rtc: Disable the alarm in the hardware
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / interface.c
blobbbb6f852c5ab332c226780495ae6da3ca26de8e3
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
19 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
20 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 int err;
25 if (!rtc->ops)
26 err = -ENODEV;
27 else if (!rtc->ops->read_time)
28 err = -EINVAL;
29 else {
30 memset(tm, 0, sizeof(struct rtc_time));
31 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 return err;
36 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 int err;
40 err = mutex_lock_interruptible(&rtc->ops_lock);
41 if (err)
42 return err;
44 err = __rtc_read_time(rtc, tm);
45 mutex_unlock(&rtc->ops_lock);
46 return err;
48 EXPORT_SYMBOL_GPL(rtc_read_time);
50 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 int err;
54 err = rtc_valid_tm(tm);
55 if (err != 0)
56 return err;
58 err = mutex_lock_interruptible(&rtc->ops_lock);
59 if (err)
60 return err;
62 if (!rtc->ops)
63 err = -ENODEV;
64 else if (rtc->ops->set_time)
65 err = rtc->ops->set_time(rtc->dev.parent, tm);
66 else if (rtc->ops->set_mmss) {
67 unsigned long secs;
68 err = rtc_tm_to_time(tm, &secs);
69 if (err == 0)
70 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
71 } else
72 err = -EINVAL;
74 mutex_unlock(&rtc->ops_lock);
75 return err;
77 EXPORT_SYMBOL_GPL(rtc_set_time);
79 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
81 int err;
83 err = mutex_lock_interruptible(&rtc->ops_lock);
84 if (err)
85 return err;
87 if (!rtc->ops)
88 err = -ENODEV;
89 else if (rtc->ops->set_mmss)
90 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
91 else if (rtc->ops->read_time && rtc->ops->set_time) {
92 struct rtc_time new, old;
94 err = rtc->ops->read_time(rtc->dev.parent, &old);
95 if (err == 0) {
96 rtc_time_to_tm(secs, &new);
99 * avoid writing when we're going to change the day of
100 * the month. We will retry in the next minute. This
101 * basically means that if the RTC must not drift
102 * by more than 1 minute in 11 minutes.
104 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105 (new.tm_hour == 23 && new.tm_min == 59)))
106 err = rtc->ops->set_time(rtc->dev.parent,
107 &new);
110 else
111 err = -EINVAL;
113 mutex_unlock(&rtc->ops_lock);
115 return err;
117 EXPORT_SYMBOL_GPL(rtc_set_mmss);
119 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
121 int err;
123 err = mutex_lock_interruptible(&rtc->ops_lock);
124 if (err)
125 return err;
127 if (rtc->ops == NULL)
128 err = -ENODEV;
129 else if (!rtc->ops->read_alarm)
130 err = -EINVAL;
131 else {
132 memset(alarm, 0, sizeof(struct rtc_wkalrm));
133 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
136 mutex_unlock(&rtc->ops_lock);
137 return err;
140 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
142 int err;
143 struct rtc_time before, now;
144 int first_time = 1;
145 unsigned long t_now, t_alm;
146 enum { none, day, month, year } missing = none;
147 unsigned days;
149 /* The lower level RTC driver may return -1 in some fields,
150 * creating invalid alarm->time values, for reasons like:
152 * - The hardware may not be capable of filling them in;
153 * many alarms match only on time-of-day fields, not
154 * day/month/year calendar data.
156 * - Some hardware uses illegal values as "wildcard" match
157 * values, which non-Linux firmware (like a BIOS) may try
158 * to set up as e.g. "alarm 15 minutes after each hour".
159 * Linux uses only oneshot alarms.
161 * When we see that here, we deal with it by using values from
162 * a current RTC timestamp for any missing (-1) values. The
163 * RTC driver prevents "periodic alarm" modes.
165 * But this can be racey, because some fields of the RTC timestamp
166 * may have wrapped in the interval since we read the RTC alarm,
167 * which would lead to us inserting inconsistent values in place
168 * of the -1 fields.
