drm/i915: Re-use set_base_atomic to share setting of the display registers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cpuset.c
blobb23c0979bbe7212a748a9aac70697e92ee54f448
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Workqueue for cpuset related tasks.
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
69 static struct workqueue_struct *cpuset_wq;
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
76 int number_of_cpusets __read_mostly;
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
82 /* See "Frequency meter" comments, below. */
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
91 struct cpuset {
92 struct cgroup_subsys_state css;
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
98 struct cpuset *parent; /* my parent */
100 struct fmeter fmeter; /* memory_pressure filter */
102 /* partition number for rebuild_sched_domains() */
103 int pn;
105 /* for custom sched domain */
106 int relax_domain_level;
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
126 /* bits in struct cpuset flags field */
127 typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
130 CS_MEM_HARDWALL,
131 CS_MEMORY_MIGRATE,
132 CS_SCHED_LOAD_BALANCE,
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
135 } cpuset_flagbits_t;
137 /* convenient tests for these bits */
138 static inline int is_cpu_exclusive(const struct cpuset *cs)
140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
143 static inline int is_mem_exclusive(const struct cpuset *cs)
145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
148 static inline int is_mem_hardwall(const struct cpuset *cs)
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153 static inline int is_sched_load_balance(const struct cpuset *cs)
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158 static inline int is_memory_migrate(const struct cpuset *cs)
160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
163 static inline int is_spread_page(const struct cpuset *cs)
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168 static inline int is_spread_slab(const struct cpuset *cs)
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173 static struct cpuset top_cpuset = {
174 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
178 * There are two global mutexes guarding cpuset structures. The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181 * callback_mutex, below. They can nest. It is ok to first take
182 * cgroup_mutex, then nest callback_mutex. We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer. See "The
184 * task_lock() exception", at the end of this comment.
186 * A task must hold both mutexes to modify cpusets. If a task
187 * holds cgroup_mutex, then it blocks others wanting that mutex,
188 * ensuring that it is the only task able to also acquire callback_mutex
189 * and be able to modify cpusets. It can perform various checks on
190 * the cpuset structure first, knowing nothing will change. It can
191 * also allocate memory while just holding cgroup_mutex. While it is
192 * performing these checks, various callback routines can briefly
193 * acquire callback_mutex to query cpusets. Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
196 * Calls to the kernel memory allocator can not be made while holding
197 * callback_mutex, as that would risk double tripping on callback_mutex
198 * from one of the callbacks into the cpuset code from within
199 * __alloc_pages().
201 * If a task is only holding callback_mutex, then it has read-only
202 * access to cpusets.
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
208 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
216 static DEFINE_MUTEX(callback_mutex);
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers. They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
223 #define CPUSET_NAME_LEN (128)
224 #define CPUSET_NODELIST_LEN (256)
225 static char cpuset_name[CPUSET_NAME_LEN];
226 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227 static DEFINE_SPINLOCK(cpuset_buffer_lock);
230 * This is ugly, but preserves the userspace API for existing cpuset
231 * users. If someone tries to mount the "cpuset" filesystem, we
232 * silently switch it to mount "cgroup" instead
234 static int cpuset_get_sb(struct file_system_type *fs_type,
235 int flags, const char *unused_dev_name,
236 void *data, struct vfsmount *mnt)
238 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
239 int ret = -ENODEV;
240 if (cgroup_fs) {
241 char mountopts[] =
242 "cpuset,noprefix,"
243 "release_agent=/sbin/cpuset_release_agent";
244 ret = cgroup_fs->get_sb(cgroup_fs, flags,
245 unused_dev_name, mountopts, mnt);
246 put_filesystem(cgroup_fs);
248 return ret;
251 static struct file_system_type cpuset_fs_type = {
252 .name = "cpuset",
253 .get_sb = cpuset_get_sb,
257 * Return in pmask the portion of a cpusets's cpus_allowed that
258 * are online. If none are online, walk up the cpuset hierarchy
259 * until we find one that does have some online cpus. If we get
260 * all the way to the top and still haven't found any online cpus,
261 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
262 * task, return cpu_online_map.
264 * One way or another, we guarantee to return some non-empty subset
265 * of cpu_online_map.
267 * Call with callback_mutex held.
270 static void guarantee_online_cpus(const struct cpuset *cs,
271 struct cpumask *pmask)
273 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
274 cs = cs->parent;
275 if (cs)
276 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
277 else
278 cpumask_copy(pmask, cpu_online_mask);
279 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
283 * Return in *pmask the portion of a cpusets's mems_allowed that
284 * are online, with memory. If none are online with memory, walk
285 * up the cpuset hierarchy until we find one that does have some
286 * online mems. If we get all the way to the top and still haven't
287 * found any online mems, return node_states[N_HIGH_MEMORY].
289 * One way or another, we guarantee to return some non-empty subset
290 * of node_states[N_HIGH_MEMORY].
292 * Call with callback_mutex held.
295 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
297 while (cs && !nodes_intersects(cs->mems_allowed,
298 node_states[N_HIGH_MEMORY]))
299 cs = cs->parent;
300 if (cs)
301 nodes_and(*pmask, cs->mems_allowed,
302 node_states[N_HIGH_MEMORY]);
303 else
304 *pmask = node_states[N_HIGH_MEMORY];
305 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
309 * update task's spread flag if cpuset's page/slab spread flag is set
311 * Called with callback_mutex/cgroup_mutex held
313 static void cpuset_update_task_spread_flag(struct cpuset *cs,
314 struct task_struct *tsk)
316 if (is_spread_page(cs))
317 tsk->flags |= PF_SPREAD_PAGE;
318 else
319 tsk->flags &= ~PF_SPREAD_PAGE;
320 if (is_spread_slab(cs))
321 tsk->flags |= PF_SPREAD_SLAB;
322 else
323 tsk->flags &= ~PF_SPREAD_SLAB;
327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
329 * One cpuset is a subset of another if all its allowed CPUs and
330 * Memory Nodes are a subset of the other, and its exclusive flags
331 * are only set if the other's are set. Call holding cgroup_mutex.
334 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
336 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
337 nodes_subset(p->mems_allowed, q->mems_allowed) &&
338 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
339 is_mem_exclusive(p) <= is_mem_exclusive(q);
343 * alloc_trial_cpuset - allocate a trial cpuset
344 * @cs: the cpuset that the trial cpuset duplicates
346 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
348 struct cpuset *trial;
350 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
351 if (!trial)
352 return NULL;
354 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
355 kfree(trial);
356 return NULL;
358 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
360 return trial;
364 * free_trial_cpuset - free the trial cpuset
365 * @trial: the trial cpuset to be freed
367 static void free_trial_cpuset(struct cpuset *trial)
369 free_cpumask_var(trial->cpus_allowed);
370 kfree(trial);
374 * validate_change() - Used to validate that any proposed cpuset change
375 * follows the structural rules for cpusets.
377 * If we replaced the flag and mask values of the current cpuset
378 * (cur) with those values in the trial cpuset (trial), would
379 * our various subset and exclusive rules still be valid? Presumes
380 * cgroup_mutex held.
382 * 'cur' is the address of an actual, in-use cpuset. Operations
383 * such as list traversal that depend on the actual address of the
384 * cpuset in the list must use cur below, not trial.
386 * 'trial' is the address of bulk structure copy of cur, with
387 * perhaps one or more of the fields cpus_allowed, mems_allowed,
388 * or flags changed to new, trial values.
390 * Return 0 if valid, -errno if not.
393 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
395 struct cgroup *cont;
396 struct cpuset *c, *par;
398 /* Each of our child cpusets must be a subset of us */
399 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
400 if (!is_cpuset_subset(cgroup_cs(cont), trial))
401 return -EBUSY;
404 /* Remaining checks don't apply to root cpuset */
405 if (cur == &top_cpuset)
406 return 0;
408 par = cur->parent;
410 /* We must be a subset of our parent cpuset */
411 if (!is_cpuset_subset(trial, par))
412 return -EACCES;
415 * If either I or some sibling (!= me) is exclusive, we can't
416 * overlap
418 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
419 c = cgroup_cs(cont);
420 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
421 c != cur &&
422 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
423 return -EINVAL;
424 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
425 c != cur &&
426 nodes_intersects(trial->mems_allowed, c->mems_allowed))
427 return -EINVAL;
430 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
431 if (cgroup_task_count(cur->css.cgroup)) {
432 if (cpumask_empty(trial->cpus_allowed) ||
433 nodes_empty(trial->mems_allowed)) {
434 return -ENOSPC;
438 return 0;
441 #ifdef CONFIG_SMP
443 * Helper routine for generate_sched_domains().
