2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
269 #include <net/icmp.h>
271 #include <net/xfrm.h>
273 #include <net/netdma.h>
274 #include <net/sock.h>
276 #include <asm/uaccess.h>
277 #include <asm/ioctls.h>
279 int sysctl_tcp_fin_timeout __read_mostly
= TCP_FIN_TIMEOUT
;
281 struct percpu_counter tcp_orphan_count
;
282 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
284 int sysctl_tcp_mem
[3] __read_mostly
;
285 int sysctl_tcp_wmem
[3] __read_mostly
;
286 int sysctl_tcp_rmem
[3] __read_mostly
;
288 EXPORT_SYMBOL(sysctl_tcp_mem
);
289 EXPORT_SYMBOL(sysctl_tcp_rmem
);
290 EXPORT_SYMBOL(sysctl_tcp_wmem
);
292 atomic_t tcp_memory_allocated
; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated
);
296 * Current number of TCP sockets.
298 struct percpu_counter tcp_sockets_allocated
;
299 EXPORT_SYMBOL(tcp_sockets_allocated
);
304 struct tcp_splice_state
{
305 struct pipe_inode_info
*pipe
;
311 * Pressure flag: try to collapse.
312 * Technical note: it is used by multiple contexts non atomically.
313 * All the __sk_mem_schedule() is of this nature: accounting
314 * is strict, actions are advisory and have some latency.
316 int tcp_memory_pressure __read_mostly
;
318 EXPORT_SYMBOL(tcp_memory_pressure
);
320 void tcp_enter_memory_pressure(struct sock
*sk
)
322 if (!tcp_memory_pressure
) {
323 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
324 tcp_memory_pressure
= 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure
);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
336 int period
= timeout
;
339 while (seconds
> period
&& res
< 255) {
342 if (timeout
> rto_max
)
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
359 if (timeout
> rto_max
)
368 * Wait for a TCP event.
370 * Note that we don't need to lock the socket, as the upper poll layers
371 * take care of normal races (between the test and the event) and we don't
372 * go look at any of the socket buffers directly.
374 unsigned int tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
377 struct sock
*sk
= sock
->sk
;
378 struct tcp_sock
*tp
= tcp_sk(sk
);
380 sock_poll_wait(file
, sk
->sk_sleep
, wait
);
381 if (sk
->sk_state
== TCP_LISTEN
)
382 return inet_csk_listen_poll(sk
);
384 /* Socket is not locked. We are protected from async events
385 * by poll logic and correct handling of state changes
386 * made by other threads is impossible in any case.
394 * POLLHUP is certainly not done right. But poll() doesn't
395 * have a notion of HUP in just one direction, and for a
396 * socket the read side is more interesting.
398 * Some poll() documentation says that POLLHUP is incompatible
399 * with the POLLOUT/POLLWR flags, so somebody should check this
400 * all. But careful, it tends to be safer to return too many
401 * bits than too few, and you can easily break real applications
402 * if you don't tell them that something has hung up!
406 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
407 * our fs/select.c). It means that after we received EOF,
408 * poll always returns immediately, making impossible poll() on write()
409 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
410 * if and only if shutdown has been made in both directions.
411 * Actually, it is interesting to look how Solaris and DUX
412 * solve this dilemma. I would prefer, if POLLHUP were maskable,
413 * then we could set it on SND_SHUTDOWN. BTW examples given
414 * in Stevens' books assume exactly this behaviour, it explains
415 * why POLLHUP is incompatible with POLLOUT. --ANK
417 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
418 * blocking on fresh not-connected or disconnected socket. --ANK
420 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| sk
->sk_state
== TCP_CLOSE
)
422 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
423 mask
|= POLLIN
| POLLRDNORM
| POLLRDHUP
;
426 if ((1 << sk
->sk_state
) & ~(TCPF_SYN_SENT
| TCPF_SYN_RECV
)) {
427 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
429 if (tp
->urg_seq
== tp
->copied_seq
&&
430 !sock_flag(sk
, SOCK_URGINLINE
) &&
434 /* Potential race condition. If read of tp below will
435 * escape above sk->sk_state, we can be illegally awaken
436 * in SYN_* states. */
437 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
438 mask
|= POLLIN
| POLLRDNORM
;
440 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
441 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
)) {
442 mask
|= POLLOUT
| POLLWRNORM
;
443 } else { /* send SIGIO later */
444 set_bit(SOCK_ASYNC_NOSPACE
,
445 &sk
->sk_socket
->flags
);
446 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
448 /* Race breaker. If space is freed after
449 * wspace test but before the flags are set,
450 * IO signal will be lost.
452 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
))
453 mask
|= POLLOUT
| POLLWRNORM
;
457 if (tp
->urg_data
& TCP_URG_VALID
)
463 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
465 struct tcp_sock
*tp
= tcp_sk(sk
);
470 if (sk
->sk_state
== TCP_LISTEN
)
474 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
476 else if (sock_flag(sk
, SOCK_URGINLINE
) ||
478 before(tp
->urg_seq
, tp
->copied_seq
) ||
479 !before(tp
->urg_seq
, tp
->rcv_nxt
)) {
482 answ
= tp
->rcv_nxt
- tp
->copied_seq
;
484 /* Subtract 1, if FIN is in queue. */
485 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
487 answ
-= tcp_hdr(skb
)->fin
;
489 answ
= tp
->urg_seq
- tp
->copied_seq
;
493 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
496 if (sk
->sk_state
== TCP_LISTEN
)
499 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
502 answ
= tp
->write_seq
- tp
->snd_una
;
508 return put_user(answ
, (int __user
*)arg
);
511 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
513 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
514 tp
->pushed_seq
= tp
->write_seq
;
517 static inline int forced_push(struct tcp_sock
*tp
)
519 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
522 static inline void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
524 struct tcp_sock
*tp
= tcp_sk(sk
);
525 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
528 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
529 tcb
->flags
= TCPCB_FLAG_ACK
;
531 skb_header_release(skb
);
532 tcp_add_write_queue_tail(sk
, skb
);
533 sk
->sk_wmem_queued
+= skb
->truesize
;
534 sk_mem_charge(sk
, skb
->truesize
);
535 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
536 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
539 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
,
543 tp
->snd_up
= tp
->write_seq
;
546 static inline void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
549 struct tcp_sock
*tp
= tcp_sk(sk
);
551 if (tcp_send_head(sk
)) {
552 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
553 if (!(flags
& MSG_MORE
) || forced_push(tp
))
554 tcp_mark_push(tp
, skb
);
555 tcp_mark_urg(tp
, flags
, skb
);
556 __tcp_push_pending_frames(sk
, mss_now
,
557 (flags
& MSG_MORE
) ? TCP_NAGLE_CORK
: nonagle
);
561 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
562 unsigned int offset
, size_t len
)
564 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
567 ret
= skb_splice_bits(skb
, offset
, tss
->pipe
, min(rd_desc
->count
, len
),
570 rd_desc
->count
-= ret
;
574 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
576 /* Store TCP splice context information in read_descriptor_t. */
577 read_descriptor_t rd_desc
= {
582 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
586 * tcp_splice_read - splice data from TCP socket to a pipe
587 * @sock: socket to splice from
588 * @ppos: position (not valid)
589 * @pipe: pipe to splice to
590 * @len: number of bytes to splice
591 * @flags: splice modifier flags
594 * Will read pages from given socket and fill them into a pipe.
597 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
598 struct pipe_inode_info
*pipe
, size_t len
,
601 struct sock
*sk
= sock
->sk
;
602 struct tcp_splice_state tss
= {
612 * We can't seek on a socket input
621 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
623 ret
= __tcp_splice_read(sk
, &tss
);
629 if (sock_flag(sk
, SOCK_DONE
))
632 ret
= sock_error(sk
);
635 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
637 if (sk
->sk_state
== TCP_CLOSE
) {
639 * This occurs when user tries to read
640 * from never connected socket.
642 if (!sock_flag(sk
, SOCK_DONE
))
650 sk_wait_data(sk
, &timeo
);
651 if (signal_pending(current
)) {
652 ret
= sock_intr_errno(timeo
);
665 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
666 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
667 signal_pending(current
))
679 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
)
683 /* The TCP header must be at least 32-bit aligned. */
684 size
= ALIGN(size
, 4);
686 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
688 if (sk_wmem_schedule(sk
, skb
->truesize
)) {
690 * Make sure that we have exactly size bytes
691 * available to the caller, no more, no less.