170 * Reading the alarm and timestamp in the reverse sequence
171 * would have the same race condition, and not solve the issue.
173 * So, we must first read the RTC timestamp,
174 * then read the RTC alarm value,
175 * and then read a second RTC timestamp.
177 * If any fields of the second timestamp have changed
178 * when compared with the first timestamp, then we know
179 * our timestamp may be inconsistent with that used by
180 * the low-level rtc_read_alarm_internal() function.
182 * So, when the two timestamps disagree, we just loop and do
183 * the process again to get a fully consistent set of values.
185 * This could all instead be done in the lower level driver,
186 * but since more than one lower level RTC implementation needs it,
187 * then it's probably best best to do it here instead of there..
190 /* Get the "before" timestamp */
191 err = rtc_read_time(rtc, &before);
192 if (err < 0)
193 return err;
194 do {
195 if (!first_time)
196 memcpy(&before, &now, sizeof(struct rtc_time));
197 first_time = 0;
199 /* get the RTC alarm values, which may be incomplete */
200 err = rtc_read_alarm_internal(rtc, alarm);
201 if (err)
202 return err;
204 /* full-function RTCs won't have such missing fields */
205 if (rtc_valid_tm(&alarm->time) == 0)
206 return 0;
208 /* get the "after" timestamp, to detect wrapped fields */
209 err = rtc_read_time(rtc, &now);
210 if (err < 0)
211 return err;
213 /* note that tm_sec is a "don't care" value here: */
214 } while ( before.tm_min != now.tm_min
215 || before.tm_hour != now.tm_hour
216 || before.tm_mon != now.tm_mon
217 || before.tm_year != now.tm_year);
219 /* Fill in the missing alarm fields using the timestamp; we
220 * know there's at least one since alarm->time is invalid.
222 if (alarm->time.tm_sec == -1)
223 alarm->time.tm_sec = now.tm_sec;
224 if (alarm->time.tm_min == -1)
225 alarm->time.tm_min = now.tm_min;
226 if (alarm->time.tm_hour == -1)
227 alarm->time.tm_hour = now.tm_hour;
229 /* For simplicity, only support date rollover for now */
230 if (alarm->time.tm_mday == -1) {
231 alarm->time.tm_mday = now.tm_mday;
232 missing = day;
234 if (alarm->time.tm_mon == -1) {
235 alarm->time.tm_mon = now.tm_mon;
236 if (missing == none)
237 missing = month;
239 if (alarm->time.tm_year == -1) {
240 alarm->time.tm_year = now.tm_year;
241 if (missing == none)
242 missing = year;
245 /* with luck, no rollover is needed */
246 rtc_tm_to_time(&now, &t_now);
247 rtc_tm_to_time(&alarm->time, &t_alm);
248 if (t_now < t_alm)
249 goto done;
251 switch (missing) {
253 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
254 * that will trigger at 5am will do so at 5am Tuesday, which
255 * could also be in the next month or year. This is a common
256 * case, especially for PCs.
258 case day:
259 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260 t_alm += 24 * 60 * 60;
261 rtc_time_to_tm(t_alm, &alarm->time);
262 break;
264 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
265 * be next month. An alarm matching on the 30th, 29th, or 28th
266 * may end up in the month after that! Many newer PCs support
267 * this type of alarm.
