md: Fix possible deadlock with multiple mempool allocations.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blob8f5543a624169b237d639d6f8b57096ea8bb84c4
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void unplug_slaves(mddev_t *mddev);
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
67 conf_t *conf = data;
68 r10bio_t *r10_bio;
69 int size = offsetof(struct r10bio_s, devs[conf->copies]);
71 /* allocate a r10bio with room for raid_disks entries in the bios array */
72 r10_bio = kzalloc(size, gfp_flags);
73 if (!r10_bio && conf->mddev)
74 unplug_slaves(conf->mddev);
76 return r10_bio;
79 static void r10bio_pool_free(void *r10_bio, void *data)
81 kfree(r10_bio);
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 conf_t *conf = data;
102 struct page *page;
103 r10bio_t *r10_bio;
104 struct bio *bio;
105 int i, j;
106 int nalloc;
108 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 if (!r10_bio) {
110 unplug_slaves(conf->mddev);
111 return NULL;
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
120 * Allocate bios.
122 for (j = nalloc ; j-- ; ) {
123 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
129 * Allocate RESYNC_PAGES data pages and attach them
130 * where needed.
132 for (j = 0 ; j < nalloc; j++) {
133 bio = r10_bio->devs[j].bio;
134 for (i = 0; i < RESYNC_PAGES; i++) {
135 page = alloc_page(gfp_flags);
136 if (unlikely(!page))
137 goto out_free_pages;
139 bio->bi_io_vec[i].bv_page = page;
143 return r10_bio;
145 out_free_pages:
146 for ( ; i > 0 ; i--)
147 safe_put_page(bio->bi_io_vec[i-1].bv_page);
148 while (j--)
149 for (i = 0; i < RESYNC_PAGES ; i++)
150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151 j = -1;
152 out_free_bio:
153 while ( ++j < nalloc )
154 bio_put(r10_bio->devs[j].bio);
155 r10bio_pool_free(r10_bio, conf);
156 return NULL;
159 static void r10buf_pool_free(void *__r10_bio, void *data)
161 int i;
162 conf_t *conf = data;
163 r10bio_t *r10bio = __r10_bio;
164 int j;
166 for (j=0; j < conf->copies; j++) {
167 struct bio *bio = r10bio->devs[j].bio;
168 if (bio) {
169 for (i = 0; i < RESYNC_PAGES; i++) {
170 safe_put_page(bio->bi_io_vec[i].bv_page);
171 bio->bi_io_vec[i].bv_page = NULL;
173 bio_put(bio);
176 r10bio_pool_free(r10bio, conf);
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
181 int i;
183 for (i = 0; i < conf->copies; i++) {
184 struct bio **bio = & r10_bio->devs[i].bio;
185 if (*bio && *bio != IO_BLOCKED)
186 bio_put(*bio);
187 *bio = NULL;
191 static void free_r10bio(r10bio_t *r10_bio)
193 conf_t *conf = r10_bio->mddev->private;
196 * Wake up any possible resync thread that waits for the device
197 * to go idle.
199 allow_barrier(conf);
201 put_all_bios(conf, r10_bio);
202 mempool_free(r10_bio, conf->r10bio_pool);
205 static void put_buf(r10bio_t *r10_bio)
207 conf_t *conf = r10_bio->mddev->private;
209 mempool_free(r10_bio, conf->r10buf_pool);
211 lower_barrier(conf);
214 static void reschedule_retry(r10bio_t *r10_bio)
216 unsigned long flags;
217 mddev_t *mddev = r10_bio->mddev;
218 conf_t *conf = mddev->private;
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r10_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
225 /* wake up frozen array... */
226 wake_up(&conf->wait_barrier);
228 md_wakeup_thread(mddev->thread);
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
236 static void raid_end_bio_io(r10bio_t *r10_bio)
238 struct bio *bio = r10_bio->master_bio;
240 bio_endio(bio,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
246 * Update disk head position estimator based on IRQ completion info.
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
250 conf_t *conf = r10_bio->mddev->private;
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
256 static void raid10_end_read_request(struct bio *bio, int error)
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t *r10_bio = bio->bi_private;
260 int slot, dev;
261 conf_t *conf = r10_bio->mddev->private;
264 slot = r10_bio->read_slot;
265 dev = r10_bio->devs[slot].devnum;
267 * this branch is our 'one mirror IO has finished' event handler:
269 update_head_pos(slot, r10_bio);
271 if (uptodate) {
273 * Set R10BIO_Uptodate in our master bio, so that
274 * we will return a good error code to the higher
275 * levels even if IO on some other mirrored buffer fails.
277 * The 'master' represents the composite IO operation to
278 * user-side. So if something waits for IO, then it will
279 * wait for the 'master' bio.
281 set_bit(R10BIO_Uptodate, &r10_bio->state);
282 raid_end_bio_io(r10_bio);
283 } else {
285 * oops, read error:
287 char b[BDEVNAME_SIZE];
288 if (printk_ratelimit())
289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 mdname(conf->mddev),
291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 reschedule_retry(r10_bio);
295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
298 static void raid10_end_write_request(struct bio *bio, int error)
300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301 r10bio_t *r10_bio = bio->bi_private;
302 int slot, dev;
303 conf_t *conf = r10_bio->mddev->private;
305 for (slot = 0; slot < conf->copies; slot++)
306 if (r10_bio->devs[slot].bio == bio)
307 break;
308 dev = r10_bio->devs[slot].devnum;
311 * this branch is our 'one mirror IO has finished' event handler:
313 if (!uptodate) {
314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315 /* an I/O failed, we can't clear the bitmap */
316 set_bit(R10BIO_Degraded, &r10_bio->state);
317 } else
319 * Set R10BIO_Uptodate in our master bio, so that
320 * we will return a good error code for to the higher
321 * levels even if IO on some other mirrored buffer fails.
323 * The 'master' represents the composite IO operation to
324 * user-side. So if something waits for IO, then it will
325 * wait for the 'master' bio.
327 set_bit(R10BIO_Uptodate, &r10_bio->state);
329 update_head_pos(slot, r10_bio);
333 * Let's see if all mirrored write operations have finished
334 * already.
336 if (atomic_dec_and_test(&r10_bio->remaining)) {
337 /* clear the bitmap if all writes complete successfully */
338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 r10_bio->sectors,
340 !test_bit(R10BIO_Degraded, &r10_bio->state),
342 md_write_end(r10_bio->mddev);
343 raid_end_bio_io(r10_bio);
346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
351 * RAID10 layout manager
352 * Aswell as the chunksize and raid_disks count, there are two
353 * parameters: near_copies and far_copies.
354 * near_copies * far_copies must be <= raid_disks.
355 * Normally one of these will be 1.
356 * If both are 1, we get raid0.
357 * If near_copies == raid_disks, we get raid1.
359 * Chunks are layed out in raid0 style with near_copies copies of the
360 * first chunk, followed by near_copies copies of the next chunk and
361 * so on.
362 * If far_copies > 1, then after 1/far_copies of the array has been assigned
363 * as described above, we start again with a device offset of near_copies.
364 * So we effectively have another copy of the whole array further down all
365 * the drives, but with blocks on different drives.
366 * With this layout, and block is never stored twice on the one device.
368 * raid10_find_phys finds the sector offset of a given virtual sector
369 * on each device that it is on.
371 * raid10_find_virt does the reverse mapping, from a device and a
372 * sector offset to a virtual address
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
377 int n,f;
378 sector_t sector;
379 sector_t chunk;
380 sector_t stripe;
381 int dev;
383 int slot = 0;
385 /* now calculate first sector/dev */
386 chunk = r10bio->sector >> conf->chunk_shift;
387 sector = r10bio->sector & conf->chunk_mask;
389 chunk *= conf->near_copies;
390 stripe = chunk;
391 dev = sector_div(stripe, conf->raid_disks);
392 if (conf->far_offset)
393 stripe *= conf->far_copies;
395 sector += stripe << conf->chunk_shift;
397 /* and calculate all the others */
398 for (n=0; n < conf->near_copies; n++) {
399 int d = dev;
400 sector_t s = sector;
401 r10bio->devs[slot].addr = sector;
402 r10bio->devs[slot].devnum = d;
403 slot++;
405 for (f = 1; f < conf->far_copies; f++) {
406 d += conf->near_copies;
407 if (d >= conf->raid_disks)
408 d -= conf->raid_disks;
409 s += conf->stride;
410 r10bio->devs[slot].devnum = d;
411 r10bio->devs[slot].addr = s;
412 slot++;
414 dev++;
415 if (dev >= conf->raid_disks) {
416 dev = 0;
417 sector += (conf->chunk_mask + 1);
420 BUG_ON(slot != conf->copies);
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
425 sector_t offset, chunk, vchunk;
427 offset = sector & conf->chunk_mask;
428 if (conf->far_offset) {
429 int fc;
430 chunk = sector >> conf->chunk_shift;
431 fc = sector_div(chunk, conf->far_copies);
432 dev -= fc * conf->near_copies;
433 if (dev < 0)
434 dev += conf->raid_disks;
435 } else {
436 while (sector >= conf->stride) {
437 sector -= conf->stride;
438 if (dev < conf->near_copies)
439 dev += conf->raid_disks - conf->near_copies;
440 else
441 dev -= conf->near_copies;
443 chunk = sector >> conf->chunk_shift;
445 vchunk = chunk * conf->raid_disks + dev;
446 sector_div(vchunk, conf->near_copies);
447 return (vchunk << conf->chunk_shift) + offset;
451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452 * @q: request queue
453 * @bvm: properties of new bio
454 * @biovec: the request that could be merged to it.