693 skb_reserve(skb
, skb_tailroom(skb
) - size
);
698 sk
->sk_prot
->enter_memory_pressure(sk
);
699 sk_stream_moderate_sndbuf(sk
);
704 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
707 struct tcp_sock
*tp
= tcp_sk(sk
);
708 u32 xmit_size_goal
, old_size_goal
;
710 xmit_size_goal
= mss_now
;
712 if (large_allowed
&& sk_can_gso(sk
)) {
713 xmit_size_goal
= ((sk
->sk_gso_max_size
- 1) -
714 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
715 inet_csk(sk
)->icsk_ext_hdr_len
-
718 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
720 /* We try hard to avoid divides here */
721 old_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
723 if (likely(old_size_goal
<= xmit_size_goal
&&
724 old_size_goal
+ mss_now
> xmit_size_goal
)) {
725 xmit_size_goal
= old_size_goal
;
727 tp
->xmit_size_goal_segs
= xmit_size_goal
/ mss_now
;
728 xmit_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
732 return max(xmit_size_goal
, mss_now
);
735 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
739 mss_now
= tcp_current_mss(sk
);
740 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
745 static ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
**pages
, int poffset
,
746 size_t psize
, int flags
)
748 struct tcp_sock
*tp
= tcp_sk(sk
);
749 int mss_now
, size_goal
;
752 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
754 /* Wait for a connection to finish. */
755 if ((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
756 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
759 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
761 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
765 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
769 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
770 struct page
*page
= pages
[poffset
/ PAGE_SIZE
];
771 int copy
, i
, can_coalesce
;
772 int offset
= poffset
% PAGE_SIZE
;
773 int size
= min_t(size_t, psize
, PAGE_SIZE
- offset
);
775 if (!tcp_send_head(sk
) || (copy
= size_goal
- skb
->len
) <= 0) {
777 if (!sk_stream_memory_free(sk
))
778 goto wait_for_sndbuf
;
780 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
782 goto wait_for_memory
;
791 i
= skb_shinfo(skb
)->nr_frags
;
792 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
793 if (!can_coalesce
&& i
>= MAX_SKB_FRAGS
) {
794 tcp_mark_push(tp
, skb
);
797 if (!sk_wmem_schedule(sk
, copy
))
798 goto wait_for_memory
;
801 skb_shinfo(skb
)->frags
[i
- 1].size
+= copy
;
804 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
808 skb
->data_len
+= copy
;
809 skb
->truesize
+= copy
;
810 sk
->sk_wmem_queued
+= copy
;
811 sk_mem_charge(sk
, copy
);
812 skb
->ip_summed
= CHECKSUM_PARTIAL
;
813 tp
->write_seq
+= copy
;
814 TCP_SKB_CB(skb
)->end_seq
+= copy
;
815 skb_shinfo(skb
)->gso_segs
= 0;
818 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_PSH
;
822 if (!(psize
-= copy
))
825 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
828 if (forced_push(tp
)) {
829 tcp_mark_push(tp
, skb
);
830 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
831 } else if (skb
== tcp_send_head(sk
))
832 tcp_push_one(sk
, mss_now
);
836 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
839 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
841 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
844 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
849 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
856 return sk_stream_error(sk
, flags
, err
);
859 ssize_t
tcp_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
860 size_t size
, int flags
)
863 struct sock
*sk
= sock
->sk
;
865 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
866 !(sk
->sk_route_caps
& NETIF_F_ALL_CSUM
))
867 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
871 res
= do_tcp_sendpages(sk
, &page
, offset
, size
, flags
);
877 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
878 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
880 static inline int select_size(struct sock
*sk
)
882 struct tcp_sock
*tp
= tcp_sk(sk
);
883 int tmp
= tp
->mss_cache
;
885 if (sk
->sk_route_caps
& NETIF_F_SG
) {
889 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
891 if (tmp
>= pgbreak
&&
892 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
900 int tcp_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*msg
,
903 struct sock
*sk
= sock
->sk
;
905 struct tcp_sock
*tp
= tcp_sk(sk
);
908 int mss_now
, size_goal
;
915 flags
= msg
->msg_flags
;
916 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
918 /* Wait for a connection to finish. */
919 if ((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
920 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
923 /* This should be in poll */
924 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
926 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
928 /* Ok commence sending. */
929 iovlen
= msg
->msg_iovlen
;
934 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
937 while (--iovlen
>= 0) {
938 int seglen
= iov
->iov_len
;
939 unsigned char __user
*from
= iov
->iov_base
;
947 skb
= tcp_write_queue_tail(sk
);
948 if (tcp_send_head(sk
)) {
949 if (skb
->ip_summed
== CHECKSUM_NONE
)
951 copy
= max
- skb
->len
;
956 /* Allocate new segment. If the interface is SG,
957 * allocate skb fitting to single page.
959 if (!sk_stream_memory_free(sk
))
960 goto wait_for_sndbuf
;
962 skb
= sk_stream_alloc_skb(sk
, select_size(sk
),
965 goto wait_for_memory
;
968 * Check whether we can use HW checksum.
970 if (sk
->sk_route_caps
& NETIF_F_ALL_CSUM
)
971 skb
->ip_summed
= CHECKSUM_PARTIAL
;
978 /* Try to append data to the end of skb. */
982 /* Where to copy to? */
983 if (skb_tailroom(skb
) > 0) {
984 /* We have some space in skb head. Superb! */
985 if (copy
> skb_tailroom(skb
))
986 copy
= skb_tailroom(skb
);
987 if ((err
= skb_add_data(skb
, from
, copy
)) != 0)
991 int i
= skb_shinfo(skb
)->nr_frags
;
992 struct page
*page
= TCP_PAGE(sk
);
993 int off
= TCP_OFF(sk
);
995 if (skb_can_coalesce(skb
, i
, page
, off
) &&
997 /* We can extend the last page
1000 } else if (i
== MAX_SKB_FRAGS
||
1002 !(sk
->sk_route_caps
& NETIF_F_SG
))) {
1003 /* Need to add new fragment and cannot
1004 * do this because interface is non-SG,
1005 * or because all the page slots are
1007 tcp_mark_push(tp
, skb
);
1010 if (off
== PAGE_SIZE
) {
1012 TCP_PAGE(sk
) = page
= NULL
;
1018 if (copy
> PAGE_SIZE
- off
)
1019 copy
= PAGE_SIZE
- off
;
1021 if (!sk_wmem_schedule(sk
, copy
))
1022 goto wait_for_memory
;
1025 /* Allocate new cache page. */
1026 if (!(page
= sk_stream_alloc_page(sk
)))
1027 goto wait_for_memory
;
1030 /* Time to copy data. We are close to
1032 err
= skb_copy_to_page(sk
, from
, skb
, page
,
1035 /* If this page was new, give it to the
1036 * socket so it does not get leaked.
1038 if (!TCP_PAGE(sk
)) {
1039 TCP_PAGE(sk
) = page
;
1045 /* Update the skb. */
1047 skb_shinfo(skb
)->frags
[i
- 1].size
+=
1050 skb_fill_page_desc(skb
, i
, page
, off
, copy
);
1053 } else if (off
+ copy
< PAGE_SIZE
) {
1055 TCP_PAGE(sk
) = page
;
1059 TCP_OFF(sk
) = off
+ copy
;
1063 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_PSH
;
1065 tp
->write_seq
+= copy
;
1066 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1067 skb_shinfo(skb
)->gso_segs
= 0;
1071 if ((seglen
-= copy
) == 0 && iovlen
== 0)
1074 if (skb
->len
< max
|| (flags
& MSG_OOB
))
1077 if (forced_push(tp
)) {
1078 tcp_mark_push(tp
, skb
);
1079 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1080 } else if (skb
== tcp_send_head(sk
))
1081 tcp_push_one(sk
, mss_now
);
1085 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1088 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
1090 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
1093 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1099 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
1100 TCP_CHECK_TIMER(sk
);
1106 tcp_unlink_write_queue(skb
, sk
);
1107 /* It is the one place in all of TCP, except connection
1108 * reset, where we can be unlinking the send_head.
1110 tcp_check_send_head(sk
, skb
);
1111 sk_wmem_free_skb(sk
, skb
);
1118 err
= sk_stream_error(sk
, flags
, err
);
1119 TCP_CHECK_TIMER(sk
);
1125 * Handle reading urgent data. BSD has very simple semantics for
1126 * this, no blocking and very strange errors 8)
1129 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1131 struct tcp_sock
*tp
= tcp_sk(sk
);
1133 /* No URG data to read. */
1134 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1135 tp
->urg_data
== TCP_URG_READ
)
1136 return -EINVAL
; /* Yes this is right ! */
1138 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1141 if (tp
->urg_data
& TCP_URG_VALID
) {
1143 char c
= tp
->urg_data
;
1145 if (!(flags
& MSG_PEEK
))
1146 tp
->urg_data
= TCP_URG_READ
;
1148 /* Read urgent data. */
1149 msg
->msg_flags
|= MSG_OOB
;
1152 if (!(flags
& MSG_TRUNC
))
1153 err
= memcpy_toiovec(msg
->msg_iov
, &c
, 1);
1156 msg
->msg_flags
|= MSG_TRUNC
;
1158 return err
? -EFAULT
: len
;
1161 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1164 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1165 * the available implementations agree in this case:
1166 * this call should never block, independent of the
1167 * blocking state of the socket.