444 * Do cpusets a, b have overlapping cpus_allowed masks?
446 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
448 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
451 static void
452 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
454 if (dattr->relax_domain_level < c->relax_domain_level)
455 dattr->relax_domain_level = c->relax_domain_level;
456 return;
459 static void
460 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
462 LIST_HEAD(q);
464 list_add(&c->stack_list, &q);
465 while (!list_empty(&q)) {
466 struct cpuset *cp;
467 struct cgroup *cont;
468 struct cpuset *child;
470 cp = list_first_entry(&q, struct cpuset, stack_list);
471 list_del(q.next);
473 if (cpumask_empty(cp->cpus_allowed))
474 continue;
476 if (is_sched_load_balance(cp))
477 update_domain_attr(dattr, cp);
479 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
480 child = cgroup_cs(cont);
481 list_add_tail(&child->stack_list, &q);
487 * generate_sched_domains()
489 * This function builds a partial partition of the systems CPUs
490 * A 'partial partition' is a set of non-overlapping subsets whose
491 * union is a subset of that set.
492 * The output of this function needs to be passed to kernel/sched.c
493 * partition_sched_domains() routine, which will rebuild the scheduler's
494 * load balancing domains (sched domains) as specified by that partial
495 * partition.
497 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
498 * for a background explanation of this.
500 * Does not return errors, on the theory that the callers of this
501 * routine would rather not worry about failures to rebuild sched
502 * domains when operating in the severe memory shortage situations
503 * that could cause allocation failures below.
505 * Must be called with cgroup_lock held.
507 * The three key local variables below are:
508 * q - a linked-list queue of cpuset pointers, used to implement a
509 * top-down scan of all cpusets. This scan loads a pointer
510 * to each cpuset marked is_sched_load_balance into the
511 * array 'csa'. For our purposes, rebuilding the schedulers
512 * sched domains, we can ignore !is_sched_load_balance cpusets.
513 * csa - (for CpuSet Array) Array of pointers to all the cpusets
514 * that need to be load balanced, for convenient iterative
515 * access by the subsequent code that finds the best partition,
516 * i.e the set of domains (subsets) of CPUs such that the
517 * cpus_allowed of every cpuset marked is_sched_load_balance
518 * is a subset of one of these domains, while there are as
519 * many such domains as possible, each as small as possible.
520 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
521 * the kernel/sched.c routine partition_sched_domains() in a
522 * convenient format, that can be easily compared to the prior
523 * value to determine what partition elements (sched domains)
524 * were changed (added or removed.)
526 * Finding the best partition (set of domains):
527 * The triple nested loops below over i, j, k scan over the
528 * load balanced cpusets (using the array of cpuset pointers in
529 * csa[]) looking for pairs of cpusets that have overlapping
530 * cpus_allowed, but which don't have the same 'pn' partition
531 * number and gives them in the same partition number. It keeps
532 * looping on the 'restart' label until it can no longer find
533 * any such pairs.
535 * The union of the cpus_allowed masks from the set of
536 * all cpusets having the same 'pn' value then form the one
537 * element of the partition (one sched domain) to be passed to
538 * partition_sched_domains().
540 static int generate_sched_domains(cpumask_var_t **domains,
541 struct sched_domain_attr **attributes)
543 LIST_HEAD(q); /* queue of cpusets to be scanned */
544 struct cpuset *cp; /* scans q */
545 struct cpuset **csa; /* array of all cpuset ptrs */
546 int csn; /* how many cpuset ptrs in csa so far */
547 int i, j, k; /* indices for partition finding loops */
548 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
549 struct sched_domain_attr *dattr; /* attributes for custom domains */
550 int ndoms = 0; /* number of sched domains in result */
551 int nslot; /* next empty doms[] struct cpumask slot */
553 doms = NULL;
554 dattr = NULL;
555 csa = NULL;
557 /* Special case for the 99% of systems with one, full, sched domain */
558 if (is_sched_load_balance(&top_cpuset)) {
559 ndoms = 1;
560 doms = alloc_sched_domains(ndoms);
561 if (!doms)
562 goto done;
564 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
565 if (dattr) {
566 *dattr = SD_ATTR_INIT;
567 update_domain_attr_tree(dattr, &top_cpuset);
569 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
571 goto done;
574 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
575 if (!csa)
576 goto done;
577 csn = 0;
579 list_add(&top_cpuset.stack_list, &q);
580 while (!list_empty(&q)) {
581 struct cgroup *cont;
582 struct cpuset *child; /* scans child cpusets of cp */
584 cp = list_first_entry(&q, struct cpuset, stack_list);
585 list_del(q.next);
587 if (cpumask_empty(cp->cpus_allowed))
588 continue;
591 * All child cpusets contain a subset of the parent's cpus, so
592 * just skip them, and then we call update_domain_attr_tree()
593 * to calc relax_domain_level of the corresponding sched
594 * domain.
596 if (is_sched_load_balance(cp)) {
597 csa[csn++] = cp;
598 continue;
601 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
602 child = cgroup_cs(cont);
603 list_add_tail(&child->stack_list, &q);
607 for (i = 0; i < csn; i++)
608 csa[i]->pn = i;
609 ndoms = csn;
611 restart:
612 /* Find the best partition (set of sched domains) */
613 for (i = 0; i < csn; i++) {
614 struct cpuset *a = csa[i];
615 int apn = a->pn;
617 for (j = 0; j < csn; j++) {
618 struct cpuset *b = csa[j];
619 int bpn = b->pn;
621 if (apn != bpn && cpusets_overlap(a, b)) {
622 for (k = 0; k < csn; k++) {
623 struct cpuset *c = csa[k];
625 if (c->pn == bpn)
626 c->pn = apn;
628 ndoms--; /* one less element */
629 goto restart;
635 * Now we know how many domains to create.
636 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
638 doms = alloc_sched_domains(ndoms);
639 if (!doms)
640 goto done;
643 * The rest of the code, including the scheduler, can deal with
644 * dattr==NULL case. No need to abort if alloc fails.
646 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
648 for (nslot = 0, i = 0; i < csn; i++) {
649 struct cpuset *a = csa[i];
650 struct cpumask *dp;
651 int apn = a->pn;
653 if (apn < 0) {
654 /* Skip completed partitions */
655 continue;
658 dp = doms[nslot];
660 if (nslot == ndoms) {
661 static int warnings = 10;
662 if (warnings) {
663 printk(KERN_WARNING
664 "rebuild_sched_domains confused:"
665 " nslot %d, ndoms %d, csn %d, i %d,"
666 " apn %d\n",
667 nslot, ndoms, csn, i, apn);
668 warnings--;
670 continue;
673 cpumask_clear(dp);
674 if (dattr)
675 *(dattr + nslot) = SD_ATTR_INIT;
676 for (j = i; j < csn; j++) {
677 struct cpuset *b = csa[j];
679 if (apn == b->pn) {
680 cpumask_or(dp, dp, b->cpus_allowed);
681 if (dattr)
682 update_domain_attr_tree(dattr + nslot, b);
684 /* Done with this partition */
685 b->pn = -1;
688 nslot++;
690 BUG_ON(nslot != ndoms);
692 done:
693 kfree(csa);
696 * Fallback to the default domain if kmalloc() failed.
697 * See comments in partition_sched_domains().
699 if (doms == NULL)
700 ndoms = 1;
702 *domains = doms;
703 *attributes = dattr;
704 return ndoms;
708 * Rebuild scheduler domains.
710 * Call with neither cgroup_mutex held nor within get_online_cpus().
711 * Takes both cgroup_mutex and get_online_cpus().
713 * Cannot be directly called from cpuset code handling changes
714 * to the cpuset pseudo-filesystem, because it cannot be called
715 * from code that already holds cgroup_mutex.