456 * Return amount of bytes we can accept at this offset
457 * If near_copies == raid_disk, there are no striping issues,
458 * but in that case, the function isn't called at all.
460 static int raid10_mergeable_bvec(struct request_queue *q,
461 struct bvec_merge_data *bvm,
462 struct bio_vec *biovec)
464 mddev_t *mddev = q->queuedata;
465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466 int max;
467 unsigned int chunk_sectors = mddev->chunk_sectors;
468 unsigned int bio_sectors = bvm->bi_size >> 9;
470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472 if (max <= biovec->bv_len && bio_sectors == 0)
473 return biovec->bv_len;
474 else
475 return max;
479 * This routine returns the disk from which the requested read should
480 * be done. There is a per-array 'next expected sequential IO' sector
481 * number - if this matches on the next IO then we use the last disk.
482 * There is also a per-disk 'last know head position' sector that is
483 * maintained from IRQ contexts, both the normal and the resync IO
484 * completion handlers update this position correctly. If there is no
485 * perfect sequential match then we pick the disk whose head is closest.
487 * If there are 2 mirrors in the same 2 devices, performance degrades
488 * because position is mirror, not device based.
490 * The rdev for the device selected will have nr_pending incremented.
494 * FIXME: possibly should rethink readbalancing and do it differently
495 * depending on near_copies / far_copies geometry.
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
499 const sector_t this_sector = r10_bio->sector;
500 int disk, slot, nslot;
501 const int sectors = r10_bio->sectors;
502 sector_t new_distance, current_distance;
503 mdk_rdev_t *rdev;
505 raid10_find_phys(conf, r10_bio);
506 rcu_read_lock();
508 * Check if we can balance. We can balance on the whole
509 * device if no resync is going on (recovery is ok), or below
510 * the resync window. We take the first readable disk when
511 * above the resync window.
513 if (conf->mddev->recovery_cp < MaxSector
514 && (this_sector + sectors >= conf->next_resync)) {
515 /* make sure that disk is operational */
516 slot = 0;
517 disk = r10_bio->devs[slot].devnum;
519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520 r10_bio->devs[slot].bio == IO_BLOCKED ||
521 !test_bit(In_sync, &rdev->flags)) {
522 slot++;
523 if (slot == conf->copies) {
524 slot = 0;
525 disk = -1;
526 break;
528 disk = r10_bio->devs[slot].devnum;
530 goto rb_out;
534 /* make sure the disk is operational */
535 slot = 0;
536 disk = r10_bio->devs[slot].devnum;
537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538 r10_bio->devs[slot].bio == IO_BLOCKED ||
539 !test_bit(In_sync, &rdev->flags)) {
540 slot ++;
541 if (slot == conf->copies) {
542 disk = -1;
543 goto rb_out;
545 disk = r10_bio->devs[slot].devnum;
549 current_distance = abs(r10_bio->devs[slot].addr -
550 conf->mirrors[disk].head_position);
552 /* Find the disk whose head is closest,
553 * or - for far > 1 - find the closest to partition beginning */
555 for (nslot = slot; nslot < conf->copies; nslot++) {
556 int ndisk = r10_bio->devs[nslot].devnum;
559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560 r10_bio->devs[nslot].bio == IO_BLOCKED ||
561 !test_bit(In_sync, &rdev->flags))
562 continue;
564 /* This optimisation is debatable, and completely destroys
565 * sequential read speed for 'far copies' arrays. So only
566 * keep it for 'near' arrays, and review those later.
568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569 disk = ndisk;
570 slot = nslot;
571 break;
574 /* for far > 1 always use the lowest address */
575 if (conf->far_copies > 1)
576 new_distance = r10_bio->devs[nslot].addr;
577 else
578 new_distance = abs(r10_bio->devs[nslot].addr -
579 conf->mirrors[ndisk].head_position);
580 if (new_distance < current_distance) {
581 current_distance = new_distance;
582 disk = ndisk;
583 slot = nslot;
587 rb_out:
588 r10_bio->read_slot = slot;
589 /* conf->next_seq_sect = this_sector + sectors;*/
591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593 else
594 disk = -1;
595 rcu_read_unlock();
597 return disk;
600 static void unplug_slaves(mddev_t *mddev)
602 conf_t *conf = mddev->private;
603 int i;
605 rcu_read_lock();
606 for (i=0; i < conf->raid_disks; i++) {
607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
611 atomic_inc(&rdev->nr_pending);
612 rcu_read_unlock();
614 blk_unplug(r_queue);
616 rdev_dec_pending(rdev, mddev);
617 rcu_read_lock();
620 rcu_read_unlock();
623 static void raid10_unplug(struct request_queue *q)
625 mddev_t *mddev = q->queuedata;
627 unplug_slaves(q->queuedata);
628 md_wakeup_thread(mddev->thread);
631 static int raid10_congested(void *data, int bits)
633 mddev_t *mddev = data;
634 conf_t *conf = mddev->private;
635 int i, ret = 0;
637 if (mddev_congested(mddev, bits))
638 return 1;
639 rcu_read_lock();
640 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 if (rdev && !test_bit(Faulty, &rdev->flags)) {
643 struct request_queue *q = bdev_get_queue(rdev->bdev);
645 ret |= bdi_congested(&q->backing_dev_info, bits);
648 rcu_read_unlock();
649 return ret;
652 static int flush_pending_writes(conf_t *conf)
654 /* Any writes that have been queued but are awaiting
655 * bitmap updates get flushed here.
656 * We return 1 if any requests were actually submitted.
658 int rv = 0;
660 spin_lock_irq(&conf->device_lock);
662 if (conf->pending_bio_list.head) {
663 struct bio *bio;
664 bio = bio_list_get(&conf->pending_bio_list);
665 blk_remove_plug(conf->mddev->queue);
666 spin_unlock_irq(&conf->device_lock);
667 /* flush any pending bitmap writes to disk
668 * before proceeding w/ I/O */
669 bitmap_unplug(conf->mddev->bitmap);
671 while (bio) { /* submit pending writes */
672 struct bio *next = bio->bi_next;
673 bio->bi_next = NULL;
674 generic_make_request(bio);
675 bio = next;
677 rv = 1;
678 } else
679 spin_unlock_irq(&conf->device_lock);
680 return rv;
682 /* Barriers....
683 * Sometimes we need to suspend IO while we do something else,
684 * either some resync/recovery, or reconfigure the array.
685 * To do this we raise a 'barrier'.
686 * The 'barrier' is a counter that can be raised multiple times
687 * to count how many activities are happening which preclude
688 * normal IO.
689 * We can only raise the barrier if there is no pending IO.
690 * i.e. if nr_pending == 0.
691 * We choose only to raise the barrier if no-one is waiting for the
692 * barrier to go down. This means that as soon as an IO request
693 * is ready, no other operations which require a barrier will start
694 * until the IO request has had a chance.
696 * So: regular IO calls 'wait_barrier'. When that returns there
697 * is no backgroup IO happening, It must arrange to call
698 * allow_barrier when it has finished its IO.
699 * backgroup IO calls must call raise_barrier. Once that returns
700 * there is no normal IO happeing. It must arrange to call
701 * lower_barrier when the particular background IO completes.
704 static void raise_barrier(conf_t *conf, int force)
706 BUG_ON(force && !conf->barrier);
707 spin_lock_irq(&conf->resync_lock);
709 /* Wait until no block IO is waiting (unless 'force') */
710 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
711 conf->resync_lock,
712 raid10_unplug(conf->mddev->queue));
714 /* block any new IO from starting */
715 conf->barrier++;
717 /* No wait for all pending IO to complete */
718 wait_event_lock_irq(conf->wait_barrier,
719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 conf->resync_lock,
721 raid10_unplug(conf->mddev->queue));
723 spin_unlock_irq(&conf->resync_lock);
726 static void lower_barrier(conf_t *conf)
728 unsigned long flags;
729 spin_lock_irqsave(&conf->resync_lock, flags);
730 conf->barrier--;
731 spin_unlock_irqrestore(&conf->resync_lock, flags);
732 wake_up(&conf->wait_barrier);
735 static void wait_barrier(conf_t *conf)
737 spin_lock_irq(&conf->resync_lock);
738 if (conf->barrier) {
739 conf->nr_waiting++;
740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 conf->resync_lock,
742 raid10_unplug(conf->mddev->queue));
743 conf->nr_waiting--;
745 conf->nr_pending++;
746 spin_unlock_irq(&conf->resync_lock);
749 static void allow_barrier(conf_t *conf)
751 unsigned long flags;
752 spin_lock_irqsave(&conf->resync_lock, flags);
753 conf->nr_pending--;
754 spin_unlock_irqrestore(&conf->resync_lock, flags);
755 wake_up(&conf->wait_barrier);
758 static void freeze_array(conf_t *conf)
760 /* stop syncio and normal IO and wait for everything to
761 * go quiet.