269 case month:
270 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271 do {
272 if (alarm->time.tm_mon < 11)
273 alarm->time.tm_mon++;
274 else {
275 alarm->time.tm_mon = 0;
276 alarm->time.tm_year++;
278 days = rtc_month_days(alarm->time.tm_mon,
279 alarm->time.tm_year);
280 } while (days < alarm->time.tm_mday);
281 break;
283 /* Year rollover ... easy except for leap years! */
284 case year:
285 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286 do {
287 alarm->time.tm_year++;
288 } while (rtc_valid_tm(&alarm->time) != 0);
289 break;
291 default:
292 dev_warn(&rtc->dev, "alarm rollover not handled\n");
295 done:
296 return 0;
299 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
301 int err;
303 err = mutex_lock_interruptible(&rtc->ops_lock);
304 if (err)
305 return err;
306 if (rtc->ops == NULL)
307 err = -ENODEV;
308 else if (!rtc->ops->read_alarm)
309 err = -EINVAL;
310 else {
311 memset(alarm, 0, sizeof(struct rtc_wkalrm));
312 alarm->enabled = rtc->aie_timer.enabled;
313 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
315 mutex_unlock(&rtc->ops_lock);
317 return err;
319 EXPORT_SYMBOL_GPL(rtc_read_alarm);
321 static int ___rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
323 int err;
325 if (!rtc->ops)
326 err = -ENODEV;
327 else if (!rtc->ops->set_alarm)
328 err = -EINVAL;
329 else
330 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
332 return err;
335 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
337 struct rtc_time tm;
338 long now, scheduled;
339 int err;
341 err = rtc_valid_tm(&alarm->time);
342 if (err)
343 return err;
344 rtc_tm_to_time(&alarm->time, &scheduled);
346 /* Make sure we're not setting alarms in the past */
347 err = __rtc_read_time(rtc, &tm);
348 rtc_tm_to_time(&tm, &now);
349 if (scheduled <= now)
350 return -ETIME;
352 * XXX - We just checked to make sure the alarm time is not
353 * in the past, but there is still a race window where if
354 * the is alarm set for the next second and the second ticks
355 * over right here, before we set the alarm.
358 return ___rtc_set_alarm(rtc, alarm);
361 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
363 int err;
365 err = rtc_valid_tm(&alarm->time);
366 if (err != 0)
367 return err;
369 err = mutex_lock_interruptible(&rtc->ops_lock);
370 if (err)
371 return err;
372 if (rtc->aie_timer.enabled) {
373 rtc_timer_remove(rtc, &rtc->aie_timer);
375 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
376 rtc->aie_timer.period = ktime_set(0, 0);
377 if (alarm->enabled) {
378 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
380 mutex_unlock(&rtc->ops_lock);
381 return err;
383 EXPORT_SYMBOL_GPL(rtc_set_alarm);
385 /* Called once per device from rtc_device_register */
386 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388 int err;
390 err = rtc_valid_tm(&alarm->time);
391 if (err != 0)
392 return err;
394 err = mutex_lock_interruptible(&rtc->ops_lock);
395 if (err)
396 return err;
398 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
399 rtc->aie_timer.period = ktime_set(0, 0);
400 if (alarm->enabled) {
401 rtc->aie_timer.enabled = 1;
402 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
404 mutex_unlock(&rtc->ops_lock);
405 return err;
407 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
411 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
413 int err = mutex_lock_interruptible(&rtc->ops_lock);
414 if (err)
415 return err;
417 if (rtc->aie_timer.enabled != enabled) {
418 if (enabled)
419 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
420 else
421 rtc_timer_remove(rtc, &rtc->aie_timer);
424 if (err)
425 /* nothing */;
426 else if (!rtc->ops)
427 err = -ENODEV;
428 else if (!rtc->ops->alarm_irq_enable)
429 err = -EINVAL;
430 else
431 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
433 mutex_unlock(&rtc->ops_lock);
434 return err;
436 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
438 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
440 int err = mutex_lock_interruptible(&rtc->ops_lock);
441 if (err)
442 return err;
444 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
445 if (enabled == 0 && rtc->uie_irq_active) {
446 mutex_unlock(&rtc->ops_lock);
447 return rtc_dev_update_irq_enable_emul(rtc, 0);
449 #endif
450 /* make sure we're changing state */
451 if (rtc->uie_rtctimer.enabled == enabled)
452 goto out;
454 if (enabled) {
455 struct rtc_time tm;
456 ktime_t now, onesec;
458 __rtc_read_time(rtc, &tm);
459 onesec = ktime_set(1, 0);
460 now = rtc_tm_to_ktime(tm);
461 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
462 rtc->uie_rtctimer.period = ktime_set(1, 0);
463 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
464 } else
465 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
467 out:
468 mutex_unlock(&rtc->ops_lock);
469 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
471 * Enable emulation if the driver did not provide
472 * the update_irq_enable function pointer or if returned
473 * -EINVAL to signal that it has been configured without
474 * interrupts or that are not available at the moment.