717 static void do_rebuild_sched_domains(struct work_struct *unused)
719 struct sched_domain_attr *attr;
720 cpumask_var_t *doms;
721 int ndoms;
723 get_online_cpus();
725 /* Generate domain masks and attrs */
726 cgroup_lock();
727 ndoms = generate_sched_domains(&doms, &attr);
728 cgroup_unlock();
730 /* Have scheduler rebuild the domains */
731 partition_sched_domains(ndoms, doms, attr);
733 put_online_cpus();
735 #else /* !CONFIG_SMP */
736 static void do_rebuild_sched_domains(struct work_struct *unused)
740 static int generate_sched_domains(cpumask_var_t **domains,
741 struct sched_domain_attr **attributes)
743 *domains = NULL;
744 return 1;
746 #endif /* CONFIG_SMP */
748 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
751 * Rebuild scheduler domains, asynchronously via workqueue.
753 * If the flag 'sched_load_balance' of any cpuset with non-empty
754 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
755 * which has that flag enabled, or if any cpuset with a non-empty
756 * 'cpus' is removed, then call this routine to rebuild the
757 * scheduler's dynamic sched domains.
759 * The rebuild_sched_domains() and partition_sched_domains()
760 * routines must nest cgroup_lock() inside get_online_cpus(),
761 * but such cpuset changes as these must nest that locking the
762 * other way, holding cgroup_lock() for much of the code.
764 * So in order to avoid an ABBA deadlock, the cpuset code handling
765 * these user changes delegates the actual sched domain rebuilding
766 * to a separate workqueue thread, which ends up processing the
767 * above do_rebuild_sched_domains() function.
769 static void async_rebuild_sched_domains(void)
771 queue_work(cpuset_wq, &rebuild_sched_domains_work);
775 * Accomplishes the same scheduler domain rebuild as the above
776 * async_rebuild_sched_domains(), however it directly calls the
777 * rebuild routine synchronously rather than calling it via an
778 * asynchronous work thread.
780 * This can only be called from code that is not holding
781 * cgroup_mutex (not nested in a cgroup_lock() call.)
783 void rebuild_sched_domains(void)
785 do_rebuild_sched_domains(NULL);
789 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
790 * @tsk: task to test
791 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
793 * Call with cgroup_mutex held. May take callback_mutex during call.
794 * Called for each task in a cgroup by cgroup_scan_tasks().
795 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
796 * words, if its mask is not equal to its cpuset's mask).
798 static int cpuset_test_cpumask(struct task_struct *tsk,
799 struct cgroup_scanner *scan)
801 return !cpumask_equal(&tsk->cpus_allowed,
802 (cgroup_cs(scan->cg))->cpus_allowed);
806 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
807 * @tsk: task to test
808 * @scan: struct cgroup_scanner containing the cgroup of the task
810 * Called by cgroup_scan_tasks() for each task in a cgroup whose
811 * cpus_allowed mask needs to be changed.
813 * We don't need to re-check for the cgroup/cpuset membership, since we're
814 * holding cgroup_lock() at this point.
816 static void cpuset_change_cpumask(struct task_struct *tsk,
817 struct cgroup_scanner *scan)
819 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
823 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
824 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
825 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
827 * Called with cgroup_mutex held
829 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
830 * calling callback functions for each.
832 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
833 * if @heap != NULL.
835 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
837 struct cgroup_scanner scan;
839 scan.cg = cs->css.cgroup;
840 scan.test_task = cpuset_test_cpumask;
841 scan.process_task = cpuset_change_cpumask;
842 scan.heap = heap;
843 cgroup_scan_tasks(&scan);
847 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
848 * @cs: the cpuset to consider
849 * @buf: buffer of cpu numbers written to this cpuset
851 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
852 const char *buf)
854 struct ptr_heap heap;
855 int retval;
856 int is_load_balanced;
858 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
859 if (cs == &top_cpuset)
860 return -EACCES;
863 * An empty cpus_allowed is ok only if the cpuset has no tasks.
864 * Since cpulist_parse() fails on an empty mask, we special case
865 * that parsing. The validate_change() call ensures that cpusets
866 * with tasks have cpus.
868 if (!*buf) {
869 cpumask_clear(trialcs->cpus_allowed);
870 } else {
871 retval = cpulist_parse(buf, trialcs->cpus_allowed);
872 if (retval < 0)
873 return retval;
875 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
876 return -EINVAL;
878 retval = validate_change(cs, trialcs);
879 if (retval < 0)
880 return retval;
882 /* Nothing to do if the cpus didn't change */
883 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
884 return 0;
886 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
887 if (retval)
888 return retval;
890 is_load_balanced = is_sched_load_balance(trialcs);
892 mutex_lock(&callback_mutex);
893 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
894 mutex_unlock(&callback_mutex);
897 * Scan tasks in the cpuset, and update the cpumasks of any
898 * that need an update.
900 update_tasks_cpumask(cs, &heap);
902 heap_free(&heap);
904 if (is_load_balanced)
905 async_rebuild_sched_domains();
906 return 0;
910 * cpuset_migrate_mm
912 * Migrate memory region from one set of nodes to another.
914 * Temporarilly set tasks mems_allowed to target nodes of migration,
915 * so that the migration code can allocate pages on these nodes.
917 * Call holding cgroup_mutex, so current's cpuset won't change
918 * during this call, as manage_mutex holds off any cpuset_attach()
919 * calls. Therefore we don't need to take task_lock around the
920 * call to guarantee_online_mems(), as we know no one is changing
921 * our task's cpuset.
923 * While the mm_struct we are migrating is typically from some
924 * other task, the task_struct mems_allowed that we are hacking
925 * is for our current task, which must allocate new pages for that
926 * migrating memory region.
929 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
930 const nodemask_t *to)
932 struct task_struct *tsk = current;
934 tsk->mems_allowed = *to;
936 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
938 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
942 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
943 * @tsk: the task to change
944 * @newmems: new nodes that the task will be set
946 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
947 * we structure updates as setting all new allowed nodes, then clearing newly
948 * disallowed ones.
950 static void cpuset_change_task_nodemask(struct task_struct *tsk,
951 nodemask_t *newmems)
953 repeat:
955 * Allow tasks that have access to memory reserves because they have
956 * been OOM killed to get memory anywhere.
958 if (unlikely(test_thread_flag(TIF_MEMDIE)))
959 return;
960 if (current->flags & PF_EXITING) /* Let dying task have memory */
961 return;
963 task_lock(tsk);
964 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
965 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
969 * ensure checking ->mems_allowed_change_disable after setting all new
970 * allowed nodes.
972 * the read-side task can see an nodemask with new allowed nodes and
973 * old allowed nodes. and if it allocates page when cpuset clears newly
974 * disallowed ones continuous, it can see the new allowed bits.
976 * And if setting all new allowed nodes is after the checking, setting
977 * all new allowed nodes and clearing newly disallowed ones will be done
978 * continuous, and the read-side task may find no node to alloc page.
980 smp_mb();
983 * Allocation of memory is very fast, we needn't sleep when waiting
984 * for the read-side.
986 while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
987 task_unlock(tsk);
988 if (!task_curr(tsk))
989 yield();
990 goto repeat;
994 * ensure checking ->mems_allowed_change_disable before clearing all new
995 * disallowed nodes.
997 * if clearing newly disallowed bits before the checking, the read-side
998 * task may find no node to alloc page.
1000 smp_mb();
1002 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1003 tsk->mems_allowed = *newmems;
1004 task_unlock(tsk);
1008 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1009 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1010 * memory_migrate flag is set. Called with cgroup_mutex held.
1012 static void cpuset_change_nodemask(struct task_struct *p,
1013 struct cgroup_scanner *scan)
1015 struct mm_struct *mm;
1016 struct cpuset *cs;
1017 int migrate;
1018 const nodemask_t *oldmem = scan->data;
1019 NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);
1021 if (!newmems)
1022 return;
1024 cs = cgroup_cs(scan->cg);
1025 guarantee_online_mems(cs, newmems);
1027 cpuset_change_task_nodemask(p, newmems);
1029 NODEMASK_FREE(newmems);
1031 mm = get_task_mm(p);
1032 if (!mm)
1033 return;
1035 migrate = is_memory_migrate(cs);
1037 mpol_rebind_mm(mm, &cs->mems_allowed);
1038 if (migrate)
1039 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1040 mmput(mm);
1043 static void *cpuset_being_rebound;
1046 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1047 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1048 * @oldmem: old mems_allowed of cpuset cs
1049 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1051 * Called with cgroup_mutex held
1052 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1053 * if @heap != NULL.