1168 * Mike <pall@rz.uni-karlsruhe.de>
1173 /* Clean up the receive buffer for full frames taken by the user,
1174 * then send an ACK if necessary. COPIED is the number of bytes
1175 * tcp_recvmsg has given to the user so far, it speeds up the
1176 * calculation of whether or not we must ACK for the sake of
1179 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1181 struct tcp_sock
*tp
= tcp_sk(sk
);
1182 int time_to_ack
= 0;
1185 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1187 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1188 KERN_INFO
"cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1189 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1192 if (inet_csk_ack_scheduled(sk
)) {
1193 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1194 /* Delayed ACKs frequently hit locked sockets during bulk
1196 if (icsk
->icsk_ack
.blocked
||
1197 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1198 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1200 * If this read emptied read buffer, we send ACK, if
1201 * connection is not bidirectional, user drained
1202 * receive buffer and there was a small segment
1206 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1207 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1208 !icsk
->icsk_ack
.pingpong
)) &&
1209 !atomic_read(&sk
->sk_rmem_alloc
)))
1213 /* We send an ACK if we can now advertise a non-zero window
1214 * which has been raised "significantly".
1216 * Even if window raised up to infinity, do not send window open ACK
1217 * in states, where we will not receive more. It is useless.
1219 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1220 __u32 rcv_window_now
= tcp_receive_window(tp
);
1222 /* Optimize, __tcp_select_window() is not cheap. */
1223 if (2*rcv_window_now
<= tp
->window_clamp
) {
1224 __u32 new_window
= __tcp_select_window(sk
);
1226 /* Send ACK now, if this read freed lots of space
1227 * in our buffer. Certainly, new_window is new window.
1228 * We can advertise it now, if it is not less than current one.
1229 * "Lots" means "at least twice" here.
1231 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1239 static void tcp_prequeue_process(struct sock
*sk
)
1241 struct sk_buff
*skb
;
1242 struct tcp_sock
*tp
= tcp_sk(sk
);
1244 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPPREQUEUED
);
1246 /* RX process wants to run with disabled BHs, though it is not
1249 while ((skb
= __skb_dequeue(&tp
->ucopy
.prequeue
)) != NULL
)
1250 sk_backlog_rcv(sk
, skb
);
1253 /* Clear memory counter. */
1254 tp
->ucopy
.memory
= 0;
1257 static inline struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1259 struct sk_buff
*skb
;
1262 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1263 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1264 if (tcp_hdr(skb
)->syn
)
1266 if (offset
< skb
->len
|| tcp_hdr(skb
)->fin
) {
1275 * This routine provides an alternative to tcp_recvmsg() for routines
1276 * that would like to handle copying from skbuffs directly in 'sendfile'
1279 * - It is assumed that the socket was locked by the caller.
1280 * - The routine does not block.
1281 * - At present, there is no support for reading OOB data
1282 * or for 'peeking' the socket using this routine
1283 * (although both would be easy to implement).
1285 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1286 sk_read_actor_t recv_actor
)
1288 struct sk_buff
*skb
;
1289 struct tcp_sock
*tp
= tcp_sk(sk
);
1290 u32 seq
= tp
->copied_seq
;
1294 if (sk
->sk_state
== TCP_LISTEN
)
1296 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1297 if (offset
< skb
->len
) {
1301 len
= skb
->len
- offset
;
1302 /* Stop reading if we hit a patch of urgent data */
1304 u32 urg_offset
= tp
->urg_seq
- seq
;
1305 if (urg_offset
< len
)
1310 used
= recv_actor(desc
, skb
, offset
, len
);
1315 } else if (used
<= len
) {
1321 * If recv_actor drops the lock (e.g. TCP splice
1322 * receive) the skb pointer might be invalid when
1323 * getting here: tcp_collapse might have deleted it
1324 * while aggregating skbs from the socket queue.
1326 skb
= tcp_recv_skb(sk
, seq
-1, &offset
);
1327 if (!skb
|| (offset
+1 != skb
->len
))
1330 if (tcp_hdr(skb
)->fin
) {
1331 sk_eat_skb(sk
, skb
, 0);
1335 sk_eat_skb(sk
, skb
, 0);
1339 tp
->copied_seq
= seq
;
1341 tcp_rcv_space_adjust(sk
);
1343 /* Clean up data we have read: This will do ACK frames. */
1345 tcp_cleanup_rbuf(sk
, copied
);
1350 * This routine copies from a sock struct into the user buffer.
1352 * Technical note: in 2.3 we work on _locked_ socket, so that
1353 * tricks with *seq access order and skb->users are not required.
1354 * Probably, code can be easily improved even more.
1357 int tcp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1358 size_t len
, int nonblock
, int flags
, int *addr_len
)
1360 struct tcp_sock
*tp
= tcp_sk(sk
);
1366 int target
; /* Read at least this many bytes */
1368 struct task_struct
*user_recv
= NULL
;
1369 int copied_early
= 0;
1370 struct sk_buff
*skb
;
1375 TCP_CHECK_TIMER(sk
);
1378 if (sk
->sk_state
== TCP_LISTEN
)
1381 timeo
= sock_rcvtimeo(sk
, nonblock
);
1383 /* Urgent data needs to be handled specially. */
1384 if (flags
& MSG_OOB
)
1387 seq
= &tp
->copied_seq
;
1388 if (flags
& MSG_PEEK
) {
1389 peek_seq
= tp
->copied_seq
;
1393 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1395 #ifdef CONFIG_NET_DMA
1396 tp
->ucopy
.dma_chan
= NULL
;
1398 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
1403 available
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- (*seq
);
1404 if ((available
< target
) &&
1405 (len
> sysctl_tcp_dma_copybreak
) && !(flags
& MSG_PEEK
) &&
1406 !sysctl_tcp_low_latency
&&
1407 dma_find_channel(DMA_MEMCPY
)) {
1408 preempt_enable_no_resched();
1409 tp
->ucopy
.pinned_list
=
1410 dma_pin_iovec_pages(msg
->msg_iov
, len
);
1412 preempt_enable_no_resched();
1420 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1421 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1424 if (signal_pending(current
)) {
1425 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1430 /* Next get a buffer. */
1432 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1433 /* Now that we have two receive queues this
1436 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1437 KERN_INFO
"recvmsg bug: copied %X "
1438 "seq %X rcvnxt %X fl %X\n", *seq
,
1439 TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1443 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1444 if (tcp_hdr(skb
)->syn
)
1446 if (offset
< skb
->len
)
1448 if (tcp_hdr(skb
)->fin
)
1450 WARN(!(flags
& MSG_PEEK
), KERN_INFO
"recvmsg bug 2: "
1451 "copied %X seq %X rcvnxt %X fl %X\n",
1452 *seq
, TCP_SKB_CB(skb
)->seq
,
1453 tp
->rcv_nxt
, flags
);
1456 /* Well, if we have backlog, try to process it now yet. */
1458 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1463 sk
->sk_state
== TCP_CLOSE
||
1464 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1466 signal_pending(current
))
1469 if (sock_flag(sk
, SOCK_DONE
))
1473 copied
= sock_error(sk
);
1477 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1480 if (sk
->sk_state
== TCP_CLOSE
) {
1481 if (!sock_flag(sk
, SOCK_DONE
)) {
1482 /* This occurs when user tries to read
1483 * from never connected socket.
1496 if (signal_pending(current
)) {
1497 copied
= sock_intr_errno(timeo
);
1502 tcp_cleanup_rbuf(sk
, copied
);
1504 if (!sysctl_tcp_low_latency
&& tp
->ucopy
.task
== user_recv
) {
1505 /* Install new reader */
1506 if (!user_recv
&& !(flags
& (MSG_TRUNC
| MSG_PEEK
))) {
1507 user_recv
= current
;
1508 tp
->ucopy
.task
= user_recv
;
1509 tp
->ucopy
.iov
= msg
->msg_iov
;
1512 tp
->ucopy
.len
= len
;
1514 WARN_ON(tp
->copied_seq
!= tp
->rcv_nxt
&&
1515 !(flags
& (MSG_PEEK
| MSG_TRUNC
)));
1517 /* Ugly... If prequeue is not empty, we have to
1518 * process it before releasing socket, otherwise
1519 * order will be broken at second iteration.
1520 * More elegant solution is required!!!
1522 * Look: we have the following (pseudo)queues:
1524 * 1. packets in flight
1529 * Each queue can be processed only if the next ones
1530 * are empty. At this point we have empty receive_queue.
1531 * But prequeue _can_ be not empty after 2nd iteration,
1532 * when we jumped to start of loop because backlog
1533 * processing added something to receive_queue.
1534 * We cannot release_sock(), because backlog contains
1535 * packets arrived _after_ prequeued ones.