476 if (err == -EINVAL)
477 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
478 #endif
479 return err;
482 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
486 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
487 * @rtc: pointer to the rtc device
489 * This function is called when an AIE, UIE or PIE mode interrupt
490 * has occurred (or been emulated).
492 * Triggers the registered irq_task function callback.
494 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
496 unsigned long flags;
498 /* mark one irq of the appropriate mode */
499 spin_lock_irqsave(&rtc->irq_lock, flags);
500 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
501 spin_unlock_irqrestore(&rtc->irq_lock, flags);
503 /* call the task func */
504 spin_lock_irqsave(&rtc->irq_task_lock, flags);
505 if (rtc->irq_task)
506 rtc->irq_task->func(rtc->irq_task->private_data);
507 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
509 wake_up_interruptible(&rtc->irq_queue);
510 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
515 * rtc_aie_update_irq - AIE mode rtctimer hook
516 * @private: pointer to the rtc_device
518 * This functions is called when the aie_timer expires.
520 void rtc_aie_update_irq(void *private)
522 struct rtc_device *rtc = (struct rtc_device *)private;
523 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
528 * rtc_uie_update_irq - UIE mode rtctimer hook
529 * @private: pointer to the rtc_device
531 * This functions is called when the uie_timer expires.
533 void rtc_uie_update_irq(void *private)
535 struct rtc_device *rtc = (struct rtc_device *)private;
536 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
541 * rtc_pie_update_irq - PIE mode hrtimer hook
542 * @timer: pointer to the pie mode hrtimer
544 * This function is used to emulate PIE mode interrupts
545 * using an hrtimer. This function is called when the periodic
546 * hrtimer expires.
548 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
550 struct rtc_device *rtc;
551 ktime_t period;
552 int count;
553 rtc = container_of(timer, struct rtc_device, pie_timer);
555 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
556 count = hrtimer_forward_now(timer, period);
558 rtc_handle_legacy_irq(rtc, count, RTC_PF);
560 return HRTIMER_RESTART;
564 * rtc_update_irq - Triggered when a RTC interrupt occurs.
565 * @rtc: the rtc device
566 * @num: how many irqs are being reported (usually one)
567 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
568 * Context: any
570 void rtc_update_irq(struct rtc_device *rtc,
571 unsigned long num, unsigned long events)
573 schedule_work(&rtc->irqwork);
575 EXPORT_SYMBOL_GPL(rtc_update_irq);
577 static int __rtc_match(struct device *dev, void *data)
579 char *name = (char *)data;
581 if (strcmp(dev_name(dev), name) == 0)
582 return 1;
583 return 0;
586 struct rtc_device *rtc_class_open(char *name)
588 struct device *dev;
589 struct rtc_device *rtc = NULL;
591 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
592 if (dev)
593 rtc = to_rtc_device(dev);
595 if (rtc) {
596 if (!try_module_get(rtc->owner)) {
597 put_device(dev);
598 rtc = NULL;
602 return rtc;
604 EXPORT_SYMBOL_GPL(rtc_class_open);
606 void rtc_class_close(struct rtc_device *rtc)
608 module_put(rtc->owner);
609 put_device(&rtc->dev);
611 EXPORT_SYMBOL_GPL(rtc_class_close);
613 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
615 int retval = -EBUSY;
617 if (task == NULL || task->func == NULL)
618 return -EINVAL;
620 /* Cannot register while the char dev is in use */
621 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
622 return -EBUSY;
624 spin_lock_irq(&rtc->irq_task_lock);
625 if (rtc->irq_task == NULL) {
626 rtc->irq_task = task;
627 retval = 0;
629 spin_unlock_irq(&rtc->irq_task_lock);
631 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
633 return retval;
635 EXPORT_SYMBOL_GPL(rtc_irq_register);
637 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
639 spin_lock_irq(&rtc->irq_task_lock);
640 if (rtc->irq_task == task)
641 rtc->irq_task = NULL;
642 spin_unlock_irq(&rtc->irq_task_lock);
644 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
646 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
649 * We unconditionally cancel the timer here, because otherwise
650 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
651 * when we manage to start the timer before the callback
652 * returns HRTIMER_RESTART.