1055 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1056 struct ptr_heap *heap)
1058 struct cgroup_scanner scan;
1060 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1062 scan.cg = cs->css.cgroup;
1063 scan.test_task = NULL;
1064 scan.process_task = cpuset_change_nodemask;
1065 scan.heap = heap;
1066 scan.data = (nodemask_t *)oldmem;
1069 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1070 * take while holding tasklist_lock. Forks can happen - the
1071 * mpol_dup() cpuset_being_rebound check will catch such forks,
1072 * and rebind their vma mempolicies too. Because we still hold
1073 * the global cgroup_mutex, we know that no other rebind effort
1074 * will be contending for the global variable cpuset_being_rebound.
1075 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1076 * is idempotent. Also migrate pages in each mm to new nodes.
1078 cgroup_scan_tasks(&scan);
1080 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1081 cpuset_being_rebound = NULL;
1085 * Handle user request to change the 'mems' memory placement
1086 * of a cpuset. Needs to validate the request, update the
1087 * cpusets mems_allowed, and for each task in the cpuset,
1088 * update mems_allowed and rebind task's mempolicy and any vma
1089 * mempolicies and if the cpuset is marked 'memory_migrate',
1090 * migrate the tasks pages to the new memory.
1092 * Call with cgroup_mutex held. May take callback_mutex during call.
1093 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1094 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1095 * their mempolicies to the cpusets new mems_allowed.
1097 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1098 const char *buf)
1100 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1101 int retval;
1102 struct ptr_heap heap;
1104 if (!oldmem)
1105 return -ENOMEM;
1108 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1109 * it's read-only
1111 if (cs == &top_cpuset) {
1112 retval = -EACCES;
1113 goto done;
1117 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1118 * Since nodelist_parse() fails on an empty mask, we special case
1119 * that parsing. The validate_change() call ensures that cpusets
1120 * with tasks have memory.
1122 if (!*buf) {
1123 nodes_clear(trialcs->mems_allowed);
1124 } else {
1125 retval = nodelist_parse(buf, trialcs->mems_allowed);
1126 if (retval < 0)
1127 goto done;
1129 if (!nodes_subset(trialcs->mems_allowed,
1130 node_states[N_HIGH_MEMORY])) {
1131 retval = -EINVAL;
1132 goto done;
1135 *oldmem = cs->mems_allowed;
1136 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1137 retval = 0; /* Too easy - nothing to do */
1138 goto done;
1140 retval = validate_change(cs, trialcs);
1141 if (retval < 0)
1142 goto done;
1144 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145 if (retval < 0)
1146 goto done;
1148 mutex_lock(&callback_mutex);
1149 cs->mems_allowed = trialcs->mems_allowed;
1150 mutex_unlock(&callback_mutex);
1152 update_tasks_nodemask(cs, oldmem, &heap);
1154 heap_free(&heap);
1155 done:
1156 NODEMASK_FREE(oldmem);
1157 return retval;
1160 int current_cpuset_is_being_rebound(void)
1162 return task_cs(current) == cpuset_being_rebound;
1165 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1167 #ifdef CONFIG_SMP
1168 if (val < -1 || val >= SD_LV_MAX)
1169 return -EINVAL;
1170 #endif
1172 if (val != cs->relax_domain_level) {
1173 cs->relax_domain_level = val;
1174 if (!cpumask_empty(cs->cpus_allowed) &&
1175 is_sched_load_balance(cs))
1176 async_rebuild_sched_domains();
1179 return 0;
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
1190 * holding cgroup_lock() at this point.
1192 static void cpuset_change_flag(struct task_struct *tsk,
1193 struct cgroup_scanner *scan)
1195 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1203 * Called with cgroup_mutex held
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1211 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1213 struct cgroup_scanner scan;
1215 scan.cg = cs->css.cgroup;
1216 scan.test_task = NULL;
1217 scan.process_task = cpuset_change_flag;
1218 scan.heap = heap;
1219 cgroup_scan_tasks(&scan);
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 * bit: the bit to update (see cpuset_flagbits_t)
1225 * cs: the cpuset to update
1226 * turning_on: whether the flag is being set or cleared
1228 * Call with cgroup_mutex held.
1231 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232 int turning_on)
1234 struct cpuset *trialcs;
1235 int balance_flag_changed;
1236 int spread_flag_changed;
1237 struct ptr_heap heap;
1238 int err;
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1244 if (turning_on)
1245 set_bit(bit, &trialcs->flags);
1246 else
1247 clear_bit(bit, &trialcs->flags);
1249 err = validate_change(cs, trialcs);
1250 if (err < 0)
1251 goto out;
1253 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254 if (err < 0)
1255 goto out;
1257 balance_flag_changed = (is_sched_load_balance(cs) !=
1258 is_sched_load_balance(trialcs));
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1263 mutex_lock(&callback_mutex);
1264 cs->flags = trialcs->flags;
1265 mutex_unlock(&callback_mutex);
1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268 async_rebuild_sched_domains();
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs, &heap);
1272 heap_free(&heap);
1273 out:
1274 free_trial_cpuset(trialcs);
1275 return err;
1279 * Frequency meter - How fast is some event occurring?
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter. There are four routines:
1283 * fmeter_init() - initialize a frequency meter.
1284 * fmeter_markevent() - called each time the event happens.
1285 * fmeter_getrate() - returns the recent rate of such events.
1286 * fmeter_update() - internal routine used to update fmeter.
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR). The time unit
1294 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1302 * It is not worth doing a real infinitely recursive filter. If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds. At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000. At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event. At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1323 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1324 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1326 #define FM_SCALE 1000 /* faux fixed point scale */
1328 /* Initialize a frequency meter */
1329 static void fmeter_init(struct fmeter *fmp)
1331 fmp->cnt = 0;
1332 fmp->val = 0;
1333 fmp->time = 0;
1334 spin_lock_init(&fmp->lock);
1337 /* Internal meter update - process cnt events and update value */
1338 static void fmeter_update(struct fmeter *fmp)
1340 time_t now = get_seconds();
1341 time_t ticks = now - fmp->time;
1343 if (ticks == 0)
1344 return;
1346 ticks = min(FM_MAXTICKS, ticks);
1347 while (ticks-- > 0)
1348 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349 fmp->time = now;
1351 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352 fmp->cnt = 0;
1355 /* Process any previous ticks, then bump cnt by one (times scale). */
1356 static void fmeter_markevent(struct fmeter *fmp)
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361 spin_unlock(&fmp->lock);
1364 /* Process any previous ticks, then return current value. */
1365 static int fmeter_getrate(struct fmeter *fmp)
1367 int val;
1369 spin_lock(&fmp->lock);
1370 fmeter_update(fmp);
1371 val = fmp->val;
1372 spin_unlock(&fmp->lock);
1373 return val;
1376 /* Protected by cgroup_lock */
1377 static cpumask_var_t cpus_attach;
1379 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1380 static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1381 struct task_struct *tsk, bool threadgroup)
1383 int ret;
1384 struct cpuset *cs = cgroup_cs(cont);
1386 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1387 return -ENOSPC;
1390 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1391 * cannot change their cpu affinity and isolating such threads by their
1392 * set of allowed nodes is unnecessary. Thus, cpusets are not
1393 * applicable for such threads. This prevents checking for success of
1394 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1395 * be changed.
1397 if (tsk->flags & PF_THREAD_BOUND)
1398 return -EINVAL;
1400 ret = security_task_setscheduler(tsk, 0, NULL);
1401 if (ret)
1402 return ret;
1403 if (threadgroup) {
1404 struct task_struct *c;
1406 rcu_read_lock();
1407 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1408 ret = security_task_setscheduler(c, 0, NULL);
1409 if (ret) {
1410 rcu_read_unlock();
1411 return ret;
1414 rcu_read_unlock();
1416 return 0;
1419 static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1420 struct cpuset *cs)
1422 int err;
1424 * can_attach beforehand should guarantee that this doesn't fail.