1537 * Shortly, algorithm is clear --- to process all
1538 * the queues in order. We could make it more directly,
1539 * requeueing packets from backlog to prequeue, if
1540 * is not empty. It is more elegant, but eats cycles,
1543 if (!skb_queue_empty(&tp
->ucopy
.prequeue
))
1546 /* __ Set realtime policy in scheduler __ */
1549 if (copied
>= target
) {
1550 /* Do not sleep, just process backlog. */
1554 sk_wait_data(sk
, &timeo
);
1556 #ifdef CONFIG_NET_DMA
1557 tp
->ucopy
.wakeup
= 0;
1563 /* __ Restore normal policy in scheduler __ */
1565 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1566 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG
, chunk
);
1571 if (tp
->rcv_nxt
== tp
->copied_seq
&&
1572 !skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1574 tcp_prequeue_process(sk
);
1576 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1577 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1583 if ((flags
& MSG_PEEK
) &&
1584 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1585 if (net_ratelimit())
1586 printk(KERN_DEBUG
"TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1587 current
->comm
, task_pid_nr(current
));
1588 peek_seq
= tp
->copied_seq
;
1593 /* Ok so how much can we use? */
1594 used
= skb
->len
- offset
;
1598 /* Do we have urgent data here? */
1600 u32 urg_offset
= tp
->urg_seq
- *seq
;
1601 if (urg_offset
< used
) {
1603 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1616 if (!(flags
& MSG_TRUNC
)) {
1617 #ifdef CONFIG_NET_DMA
1618 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1619 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1621 if (tp
->ucopy
.dma_chan
) {
1622 tp
->ucopy
.dma_cookie
= dma_skb_copy_datagram_iovec(
1623 tp
->ucopy
.dma_chan
, skb
, offset
,
1625 tp
->ucopy
.pinned_list
);
1627 if (tp
->ucopy
.dma_cookie
< 0) {
1629 printk(KERN_ALERT
"dma_cookie < 0\n");
1631 /* Exception. Bailout! */
1636 if ((offset
+ used
) == skb
->len
)
1642 err
= skb_copy_datagram_iovec(skb
, offset
,
1643 msg
->msg_iov
, used
);
1645 /* Exception. Bailout! */
1657 tcp_rcv_space_adjust(sk
);
1660 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1662 tcp_fast_path_check(sk
);
1664 if (used
+ offset
< skb
->len
)
1667 if (tcp_hdr(skb
)->fin
)
1669 if (!(flags
& MSG_PEEK
)) {
1670 sk_eat_skb(sk
, skb
, copied_early
);
1676 /* Process the FIN. */
1678 if (!(flags
& MSG_PEEK
)) {
1679 sk_eat_skb(sk
, skb
, copied_early
);
1686 if (!skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1689 tp
->ucopy
.len
= copied
> 0 ? len
: 0;
1691 tcp_prequeue_process(sk
);
1693 if (copied
> 0 && (chunk
= len
- tp
->ucopy
.len
) != 0) {
1694 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1700 tp
->ucopy
.task
= NULL
;
1704 #ifdef CONFIG_NET_DMA
1705 if (tp
->ucopy
.dma_chan
) {
1706 dma_cookie_t done
, used
;
1708 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1710 while (dma_async_memcpy_complete(tp
->ucopy
.dma_chan
,
1711 tp
->ucopy
.dma_cookie
, &done
,
1712 &used
) == DMA_IN_PROGRESS
) {
1713 /* do partial cleanup of sk_async_wait_queue */
1714 while ((skb
= skb_peek(&sk
->sk_async_wait_queue
)) &&
1715 (dma_async_is_complete(skb
->dma_cookie
, done
,
1716 used
) == DMA_SUCCESS
)) {
1717 __skb_dequeue(&sk
->sk_async_wait_queue
);
1722 /* Safe to free early-copied skbs now */
1723 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1724 tp
->ucopy
.dma_chan
= NULL
;
1726 if (tp
->ucopy
.pinned_list
) {
1727 dma_unpin_iovec_pages(tp
->ucopy
.pinned_list
);
1728 tp
->ucopy
.pinned_list
= NULL
;
1732 /* According to UNIX98, msg_name/msg_namelen are ignored
1733 * on connected socket. I was just happy when found this 8) --ANK
1736 /* Clean up data we have read: This will do ACK frames. */
1737 tcp_cleanup_rbuf(sk
, copied
);
1739 TCP_CHECK_TIMER(sk
);
1744 TCP_CHECK_TIMER(sk
);
1749 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
1753 void tcp_set_state(struct sock
*sk
, int state
)
1755 int oldstate
= sk
->sk_state
;
1758 case TCP_ESTABLISHED
:
1759 if (oldstate
!= TCP_ESTABLISHED
)
1760 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1764 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
1765 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
1767 sk
->sk_prot
->unhash(sk
);
1768 if (inet_csk(sk
)->icsk_bind_hash
&&
1769 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
1773 if (oldstate
== TCP_ESTABLISHED
)
1774 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1777 /* Change state AFTER socket is unhashed to avoid closed
1778 * socket sitting in hash tables.
1780 sk
->sk_state
= state
;
1783 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
1786 EXPORT_SYMBOL_GPL(tcp_set_state
);
1789 * State processing on a close. This implements the state shift for
1790 * sending our FIN frame. Note that we only send a FIN for some
1791 * states. A shutdown() may have already sent the FIN, or we may be
1795 static const unsigned char new_state
[16] = {
1796 /* current state: new state: action: */
1797 /* (Invalid) */ TCP_CLOSE
,
1798 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1799 /* TCP_SYN_SENT */ TCP_CLOSE
,
1800 /* TCP_SYN_RECV */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1801 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1
,
1802 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2
,
1803 /* TCP_TIME_WAIT */ TCP_CLOSE
,
1804 /* TCP_CLOSE */ TCP_CLOSE
,
1805 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK
| TCP_ACTION_FIN
,
1806 /* TCP_LAST_ACK */ TCP_LAST_ACK
,
1807 /* TCP_LISTEN */ TCP_CLOSE
,
1808 /* TCP_CLOSING */ TCP_CLOSING
,
1811 static int tcp_close_state(struct sock
*sk
)
1813 int next
= (int)new_state
[sk
->sk_state
];
1814 int ns
= next
& TCP_STATE_MASK
;
1816 tcp_set_state(sk
, ns
);
1818 return next
& TCP_ACTION_FIN
;
1822 * Shutdown the sending side of a connection. Much like close except
1823 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1826 void tcp_shutdown(struct sock
*sk
, int how
)
1828 /* We need to grab some memory, and put together a FIN,
1829 * and then put it into the queue to be sent.
1830 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1832 if (!(how
& SEND_SHUTDOWN
))
1835 /* If we've already sent a FIN, or it's a closed state, skip this. */
1836 if ((1 << sk
->sk_state
) &
1837 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
1838 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
1839 /* Clear out any half completed packets. FIN if needed. */
1840 if (tcp_close_state(sk
))
1845 void tcp_close(struct sock
*sk
, long timeout
)
1847 struct sk_buff
*skb
;
1848 int data_was_unread
= 0;
1852 sk
->sk_shutdown
= SHUTDOWN_MASK
;
1854 if (sk
->sk_state
== TCP_LISTEN
) {
1855 tcp_set_state(sk
, TCP_CLOSE
);
1858 inet_csk_listen_stop(sk
);
1860 goto adjudge_to_death
;
1863 /* We need to flush the recv. buffs. We do this only on the
1864 * descriptor close, not protocol-sourced closes, because the
1865 * reader process may not have drained the data yet!
1867 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
1868 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
-
1870 data_was_unread
+= len
;
1876 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1877 * data was lost. To witness the awful effects of the old behavior of
1878 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1879 * GET in an FTP client, suspend the process, wait for the client to
1880 * advertise a zero window, then kill -9 the FTP client, wheee...
1881 * Note: timeout is always zero in such a case.
1883 if (data_was_unread
) {
1884 /* Unread data was tossed, zap the connection. */
1885 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
1886 tcp_set_state(sk
, TCP_CLOSE
);
1887 tcp_send_active_reset(sk
, sk
->sk_allocation
);
1888 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
1889 /* Check zero linger _after_ checking for unread data. */
1890 sk
->sk_prot
->disconnect(sk
, 0);
1891 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
1892 } else if (tcp_close_state(sk
)) {
1893 /* We FIN if the application ate all the data before
1894 * zapping the connection.
1897 /* RED-PEN. Formally speaking, we have broken TCP state
1898 * machine. State transitions:
1900 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1901 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1902 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1904 * are legal only when FIN has been sent (i.e. in window),
1905 * rather than queued out of window. Purists blame.
1907 * F.e. "RFC state" is ESTABLISHED,
1908 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1910 * The visible declinations are that sometimes
1911 * we enter time-wait state, when it is not required really
1912 * (harmless), do not send active resets, when they are
1913 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1914 * they look as CLOSING or LAST_ACK for Linux)
1915 * Probably, I missed some more holelets.
1921 sk_stream_wait_close(sk
, timeout
);
1924 state
= sk
->sk_state
;
1928 /* It is the last release_sock in its life. It will remove backlog. */
1932 /* Now socket is owned by kernel and we acquire BH lock
1933 to finish close. No need to check for user refs.
1937 WARN_ON(sock_owned_by_user(sk
));
1939 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
1941 /* Have we already been destroyed by a softirq or backlog? */
1942 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
1945 /* This is a (useful) BSD violating of the RFC. There is a
1946 * problem with TCP as specified in that the other end could
1947 * keep a socket open forever with no application left this end.