762 * We increment barrier and nr_waiting, and then
763 * wait until nr_pending match nr_queued+1
764 * This is called in the context of one normal IO request
765 * that has failed. Thus any sync request that might be pending
766 * will be blocked by nr_pending, and we need to wait for
767 * pending IO requests to complete or be queued for re-try.
768 * Thus the number queued (nr_queued) plus this request (1)
769 * must match the number of pending IOs (nr_pending) before
770 * we continue.
772 spin_lock_irq(&conf->resync_lock);
773 conf->barrier++;
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier,
776 conf->nr_pending == conf->nr_queued+1,
777 conf->resync_lock,
778 ({ flush_pending_writes(conf);
779 raid10_unplug(conf->mddev->queue); }));
780 spin_unlock_irq(&conf->resync_lock);
783 static void unfreeze_array(conf_t *conf)
785 /* reverse the effect of the freeze */
786 spin_lock_irq(&conf->resync_lock);
787 conf->barrier--;
788 conf->nr_waiting--;
789 wake_up(&conf->wait_barrier);
790 spin_unlock_irq(&conf->resync_lock);
793 static int make_request(mddev_t *mddev, struct bio * bio)
795 conf_t *conf = mddev->private;
796 mirror_info_t *mirror;
797 r10bio_t *r10_bio;
798 struct bio *read_bio;
799 int i;
800 int chunk_sects = conf->chunk_mask + 1;
801 const int rw = bio_data_dir(bio);
802 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
803 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
804 unsigned long flags;
805 mdk_rdev_t *blocked_rdev;
807 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
808 md_flush_request(mddev, bio);
809 return 0;
812 /* If this request crosses a chunk boundary, we need to
813 * split it. This will only happen for 1 PAGE (or less) requests.
815 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
816 > chunk_sects &&
817 conf->near_copies < conf->raid_disks)) {
818 struct bio_pair *bp;
819 /* Sanity check -- queue functions should prevent this happening */
820 if (bio->bi_vcnt != 1 ||
821 bio->bi_idx != 0)
822 goto bad_map;
823 /* This is a one page bio that upper layers
824 * refuse to split for us, so we need to split it.
826 bp = bio_split(bio,
827 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
829 /* Each of these 'make_request' calls will call 'wait_barrier'.
830 * If the first succeeds but the second blocks due to the resync
831 * thread raising the barrier, we will deadlock because the
832 * IO to the underlying device will be queued in generic_make_request
833 * and will never complete, so will never reduce nr_pending.
834 * So increment nr_waiting here so no new raise_barriers will
835 * succeed, and so the second wait_barrier cannot block.
837 spin_lock_irq(&conf->resync_lock);
838 conf->nr_waiting++;
839 spin_unlock_irq(&conf->resync_lock);
841 if (make_request(mddev, &bp->bio1))
842 generic_make_request(&bp->bio1);
843 if (make_request(mddev, &bp->bio2))
844 generic_make_request(&bp->bio2);
846 spin_lock_irq(&conf->resync_lock);
847 conf->nr_waiting--;
848 wake_up(&conf->wait_barrier);
849 spin_unlock_irq(&conf->resync_lock);
851 bio_pair_release(bp);
852 return 0;
853 bad_map:
854 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
855 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
856 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
858 bio_io_error(bio);
859 return 0;
862 md_write_start(mddev, bio);
865 * Register the new request and wait if the reconstruction
866 * thread has put up a bar for new requests.
867 * Continue immediately if no resync is active currently.
869 wait_barrier(conf);
871 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
873 r10_bio->master_bio = bio;
874 r10_bio->sectors = bio->bi_size >> 9;
876 r10_bio->mddev = mddev;
877 r10_bio->sector = bio->bi_sector;
878 r10_bio->state = 0;
880 if (rw == READ) {
882 * read balancing logic:
884 int disk = read_balance(conf, r10_bio);
885 int slot = r10_bio->read_slot;
886 if (disk < 0) {
887 raid_end_bio_io(r10_bio);
888 return 0;
890 mirror = conf->mirrors + disk;
892 read_bio = bio_clone(bio, GFP_NOIO);
894 r10_bio->devs[slot].bio = read_bio;
896 read_bio->bi_sector = r10_bio->devs[slot].addr +
897 mirror->rdev->data_offset;
898 read_bio->bi_bdev = mirror->rdev->bdev;
899 read_bio->bi_end_io = raid10_end_read_request;
900 read_bio->bi_rw = READ | do_sync;
901 read_bio->bi_private = r10_bio;
903 generic_make_request(read_bio);
904 return 0;
908 * WRITE:
910 /* first select target devices under rcu_lock and
911 * inc refcount on their rdev. Record them by setting
912 * bios[x] to bio
914 raid10_find_phys(conf, r10_bio);
915 retry_write:
916 blocked_rdev = NULL;
917 rcu_read_lock();
918 for (i = 0; i < conf->copies; i++) {
919 int d = r10_bio->devs[i].devnum;
920 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
921 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
922 atomic_inc(&rdev->nr_pending);
923 blocked_rdev = rdev;
924 break;
926 if (rdev && !test_bit(Faulty, &rdev->flags)) {
927 atomic_inc(&rdev->nr_pending);
928 r10_bio->devs[i].bio = bio;
929 } else {
930 r10_bio->devs[i].bio = NULL;
931 set_bit(R10BIO_Degraded, &r10_bio->state);
934 rcu_read_unlock();
936 if (unlikely(blocked_rdev)) {
937 /* Have to wait for this device to get unblocked, then retry */
938 int j;
939 int d;
941 for (j = 0; j < i; j++)
942 if (r10_bio->devs[j].bio) {
943 d = r10_bio->devs[j].devnum;
944 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
946 allow_barrier(conf);
947 md_wait_for_blocked_rdev(blocked_rdev, mddev);
948 wait_barrier(conf);
949 goto retry_write;
952 atomic_set(&r10_bio->remaining, 1);
953 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
955 for (i = 0; i < conf->copies; i++) {
956 struct bio *mbio;
957 int d = r10_bio->devs[i].devnum;
958 if (!r10_bio->devs[i].bio)
959 continue;
961 mbio = bio_clone(bio, GFP_NOIO);
962 r10_bio->devs[i].bio = mbio;
964 mbio->bi_sector = r10_bio->devs[i].addr+
965 conf->mirrors[d].rdev->data_offset;
966 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
967 mbio->bi_end_io = raid10_end_write_request;
968 mbio->bi_rw = WRITE | do_sync | do_fua;
969 mbio->bi_private = r10_bio;
971 atomic_inc(&r10_bio->remaining);
972 spin_lock_irqsave(&conf->device_lock, flags);
973 bio_list_add(&conf->pending_bio_list, mbio);
974 blk_plug_device(mddev->queue);
975 spin_unlock_irqrestore(&conf->device_lock, flags);
978 if (atomic_dec_and_test(&r10_bio->remaining)) {
979 /* This matches the end of raid10_end_write_request() */
980 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
981 r10_bio->sectors,
982 !test_bit(R10BIO_Degraded, &r10_bio->state),
984 md_write_end(mddev);
985 raid_end_bio_io(r10_bio);
988 /* In case raid10d snuck in to freeze_array */
989 wake_up(&conf->wait_barrier);
991 if (do_sync)
992 md_wakeup_thread(mddev->thread);
994 return 0;
997 static void status(struct seq_file *seq, mddev_t *mddev)
999 conf_t *conf = mddev->private;
1000 int i;
1002 if (conf->near_copies < conf->raid_disks)
1003 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1004 if (conf->near_copies > 1)
1005 seq_printf(seq, " %d near-copies", conf->near_copies);
1006 if (conf->far_copies > 1) {
1007 if (conf->far_offset)
1008 seq_printf(seq, " %d offset-copies", conf->far_copies);
1009 else
1010 seq_printf(seq, " %d far-copies", conf->far_copies);
1012 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1013 conf->raid_disks - mddev->degraded);
1014 for (i = 0; i < conf->raid_disks; i++)
1015 seq_printf(seq, "%s",
1016 conf->mirrors[i].rdev &&
1017 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1018 seq_printf(seq, "]");
1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1023 char b[BDEVNAME_SIZE];
1024 conf_t *conf = mddev->private;
1027 * If it is not operational, then we have already marked it as dead
1028 * else if it is the last working disks, ignore the error, let the
1029 * next level up know.
1030 * else mark the drive as failed
1032 if (test_bit(In_sync, &rdev->flags)
1033 && conf->raid_disks-mddev->degraded == 1)
1035 * Don't fail the drive, just return an IO error.
1036 * The test should really be more sophisticated than
1037 * "working_disks == 1", but it isn't critical, and
1038 * can wait until we do more sophisticated "is the drive
1039 * really dead" tests...