1425 * TODO: have a better way to handle failure here
1427 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1428 WARN_ON_ONCE(err);
1430 cpuset_change_task_nodemask(tsk, to);
1431 cpuset_update_task_spread_flag(cs, tsk);
1435 static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1436 struct cgroup *oldcont, struct task_struct *tsk,
1437 bool threadgroup)
1439 struct mm_struct *mm;
1440 struct cpuset *cs = cgroup_cs(cont);
1441 struct cpuset *oldcs = cgroup_cs(oldcont);
1442 NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
1443 NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);
1445 if (from == NULL || to == NULL)
1446 goto alloc_fail;
1448 if (cs == &top_cpuset) {
1449 cpumask_copy(cpus_attach, cpu_possible_mask);
1450 } else {
1451 guarantee_online_cpus(cs, cpus_attach);
1453 guarantee_online_mems(cs, to);
1455 /* do per-task migration stuff possibly for each in the threadgroup */
1456 cpuset_attach_task(tsk, to, cs);
1457 if (threadgroup) {
1458 struct task_struct *c;
1459 rcu_read_lock();
1460 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1461 cpuset_attach_task(c, to, cs);
1463 rcu_read_unlock();
1466 /* change mm; only needs to be done once even if threadgroup */
1467 *from = oldcs->mems_allowed;
1468 *to = cs->mems_allowed;
1469 mm = get_task_mm(tsk);
1470 if (mm) {
1471 mpol_rebind_mm(mm, to);
1472 if (is_memory_migrate(cs))
1473 cpuset_migrate_mm(mm, from, to);
1474 mmput(mm);
1477 alloc_fail:
1478 NODEMASK_FREE(from);
1479 NODEMASK_FREE(to);
1482 /* The various types of files and directories in a cpuset file system */
1484 typedef enum {
1485 FILE_MEMORY_MIGRATE,
1486 FILE_CPULIST,
1487 FILE_MEMLIST,
1488 FILE_CPU_EXCLUSIVE,
1489 FILE_MEM_EXCLUSIVE,
1490 FILE_MEM_HARDWALL,
1491 FILE_SCHED_LOAD_BALANCE,
1492 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1493 FILE_MEMORY_PRESSURE_ENABLED,
1494 FILE_MEMORY_PRESSURE,
1495 FILE_SPREAD_PAGE,
1496 FILE_SPREAD_SLAB,
1497 } cpuset_filetype_t;
1499 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1501 int retval = 0;
1502 struct cpuset *cs = cgroup_cs(cgrp);
1503 cpuset_filetype_t type = cft->private;
1505 if (!cgroup_lock_live_group(cgrp))
1506 return -ENODEV;
1508 switch (type) {
1509 case FILE_CPU_EXCLUSIVE:
1510 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1511 break;
1512 case FILE_MEM_EXCLUSIVE:
1513 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1514 break;
1515 case FILE_MEM_HARDWALL:
1516 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1517 break;
1518 case FILE_SCHED_LOAD_BALANCE:
1519 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1520 break;
1521 case FILE_MEMORY_MIGRATE:
1522 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1523 break;
1524 case FILE_MEMORY_PRESSURE_ENABLED:
1525 cpuset_memory_pressure_enabled = !!val;
1526 break;
1527 case FILE_MEMORY_PRESSURE:
1528 retval = -EACCES;
1529 break;
1530 case FILE_SPREAD_PAGE:
1531 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1532 break;
1533 case FILE_SPREAD_SLAB:
1534 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1535 break;
1536 default:
1537 retval = -EINVAL;
1538 break;
1540 cgroup_unlock();
1541 return retval;
1544 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1546 int retval = 0;
1547 struct cpuset *cs = cgroup_cs(cgrp);
1548 cpuset_filetype_t type = cft->private;
1550 if (!cgroup_lock_live_group(cgrp))
1551 return -ENODEV;
1553 switch (type) {
1554 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1555 retval = update_relax_domain_level(cs, val);
1556 break;
1557 default:
1558 retval = -EINVAL;
1559 break;
1561 cgroup_unlock();
1562 return retval;
1566 * Common handling for a write to a "cpus" or "mems" file.
1568 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1569 const char *buf)
1571 int retval = 0;
1572 struct cpuset *cs = cgroup_cs(cgrp);
1573 struct cpuset *trialcs;
1575 if (!cgroup_lock_live_group(cgrp))
1576 return -ENODEV;
1578 trialcs = alloc_trial_cpuset(cs);
1579 if (!trialcs)
1580 return -ENOMEM;
1582 switch (cft->private) {
1583 case FILE_CPULIST:
1584 retval = update_cpumask(cs, trialcs, buf);
1585 break;
1586 case FILE_MEMLIST:
1587 retval = update_nodemask(cs, trialcs, buf);
1588 break;
1589 default:
1590 retval = -EINVAL;
1591 break;
1594 free_trial_cpuset(trialcs);
1595 cgroup_unlock();
1596 return retval;
1600 * These ascii lists should be read in a single call, by using a user
1601 * buffer large enough to hold the entire map. If read in smaller
1602 * chunks, there is no guarantee of atomicity. Since the display format
1603 * used, list of ranges of sequential numbers, is variable length,
1604 * and since these maps can change value dynamically, one could read
1605 * gibberish by doing partial reads while a list was changing.
1606 * A single large read to a buffer that crosses a page boundary is
1607 * ok, because the result being copied to user land is not recomputed
1608 * across a page fault.
1611 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1613 int ret;
1615 mutex_lock(&callback_mutex);
1616 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1617 mutex_unlock(&callback_mutex);
1619 return ret;
1622 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1624 NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
1625 int retval;
1627 if (mask == NULL)
1628 return -ENOMEM;
1630 mutex_lock(&callback_mutex);
1631 *mask = cs->mems_allowed;
1632 mutex_unlock(&callback_mutex);
1634 retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);
1636 NODEMASK_FREE(mask);
1638 return retval;
1641 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1642 struct cftype *cft,
1643 struct file *file,
1644 char __user *buf,
1645 size_t nbytes, loff_t *ppos)
1647 struct cpuset *cs = cgroup_cs(cont);
1648 cpuset_filetype_t type = cft->private;
1649 char *page;
1650 ssize_t retval = 0;
1651 char *s;
1653 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1654 return -ENOMEM;
1656 s = page;
1658 switch (type) {
1659 case FILE_CPULIST:
1660 s += cpuset_sprintf_cpulist(s, cs);
1661 break;
1662 case FILE_MEMLIST:
1663 s += cpuset_sprintf_memlist(s, cs);
1664 break;
1665 default:
1666 retval = -EINVAL;
1667 goto out;
1669 *s++ = '\n';
1671 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1672 out:
1673 free_page((unsigned long)page);
1674 return retval;
1677 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1679 struct cpuset *cs = cgroup_cs(cont);
1680 cpuset_filetype_t type = cft->private;
1681 switch (type) {
1682 case FILE_CPU_EXCLUSIVE:
1683 return is_cpu_exclusive(cs);
1684 case FILE_MEM_EXCLUSIVE:
1685 return is_mem_exclusive(cs);
1686 case FILE_MEM_HARDWALL:
1687 return is_mem_hardwall(cs);
1688 case FILE_SCHED_LOAD_BALANCE:
1689 return is_sched_load_balance(cs);
1690 case FILE_MEMORY_MIGRATE:
1691 return is_memory_migrate(cs);
1692 case FILE_MEMORY_PRESSURE_ENABLED:
1693 return cpuset_memory_pressure_enabled;
1694 case FILE_MEMORY_PRESSURE:
1695 return fmeter_getrate(&cs->fmeter);
1696 case FILE_SPREAD_PAGE:
1697 return is_spread_page(cs);
1698 case FILE_SPREAD_SLAB:
1699 return is_spread_slab(cs);
1700 default:
1701 BUG();
1704 /* Unreachable but makes gcc happy */
1705 return 0;
1708 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1710 struct cpuset *cs = cgroup_cs(cont);
1711 cpuset_filetype_t type = cft->private;
1712 switch (type) {
1713 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1714 return cs->relax_domain_level;
1715 default:
1716 BUG();
1719 /* Unrechable but makes gcc happy */
1720 return 0;
1725 * for the common functions, 'private' gives the type of file
1728 static struct cftype files[] = {
1730 .name = "cpus",
1731 .read = cpuset_common_file_read,
1732 .write_string = cpuset_write_resmask,
1733 .max_write_len = (100U + 6 * NR_CPUS),
1734 .private = FILE_CPULIST,
1738 .name = "mems",
1739 .read = cpuset_common_file_read,
1740 .write_string = cpuset_write_resmask,
1741 .max_write_len = (100U + 6 * MAX_NUMNODES),
1742 .private = FILE_MEMLIST,
1746 .name = "cpu_exclusive",
1747 .read_u64 = cpuset_read_u64,
1748 .write_u64 = cpuset_write_u64,
1749 .private = FILE_CPU_EXCLUSIVE,
1753 .name = "mem_exclusive",
1754 .read_u64 = cpuset_read_u64,
1755 .write_u64 = cpuset_write_u64,
1756 .private = FILE_MEM_EXCLUSIVE,
1760 .name = "mem_hardwall",
1761 .read_u64 = cpuset_read_u64,
1762 .write_u64 = cpuset_write_u64,
1763 .private = FILE_MEM_HARDWALL,
1767 .name = "sched_load_balance",
1768 .read_u64 = cpuset_read_u64,
1769 .write_u64 = cpuset_write_u64,
1770 .private = FILE_SCHED_LOAD_BALANCE,
1774 .name = "sched_relax_domain_level",
1775 .read_s64 = cpuset_read_s64,
1776 .write_s64 = cpuset_write_s64,
1777 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1781 .name = "memory_migrate",
1782 .read_u64 = cpuset_read_u64,
1783 .write_u64 = cpuset_write_u64,
1784 .private = FILE_MEMORY_MIGRATE,
1788 .name = "memory_pressure",
1789 .read_u64 = cpuset_read_u64,
1790 .write_u64 = cpuset_write_u64,
1791 .private = FILE_MEMORY_PRESSURE,
1792 .mode = S_IRUGO,
1796 .name = "memory_spread_page",
1797 .read_u64 = cpuset_read_u64,
1798 .write_u64 = cpuset_write_u64,
1799 .private = FILE_SPREAD_PAGE,
1803 .name = "memory_spread_slab",
1804 .read_u64 = cpuset_read_u64,
1805 .write_u64 = cpuset_write_u64,
1806 .private = FILE_SPREAD_SLAB,
1810 static struct cftype cft_memory_pressure_enabled = {
1811 .name = "memory_pressure_enabled",
1812 .read_u64 = cpuset_read_u64,
1813 .write_u64 = cpuset_write_u64,
1814 .private = FILE_MEMORY_PRESSURE_ENABLED,
1817 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1819 int err;
1821 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1822 if (err)
1823 return err;
1824 /* memory_pressure_enabled is in root cpuset only */
1825 if (!cont->parent)
1826 err = cgroup_add_file(cont, ss,
1827 &cft_memory_pressure_enabled);
1828 return err;
1832 * post_clone() is called at the end of cgroup_clone().