1948 * We use a 3 minute timeout (about the same as BSD) then kill
1949 * our end. If they send after that then tough - BUT: long enough
1950 * that we won't make the old 4*rto = almost no time - whoops
1953 * Nope, it was not mistake. It is really desired behaviour
1954 * f.e. on http servers, when such sockets are useless, but
1955 * consume significant resources. Let's do it with special
1956 * linger2 option. --ANK
1959 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
1960 struct tcp_sock
*tp
= tcp_sk(sk
);
1961 if (tp
->linger2
< 0) {
1962 tcp_set_state(sk
, TCP_CLOSE
);
1963 tcp_send_active_reset(sk
, GFP_ATOMIC
);
1964 NET_INC_STATS_BH(sock_net(sk
),
1965 LINUX_MIB_TCPABORTONLINGER
);
1967 const int tmo
= tcp_fin_time(sk
);
1969 if (tmo
> TCP_TIMEWAIT_LEN
) {
1970 inet_csk_reset_keepalive_timer(sk
,
1971 tmo
- TCP_TIMEWAIT_LEN
);
1973 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
1978 if (sk
->sk_state
!= TCP_CLOSE
) {
1979 int orphan_count
= percpu_counter_read_positive(
1980 sk
->sk_prot
->orphan_count
);
1983 if (tcp_too_many_orphans(sk
, orphan_count
)) {
1984 if (net_ratelimit())
1985 printk(KERN_INFO
"TCP: too many of orphaned "
1987 tcp_set_state(sk
, TCP_CLOSE
);
1988 tcp_send_active_reset(sk
, GFP_ATOMIC
);
1989 NET_INC_STATS_BH(sock_net(sk
),
1990 LINUX_MIB_TCPABORTONMEMORY
);
1994 if (sk
->sk_state
== TCP_CLOSE
)
1995 inet_csk_destroy_sock(sk
);
1996 /* Otherwise, socket is reprieved until protocol close. */
2004 /* These states need RST on ABORT according to RFC793 */
2006 static inline int tcp_need_reset(int state
)
2008 return (1 << state
) &
2009 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2010 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2013 int tcp_disconnect(struct sock
*sk
, int flags
)
2015 struct inet_sock
*inet
= inet_sk(sk
);
2016 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2017 struct tcp_sock
*tp
= tcp_sk(sk
);
2019 int old_state
= sk
->sk_state
;
2021 if (old_state
!= TCP_CLOSE
)
2022 tcp_set_state(sk
, TCP_CLOSE
);
2024 /* ABORT function of RFC793 */
2025 if (old_state
== TCP_LISTEN
) {
2026 inet_csk_listen_stop(sk
);
2027 } else if (tcp_need_reset(old_state
) ||
2028 (tp
->snd_nxt
!= tp
->write_seq
&&
2029 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2030 /* The last check adjusts for discrepancy of Linux wrt. RFC
2033 tcp_send_active_reset(sk
, gfp_any());
2034 sk
->sk_err
= ECONNRESET
;
2035 } else if (old_state
== TCP_SYN_SENT
)
2036 sk
->sk_err
= ECONNRESET
;
2038 tcp_clear_xmit_timers(sk
);
2039 __skb_queue_purge(&sk
->sk_receive_queue
);
2040 tcp_write_queue_purge(sk
);
2041 __skb_queue_purge(&tp
->out_of_order_queue
);
2042 #ifdef CONFIG_NET_DMA
2043 __skb_queue_purge(&sk
->sk_async_wait_queue
);
2046 inet
->inet_dport
= 0;
2048 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2049 inet_reset_saddr(sk
);
2051 sk
->sk_shutdown
= 0;
2052 sock_reset_flag(sk
, SOCK_DONE
);
2054 if ((tp
->write_seq
+= tp
->max_window
+ 2) == 0)
2056 icsk
->icsk_backoff
= 0;
2058 icsk
->icsk_probes_out
= 0;
2059 tp
->packets_out
= 0;
2060 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2061 tp
->snd_cwnd_cnt
= 0;
2062 tp
->bytes_acked
= 0;
2063 tp
->window_clamp
= 0;
2064 tcp_set_ca_state(sk
, TCP_CA_Open
);
2065 tcp_clear_retrans(tp
);
2066 inet_csk_delack_init(sk
);
2067 tcp_init_send_head(sk
);
2068 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2071 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2073 sk
->sk_error_report(sk
);
2078 * Socket option code for TCP.
2080 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2081 int optname
, char __user
*optval
, unsigned int optlen
)
2083 struct tcp_sock
*tp
= tcp_sk(sk
);
2084 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2088 /* These are data/string values, all the others are ints */
2090 case TCP_CONGESTION
: {
2091 char name
[TCP_CA_NAME_MAX
];
2096 val
= strncpy_from_user(name
, optval
,
2097 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2103 err
= tcp_set_congestion_control(sk
, name
);
2107 case TCP_COOKIE_TRANSACTIONS
: {
2108 struct tcp_cookie_transactions ctd
;
2109 struct tcp_cookie_values
*cvp
= NULL
;
2111 if (sizeof(ctd
) > optlen
)
2113 if (copy_from_user(&ctd
, optval
, sizeof(ctd
)))
2116 if (ctd
.tcpct_used
> sizeof(ctd
.tcpct_value
) ||
2117 ctd
.tcpct_s_data_desired
> TCP_MSS_DESIRED
)
2120 if (ctd
.tcpct_cookie_desired
== 0) {
2121 /* default to global value */
2122 } else if ((0x1 & ctd
.tcpct_cookie_desired
) ||
2123 ctd
.tcpct_cookie_desired
> TCP_COOKIE_MAX
||
2124 ctd
.tcpct_cookie_desired
< TCP_COOKIE_MIN
) {
2128 if (TCP_COOKIE_OUT_NEVER
& ctd
.tcpct_flags
) {
2129 /* Supercedes all other values */
2131 if (tp
->cookie_values
!= NULL
) {
2132 kref_put(&tp
->cookie_values
->kref
,
2133 tcp_cookie_values_release
);
2134 tp
->cookie_values
= NULL
;
2136 tp
->rx_opt
.cookie_in_always
= 0; /* false */
2137 tp
->rx_opt
.cookie_out_never
= 1; /* true */
2142 /* Allocate ancillary memory before locking.
2144 if (ctd
.tcpct_used
> 0 ||
2145 (tp
->cookie_values
== NULL
&&
2146 (sysctl_tcp_cookie_size
> 0 ||
2147 ctd
.tcpct_cookie_desired
> 0 ||
2148 ctd
.tcpct_s_data_desired
> 0))) {
2149 cvp
= kzalloc(sizeof(*cvp
) + ctd
.tcpct_used
,
2155 tp
->rx_opt
.cookie_in_always
=
2156 (TCP_COOKIE_IN_ALWAYS
& ctd
.tcpct_flags
);
2157 tp
->rx_opt
.cookie_out_never
= 0; /* false */
2159 if (tp
->cookie_values
!= NULL
) {
2161 /* Changed values are recorded by a changed
2162 * pointer, ensuring the cookie will differ,
2163 * without separately hashing each value later.
2165 kref_put(&tp
->cookie_values
->kref
,
2166 tcp_cookie_values_release
);
2167 kref_init(&cvp
->kref
);
2168 tp
->cookie_values
= cvp
;
2170 cvp
= tp
->cookie_values
;
2174 cvp
->cookie_desired
= ctd
.tcpct_cookie_desired
;
2176 if (ctd
.tcpct_used
> 0) {
2177 memcpy(cvp
->s_data_payload
, ctd
.tcpct_value
,
2179 cvp
->s_data_desired
= ctd
.tcpct_used
;
2180 cvp
->s_data_constant
= 1; /* true */
2182 /* No constant payload data. */
2183 cvp
->s_data_desired
= ctd
.tcpct_s_data_desired
;
2184 cvp
->s_data_constant
= 0; /* false */
2195 if (optlen
< sizeof(int))
2198 if (get_user(val
, (int __user
*)optval
))
2205 /* Values greater than interface MTU won't take effect. However
2206 * at the point when this call is done we typically don't yet
2207 * know which interface is going to be used */
2208 if (val
< 8 || val
> MAX_TCP_WINDOW
) {
2212 tp
->rx_opt
.user_mss
= val
;
2217 /* TCP_NODELAY is weaker than TCP_CORK, so that
2218 * this option on corked socket is remembered, but
2219 * it is not activated until cork is cleared.
2221 * However, when TCP_NODELAY is set we make
2222 * an explicit push, which overrides even TCP_CORK
2223 * for currently queued segments.
2225 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2226 tcp_push_pending_frames(sk
);
2228 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2233 /* When set indicates to always queue non-full frames.
2234 * Later the user clears this option and we transmit
2235 * any pending partial frames in the queue. This is
2236 * meant to be used alongside sendfile() to get properly
2237 * filled frames when the user (for example) must write
2238 * out headers with a write() call first and then use
2239 * sendfile to send out the data parts.
2241 * TCP_CORK can be set together with TCP_NODELAY and it is
2242 * stronger than TCP_NODELAY.