1041 return;
1042 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1043 unsigned long flags;
1044 spin_lock_irqsave(&conf->device_lock, flags);
1045 mddev->degraded++;
1046 spin_unlock_irqrestore(&conf->device_lock, flags);
1048 * if recovery is running, make sure it aborts.
1050 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1052 set_bit(Faulty, &rdev->flags);
1053 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1054 printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n"
1055 KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n",
1056 mdname(mddev), bdevname(rdev->bdev, b),
1057 mdname(mddev), conf->raid_disks - mddev->degraded);
1060 static void print_conf(conf_t *conf)
1062 int i;
1063 mirror_info_t *tmp;
1065 printk(KERN_DEBUG "RAID10 conf printout:\n");
1066 if (!conf) {
1067 printk(KERN_DEBUG "(!conf)\n");
1068 return;
1070 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1071 conf->raid_disks);
1073 for (i = 0; i < conf->raid_disks; i++) {
1074 char b[BDEVNAME_SIZE];
1075 tmp = conf->mirrors + i;
1076 if (tmp->rdev)
1077 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1078 i, !test_bit(In_sync, &tmp->rdev->flags),
1079 !test_bit(Faulty, &tmp->rdev->flags),
1080 bdevname(tmp->rdev->bdev,b));
1084 static void close_sync(conf_t *conf)
1086 wait_barrier(conf);
1087 allow_barrier(conf);
1089 mempool_destroy(conf->r10buf_pool);
1090 conf->r10buf_pool = NULL;
1093 /* check if there are enough drives for
1094 * every block to appear on atleast one
1096 static int enough(conf_t *conf)
1098 int first = 0;
1100 do {
1101 int n = conf->copies;
1102 int cnt = 0;
1103 while (n--) {
1104 if (conf->mirrors[first].rdev)
1105 cnt++;
1106 first = (first+1) % conf->raid_disks;
1108 if (cnt == 0)
1109 return 0;
1110 } while (first != 0);
1111 return 1;
1114 static int raid10_spare_active(mddev_t *mddev)
1116 int i;
1117 conf_t *conf = mddev->private;
1118 mirror_info_t *tmp;
1119 int count = 0;
1120 unsigned long flags;
1123 * Find all non-in_sync disks within the RAID10 configuration
1124 * and mark them in_sync
1126 for (i = 0; i < conf->raid_disks; i++) {
1127 tmp = conf->mirrors + i;
1128 if (tmp->rdev
1129 && !test_bit(Faulty, &tmp->rdev->flags)
1130 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1131 count++;
1132 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1135 spin_lock_irqsave(&conf->device_lock, flags);
1136 mddev->degraded -= count;
1137 spin_unlock_irqrestore(&conf->device_lock, flags);
1139 print_conf(conf);
1140 return count;
1144 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1146 conf_t *conf = mddev->private;
1147 int err = -EEXIST;
1148 int mirror;
1149 mirror_info_t *p;
1150 int first = 0;
1151 int last = conf->raid_disks - 1;
1153 if (mddev->recovery_cp < MaxSector)
1154 /* only hot-add to in-sync arrays, as recovery is
1155 * very different from resync
1157 return -EBUSY;
1158 if (!enough(conf))
1159 return -EINVAL;
1161 if (rdev->raid_disk >= 0)
1162 first = last = rdev->raid_disk;
1164 if (rdev->saved_raid_disk >= 0 &&
1165 rdev->saved_raid_disk >= first &&
1166 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1167 mirror = rdev->saved_raid_disk;
1168 else
1169 mirror = first;
1170 for ( ; mirror <= last ; mirror++)
1171 if ( !(p=conf->mirrors+mirror)->rdev) {
1173 disk_stack_limits(mddev->gendisk, rdev->bdev,
1174 rdev->data_offset << 9);
1175 /* as we don't honour merge_bvec_fn, we must
1176 * never risk violating it, so limit
1177 * ->max_segments to one lying with a single
1178 * page, as a one page request is never in
1179 * violation.
1181 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1182 blk_queue_max_segments(mddev->queue, 1);
1183 blk_queue_segment_boundary(mddev->queue,
1184 PAGE_CACHE_SIZE - 1);
1187 p->head_position = 0;
1188 rdev->raid_disk = mirror;
1189 err = 0;
1190 if (rdev->saved_raid_disk != mirror)
1191 conf->fullsync = 1;
1192 rcu_assign_pointer(p->rdev, rdev);
1193 break;
1196 md_integrity_add_rdev(rdev, mddev);
1197 print_conf(conf);
1198 return err;
1201 static int raid10_remove_disk(mddev_t *mddev, int number)
1203 conf_t *conf = mddev->private;
1204 int err = 0;
1205 mdk_rdev_t *rdev;
1206 mirror_info_t *p = conf->mirrors+ number;
1208 print_conf(conf);
1209 rdev = p->rdev;
1210 if (rdev) {
1211 if (test_bit(In_sync, &rdev->flags) ||
1212 atomic_read(&rdev->nr_pending)) {
1213 err = -EBUSY;
1214 goto abort;
1216 /* Only remove faulty devices in recovery
1217 * is not possible.
1219 if (!test_bit(Faulty, &rdev->flags) &&
1220 enough(conf)) {
1221 err = -EBUSY;
1222 goto abort;
1224 p->rdev = NULL;
1225 synchronize_rcu();
1226 if (atomic_read(&rdev->nr_pending)) {
1227 /* lost the race, try later */
1228 err = -EBUSY;
1229 p->rdev = rdev;
1230 goto abort;
1232 md_integrity_register(mddev);
1234 abort:
1236 print_conf(conf);
1237 return err;
1241 static void end_sync_read(struct bio *bio, int error)
1243 r10bio_t *r10_bio = bio->bi_private;
1244 conf_t *conf = r10_bio->mddev->private;
1245 int i,d;
1247 for (i=0; i<conf->copies; i++)
1248 if (r10_bio->devs[i].bio == bio)
1249 break;
1250 BUG_ON(i == conf->copies);
1251 update_head_pos(i, r10_bio);
1252 d = r10_bio->devs[i].devnum;
1254 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1255 set_bit(R10BIO_Uptodate, &r10_bio->state);
1256 else {
1257 atomic_add(r10_bio->sectors,
1258 &conf->mirrors[d].rdev->corrected_errors);
1259 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1260 md_error(r10_bio->mddev,
1261 conf->mirrors[d].rdev);
1264 /* for reconstruct, we always reschedule after a read.
1265 * for resync, only after all reads
1267 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1268 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1269 atomic_dec_and_test(&r10_bio->remaining)) {
1270 /* we have read all the blocks,
1271 * do the comparison in process context in raid10d
1273 reschedule_retry(r10_bio);
1277 static void end_sync_write(struct bio *bio, int error)
1279 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1280 r10bio_t *r10_bio = bio->bi_private;
1281 mddev_t *mddev = r10_bio->mddev;
1282 conf_t *conf = mddev->private;
1283 int i,d;
1285 for (i = 0; i < conf->copies; i++)
1286 if (r10_bio->devs[i].bio == bio)
1287 break;
1288 d = r10_bio->devs[i].devnum;
1290 if (!uptodate)
1291 md_error(mddev, conf->mirrors[d].rdev);
1293 update_head_pos(i, r10_bio);
1295 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1296 while (atomic_dec_and_test(&r10_bio->remaining)) {
1297 if (r10_bio->master_bio == NULL) {
1298 /* the primary of several recovery bios */
1299 sector_t s = r10_bio->sectors;
1300 put_buf(r10_bio);
1301 md_done_sync(mddev, s, 1);
1302 break;
1303 } else {
1304 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1305 put_buf(r10_bio);
1306 r10_bio = r10_bio2;
1312 * Note: sync and recover and handled very differently for raid10
1313 * This code is for resync.
1314 * For resync, we read through virtual addresses and read all blocks.
1315 * If there is any error, we schedule a write. The lowest numbered
1316 * drive is authoritative.
1317 * However requests come for physical address, so we need to map.
1318 * For every physical address there are raid_disks/copies virtual addresses,
1319 * which is always are least one, but is not necessarly an integer.
1320 * This means that a physical address can span multiple chunks, so we may
1321 * have to submit multiple io requests for a single sync request.
1324 * We check if all blocks are in-sync and only write to blocks that
1325 * aren't in sync
1327 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1329 conf_t *conf = mddev->private;
1330 int i, first;
1331 struct bio *tbio, *fbio;
1333 atomic_set(&r10_bio->remaining, 1);
1335 /* find the first device with a block */
1336 for (i=0; i<conf->copies; i++)
1337 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1338 break;
1340 if (i == conf->copies)
1341 goto done;
1343 first = i;
1344 fbio = r10_bio->devs[i].bio;
1346 /* now find blocks with errors */
1347 for (i=0 ; i < conf->copies ; i++) {
1348 int j, d;
1349 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1351 tbio = r10_bio->devs[i].bio;
1353 if (tbio->bi_end_io != end_sync_read)
1354 continue;
1355 if (i == first)
1356 continue;
1357 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1358 /* We know that the bi_io_vec layout is the same for
1359 * both 'first' and 'i', so we just compare them.
