event
->hw
;
6060 hwc
->sample_period
= sample_period
;
6061 hwc
->last_period
= sample_period
;
6063 local64_set(&hwc
->period_left
, sample_period
);
6066 child_event
->ctx
= child_ctx
;
6067 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6070 * Link it up in the child's context:
6072 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6073 add_event_to_ctx(child_event
, child_ctx
);
6074 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6077 * Get a reference to the parent filp - we will fput it
6078 * when the child event exits. This is safe to do because
6079 * we are in the parent and we know that the filp still
6080 * exists and has a nonzero count:
6082 atomic_long_inc(&parent_event
->filp
->f_count
);
6085 * Link this into the parent event's child list
6087 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6088 mutex_lock(&parent_event
->child_mutex
);
6089 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6090 mutex_unlock(&parent_event
->child_mutex
);
6095 static int inherit_group(struct perf_event
*parent_event
,
6096 struct task_struct
*parent
,
6097 struct perf_event_context
*parent_ctx
,
6098 struct task_struct
*child
,
6099 struct perf_event_context
*child_ctx
)
6101 struct perf_event
*leader
;
6102 struct perf_event
*sub
;
6103 struct perf_event
*child_ctr
;
6105 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6106 child
, NULL
, child_ctx
);
6108 return PTR_ERR(leader
);
6109 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6110 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6111 child
, leader
, child_ctx
);
6112 if (IS_ERR(child_ctr
))
6113 return PTR_ERR(child_ctr
);
6119 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6120 struct perf_event_context
*parent_ctx
,
6121 struct task_struct
*child
, int ctxn
,
6125 struct perf_event_context
*child_ctx
;
6127 if (!event
->attr
.inherit
) {
6132 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6135 * This is executed from the parent task context, so
6136 * inherit events that have been marked for cloning.
6137 * First allocate and initialize a context for the
6141 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6145 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6148 ret
= inherit_group(event
, parent
, parent_ctx
,
6158 * Initialize the perf_event context in task_struct
6160 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6162 struct perf_event_context
*child_ctx
, *parent_ctx
;
6163 struct perf_event_context
*cloned_ctx
;
6164 struct perf_event
*event
;
6165 struct task_struct
*parent
= current
;
6166 int inherited_all
= 1;
6167 unsigned long flags
;
6170 child
->perf_event_ctxp
[ctxn
] = NULL
;
6172 mutex_init(&child
->perf_event_mutex
);
6173 INIT_LIST_HEAD(&child
->perf_event_list
);
6175 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6179 * If the parent's context is a clone, pin it so it won't get
6182 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6185 * No need to check if parent_ctx != NULL here; since we saw
6186 * it non-NULL earlier, the only reason for it to become NULL
6187 * is if we exit, and since we're currently in the middle of
6188 * a fork we can't be exiting at the same time.
6192 * Lock the parent list. No need to lock the child - not PID
6193 * hashed yet and not running, so nobody can access it.
6195 mutex_lock(&parent_ctx
->mutex
);
6198 * We dont have to disable NMIs - we are only looking at
6199 * the list, not manipulating it:
6201 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6202 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6203 child
, ctxn
, &inherited_all
);
6209 * We can't hold ctx->lock when iterating the ->flexible_group list due
6210 * to allocations, but we need to prevent rotation because
6211 * rotate_ctx() will change the list from interrupt context.
6213 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6214 parent_ctx
->rotate_disable
= 1;
6215 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6217 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6218 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6219 child
, ctxn
, &inherited_all
);
6224 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6225 parent_ctx
->rotate_disable
= 0;
6226 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6228 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6230 if (child_ctx
&& inherited_all
) {
6232 * Mark the child context as a clone of the parent
6233 * context, or of whatever the parent is a clone of.
6234 * Note that if the parent is a clone, it could get
6235 * uncloned at any point, but that doesn't matter
6236 * because the list of events and the generation
6237 * count can't have changed since we took the mutex.
6239 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
6241 child_ctx
->parent_ctx
= cloned_ctx
;
6242 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6244 child_ctx
->parent_ctx
= parent_ctx
;
6245 child_ctx
->parent_gen
= parent_ctx
->generation
;
6247 get_ctx(child_ctx
->parent_ctx
);
6250 mutex_unlock(&parent_ctx
->mutex
);
6252 perf_unpin_context(parent_ctx
);
6258 * Initialize the perf_event context in task_struct
6260 int perf_event_init_task(struct task_struct
*child
)
6264 for_each_task_context_nr(ctxn
) {
6265 ret
= perf_event_init_context(child
, ctxn
);
6273 static void __init
perf_event_init_all_cpus(void)
6275 struct swevent_htable
*swhash
;
6278 for_each_possible_cpu(cpu
) {
6279 swhash
= &per_cpu(swevent_htable
, cpu
);
6280 mutex_init(&swhash
->hlist_mutex
);
6281 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6285 static void __cpuinit
perf_event_init_cpu(int cpu
)
6287 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6289 mutex_lock(&swhash
->hlist_mutex
);
6290 if (swhash
->hlist_refcount
> 0) {
6291 struct swevent_hlist
*hlist
;
6293 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6295 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6297 mutex_unlock(&swhash
->hlist_mutex
);
6300 #ifdef CONFIG_HOTPLUG_CPU
6301 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6303 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6305 WARN_ON(!irqs_disabled());
6307 list_del_init(&cpuctx
->rotation_list
);
6310 static void __perf_event_exit_context(void *__info
)
6312 struct perf_event_context
*ctx
= __info
;
6313 struct perf_event
*event
, *tmp
;
6315 perf_pmu_rotate_stop(ctx
->pmu
);
6317 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6318 __perf_event_remove_from_context(event
);
6319 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6320 __perf_event_remove_from_context(event
);
6323 static void perf_event_exit_cpu_context(int cpu
)
6325 struct perf_event_context
*ctx
;
6329 idx
= srcu_read_lock(&pmus_srcu
);
6330 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6331 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6333 mutex_lock(&ctx
->mutex
);
6334 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6335 mutex_unlock(&ctx
->mutex
);
6337 srcu_read_unlock(&pmus_srcu
, idx
);
6340 static void perf_event_exit_cpu(int cpu
)
6342 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6344 mutex_lock(&swhash
->hlist_mutex
);
6345 swevent_hlist_release(swhash
);
6346 mutex_unlock(&swhash
->hlist_mutex
);
6348 perf_event_exit_cpu_context(cpu
);
6351 static inline void perf_event_exit_cpu(int cpu
) { }
6354 static int __cpuinit
6355 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6357 unsigned int cpu
= (long)hcpu
;
6359 switch (action
& ~CPU_TASKS_FROZEN
) {
6361 case CPU_UP_PREPARE
:
6362 case CPU_DOWN_FAILED
:
6363 perf_event_init_cpu(cpu
);
6366 case CPU_UP_CANCELED
:
6367 case CPU_DOWN_PREPARE
:
6368 perf_event_exit_cpu(cpu
);
6378 void __init
perf_event_init(void)
6382 perf_event_init_all_cpus();
6383 init_srcu_struct(&pmus_srcu
);
6384 perf_pmu_register(&perf_swevent
);
6385 perf_pmu_register(&perf_cpu_clock
);
6386 perf_pmu_register(&perf_task_clock
);
6388 perf_cpu_notifier(perf_cpu_notify
);
6390 ret
= init_hw_breakpoint();
6391 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);