2245 tp
->nonagle
|= TCP_NAGLE_CORK
;
2247 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2248 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2249 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2250 tcp_push_pending_frames(sk
);
2255 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2258 tp
->keepalive_time
= val
* HZ
;
2259 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2260 !((1 << sk
->sk_state
) &
2261 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2262 __u32 elapsed
= tcp_time_stamp
- tp
->rcv_tstamp
;
2263 if (tp
->keepalive_time
> elapsed
)
2264 elapsed
= tp
->keepalive_time
- elapsed
;
2267 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2272 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2275 tp
->keepalive_intvl
= val
* HZ
;
2278 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2281 tp
->keepalive_probes
= val
;
2284 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2287 icsk
->icsk_syn_retries
= val
;
2293 else if (val
> sysctl_tcp_fin_timeout
/ HZ
)
2296 tp
->linger2
= val
* HZ
;
2299 case TCP_DEFER_ACCEPT
:
2300 /* Translate value in seconds to number of retransmits */
2301 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2302 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2306 case TCP_WINDOW_CLAMP
:
2308 if (sk
->sk_state
!= TCP_CLOSE
) {
2312 tp
->window_clamp
= 0;
2314 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2315 SOCK_MIN_RCVBUF
/ 2 : val
;
2320 icsk
->icsk_ack
.pingpong
= 1;
2322 icsk
->icsk_ack
.pingpong
= 0;
2323 if ((1 << sk
->sk_state
) &
2324 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2325 inet_csk_ack_scheduled(sk
)) {
2326 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2327 tcp_cleanup_rbuf(sk
, 1);
2329 icsk
->icsk_ack
.pingpong
= 1;
2334 #ifdef CONFIG_TCP_MD5SIG
2336 /* Read the IP->Key mappings from userspace */
2337 err
= tp
->af_specific
->md5_parse(sk
, optval
, optlen
);
2350 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2351 unsigned int optlen
)
2353 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2355 if (level
!= SOL_TCP
)
2356 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2358 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2361 #ifdef CONFIG_COMPAT
2362 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2363 char __user
*optval
, unsigned int optlen
)
2365 if (level
!= SOL_TCP
)
2366 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2368 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2371 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2374 /* Return information about state of tcp endpoint in API format. */
2375 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
2377 struct tcp_sock
*tp
= tcp_sk(sk
);
2378 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2379 u32 now
= tcp_time_stamp
;
2381 memset(info
, 0, sizeof(*info
));
2383 info
->tcpi_state
= sk
->sk_state
;
2384 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2385 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2386 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2387 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2389 if (tp
->rx_opt
.tstamp_ok
)
2390 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2391 if (tcp_is_sack(tp
))
2392 info
->tcpi_options
|= TCPI_OPT_SACK
;
2393 if (tp
->rx_opt
.wscale_ok
) {
2394 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2395 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2396 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2399 if (tp
->ecn_flags
&TCP_ECN_OK
)
2400 info
->tcpi_options
|= TCPI_OPT_ECN
;
2402 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
2403 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
2404 info
->tcpi_snd_mss
= tp
->mss_cache
;
2405 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
2407 if (sk
->sk_state
== TCP_LISTEN
) {
2408 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2409 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2411 info
->tcpi_unacked
= tp
->packets_out
;
2412 info
->tcpi_sacked
= tp
->sacked_out
;
2414 info
->tcpi_lost
= tp
->lost_out
;
2415 info
->tcpi_retrans
= tp
->retrans_out
;
2416 info
->tcpi_fackets
= tp
->fackets_out
;
2418 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
2419 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
2420 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
2422 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
2423 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
2424 info
->tcpi_rtt
= jiffies_to_usecs(tp
->srtt
)>>3;
2425 info
->tcpi_rttvar
= jiffies_to_usecs(tp
->mdev
)>>2;
2426 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
2427 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2428 info
->tcpi_advmss
= tp
->advmss
;
2429 info
->tcpi_reordering
= tp
->reordering
;
2431 info
->tcpi_rcv_rtt
= jiffies_to_usecs(tp
->rcv_rtt_est
.rtt
)>>3;
2432 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
2434 info
->tcpi_total_retrans
= tp
->total_retrans
;
2437 EXPORT_SYMBOL_GPL(tcp_get_info
);
2439 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
2440 int optname
, char __user
*optval
, int __user
*optlen
)
2442 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2443 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (get_user(len
, optlen
))
2449 len
= min_t(unsigned int, len
, sizeof(int));
2456 val
= tp
->mss_cache
;
2457 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
2458 val
= tp
->rx_opt
.user_mss
;
2461 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
2464 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
2467 val
= keepalive_time_when(tp
) / HZ
;
2470 val
= keepalive_intvl_when(tp
) / HZ
;
2473 val
= keepalive_probes(tp
);
2476 val
= icsk
->icsk_syn_retries
? : sysctl_tcp_syn_retries
;
2481 val
= (val
? : sysctl_tcp_fin_timeout
) / HZ
;
2483 case TCP_DEFER_ACCEPT
:
2484 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
2485 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
2487 case TCP_WINDOW_CLAMP
:
2488 val
= tp
->window_clamp
;
2491 struct tcp_info info
;
2493 if (get_user(len
, optlen
))
2496 tcp_get_info(sk
, &info
);
2498 len
= min_t(unsigned int, len
, sizeof(info
));
2499 if (put_user(len
, optlen
))
2501 if (copy_to_user(optval
, &info
, len
))
2506 val
= !icsk
->icsk_ack
.pingpong
;
2509 case TCP_CONGESTION
:
2510 if (get_user(len
, optlen
))
2512 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
2513 if (put_user(len
, optlen
))
2515 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
2519 case TCP_COOKIE_TRANSACTIONS
: {
2520 struct tcp_cookie_transactions ctd
;
2521 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
2523 if (get_user(len
, optlen
))
2525 if (len
< sizeof(ctd
))
2528 memset(&ctd
, 0, sizeof(ctd
));
2529 ctd
.tcpct_flags
= (tp
->rx_opt
.cookie_in_always
?
2530 TCP_COOKIE_IN_ALWAYS
: 0)
2531 | (tp
->rx_opt
.cookie_out_never
?
2532 TCP_COOKIE_OUT_NEVER
: 0);
2535 ctd
.tcpct_flags
|= (cvp
->s_data_in
?
2537 | (cvp
->s_data_out
?
2538 TCP_S_DATA_OUT
: 0);
2540 ctd
.tcpct_cookie_desired
= cvp
->cookie_desired
;
2541 ctd
.tcpct_s_data_desired
= cvp
->s_data_desired
;
2543 memcpy(&ctd
.tcpct_value
[0], &cvp
->cookie_pair
[0],
2544 cvp
->cookie_pair_size
);
2545 ctd
.tcpct_used
= cvp
->cookie_pair_size
;
2548 if (put_user(sizeof(ctd
), optlen
))
2550 if (copy_to_user(optval
, &ctd
, sizeof(ctd
)))
2555 return -ENOPROTOOPT
;
2558 if (put_user(len
, optlen
))
2560 if (copy_to_user(optval
, &val
, len
))
2565 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2568 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2570 if (level
!= SOL_TCP
)
2571 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
2573 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2576 #ifdef CONFIG_COMPAT
2577 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
2578 char __user
*optval
, int __user
*optlen
)
2580 if (level
!= SOL_TCP
)
2581 return inet_csk_compat_getsockopt(sk
, level
, optname
,
2583 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2586 EXPORT_SYMBOL(compat_tcp_getsockopt
);
2589 struct sk_buff
*tcp_tso_segment(struct sk_buff
*skb
, int features
)
2591 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
2596 unsigned int oldlen
;
2599 if (!pskb_may_pull(skb
, sizeof(*th
)))
2603 thlen
= th
->doff
* 4;
2604 if (thlen
< sizeof(*th
))
2607 if (!pskb_may_pull(skb
, thlen
))
2610 oldlen
= (u16
)~skb
->len
;
2611 __skb_pull(skb
, thlen
);
2613 mss
= skb_shinfo(skb
)->gso_size
;
2614 if (unlikely(skb
->len
<= mss
))
2617 if (skb_gso_ok(skb
, features
| NETIF_F_GSO_ROBUST
)) {
2618 /* Packet is from an untrusted source, reset gso_segs. */
2619 int type
= skb_shinfo(skb
)->gso_type
;
2627 !(type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))))
2630 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss
);
2636 segs
= skb_segment(skb
, features
);
2640 delta
= htonl(oldlen
+ (thlen
+ mss
));
2644 seq
= ntohl(th
->seq
);
2647 th
->fin
= th
->psh
= 0;
2649 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