1360 * All vec entries are PAGE_SIZE;
1362 for (j = 0; j < vcnt; j++)
1363 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1364 page_address(tbio->bi_io_vec[j].bv_page),
1365 PAGE_SIZE))
1366 break;
1367 if (j == vcnt)
1368 continue;
1369 mddev->resync_mismatches += r10_bio->sectors;
1371 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1372 /* Don't fix anything. */
1373 continue;
1374 /* Ok, we need to write this bio
1375 * First we need to fixup bv_offset, bv_len and
1376 * bi_vecs, as the read request might have corrupted these
1378 tbio->bi_vcnt = vcnt;
1379 tbio->bi_size = r10_bio->sectors << 9;
1380 tbio->bi_idx = 0;
1381 tbio->bi_phys_segments = 0;
1382 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1383 tbio->bi_flags |= 1 << BIO_UPTODATE;
1384 tbio->bi_next = NULL;
1385 tbio->bi_rw = WRITE;
1386 tbio->bi_private = r10_bio;
1387 tbio->bi_sector = r10_bio->devs[i].addr;
1389 for (j=0; j < vcnt ; j++) {
1390 tbio->bi_io_vec[j].bv_offset = 0;
1391 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1393 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1394 page_address(fbio->bi_io_vec[j].bv_page),
1395 PAGE_SIZE);
1397 tbio->bi_end_io = end_sync_write;
1399 d = r10_bio->devs[i].devnum;
1400 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1401 atomic_inc(&r10_bio->remaining);
1402 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1404 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1405 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1406 generic_make_request(tbio);
1409 done:
1410 if (atomic_dec_and_test(&r10_bio->remaining)) {
1411 md_done_sync(mddev, r10_bio->sectors, 1);
1412 put_buf(r10_bio);
1417 * Now for the recovery code.
1418 * Recovery happens across physical sectors.
1419 * We recover all non-is_sync drives by finding the virtual address of
1420 * each, and then choose a working drive that also has that virt address.
1421 * There is a separate r10_bio for each non-in_sync drive.
1422 * Only the first two slots are in use. The first for reading,
1423 * The second for writing.
1427 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1429 conf_t *conf = mddev->private;
1430 int i, d;
1431 struct bio *bio, *wbio;
1434 /* move the pages across to the second bio
1435 * and submit the write request
1437 bio = r10_bio->devs[0].bio;
1438 wbio = r10_bio->devs[1].bio;
1439 for (i=0; i < wbio->bi_vcnt; i++) {
1440 struct page *p = bio->bi_io_vec[i].bv_page;
1441 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1442 wbio->bi_io_vec[i].bv_page = p;
1444 d = r10_bio->devs[1].devnum;
1446 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1447 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1448 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1449 generic_make_request(wbio);
1450 else
1451 bio_endio(wbio, -EIO);
1456 * Used by fix_read_error() to decay the per rdev read_errors.
1457 * We halve the read error count for every hour that has elapsed
1458 * since the last recorded read error.
1461 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1463 struct timespec cur_time_mon;
1464 unsigned long hours_since_last;
1465 unsigned int read_errors = atomic_read(&rdev->read_errors);
1467 ktime_get_ts(&cur_time_mon);
1469 if (rdev->last_read_error.tv_sec == 0 &&
1470 rdev->last_read_error.tv_nsec == 0) {
1471 /* first time we've seen a read error */
1472 rdev->last_read_error = cur_time_mon;
1473 return;
1476 hours_since_last = (cur_time_mon.tv_sec -
1477 rdev->last_read_error.tv_sec) / 3600;
1479 rdev->last_read_error = cur_time_mon;
1482 * if hours_since_last is > the number of bits in read_errors
1483 * just set read errors to 0. We do this to avoid
1484 * overflowing the shift of read_errors by hours_since_last.
1486 if (hours_since_last >= 8 * sizeof(read_errors))
1487 atomic_set(&rdev->read_errors, 0);
1488 else
1489 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1493 * This is a kernel thread which:
1495 * 1. Retries failed read operations on working mirrors.
1496 * 2. Updates the raid superblock when problems encounter.
1497 * 3. Performs writes following reads for array synchronising.
1500 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1502 int sect = 0; /* Offset from r10_bio->sector */
1503 int sectors = r10_bio->sectors;
1504 mdk_rdev_t*rdev;
1505 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1506 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1508 rcu_read_lock();
1509 rdev = rcu_dereference(conf->mirrors[d].rdev);
1510 if (rdev) { /* If rdev is not NULL */
1511 char b[BDEVNAME_SIZE];
1512 int cur_read_error_count = 0;
1514 bdevname(rdev->bdev, b);
1516 if (test_bit(Faulty, &rdev->flags)) {
1517 rcu_read_unlock();
1518 /* drive has already been failed, just ignore any
1519 more fix_read_error() attempts */
1520 return;
1523 check_decay_read_errors(mddev, rdev);
1524 atomic_inc(&rdev->read_errors);
1525 cur_read_error_count = atomic_read(&rdev->read_errors);
1526 if (cur_read_error_count > max_read_errors) {
1527 rcu_read_unlock();
1528 printk(KERN_NOTICE
1529 "md/raid10:%s: %s: Raid device exceeded "
1530 "read_error threshold "
1531 "[cur %d:max %d]\n",
1532 mdname(mddev),
1533 b, cur_read_error_count, max_read_errors);
1534 printk(KERN_NOTICE
1535 "md/raid10:%s: %s: Failing raid "
1536 "device\n", mdname(mddev), b);
1537 md_error(mddev, conf->mirrors[d].rdev);
1538 return;
1541 rcu_read_unlock();
1543 while(sectors) {
1544 int s = sectors;
1545 int sl = r10_bio->read_slot;
1546 int success = 0;
1547 int start;
1549 if (s > (PAGE_SIZE>>9))
1550 s = PAGE_SIZE >> 9;
1552 rcu_read_lock();
1553 do {
1554 d = r10_bio->devs[sl].devnum;
1555 rdev = rcu_dereference(conf->mirrors[d].rdev);
1556 if (rdev &&
1557 test_bit(In_sync, &rdev->flags)) {
1558 atomic_inc(&rdev->nr_pending);
1559 rcu_read_unlock();
1560 success = sync_page_io(rdev->bdev,
1561 r10_bio->devs[sl].addr +
1562 sect + rdev->data_offset,
1563 s<<9,
1564 conf->tmppage, READ);
1565 rdev_dec_pending(rdev, mddev);
1566 rcu_read_lock();
1567 if (success)
1568 break;
1570 sl++;
1571 if (sl == conf->copies)
1572 sl = 0;
1573 } while (!success && sl != r10_bio->read_slot);
1574 rcu_read_unlock();
1576 if (!success) {
1577 /* Cannot read from anywhere -- bye bye array */
1578 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1579 md_error(mddev, conf->mirrors[dn].rdev);
1580 break;
1583 start = sl;
1584 /* write it back and re-read */
1585 rcu_read_lock();
1586 while (sl != r10_bio->read_slot) {
1587 char b[BDEVNAME_SIZE];
1589 if (sl==0)
1590 sl = conf->copies;
1591 sl--;
1592 d = r10_bio->devs[sl].devnum;
1593 rdev = rcu_dereference(conf->mirrors[d].rdev);
1594 if (rdev &&
1595 test_bit(In_sync, &rdev->flags)) {
1596 atomic_inc(&rdev->nr_pending);
1597 rcu_read_unlock();
1598 atomic_add(s, &rdev->corrected_errors);
1599 if (sync_page_io(rdev->bdev,
1600 r10_bio->devs[sl].addr +
1601 sect + rdev->data_offset,
1602 s<<9, conf->tmppage, WRITE)
1603 == 0) {
1604 /* Well, this device is dead */
1605 printk(KERN_NOTICE
1606 "md/raid10:%s: read correction "
1607 "write failed"
1608 " (%d sectors at %llu on %s)\n",
1609 mdname(mddev), s,
1610 (unsigned long long)(sect+
1611 rdev->data_offset),
1612 bdevname(rdev->bdev, b));
1613 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1614 "drive\n",
1615 mdname(mddev),
1616 bdevname(rdev->bdev, b));
1617 md_error(mddev, rdev);
1619 rdev_dec_pending(rdev, mddev);
1620 rcu_read_lock();
1623 sl = start;
1624 while (sl != r10_bio->read_slot) {
1626 if (sl==0)
1627 sl = conf->copies;
1628 sl--;
1629 d = r10_bio->devs[sl].devnum;
1630 rdev = rcu_dereference(conf->mirrors[d].rdev);
1631 if (rdev &&
1632 test_bit(In_sync, &rdev->flags)) {
1633 char b[BDEVNAME_SIZE];
1634 atomic_inc(&rdev->nr_pending);
1635 rcu_read_unlock();
1636 if (sync_page_io(rdev->bdev,
1637 r10_bio->devs[sl].addr +
1638 sect + rdev->data_offset,
1639 s<<9, conf->tmppage,
1640 READ) == 0) {
1641 /* Well, this device is dead */
1642 printk(KERN_NOTICE
1643 "md/raid10:%s: unable to read back "
1644 "corrected sectors"
1645 " (%d sectors at %llu on %s)\n",
1646 mdname(mddev), s,
1647 (unsigned long long)(sect+
1648 rdev->data_offset),
1649 bdevname(rdev->bdev, b));
1650 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1651 mdname(mddev),
1652 bdevname(rdev->bdev, b));
1654 md_error(mddev, rdev);
1655 } else {
1656 printk(KERN_INFO
1657 "md/raid10:%s: read error corrected"
1658 " (%d sectors at %llu on %s)\n",
1659 mdname(mddev), s,
1660 (unsigned long long)(sect+
1661 rdev->data_offset),
1662 bdevname(rdev->bdev, b));
1665 rdev_dec_pending(rdev, mddev);
1666 rcu_read_lock();
1669 rcu_read_unlock();
1671 sectors -= s;
1672 sect += s;
1676 static void raid10d(mddev_t *mddev)
1678 r10bio_t *r10_bio;
1679 struct bio *bio;
1680 unsigned long flags;
1681 conf_t *conf = mddev->private;
1682 struct list_head *head = &conf->retry_list;
1683 int unplug=0;
1684 mdk_rdev_t *rdev;
1686 md_check_recovery(mddev);
1688 for (;;) {
1689 char b[BDEVNAME_SIZE];
1691 unplug += flush_pending_writes(conf);
1693 spin_lock_irqsave(&conf->device_lock, flags);
1694 if (list_empty(head)) {
1695 spin_unlock_irqrestore(&conf->device_lock, flags);
1696 break;
1698 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1699 list_del(head->prev);
1700 conf->nr_queued--;
1701 spin_unlock_irqrestore(&conf->device_lock, flags);
1703 mddev = r10_bio->mddev;
1704 conf = mddev->private;
1705 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1706 sync_request_write(mddev, r10_bio);
1707 unplug = 1;
1708 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1709 recovery_request_write(mddev, r10_bio);
1710 unplug = 1;
1711 } else {
1712 int mirror;
1713 /* we got a read error. Maybe the drive is bad. Maybe just
1714 * the block and we can fix it.