1833 * 'cgroup' was just created automatically as a result of
1834 * a cgroup_clone(), and the current task is about to
1835 * be moved into 'cgroup'.
1837 * Currently we refuse to set up the cgroup - thereby
1838 * refusing the task to be entered, and as a result refusing
1839 * the sys_unshare() or clone() which initiated it - if any
1840 * sibling cpusets have exclusive cpus or mem.
1842 * If this becomes a problem for some users who wish to
1843 * allow that scenario, then cpuset_post_clone() could be
1844 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1845 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1846 * held.
1848 static void cpuset_post_clone(struct cgroup_subsys *ss,
1849 struct cgroup *cgroup)
1851 struct cgroup *parent, *child;
1852 struct cpuset *cs, *parent_cs;
1854 parent = cgroup->parent;
1855 list_for_each_entry(child, &parent->children, sibling) {
1856 cs = cgroup_cs(child);
1857 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1858 return;
1860 cs = cgroup_cs(cgroup);
1861 parent_cs = cgroup_cs(parent);
1863 cs->mems_allowed = parent_cs->mems_allowed;
1864 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1865 return;
1869 * cpuset_create - create a cpuset
1870 * ss: cpuset cgroup subsystem
1871 * cont: control group that the new cpuset will be part of
1874 static struct cgroup_subsys_state *cpuset_create(
1875 struct cgroup_subsys *ss,
1876 struct cgroup *cont)
1878 struct cpuset *cs;
1879 struct cpuset *parent;
1881 if (!cont->parent) {
1882 return &top_cpuset.css;
1884 parent = cgroup_cs(cont->parent);
1885 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1886 if (!cs)
1887 return ERR_PTR(-ENOMEM);
1888 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1889 kfree(cs);
1890 return ERR_PTR(-ENOMEM);
1893 cs->flags = 0;
1894 if (is_spread_page(parent))
1895 set_bit(CS_SPREAD_PAGE, &cs->flags);
1896 if (is_spread_slab(parent))
1897 set_bit(CS_SPREAD_SLAB, &cs->flags);
1898 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1899 cpumask_clear(cs->cpus_allowed);
1900 nodes_clear(cs->mems_allowed);
1901 fmeter_init(&cs->fmeter);
1902 cs->relax_domain_level = -1;
1904 cs->parent = parent;
1905 number_of_cpusets++;
1906 return &cs->css ;
1910 * If the cpuset being removed has its flag 'sched_load_balance'
1911 * enabled, then simulate turning sched_load_balance off, which
1912 * will call async_rebuild_sched_domains().
1915 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1917 struct cpuset *cs = cgroup_cs(cont);
1919 if (is_sched_load_balance(cs))
1920 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1922 number_of_cpusets--;
1923 free_cpumask_var(cs->cpus_allowed);
1924 kfree(cs);
1927 struct cgroup_subsys cpuset_subsys = {
1928 .name = "cpuset",
1929 .create = cpuset_create,
1930 .destroy = cpuset_destroy,
1931 .can_attach = cpuset_can_attach,
1932 .attach = cpuset_attach,
1933 .populate = cpuset_populate,
1934 .post_clone = cpuset_post_clone,
1935 .subsys_id = cpuset_subsys_id,
1936 .early_init = 1,
1940 * cpuset_init - initialize cpusets at system boot
1942 * Description: Initialize top_cpuset and the cpuset internal file system,
1945 int __init cpuset_init(void)
1947 int err = 0;
1949 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1950 BUG();
1952 cpumask_setall(top_cpuset.cpus_allowed);
1953 nodes_setall(top_cpuset.mems_allowed);
1955 fmeter_init(&top_cpuset.fmeter);
1956 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1957 top_cpuset.relax_domain_level = -1;
1959 err = register_filesystem(&cpuset_fs_type);
1960 if (err < 0)
1961 return err;
1963 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1964 BUG();
1966 number_of_cpusets = 1;
1967 return 0;
1971 * cpuset_do_move_task - move a given task to another cpuset
1972 * @tsk: pointer to task_struct the task to move
1973 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1975 * Called by cgroup_scan_tasks() for each task in a cgroup.
1976 * Return nonzero to stop the walk through the tasks.
1978 static void cpuset_do_move_task(struct task_struct *tsk,
1979 struct cgroup_scanner *scan)
1981 struct cgroup *new_cgroup = scan->data;
1983 cgroup_attach_task(new_cgroup, tsk);
1987 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1988 * @from: cpuset in which the tasks currently reside
1989 * @to: cpuset to which the tasks will be moved
1991 * Called with cgroup_mutex held
1992 * callback_mutex must not be held, as cpuset_attach() will take it.
1994 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1995 * calling callback functions for each.
1997 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1999 struct cgroup_scanner scan;
2001 scan.cg = from->css.cgroup;
2002 scan.test_task = NULL; /* select all tasks in cgroup */
2003 scan.process_task = cpuset_do_move_task;
2004 scan.heap = NULL;
2005 scan.data = to->css.cgroup;
2007 if (cgroup_scan_tasks(&scan))
2008 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2009 "cgroup_scan_tasks failed\n");
2013 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2014 * or memory nodes, we need to walk over the cpuset hierarchy,
2015 * removing that CPU or node from all cpusets. If this removes the
2016 * last CPU or node from a cpuset, then move the tasks in the empty
2017 * cpuset to its next-highest non-empty parent.
2019 * Called with cgroup_mutex held
2020 * callback_mutex must not be held, as cpuset_attach() will take it.
2022 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2024 struct cpuset *parent;
2027 * The cgroup's css_sets list is in use if there are tasks
2028 * in the cpuset; the list is empty if there are none;
2029 * the cs->css.refcnt seems always 0.
2031 if (list_empty(&cs->css.cgroup->css_sets))
2032 return;
2035 * Find its next-highest non-empty parent, (top cpuset
2036 * has online cpus, so can't be empty).
2038 parent = cs->parent;
2039 while (cpumask_empty(parent->cpus_allowed) ||
2040 nodes_empty(parent->mems_allowed))
2041 parent = parent->parent;
2043 move_member_tasks_to_cpuset(cs, parent);
2047 * Walk the specified cpuset subtree and look for empty cpusets.