654 * We cannot use hrtimer_cancel() here as a running callback
655 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
656 * would spin forever.
658 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
659 return -1;
661 if (enabled) {
662 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
664 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
666 return 0;
670 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
671 * @rtc: the rtc device
672 * @task: currently registered with rtc_irq_register()
673 * @enabled: true to enable periodic IRQs
674 * Context: any
676 * Note that rtc_irq_set_freq() should previously have been used to
677 * specify the desired frequency of periodic IRQ task->func() callbacks.
679 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
681 int err = 0;
682 unsigned long flags;
684 retry:
685 spin_lock_irqsave(&rtc->irq_task_lock, flags);
686 if (rtc->irq_task != NULL && task == NULL)
687 err = -EBUSY;
688 if (rtc->irq_task != task)
689 err = -EACCES;
690 if (!err) {
691 if (rtc_update_hrtimer(rtc, enabled) < 0) {
692 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
693 cpu_relax();
694 goto retry;
696 rtc->pie_enabled = enabled;
698 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
699 return err;
701 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
704 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
705 * @rtc: the rtc device
706 * @task: currently registered with rtc_irq_register()
707 * @freq: positive frequency with which task->func() will be called
708 * Context: any
710 * Note that rtc_irq_set_state() is used to enable or disable the
711 * periodic IRQs.
713 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
715 int err = 0;
716 unsigned long flags;
718 if (freq <= 0 || freq > RTC_MAX_FREQ)
719 return -EINVAL;
720 retry:
721 spin_lock_irqsave(&rtc->irq_task_lock, flags);
722 if (rtc->irq_task != NULL && task == NULL)
723 err = -EBUSY;
724 if (rtc->irq_task != task)
725 err = -EACCES;
726 if (!err) {
727 rtc->irq_freq = freq;
728 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
729 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
730 cpu_relax();
731 goto retry;
734 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
735 return err;
737 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
740 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
741 * @rtc rtc device
742 * @timer timer being added.
744 * Enqueues a timer onto the rtc devices timerqueue and sets
745 * the next alarm event appropriately.
747 * Sets the enabled bit on the added timer.
749 * Must hold ops_lock for proper serialization of timerqueue
751 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
753 timer->enabled = 1;
754 timerqueue_add(&rtc->timerqueue, &timer->node);
755 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
756 struct rtc_wkalrm alarm;
757 int err;
758 alarm.time = rtc_ktime_to_tm(timer->node.expires);
759 alarm.enabled = 1;
760 err = __rtc_set_alarm(rtc, &alarm);
761 if (err == -ETIME)
762 schedule_work(&rtc->irqwork);
763 else if (err) {
764 timerqueue_del(&rtc->timerqueue, &timer->node);
765 timer->enabled = 0;
766 return err;
769 return 0;
772 static void rtc_alarm_disable(struct rtc_device *rtc)
774 struct rtc_wkalrm alarm;
775 struct rtc_time tm;
777 __rtc_read_time(rtc, &tm);
779 alarm.time = rtc_ktime_to_tm(ktime_add(rtc_tm_to_ktime(tm),
780 ktime_set(300, 0)));
781 alarm.enabled = 0;
783 ___rtc_set_alarm(rtc, &alarm);
787 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
788 * @rtc rtc device
789 * @timer timer being removed.
791 * Removes a timer onto the rtc devices timerqueue and sets
792 * the next alarm event appropriately.
794 * Clears the enabled bit on the removed timer.