1715 * We freeze all other IO, and try reading the block from
1716 * other devices. When we find one, we re-write
1717 * and check it that fixes the read error.
1718 * This is all done synchronously while the array is
1719 * frozen.
1721 if (mddev->ro == 0) {
1722 freeze_array(conf);
1723 fix_read_error(conf, mddev, r10_bio);
1724 unfreeze_array(conf);
1727 bio = r10_bio->devs[r10_bio->read_slot].bio;
1728 r10_bio->devs[r10_bio->read_slot].bio =
1729 mddev->ro ? IO_BLOCKED : NULL;
1730 mirror = read_balance(conf, r10_bio);
1731 if (mirror == -1) {
1732 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1733 " read error for block %llu\n",
1734 mdname(mddev),
1735 bdevname(bio->bi_bdev,b),
1736 (unsigned long long)r10_bio->sector);
1737 raid_end_bio_io(r10_bio);
1738 bio_put(bio);
1739 } else {
1740 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1741 bio_put(bio);
1742 rdev = conf->mirrors[mirror].rdev;
1743 if (printk_ratelimit())
1744 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1745 " another mirror\n",
1746 mdname(mddev),
1747 bdevname(rdev->bdev,b),
1748 (unsigned long long)r10_bio->sector);
1749 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1750 r10_bio->devs[r10_bio->read_slot].bio = bio;
1751 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1752 + rdev->data_offset;
1753 bio->bi_bdev = rdev->bdev;
1754 bio->bi_rw = READ | do_sync;
1755 bio->bi_private = r10_bio;
1756 bio->bi_end_io = raid10_end_read_request;
1757 unplug = 1;
1758 generic_make_request(bio);
1761 cond_resched();
1763 if (unplug)
1764 unplug_slaves(mddev);
1768 static int init_resync(conf_t *conf)
1770 int buffs;
1772 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1773 BUG_ON(conf->r10buf_pool);
1774 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1775 if (!conf->r10buf_pool)
1776 return -ENOMEM;
1777 conf->next_resync = 0;
1778 return 0;
1782 * perform a "sync" on one "block"
1784 * We need to make sure that no normal I/O request - particularly write
1785 * requests - conflict with active sync requests.
1787 * This is achieved by tracking pending requests and a 'barrier' concept
1788 * that can be installed to exclude normal IO requests.
1790 * Resync and recovery are handled very differently.
1791 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1793 * For resync, we iterate over virtual addresses, read all copies,
1794 * and update if there are differences. If only one copy is live,
1795 * skip it.
1796 * For recovery, we iterate over physical addresses, read a good
1797 * value for each non-in_sync drive, and over-write.
1799 * So, for recovery we may have several outstanding complex requests for a
1800 * given address, one for each out-of-sync device. We model this by allocating
1801 * a number of r10_bio structures, one for each out-of-sync device.
1802 * As we setup these structures, we collect all bio's together into a list
1803 * which we then process collectively to add pages, and then process again
1804 * to pass to generic_make_request.
1806 * The r10_bio structures are linked using a borrowed master_bio pointer.
1807 * This link is counted in ->remaining. When the r10_bio that points to NULL
1808 * has its remaining count decremented to 0, the whole complex operation
1809 * is complete.
1813 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1815 conf_t *conf = mddev->private;
1816 r10bio_t *r10_bio;
1817 struct bio *biolist = NULL, *bio;
1818 sector_t max_sector, nr_sectors;
1819 int disk;
1820 int i;
1821 int max_sync;
1822 sector_t sync_blocks;
1824 sector_t sectors_skipped = 0;
1825 int chunks_skipped = 0;
1827 if (!conf->r10buf_pool)
1828 if (init_resync(conf))
1829 return 0;
1831 skipped:
1832 max_sector = mddev->dev_sectors;
1833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1834 max_sector = mddev->resync_max_sectors;
1835 if (sector_nr >= max_sector) {
1836 /* If we aborted, we need to abort the
1837 * sync on the 'current' bitmap chucks (there can
1838 * be several when recovering multiple devices).
1839 * as we may have started syncing it but not finished.
1840 * We can find the current address in
1841 * mddev->curr_resync, but for recovery,
1842 * we need to convert that to several
1843 * virtual addresses.
1845 if (mddev->curr_resync < max_sector) { /* aborted */
1846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1847 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1848 &sync_blocks, 1);
1849 else for (i=0; i<conf->raid_disks; i++) {
1850 sector_t sect =
1851 raid10_find_virt(conf, mddev->curr_resync, i);
1852 bitmap_end_sync(mddev->bitmap, sect,
1853 &sync_blocks, 1);
1855 } else /* completed sync */
1856 conf->fullsync = 0;
1858 bitmap_close_sync(mddev->bitmap);
1859 close_sync(conf);
1860 *skipped = 1;
1861 return sectors_skipped;
1863 if (chunks_skipped >= conf->raid_disks) {
1864 /* if there has been nothing to do on any drive,
1865 * then there is nothing to do at all..
1867 *skipped = 1;
1868 return (max_sector - sector_nr) + sectors_skipped;
1871 if (max_sector > mddev->resync_max)
1872 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1874 /* make sure whole request will fit in a chunk - if chunks
1875 * are meaningful
1877 if (conf->near_copies < conf->raid_disks &&
1878 max_sector > (sector_nr | conf->chunk_mask))
1879 max_sector = (sector_nr | conf->chunk_mask) + 1;
1881 * If there is non-resync activity waiting for us then
1882 * put in a delay to throttle resync.
1884 if (!go_faster && conf->nr_waiting)
1885 msleep_interruptible(1000);
1887 /* Again, very different code for resync and recovery.
1888 * Both must result in an r10bio with a list of bios that
1889 * have bi_end_io, bi_sector, bi_bdev set,
1890 * and bi_private set to the r10bio.
1891 * For recovery, we may actually create several r10bios
1892 * with 2 bios in each, that correspond to the bios in the main one.
1893 * In this case, the subordinate r10bios link back through a
1894 * borrowed master_bio pointer, and the counter in the master
1895 * includes a ref from each subordinate.
1897 /* First, we decide what to do and set ->bi_end_io
1898 * To end_sync_read if we want to read, and
1899 * end_sync_write if we will want to write.