2048 * The tasks of such cpuset must be moved to a parent cpuset.
2050 * Called with cgroup_mutex held. We take callback_mutex to modify
2051 * cpus_allowed and mems_allowed.
2053 * This walk processes the tree from top to bottom, completing one layer
2054 * before dropping down to the next. It always processes a node before
2055 * any of its children.
2057 * For now, since we lack memory hot unplug, we'll never see a cpuset
2058 * that has tasks along with an empty 'mems'. But if we did see such
2059 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2061 static void scan_for_empty_cpusets(struct cpuset *root)
2063 LIST_HEAD(queue);
2064 struct cpuset *cp; /* scans cpusets being updated */
2065 struct cpuset *child; /* scans child cpusets of cp */
2066 struct cgroup *cont;
2067 NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2069 if (oldmems == NULL)
2070 return;
2072 list_add_tail((struct list_head *)&root->stack_list, &queue);
2074 while (!list_empty(&queue)) {
2075 cp = list_first_entry(&queue, struct cpuset, stack_list);
2076 list_del(queue.next);
2077 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2078 child = cgroup_cs(cont);
2079 list_add_tail(&child->stack_list, &queue);
2082 /* Continue past cpusets with all cpus, mems online */
2083 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2084 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2085 continue;
2087 *oldmems = cp->mems_allowed;
2089 /* Remove offline cpus and mems from this cpuset. */
2090 mutex_lock(&callback_mutex);
2091 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2092 cpu_active_mask);
2093 nodes_and(cp->mems_allowed, cp->mems_allowed,
2094 node_states[N_HIGH_MEMORY]);
2095 mutex_unlock(&callback_mutex);
2097 /* Move tasks from the empty cpuset to a parent */
2098 if (cpumask_empty(cp->cpus_allowed) ||
2099 nodes_empty(cp->mems_allowed))
2100 remove_tasks_in_empty_cpuset(cp);
2101 else {
2102 update_tasks_cpumask(cp, NULL);
2103 update_tasks_nodemask(cp, oldmems, NULL);
2106 NODEMASK_FREE(oldmems);
2110 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2111 * period. This is necessary in order to make cpusets transparent
2112 * (of no affect) on systems that are actively using CPU hotplug
2113 * but making no active use of cpusets.
2115 * This routine ensures that top_cpuset.cpus_allowed tracks
2116 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2118 * Called within get_online_cpus(). Needs to call cgroup_lock()
2119 * before calling generate_sched_domains().
2121 void cpuset_update_active_cpus(void)
2123 struct sched_domain_attr *attr;
2124 cpumask_var_t *doms;
2125 int ndoms;
2127 cgroup_lock();
2128 mutex_lock(&callback_mutex);
2129 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2130 mutex_unlock(&callback_mutex);
2131 scan_for_empty_cpusets(&top_cpuset);
2132 ndoms = generate_sched_domains(&doms, &attr);
2133 cgroup_unlock();
2135 /* Have scheduler rebuild the domains */
2136 partition_sched_domains(ndoms, doms, attr);
2139 #ifdef CONFIG_MEMORY_HOTPLUG
2141 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2142 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2143 * See also the previous routine cpuset_track_online_cpus().
2145 static int cpuset_track_online_nodes(struct notifier_block *self,
2146 unsigned long action, void *arg)
2148 NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2150 if (oldmems == NULL)
2151 return NOTIFY_DONE;
2153 cgroup_lock();
2154 switch (action) {
2155 case MEM_ONLINE:
2156 *oldmems = top_cpuset.mems_allowed;
2157 mutex_lock(&callback_mutex);
2158 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2159 mutex_unlock(&callback_mutex);
2160 update_tasks_nodemask(&top_cpuset, oldmems, NULL);
2161 break;
2162 case MEM_OFFLINE:
2164 * needn't update top_cpuset.mems_allowed explicitly because
2165 * scan_for_empty_cpusets() will update it.
2167 scan_for_empty_cpusets(&top_cpuset);
2168 break;
2169 default:
2170 break;
2172 cgroup_unlock();
2174 NODEMASK_FREE(oldmems);
2175 return NOTIFY_OK;
2177 #endif
2180 * cpuset_init_smp - initialize cpus_allowed
2182 * Description: Finish top cpuset after cpu, node maps are initialized
2185 void __init cpuset_init_smp(void)
2187 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2188 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2190 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2192 cpuset_wq = create_singlethread_workqueue("cpuset");
2193 BUG_ON(!cpuset_wq);
2197 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2198 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2199 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2201 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2202 * attached to the specified @tsk. Guaranteed to return some non-empty
2203 * subset of cpu_online_map, even if this means going outside the
2204 * tasks cpuset.
2207 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2209 mutex_lock(&callback_mutex);
2210 task_lock(tsk);
2211 guarantee_online_cpus(task_cs(tsk), pmask);
2212 task_unlock(tsk);
2213 mutex_unlock(&callback_mutex);
2216 int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2218 const struct cpuset *cs;
2219 int cpu;
2221 rcu_read_lock();
2222 cs = task_cs(tsk);
2223 if (cs)
2224 cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2225 rcu_read_unlock();
2228 * We own tsk->cpus_allowed, nobody can change it under us.
2230 * But we used cs && cs->cpus_allowed lockless and thus can
2231 * race with cgroup_attach_task() or update_cpumask() and get
2232 * the wrong tsk->cpus_allowed. However, both cases imply the
2233 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2234 * which takes task_rq_lock().
2236 * If we are called after it dropped the lock we must see all
2237 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2238 * set any mask even if it is not right from task_cs() pov,
2239 * the pending set_cpus_allowed_ptr() will fix things.
2242 cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2243 if (cpu >= nr_cpu_ids) {
2245 * Either tsk->cpus_allowed is wrong (see above) or it
2246 * is actually empty. The latter case is only possible
2247 * if we are racing with remove_tasks_in_empty_cpuset().
2248 * Like above we can temporary set any mask and rely on
2249 * set_cpus_allowed_ptr() as synchronization point.
2251 cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2252 cpu = cpumask_any(cpu_active_mask);
2255 return cpu;
2258 void cpuset_init_current_mems_allowed(void)
2260 nodes_setall(current->mems_allowed);
2264 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2265 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2267 * Description: Returns the nodemask_t mems_allowed of the cpuset
2268 * attached to the specified @tsk. Guaranteed to return some non-empty
2269 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2270 * tasks cpuset.
2273 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2275 nodemask_t mask;
2277 mutex_lock(&callback_mutex);
2278 task_lock(tsk);
2279 guarantee_online_mems(task_cs(tsk), &mask);
2280 task_unlock(tsk);
2281 mutex_unlock(&callback_mutex);
2283 return mask;
2287 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2288 * @nodemask: the nodemask to be checked
2290 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2292 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2294 return nodes_intersects(*nodemask, current->mems_allowed);
2298 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2299 * mem_hardwall ancestor to the specified cpuset. Call holding
2300 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2301 * (an unusual configuration), then returns the root cpuset.
2303 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2305 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2306 cs = cs->parent;
2307 return cs;
2311 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2312 * @node: is this an allowed node?
2313 * @gfp_mask: memory allocation flags
2315 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2316 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2317 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2318 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2319 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2320 * flag, yes.
2321 * Otherwise, no.
2323 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2324 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2325 * might sleep, and might allow a node from an enclosing cpuset.
2327 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2328 * cpusets, and never sleeps.
2330 * The __GFP_THISNODE placement logic is really handled elsewhere,
2331 * by forcibly using a zonelist starting at a specified node, and by
2332 * (in get_page_from_freelist()) refusing to consider the zones for
2333 * any node on the zonelist except the first. By the time any such
2334 * calls get to this routine, we should just shut up and say 'yes'.
2336 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2337 * and do not allow allocations outside the current tasks cpuset
2338 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2339 * GFP_KERNEL allocations are not so marked, so can escape to the
2340 * nearest enclosing hardwalled ancestor cpuset.
2342 * Scanning up parent cpusets requires callback_mutex. The
2343 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2344 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2345 * current tasks mems_allowed came up empty on the first pass over
2346 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2347 * cpuset are short of memory, might require taking the callback_mutex
2348 * mutex.