796 * Must hold ops_lock for proper serialization of timerqueue
798 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
800 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
801 timerqueue_del(&rtc->timerqueue, &timer->node);
802 timer->enabled = 0;
803 if (next == &timer->node) {
804 struct rtc_wkalrm alarm;
805 int err;
806 next = timerqueue_getnext(&rtc->timerqueue);
807 if (!next) {
808 rtc_alarm_disable(rtc);
809 return;
811 alarm.time = rtc_ktime_to_tm(next->expires);
812 alarm.enabled = 1;
813 err = __rtc_set_alarm(rtc, &alarm);
814 if (err == -ETIME)
815 schedule_work(&rtc->irqwork);
820 * rtc_timer_do_work - Expires rtc timers
821 * @rtc rtc device
822 * @timer timer being removed.
824 * Expires rtc timers. Reprograms next alarm event if needed.
825 * Called via worktask.
827 * Serializes access to timerqueue via ops_lock mutex
829 void rtc_timer_do_work(struct work_struct *work)
831 struct rtc_timer *timer;
832 struct timerqueue_node *next;
833 ktime_t now;
834 struct rtc_time tm;
836 struct rtc_device *rtc =
837 container_of(work, struct rtc_device, irqwork);
839 mutex_lock(&rtc->ops_lock);
840 again:
841 __rtc_read_time(rtc, &tm);
842 now = rtc_tm_to_ktime(tm);
843 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
844 if (next->expires.tv64 > now.tv64)
845 break;
847 /* expire timer */
848 timer = container_of(next, struct rtc_timer, node);
849 timerqueue_del(&rtc->timerqueue, &timer->node);
850 timer->enabled = 0;
851 if (timer->task.func)
852 timer->task.func(timer->task.private_data);
854 /* Re-add/fwd periodic timers */
855 if (ktime_to_ns(timer->period)) {
856 timer->node.expires = ktime_add(timer->node.expires,
857 timer->period);
858 timer->enabled = 1;
859 timerqueue_add(&rtc->timerqueue, &timer->node);
863 /* Set next alarm */
864 if (next) {
865 struct rtc_wkalrm alarm;
866 int err;
867 alarm.time = rtc_ktime_to_tm(next->expires);
868 alarm.enabled = 1;
869 err = __rtc_set_alarm(rtc, &alarm);
870 if (err == -ETIME)
871 goto again;
872 } else
873 rtc_alarm_disable(rtc);
875 mutex_unlock(&rtc->ops_lock);
879 /* rtc_timer_init - Initializes an rtc_timer
880 * @timer: timer to be intiialized
881 * @f: function pointer to be called when timer fires
882 * @data: private data passed to function pointer
884 * Kernel interface to initializing an rtc_timer.
886 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
888 timerqueue_init(&timer->node);
889 timer->enabled = 0;
890 timer->task.func = f;
891 timer->task.private_data = data;
894 /* rtc_timer_start - Sets an rtc_timer to fire in the future
895 * @ rtc: rtc device to be used
896 * @ timer: timer being set
897 * @ expires: time at which to expire the timer
898 * @ period: period that the timer will recur
900 * Kernel interface to set an rtc_timer
902 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
903 ktime_t expires, ktime_t period)
905 int ret = 0;
906 mutex_lock(&rtc->ops_lock);
907 if (timer->enabled)
908 rtc_timer_remove(rtc, timer);
910 timer->node.expires = expires;
911 timer->period = period;
913 ret = rtc_timer_enqueue(rtc, timer);
915 mutex_unlock(&rtc->ops_lock);
916 return ret;
919 /* rtc_timer_cancel - Stops an rtc_timer
920 * @ rtc: rtc device to be used
921 * @ timer: timer being set
923 * Kernel interface to cancel an rtc_timer
925 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
927 int ret = 0;
928 mutex_lock(&rtc->ops_lock);
929 if (timer->enabled)
930 rtc_timer_remove(rtc, timer);
931 mutex_unlock(&rtc->ops_lock);
932 return ret;