1902 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1903 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1904 /* recovery... the complicated one */
1905 int j, k;
1906 r10_bio = NULL;
1908 for (i=0 ; i<conf->raid_disks; i++)
1909 if (conf->mirrors[i].rdev &&
1910 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1911 int still_degraded = 0;
1912 /* want to reconstruct this device */
1913 r10bio_t *rb2 = r10_bio;
1914 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1915 int must_sync;
1916 /* Unless we are doing a full sync, we only need
1917 * to recover the block if it is set in the bitmap
1919 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1920 &sync_blocks, 1);
1921 if (sync_blocks < max_sync)
1922 max_sync = sync_blocks;
1923 if (!must_sync &&
1924 !conf->fullsync) {
1925 /* yep, skip the sync_blocks here, but don't assume
1926 * that there will never be anything to do here
1928 chunks_skipped = -1;
1929 continue;
1932 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1933 raise_barrier(conf, rb2 != NULL);
1934 atomic_set(&r10_bio->remaining, 0);
1936 r10_bio->master_bio = (struct bio*)rb2;
1937 if (rb2)
1938 atomic_inc(&rb2->remaining);
1939 r10_bio->mddev = mddev;
1940 set_bit(R10BIO_IsRecover, &r10_bio->state);
1941 r10_bio->sector = sect;
1943 raid10_find_phys(conf, r10_bio);
1945 /* Need to check if the array will still be
1946 * degraded
1948 for (j=0; j<conf->raid_disks; j++)
1949 if (conf->mirrors[j].rdev == NULL ||
1950 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1951 still_degraded = 1;
1952 break;
1955 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1956 &sync_blocks, still_degraded);
1958 for (j=0; j<conf->copies;j++) {
1959 int d = r10_bio->devs[j].devnum;
1960 if (conf->mirrors[d].rdev &&
1961 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1962 /* This is where we read from */
1963 bio = r10_bio->devs[0].bio;
1964 bio->bi_next = biolist;
1965 biolist = bio;
1966 bio->bi_private = r10_bio;
1967 bio->bi_end_io = end_sync_read;
1968 bio->bi_rw = READ;
1969 bio->bi_sector = r10_bio->devs[j].addr +
1970 conf->mirrors[d].rdev->data_offset;
1971 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1972 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1973 atomic_inc(&r10_bio->remaining);
1974 /* and we write to 'i' */
1976 for (k=0; k<conf->copies; k++)
1977 if (r10_bio->devs[k].devnum == i)
1978 break;
1979 BUG_ON(k == conf->copies);
1980 bio = r10_bio->devs[1].bio;
1981 bio->bi_next = biolist;
1982 biolist = bio;
1983 bio->bi_private = r10_bio;
1984 bio->bi_end_io = end_sync_write;
1985 bio->bi_rw = WRITE;
1986 bio->bi_sector = r10_bio->devs[k].addr +
1987 conf->mirrors[i].rdev->data_offset;
1988 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1990 r10_bio->devs[0].devnum = d;
1991 r10_bio->devs[1].devnum = i;
1993 break;
1996 if (j == conf->copies) {
1997 /* Cannot recover, so abort the recovery */
1998 put_buf(r10_bio);
1999 if (rb2)
2000 atomic_dec(&rb2->remaining);
2001 r10_bio = rb2;
2002 if (!test_and_set_bit(MD_RECOVERY_INTR,
2003 &mddev->recovery))
2004 printk(KERN_INFO "md/raid10:%s: insufficient "
2005 "working devices for recovery.\n",
2006 mdname(mddev));
2007 break;
2010 if (biolist == NULL) {
2011 while (r10_bio) {
2012 r10bio_t *rb2 = r10_bio;
2013 r10_bio = (r10bio_t*) rb2->master_bio;
2014 rb2->master_bio = NULL;
2015 put_buf(rb2);
2017 goto giveup;
2019 } else {
2020 /* resync. Schedule a read for every block at this virt offset */
2021 int count = 0;
2023 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2025 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2026 &sync_blocks, mddev->degraded) &&
2027 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2028 /* We can skip this block */
2029 *skipped = 1;
2030 return sync_blocks + sectors_skipped;
2032 if (sync_blocks < max_sync)
2033 max_sync = sync_blocks;
2034 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2036 r10_bio->mddev = mddev;
2037 atomic_set(&r10_bio->remaining, 0);
2038 raise_barrier(conf, 0);
2039 conf->next_resync = sector_nr;
2041 r10_bio->master_bio = NULL;
2042 r10_bio->sector = sector_nr;
2043 set_bit(R10BIO_IsSync, &r10_bio->state);
2044 raid10_find_phys(conf, r10_bio);
2045 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2047 for (i=0; i<conf->copies; i++) {
2048 int d = r10_bio->devs[i].devnum;
2049 bio = r10_bio->devs[i].bio;
2050 bio->bi_end_io = NULL;
2051 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2052 if (conf->mirrors[d].rdev == NULL ||
2053 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2054 continue;
2055 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2056 atomic_inc(&r10_bio->remaining);
2057 bio->bi_next = biolist;
2058 biolist = bio;
2059 bio->bi_private = r10_bio;
2060 bio->bi_end_io = end_sync_read;
2061 bio->bi_rw = READ;
2062 bio->bi_sector = r10_bio->devs[i].addr +
2063 conf->mirrors[d].rdev->data_offset;
2064 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2065 count++;
2068 if (count < 2) {
2069 for (i=0; i<conf->copies; i++) {
2070 int d = r10_bio->devs[i].devnum;
2071 if (r10_bio->devs[i].bio->bi_end_io)
2072 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2074 put_buf(r10_bio);
2075 biolist = NULL;
2076 goto giveup;
2080 for (bio = biolist; bio ; bio=bio->bi_next) {
2082 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2083 if (bio->bi_end_io)
2084 bio->bi_flags |= 1 << BIO_UPTODATE;
2085 bio->bi_vcnt = 0;
2086 bio->bi_idx = 0;
2087 bio->bi_phys_segments = 0;
2088 bio->bi_size = 0;
2091 nr_sectors = 0;
2092 if (sector_nr + max_sync < max_sector)
2093 max_sector = sector_nr + max_sync;
2094 do {
2095 struct page *page;
2096 int len = PAGE_SIZE;
2097 disk = 0;
2098 if (sector_nr + (len>>9) > max_sector)
2099 len = (max_sector - sector_nr) << 9;
2100 if (len == 0)
2101 break;
2102 for (bio= biolist ; bio ; bio=bio->bi_next) {
2103 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2104 if (bio_add_page(bio, page, len, 0) == 0) {
2105 /* stop here */
2106 struct bio *bio2;
2107 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2108 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2109 /* remove last page from this bio */
2110 bio2->bi_vcnt--;
2111 bio2->bi_size -= len;
2112 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2114 goto bio_full;
2116 disk = i;
2118 nr_sectors += len>>9;
2119 sector_nr += len>>9;
2120 } while (biolist->bi_vcnt < RESYNC_PAGES);
2121 bio_full:
2122 r10_bio->sectors = nr_sectors;
2124 while (biolist) {
2125 bio = biolist;
2126 biolist = biolist->bi_next;
2128 bio->bi_next = NULL;
2129 r10_bio = bio->bi_private;
2130 r10_bio->sectors = nr_sectors;
2132 if (bio->bi_end_io == end_sync_read) {
2133 md_sync_acct(bio->bi_bdev, nr_sectors);
2134 generic_make_request(bio);
2138 if (sectors_skipped)
2139 /* pretend they weren't skipped, it makes
2140 * no important difference in this case
2142 md_done_sync(mddev, sectors_skipped, 1);
2144 return sectors_skipped + nr_sectors;
2145 giveup:
2146 /* There is nowhere to write, so all non-sync
2147 * drives must be failed, so try the next chunk...
2149 if (sector_nr + max_sync < max_sector)
2150 max_sector = sector_nr + max_sync;
2152 sectors_skipped += (max_sector - sector_nr);
2153 chunks_skipped ++;
2154 sector_nr = max_sector;
2155 goto skipped;
2158 static sector_t
2159 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2161 sector_t size;
2162 conf_t *conf = mddev->private;
2164 if (!raid_disks)
2165 raid_disks = conf->raid_disks;
2166 if (!sectors)
2167 sectors = conf->dev_sectors;
2169 size = sectors >> conf->chunk_shift;
2170 sector_div(size, conf->far_copies);
2171 size = size * raid_disks;
2172 sector_div(size, conf->near_copies);
2174 return size << conf->chunk_shift;
2178 static conf_t *setup_conf(mddev_t *mddev)
2180 conf_t *conf = NULL;
2181 int nc, fc, fo;
2182 sector_t stride, size;
2183 int err = -EINVAL;
2185 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2186 !is_power_of_2(mddev->new_chunk_sectors)) {
2187 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2188 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2189 mdname(mddev), PAGE_SIZE);
2190 goto out;
2193 nc = mddev->new_layout & 255;
2194 fc = (mddev->new_layout >> 8) & 255;
2195 fo = mddev->new_layout & (1<<16);
2197 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2198 (mddev->new_layout >> 17)) {
2199 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2200 mdname(mddev), mddev->new_layout);
2201 goto out;
2204 err = -ENOMEM;
2205 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2206 if (!conf)
2207 goto out;
2209 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2210 GFP_KERNEL);
2211 if (!conf->mirrors)
2212 goto out;
2214 conf->tmppage = alloc_page(GFP_KERNEL);
2215 if (!conf->tmppage)
2216 goto out;
2219 conf->raid_disks = mddev->raid_disks;
2220 conf->near_copies = nc;
2221 conf->far_copies = fc;
2222 conf->copies = nc*fc;
2223 conf->far_offset = fo;
2224 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2225 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2227 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2228 r10bio_pool_free, conf);
2229 if (!conf->r10bio_pool)
2230 goto out;
2232 size = mddev->dev_sectors >> conf->chunk_shift;
2233 sector_div(size, fc);
2234 size = size * conf->raid_disks;
2235 sector_div(size, nc);
2236 /* 'size' is now the number of chunks in the array */
2237 /* calculate "used chunks per device" in 'stride' */
2238 stride = size * conf->copies;
2240 /* We need to round up when dividing by raid_disks to
2241 * get the stride size.