2350 * The first call here from mm/page_alloc:get_page_from_freelist()
2351 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2352 * so no allocation on a node outside the cpuset is allowed (unless
2353 * in interrupt, of course).
2355 * The second pass through get_page_from_freelist() doesn't even call
2356 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2357 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2358 * in alloc_flags. That logic and the checks below have the combined
2359 * affect that:
2360 * in_interrupt - any node ok (current task context irrelevant)
2361 * GFP_ATOMIC - any node ok
2362 * TIF_MEMDIE - any node ok
2363 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2364 * GFP_USER - only nodes in current tasks mems allowed ok.
2366 * Rule:
2367 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2368 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2369 * the code that might scan up ancestor cpusets and sleep.
2371 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2373 const struct cpuset *cs; /* current cpuset ancestors */
2374 int allowed; /* is allocation in zone z allowed? */
2376 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2377 return 1;
2378 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2379 if (node_isset(node, current->mems_allowed))
2380 return 1;
2382 * Allow tasks that have access to memory reserves because they have
2383 * been OOM killed to get memory anywhere.
2385 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2386 return 1;
2387 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2388 return 0;
2390 if (current->flags & PF_EXITING) /* Let dying task have memory */
2391 return 1;
2393 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2394 mutex_lock(&callback_mutex);
2396 task_lock(current);
2397 cs = nearest_hardwall_ancestor(task_cs(current));
2398 task_unlock(current);
2400 allowed = node_isset(node, cs->mems_allowed);
2401 mutex_unlock(&callback_mutex);
2402 return allowed;
2406 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2407 * @node: is this an allowed node?
2408 * @gfp_mask: memory allocation flags
2410 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2411 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2412 * yes. If the task has been OOM killed and has access to memory reserves as
2413 * specified by the TIF_MEMDIE flag, yes.
2414 * Otherwise, no.
2416 * The __GFP_THISNODE placement logic is really handled elsewhere,
2417 * by forcibly using a zonelist starting at a specified node, and by
2418 * (in get_page_from_freelist()) refusing to consider the zones for
2419 * any node on the zonelist except the first. By the time any such
2420 * calls get to this routine, we should just shut up and say 'yes'.
2422 * Unlike the cpuset_node_allowed_softwall() variant, above,
2423 * this variant requires that the node be in the current task's
2424 * mems_allowed or that we're in interrupt. It does not scan up the
2425 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2426 * It never sleeps.
2428 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2430 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2431 return 1;
2432 if (node_isset(node, current->mems_allowed))
2433 return 1;
2435 * Allow tasks that have access to memory reserves because they have
2436 * been OOM killed to get memory anywhere.
2438 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2439 return 1;
2440 return 0;
2444 * cpuset_unlock - release lock on cpuset changes
2446 * Undo the lock taken in a previous cpuset_lock() call.
2449 void cpuset_unlock(void)
2451 mutex_unlock(&callback_mutex);
2455 * cpuset_mem_spread_node() - On which node to begin search for a file page
2456 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2458 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2459 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2460 * and if the memory allocation used cpuset_mem_spread_node()
2461 * to determine on which node to start looking, as it will for
2462 * certain page cache or slab cache pages such as used for file
2463 * system buffers and inode caches, then instead of starting on the
2464 * local node to look for a free page, rather spread the starting
2465 * node around the tasks mems_allowed nodes.
2467 * We don't have to worry about the returned node being offline
2468 * because "it can't happen", and even if it did, it would be ok.
2470 * The routines calling guarantee_online_mems() are careful to
2471 * only set nodes in task->mems_allowed that are online. So it
2472 * should not be possible for the following code to return an
2473 * offline node. But if it did, that would be ok, as this routine
2474 * is not returning the node where the allocation must be, only
2475 * the node where the search should start. The zonelist passed to
2476 * __alloc_pages() will include all nodes. If the slab allocator
2477 * is passed an offline node, it will fall back to the local node.
2478 * See kmem_cache_alloc_node().
2481 static int cpuset_spread_node(int *rotor)
2483 int node;
2485 node = next_node(*rotor, current->mems_allowed);
2486 if (node == MAX_NUMNODES)
2487 node = first_node(current->mems_allowed);
2488 *rotor = node;
2489 return node;
2492 int cpuset_mem_spread_node(void)
2494 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2497 int cpuset_slab_spread_node(void)
2499 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2502 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2505 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2506 * @tsk1: pointer to task_struct of some task.
2507 * @tsk2: pointer to task_struct of some other task.
2509 * Description: Return true if @tsk1's mems_allowed intersects the
2510 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2511 * one of the task's memory usage might impact the memory available
2512 * to the other.
2515 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2516 const struct task_struct *tsk2)
2518 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2522 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2523 * @task: pointer to task_struct of some task.
2525 * Description: Prints @task's name, cpuset name, and cached copy of its
2526 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2527 * dereferencing task_cs(task).
2529 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2531 struct dentry *dentry;
2533 dentry = task_cs(tsk)->css.cgroup->dentry;
2534 spin_lock(&cpuset_buffer_lock);
2535 snprintf(cpuset_name, CPUSET_NAME_LEN,
2536 dentry ? (const char *)dentry->d_name.name : "/");
2537 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2538 tsk->mems_allowed);
2539 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2540 tsk->comm, cpuset_name, cpuset_nodelist);
2541 spin_unlock(&cpuset_buffer_lock);
2545 * Collection of memory_pressure is suppressed unless
2546 * this flag is enabled by writing "1" to the special
2547 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2550 int cpuset_memory_pressure_enabled __read_mostly;
2553 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2555 * Keep a running average of the rate of synchronous (direct)
2556 * page reclaim efforts initiated by tasks in each cpuset.
2558 * This represents the rate at which some task in the cpuset
2559 * ran low on memory on all nodes it was allowed to use, and
2560 * had to enter the kernels page reclaim code in an effort to
2561 * create more free memory by tossing clean pages or swapping
2562 * or writing dirty pages.
2564 * Display to user space in the per-cpuset read-only file
2565 * "memory_pressure". Value displayed is an integer
2566 * representing the recent rate of entry into the synchronous
2567 * (direct) page reclaim by any task attached to the cpuset.
2570 void __cpuset_memory_pressure_bump(void)
2572 task_lock(current);
2573 fmeter_markevent(&task_cs(current)->fmeter);
2574 task_unlock(current);
2577 #ifdef CONFIG_PROC_PID_CPUSET
2579 * proc_cpuset_show()
2580 * - Print tasks cpuset path into seq_file.
2581 * - Used for /proc/<pid>/cpuset.
2582 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2583 * doesn't really matter if tsk->cpuset changes after we read it,
2584 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2585 * anyway.
2587 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2589 struct pid *pid;
2590 struct task_struct *tsk;
2591 char *buf;
2592 struct cgroup_subsys_state *css;
2593 int retval;
2595 retval = -ENOMEM;
2596 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2597 if (!buf)
2598 goto out;
2600 retval = -ESRCH;
2601 pid = m->private;
2602 tsk = get_pid_task(pid, PIDTYPE_PID);
2603 if (!tsk)
2604 goto out_free;
2606 retval = -EINVAL;
2607 cgroup_lock();
2608 css = task_subsys_state(tsk, cpuset_subsys_id);
2609 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2610 if (retval < 0)
2611 goto out_unlock;
2612 seq_puts(m, buf);
2613 seq_putc(m, '\n');
2614 out_unlock:
2615 cgroup_unlock();
2616 put_task_struct(tsk);
2617 out_free:
2618 kfree(buf);
2619 out:
2620 return retval;
2623 static int cpuset_open(struct inode *inode, struct file *file)
2625 struct pid *pid = PROC_I(inode)->pid;
2626 return single_open(file, proc_cpuset_show, pid);
2629 const struct file_operations proc_cpuset_operations = {
2630 .open = cpuset_open,
2631 .read = seq_read,
2632 .llseek = seq_lseek,
2633 .release = single_release,
2635 #endif /* CONFIG_PROC_PID_CPUSET */
2637 /* Display task mems_allowed in /proc/<pid>/status file. */
2638 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2640 seq_printf(m, "Mems_allowed:\t");
2641 seq_nodemask(m, &task->mems_allowed);
2642 seq_printf(m, "\n");
2643 seq_printf(m, "Mems_allowed_list:\t");
2644 seq_nodemask_list(m, &task->mems_allowed);
2645 seq_printf(m, "\n");