2650 (__force u32
)delta
));
2651 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2653 csum_fold(csum_partial(skb_transport_header(skb
),
2660 th
->seq
= htonl(seq
);
2662 } while (skb
->next
);
2664 delta
= htonl(oldlen
+ (skb
->tail
- skb
->transport_header
) +
2666 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
2667 (__force u32
)delta
));
2668 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2669 th
->check
= csum_fold(csum_partial(skb_transport_header(skb
),
2675 EXPORT_SYMBOL(tcp_tso_segment
);
2677 struct sk_buff
**tcp_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2679 struct sk_buff
**pp
= NULL
;
2686 unsigned int mss
= 1;
2692 off
= skb_gro_offset(skb
);
2693 hlen
= off
+ sizeof(*th
);
2694 th
= skb_gro_header_fast(skb
, off
);
2695 if (skb_gro_header_hard(skb
, hlen
)) {
2696 th
= skb_gro_header_slow(skb
, hlen
, off
);
2701 thlen
= th
->doff
* 4;
2702 if (thlen
< sizeof(*th
))
2706 if (skb_gro_header_hard(skb
, hlen
)) {
2707 th
= skb_gro_header_slow(skb
, hlen
, off
);
2712 skb_gro_pull(skb
, thlen
);
2714 len
= skb_gro_len(skb
);
2715 flags
= tcp_flag_word(th
);
2717 for (; (p
= *head
); head
= &p
->next
) {
2718 if (!NAPI_GRO_CB(p
)->same_flow
)
2723 if (*(u32
*)&th
->source
^ *(u32
*)&th2
->source
) {
2724 NAPI_GRO_CB(p
)->same_flow
= 0;
2731 goto out_check_final
;
2734 flush
= NAPI_GRO_CB(p
)->flush
;
2735 flush
|= flags
& TCP_FLAG_CWR
;
2736 flush
|= (flags
^ tcp_flag_word(th2
)) &
2737 ~(TCP_FLAG_CWR
| TCP_FLAG_FIN
| TCP_FLAG_PSH
);
2738 flush
|= th
->ack_seq
^ th2
->ack_seq
;
2739 for (i
= sizeof(*th
); i
< thlen
; i
+= 4)
2740 flush
|= *(u32
*)((u8
*)th
+ i
) ^
2741 *(u32
*)((u8
*)th2
+ i
);
2743 mss
= skb_shinfo(p
)->gso_size
;
2745 flush
|= (len
- 1) >= mss
;
2746 flush
|= (ntohl(th2
->seq
) + skb_gro_len(p
)) ^ ntohl(th
->seq
);
2748 if (flush
|| skb_gro_receive(head
, skb
)) {
2750 goto out_check_final
;
2755 tcp_flag_word(th2
) |= flags
& (TCP_FLAG_FIN
| TCP_FLAG_PSH
);
2759 flush
|= flags
& (TCP_FLAG_URG
| TCP_FLAG_PSH
| TCP_FLAG_RST
|
2760 TCP_FLAG_SYN
| TCP_FLAG_FIN
);
2762 if (p
&& (!NAPI_GRO_CB(skb
)->same_flow
|| flush
))
2766 NAPI_GRO_CB(skb
)->flush
|= flush
;
2770 EXPORT_SYMBOL(tcp_gro_receive
);
2772 int tcp_gro_complete(struct sk_buff
*skb
)
2774 struct tcphdr
*th
= tcp_hdr(skb
);
2776 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
2777 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
2778 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2780 skb_shinfo(skb
)->gso_segs
= NAPI_GRO_CB(skb
)->count
;
2783 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
2787 EXPORT_SYMBOL(tcp_gro_complete
);
2789 #ifdef CONFIG_TCP_MD5SIG
2790 static unsigned long tcp_md5sig_users
;
2791 static struct tcp_md5sig_pool
**tcp_md5sig_pool
;
2792 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock
);
2794 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool
**pool
)
2797 for_each_possible_cpu(cpu
) {
2798 struct tcp_md5sig_pool
*p
= *per_cpu_ptr(pool
, cpu
);
2800 if (p
->md5_desc
.tfm
)
2801 crypto_free_hash(p
->md5_desc
.tfm
);
2809 void tcp_free_md5sig_pool(void)
2811 struct tcp_md5sig_pool
**pool
= NULL
;
2813 spin_lock_bh(&tcp_md5sig_pool_lock
);
2814 if (--tcp_md5sig_users
== 0) {
2815 pool
= tcp_md5sig_pool
;
2816 tcp_md5sig_pool
= NULL
;
2818 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2820 __tcp_free_md5sig_pool(pool
);
2823 EXPORT_SYMBOL(tcp_free_md5sig_pool
);
2825 static struct tcp_md5sig_pool
**__tcp_alloc_md5sig_pool(struct sock
*sk
)
2828 struct tcp_md5sig_pool
**pool
;
2830 pool
= alloc_percpu(struct tcp_md5sig_pool
*);
2834 for_each_possible_cpu(cpu
) {
2835 struct tcp_md5sig_pool
*p
;
2836 struct crypto_hash
*hash
;
2838 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
2841 *per_cpu_ptr(pool
, cpu
) = p
;
2843 hash
= crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC
);
2844 if (!hash
|| IS_ERR(hash
))
2847 p
->md5_desc
.tfm
= hash
;
2851 __tcp_free_md5sig_pool(pool
);
2855 struct tcp_md5sig_pool
**tcp_alloc_md5sig_pool(struct sock
*sk
)
2857 struct tcp_md5sig_pool
**pool
;
2861 spin_lock_bh(&tcp_md5sig_pool_lock
);
2862 pool
= tcp_md5sig_pool
;
2863 if (tcp_md5sig_users
++ == 0) {
2865 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2868 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2872 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2875 /* we cannot hold spinlock here because this may sleep. */
2876 struct tcp_md5sig_pool
**p
= __tcp_alloc_md5sig_pool(sk
);
2877 spin_lock_bh(&tcp_md5sig_pool_lock
);
2880 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2883 pool
= tcp_md5sig_pool
;
2885 /* oops, it has already been assigned. */
2886 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2887 __tcp_free_md5sig_pool(p
);
2889 tcp_md5sig_pool
= pool
= p
;
2890 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2896 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
2898 struct tcp_md5sig_pool
*__tcp_get_md5sig_pool(int cpu
)
2900 struct tcp_md5sig_pool
**p
;
2901 spin_lock_bh(&tcp_md5sig_pool_lock
);
2902 p
= tcp_md5sig_pool
;
2905 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2906 return (p
? *per_cpu_ptr(p
, cpu
) : NULL
);
2909 EXPORT_SYMBOL(__tcp_get_md5sig_pool
);
2911 void __tcp_put_md5sig_pool(void)
2913 tcp_free_md5sig_pool();
2916 EXPORT_SYMBOL(__tcp_put_md5sig_pool
);
2918 int tcp_md5_hash_header(struct tcp_md5sig_pool
*hp
,
2921 struct scatterlist sg
;
2924 __sum16 old_checksum
= th
->check
;
2926 /* options aren't included in the hash */
2927 sg_init_one(&sg
, th
, sizeof(struct tcphdr
));
2928 err
= crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(struct tcphdr
));
2929 th
->check
= old_checksum
;
2933 EXPORT_SYMBOL(tcp_md5_hash_header
);
2935 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
2936 struct sk_buff
*skb
, unsigned header_len
)
2938 struct scatterlist sg
;
2939 const struct tcphdr
*tp
= tcp_hdr(skb
);
2940 struct hash_desc
*desc
= &hp
->md5_desc
;
2942 const unsigned head_data_len
= skb_headlen(skb
) > header_len
?
2943 skb_headlen(skb
) - header_len
: 0;
2944 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
2946 sg_init_table(&sg
, 1);
2948 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
2949 if (crypto_hash_update(desc
, &sg
, head_data_len
))
2952 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
2953 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
2954 sg_set_page(&sg
, f
->page
, f
->size
, f
->page_offset
);
2955 if (crypto_hash_update(desc
, &sg
, f
->size
))
2962 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
2964 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, struct tcp_md5sig_key
*key
)
2966 struct scatterlist sg
;
2968 sg_init_one(&sg
, key
->key
, key
->keylen
);
2969 return crypto_hash_update(&hp
->md5_desc
, &sg
, key
->keylen
);
2972 EXPORT_SYMBOL(tcp_md5_hash_key
);
2977 * Each Responder maintains up to two secret values concurrently for
2978 * efficient secret rollover. Each secret value has 4 states:
2980 * Generating. (tcp_secret_generating != tcp_secret_primary)
2981 * Generates new Responder-Cookies, but not yet used for primary
2982 * verification. This is a short-term state, typically lasting only
2983 * one round trip time (RTT).
2985 * Primary. (tcp_secret_generating == tcp_secret_primary)
2986 * Used both for generation and primary verification.
2988 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
2989 * Used for verification, until the first failure that can be
2990 * verified by the newer Generating secret. At that time, this
2991 * cookie's state is changed to Secondary, and the Generating
2992 * cookie's state is changed to Primary. This is a short-term state,
2993 * typically lasting only one round trip time (RTT).
2995 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
2996 * Used for secondary verification, after primary verification
2997 * failures. This state lasts no more than twice the Maximum Segment
2998 * Lifetime (2MSL). Then, the secret is discarded.
3000 struct tcp_cookie_secret
{
3001 /* The secret is divided into two parts. The digest part is the
3002 * equivalent of previously hashing a secret and saving the state,
3003 * and serves as an initialization vector (IV). The message part
3004 * serves as the trailing secret.
3006 u32 secrets
[COOKIE_WORKSPACE_WORDS
];
3007 unsigned long expires
;
3010 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3011 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3012 #define TCP_SECRET_LIFE (HZ * 600)
3014 static struct tcp_cookie_secret tcp_secret_one
;
3015 static struct tcp_cookie_secret tcp_secret_two
;
3017 /* Essentially a circular list, without dynamic allocation. */
3018 static struct tcp_cookie_secret
*tcp_secret_generating
;
3019 static struct tcp_cookie_secret
*tcp_secret_primary
;
3020 static struct tcp_cookie_secret
*tcp_secret_retiring
;
3021 static struct tcp_cookie_secret
*tcp_secret_secondary
;
3023 static DEFINE_SPINLOCK(tcp_secret_locker
);
3025 /* Select a pseudo-random word in the cookie workspace.