2243 stride += conf->raid_disks - 1;
2244 sector_div(stride, conf->raid_disks);
2246 conf->dev_sectors = stride << conf->chunk_shift;
2248 if (fo)
2249 stride = 1;
2250 else
2251 sector_div(stride, fc);
2252 conf->stride = stride << conf->chunk_shift;
2255 spin_lock_init(&conf->device_lock);
2256 INIT_LIST_HEAD(&conf->retry_list);
2258 spin_lock_init(&conf->resync_lock);
2259 init_waitqueue_head(&conf->wait_barrier);
2261 conf->thread = md_register_thread(raid10d, mddev, NULL);
2262 if (!conf->thread)
2263 goto out;
2265 conf->mddev = mddev;
2266 return conf;
2268 out:
2269 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2270 mdname(mddev));
2271 if (conf) {
2272 if (conf->r10bio_pool)
2273 mempool_destroy(conf->r10bio_pool);
2274 kfree(conf->mirrors);
2275 safe_put_page(conf->tmppage);
2276 kfree(conf);
2278 return ERR_PTR(err);
2281 static int run(mddev_t *mddev)
2283 conf_t *conf;
2284 int i, disk_idx, chunk_size;
2285 mirror_info_t *disk;
2286 mdk_rdev_t *rdev;
2287 sector_t size;
2290 * copy the already verified devices into our private RAID10
2291 * bookkeeping area. [whatever we allocate in run(),
2292 * should be freed in stop()]
2295 if (mddev->private == NULL) {
2296 conf = setup_conf(mddev);
2297 if (IS_ERR(conf))
2298 return PTR_ERR(conf);
2299 mddev->private = conf;
2301 conf = mddev->private;
2302 if (!conf)
2303 goto out;
2305 mddev->queue->queue_lock = &conf->device_lock;
2307 mddev->thread = conf->thread;
2308 conf->thread = NULL;
2310 chunk_size = mddev->chunk_sectors << 9;
2311 blk_queue_io_min(mddev->queue, chunk_size);
2312 if (conf->raid_disks % conf->near_copies)
2313 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2314 else
2315 blk_queue_io_opt(mddev->queue, chunk_size *
2316 (conf->raid_disks / conf->near_copies));
2318 list_for_each_entry(rdev, &mddev->disks, same_set) {
2319 disk_idx = rdev->raid_disk;
2320 if (disk_idx >= conf->raid_disks
2321 || disk_idx < 0)
2322 continue;
2323 disk = conf->mirrors + disk_idx;
2325 disk->rdev = rdev;
2326 disk_stack_limits(mddev->gendisk, rdev->bdev,
2327 rdev->data_offset << 9);
2328 /* as we don't honour merge_bvec_fn, we must never risk
2329 * violating it, so limit max_segments to 1 lying
2330 * within a single page.
2332 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2333 blk_queue_max_segments(mddev->queue, 1);
2334 blk_queue_segment_boundary(mddev->queue,
2335 PAGE_CACHE_SIZE - 1);
2338 disk->head_position = 0;
2340 /* need to check that every block has at least one working mirror */
2341 if (!enough(conf)) {
2342 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2343 mdname(mddev));
2344 goto out_free_conf;
2347 mddev->degraded = 0;
2348 for (i = 0; i < conf->raid_disks; i++) {
2350 disk = conf->mirrors + i;
2352 if (!disk->rdev ||
2353 !test_bit(In_sync, &disk->rdev->flags)) {
2354 disk->head_position = 0;
2355 mddev->degraded++;
2356 if (disk->rdev)
2357 conf->fullsync = 1;
2361 if (mddev->recovery_cp != MaxSector)
2362 printk(KERN_NOTICE "md/raid10:%s: not clean"
2363 " -- starting background reconstruction\n",
2364 mdname(mddev));
2365 printk(KERN_INFO
2366 "md/raid10:%s: active with %d out of %d devices\n",
2367 mdname(mddev), conf->raid_disks - mddev->degraded,
2368 conf->raid_disks);
2370 * Ok, everything is just fine now
2372 mddev->dev_sectors = conf->dev_sectors;
2373 size = raid10_size(mddev, 0, 0);
2374 md_set_array_sectors(mddev, size);
2375 mddev->resync_max_sectors = size;
2377 mddev->queue->unplug_fn = raid10_unplug;
2378 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2379 mddev->queue->backing_dev_info.congested_data = mddev;
2381 /* Calculate max read-ahead size.
2382 * We need to readahead at least twice a whole stripe....
2383 * maybe...
2386 int stripe = conf->raid_disks *
2387 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2388 stripe /= conf->near_copies;
2389 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2390 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2393 if (conf->near_copies < conf->raid_disks)
2394 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2395 md_integrity_register(mddev);
2396 return 0;
2398 out_free_conf:
2399 if (conf->r10bio_pool)
2400 mempool_destroy(conf->r10bio_pool);
2401 safe_put_page(conf->tmppage);
2402 kfree(conf->mirrors);
2403 kfree(conf);
2404 mddev->private = NULL;
2405 md_unregister_thread(mddev->thread);
2406 out:
2407 return -EIO;
2410 static int stop(mddev_t *mddev)
2412 conf_t *conf = mddev->private;
2414 raise_barrier(conf, 0);
2415 lower_barrier(conf);
2417 md_unregister_thread(mddev->thread);
2418 mddev->thread = NULL;
2419 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2420 if (conf->r10bio_pool)
2421 mempool_destroy(conf->r10bio_pool);
2422 kfree(conf->mirrors);
2423 kfree(conf);
2424 mddev->private = NULL;
2425 return 0;
2428 static void raid10_quiesce(mddev_t *mddev, int state)
2430 conf_t *conf = mddev->private;
2432 switch(state) {
2433 case 1:
2434 raise_barrier(conf, 0);
2435 break;
2436 case 0:
2437 lower_barrier(conf);
2438 break;
2442 static void *raid10_takeover_raid0(mddev_t *mddev)
2444 mdk_rdev_t *rdev;
2445 conf_t *conf;
2447 if (mddev->degraded > 0) {
2448 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2449 mdname(mddev));
2450 return ERR_PTR(-EINVAL);
2453 /* Set new parameters */
2454 mddev->new_level = 10;
2455 /* new layout: far_copies = 1, near_copies = 2 */
2456 mddev->new_layout = (1<<8) + 2;
2457 mddev->new_chunk_sectors = mddev->chunk_sectors;
2458 mddev->delta_disks = mddev->raid_disks;
2459 mddev->raid_disks *= 2;
2460 /* make sure it will be not marked as dirty */
2461 mddev->recovery_cp = MaxSector;
2463 conf = setup_conf(mddev);
2464 if (!IS_ERR(conf))
2465 list_for_each_entry(rdev, &mddev->disks, same_set)
2466 if (rdev->raid_disk >= 0)
2467 rdev->new_raid_disk = rdev->raid_disk * 2;
2469 return conf;
2472 static void *raid10_takeover(mddev_t *mddev)
2474 struct raid0_private_data *raid0_priv;
2476 /* raid10 can take over:
2477 * raid0 - providing it has only two drives
2479 if (mddev->level == 0) {
2480 /* for raid0 takeover only one zone is supported */
2481 raid0_priv = mddev->private;
2482 if (raid0_priv->nr_strip_zones > 1) {
2483 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2484 " with more than one zone.\n",
2485 mdname(mddev));
2486 return ERR_PTR(-EINVAL);
2488 return raid10_takeover_raid0(mddev);
2490 return ERR_PTR(-EINVAL);
2493 static struct mdk_personality raid10_personality =
2495 .name = "raid10",
2496 .level = 10,
2497 .owner = THIS_MODULE,
2498 .make_request = make_request,
2499 .run = run,
2500 .stop = stop,
2501 .status = status,
2502 .error_handler = error,
2503 .hot_add_disk = raid10_add_disk,
2504 .hot_remove_disk= raid10_remove_disk,
2505 .spare_active = raid10_spare_active,
2506 .sync_request = sync_request,
2507 .quiesce = raid10_quiesce,
2508 .size = raid10_size,
2509 .takeover = raid10_takeover,
2512 static int __init raid_init(void)
2514 return register_md_personality(&raid10_personality);
2517 static void raid_exit(void)
2519 unregister_md_personality(&raid10_personality);
2522 module_init(raid_init);
2523 module_exit(raid_exit);
2524 MODULE_LICENSE("GPL");
2525 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2526 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2527 MODULE_ALIAS("md-raid10");
2528 MODULE_ALIAS("md-level-10");