3027 static inline u32
tcp_cookie_work(const u32
*ws
, const int n
)
3029 return ws
[COOKIE_DIGEST_WORDS
+ ((COOKIE_MESSAGE_WORDS
-1) & ws
[n
])];
3032 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3033 * Called in softirq context.
3034 * Returns: 0 for success.
3036 int tcp_cookie_generator(u32
*bakery
)
3038 unsigned long jiffy
= jiffies
;
3040 if (unlikely(time_after_eq(jiffy
, tcp_secret_generating
->expires
))) {
3041 spin_lock_bh(&tcp_secret_locker
);
3042 if (!time_after_eq(jiffy
, tcp_secret_generating
->expires
)) {
3043 /* refreshed by another */
3045 &tcp_secret_generating
->secrets
[0],
3046 COOKIE_WORKSPACE_WORDS
);
3048 /* still needs refreshing */
3049 get_random_bytes(bakery
, COOKIE_WORKSPACE_WORDS
);
3051 /* The first time, paranoia assumes that the
3052 * randomization function isn't as strong. But,
3053 * this secret initialization is delayed until
3054 * the last possible moment (packet arrival).
3055 * Although that time is observable, it is
3056 * unpredictably variable. Mash in the most
3057 * volatile clock bits available, and expire the
3058 * secret extra quickly.
3060 if (unlikely(tcp_secret_primary
->expires
==
3061 tcp_secret_secondary
->expires
)) {
3064 getnstimeofday(&tv
);
3065 bakery
[COOKIE_DIGEST_WORDS
+0] ^=
3068 tcp_secret_secondary
->expires
= jiffy
3070 + (0x0f & tcp_cookie_work(bakery
, 0));
3072 tcp_secret_secondary
->expires
= jiffy
3074 + (0xff & tcp_cookie_work(bakery
, 1));
3075 tcp_secret_primary
->expires
= jiffy
3077 + (0x1f & tcp_cookie_work(bakery
, 2));
3079 memcpy(&tcp_secret_secondary
->secrets
[0],
3080 bakery
, COOKIE_WORKSPACE_WORDS
);
3082 rcu_assign_pointer(tcp_secret_generating
,
3083 tcp_secret_secondary
);
3084 rcu_assign_pointer(tcp_secret_retiring
,
3085 tcp_secret_primary
);
3087 * Neither call_rcu() nor synchronize_rcu() needed.
3088 * Retiring data is not freed. It is replaced after
3089 * further (locked) pointer updates, and a quiet time
3090 * (minimum 1MSL, maximum LIFE - 2MSL).
3093 spin_unlock_bh(&tcp_secret_locker
);
3097 &rcu_dereference(tcp_secret_generating
)->secrets
[0],
3098 COOKIE_WORKSPACE_WORDS
);
3099 rcu_read_unlock_bh();
3103 EXPORT_SYMBOL(tcp_cookie_generator
);
3105 void tcp_done(struct sock
*sk
)
3107 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3108 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3110 tcp_set_state(sk
, TCP_CLOSE
);
3111 tcp_clear_xmit_timers(sk
);
3113 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3115 if (!sock_flag(sk
, SOCK_DEAD
))
3116 sk
->sk_state_change(sk
);
3118 inet_csk_destroy_sock(sk
);
3120 EXPORT_SYMBOL_GPL(tcp_done
);
3122 extern struct tcp_congestion_ops tcp_reno
;
3124 static __initdata
unsigned long thash_entries
;
3125 static int __init
set_thash_entries(char *str
)
3129 thash_entries
= simple_strtoul(str
, &str
, 0);
3132 __setup("thash_entries=", set_thash_entries
);
3134 void __init
tcp_init(void)
3136 struct sk_buff
*skb
= NULL
;
3137 unsigned long nr_pages
, limit
;
3138 int order
, i
, max_share
;
3139 unsigned long jiffy
= jiffies
;
3141 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) > sizeof(skb
->cb
));
3143 percpu_counter_init(&tcp_sockets_allocated
, 0);
3144 percpu_counter_init(&tcp_orphan_count
, 0);
3145 tcp_hashinfo
.bind_bucket_cachep
=
3146 kmem_cache_create("tcp_bind_bucket",
3147 sizeof(struct inet_bind_bucket
), 0,
3148 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3150 /* Size and allocate the main established and bind bucket
3153 * The methodology is similar to that of the buffer cache.
3155 tcp_hashinfo
.ehash
=
3156 alloc_large_system_hash("TCP established",
3157 sizeof(struct inet_ehash_bucket
),
3159 (totalram_pages
>= 128 * 1024) ?
3163 &tcp_hashinfo
.ehash_mask
,
3164 thash_entries
? 0 : 512 * 1024);
3165 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++) {
3166 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3167 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].twchain
, i
);
3169 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3170 panic("TCP: failed to alloc ehash_locks");
3171 tcp_hashinfo
.bhash
=
3172 alloc_large_system_hash("TCP bind",
3173 sizeof(struct inet_bind_hashbucket
),
3174 tcp_hashinfo
.ehash_mask
+ 1,
3175 (totalram_pages
>= 128 * 1024) ?
3178 &tcp_hashinfo
.bhash_size
,
3181 tcp_hashinfo
.bhash_size
= 1 << tcp_hashinfo
.bhash_size
;
3182 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3183 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3184 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3187 /* Try to be a bit smarter and adjust defaults depending
3188 * on available memory.
3190 for (order
= 0; ((1 << order
) << PAGE_SHIFT
) <
3191 (tcp_hashinfo
.bhash_size
* sizeof(struct inet_bind_hashbucket
));
3195 tcp_death_row
.sysctl_max_tw_buckets
= 180000;
3196 sysctl_tcp_max_orphans
= 4096 << (order
- 4);
3197 sysctl_max_syn_backlog
= 1024;
3198 } else if (order
< 3) {
3199 tcp_death_row
.sysctl_max_tw_buckets
>>= (3 - order
);
3200 sysctl_tcp_max_orphans
>>= (3 - order
);
3201 sysctl_max_syn_backlog
= 128;
3204 /* Set the pressure threshold to be a fraction of global memory that
3205 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3206 * memory, with a floor of 128 pages.
3208 nr_pages
= totalram_pages
- totalhigh_pages
;
3209 limit
= min(nr_pages
, 1UL<<(28-PAGE_SHIFT
)) >> (20-PAGE_SHIFT
);
3210 limit
= (limit
* (nr_pages
>> (20-PAGE_SHIFT
))) >> (PAGE_SHIFT
-11);
3211 limit
= max(limit
, 128UL);
3212 sysctl_tcp_mem
[0] = limit
/ 4 * 3;
3213 sysctl_tcp_mem
[1] = limit
;
3214 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2;
3216 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3217 limit
= ((unsigned long)sysctl_tcp_mem
[1]) << (PAGE_SHIFT
- 7);
3218 max_share
= min(4UL*1024*1024, limit
);
3220 sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3221 sysctl_tcp_wmem
[1] = 16*1024;
3222 sysctl_tcp_wmem
[2] = max(64*1024, max_share
);
3224 sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3225 sysctl_tcp_rmem
[1] = 87380;
3226 sysctl_tcp_rmem
[2] = max(87380, max_share
);
3228 printk(KERN_INFO
"TCP: Hash tables configured "
3229 "(established %u bind %u)\n",
3230 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3232 tcp_register_congestion_control(&tcp_reno
);
3234 memset(&tcp_secret_one
.secrets
[0], 0, sizeof(tcp_secret_one
.secrets
));
3235 memset(&tcp_secret_two
.secrets
[0], 0, sizeof(tcp_secret_two
.secrets
));
3236 tcp_secret_one
.expires
= jiffy
; /* past due */
3237 tcp_secret_two
.expires
= jiffy
; /* past due */
3238 tcp_secret_generating
= &tcp_secret_one
;
3239 tcp_secret_primary
= &tcp_secret_one
;
3240 tcp_secret_retiring
= &tcp_secret_two
;
3241 tcp_secret_secondary
= &tcp_secret_two
;
3244 EXPORT_SYMBOL(tcp_close
);
3245 EXPORT_SYMBOL(tcp_disconnect
);
3246 EXPORT_SYMBOL(tcp_getsockopt
);
3247 EXPORT_SYMBOL(tcp_ioctl
);
3248 EXPORT_SYMBOL(tcp_poll
);
3249 EXPORT_SYMBOL(tcp_read_sock
);
3250 EXPORT_SYMBOL(tcp_recvmsg
);
3251 EXPORT_SYMBOL(tcp_sendmsg
);
3252 EXPORT_SYMBOL(tcp_splice_read
);
3253 EXPORT_SYMBOL(tcp_sendpage
);
3254 EXPORT_SYMBOL(tcp_setsockopt
);
3255 EXPORT_SYMBOL(tcp_shutdown
);