2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
42 struct page
*dst_page
, int dst_offset
,
43 struct page
*src_page
, int src_offset
, int size
,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
47 struct page
*dst_page
, int dst_offset
,
48 struct page
*src_page
, int src_offset
, int size
,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
62 for (x
= 0; x
< src_size
; x
++)
63 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
78 for (x
= 0; x
< dst_size
; x
++) {
80 tmp
[1] = src
[x
* 2 + 1];
81 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst
,
96 struct ecryptfs_crypt_stat
*crypt_stat
,
99 struct scatterlist sg
;
100 struct hash_desc desc
= {
101 .tfm
= crypt_stat
->hash_tfm
,
102 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
107 sg_init_one(&sg
, (u8
*)src
, len
);
109 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
111 if (IS_ERR(desc
.tfm
)) {
112 rc
= PTR_ERR(desc
.tfm
);
113 ecryptfs_printk(KERN_ERR
, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat
->hash_tfm
= desc
.tfm
;
120 rc
= crypto_hash_init(&desc
);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc
= crypto_hash_update(&desc
, &sg
, len
);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc
= crypto_hash_final(&desc
, dst
);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
148 char *chaining_modifier
)
150 int cipher_name_len
= strlen(cipher_name
);
151 int chaining_modifier_len
= strlen(chaining_modifier
);
152 int algified_name_len
;
155 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
156 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
157 if (!(*algified_name
)) {
161 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
162 chaining_modifier
, cipher_name
);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
183 char dst
[MD5_DIGEST_SIZE
];
184 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
186 if (unlikely(ecryptfs_verbosity
> 0)) {
187 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
195 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
196 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
197 if (unlikely(ecryptfs_verbosity
> 0)) {
198 ecryptfs_printk(KERN_DEBUG
, "source:\n");
199 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
201 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
202 (crypt_stat
->iv_bytes
+ 16));
204 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
209 if (unlikely(ecryptfs_verbosity
> 0)) {
210 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
211 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
226 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
227 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
228 mutex_init(&crypt_stat
->keysig_list_mutex
);
229 mutex_init(&crypt_stat
->cs_mutex
);
230 mutex_init(&crypt_stat
->cs_tfm_mutex
);
231 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
232 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
243 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
246 crypto_free_blkcipher(crypt_stat
->tfm
);
247 if (crypt_stat
->hash_tfm
)
248 crypto_free_hash(crypt_stat
->hash_tfm
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
260 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
262 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
264 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
265 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
266 &mount_crypt_stat
->global_auth_tok_list
,
267 mount_crypt_stat_list
) {
268 list_del(&auth_tok
->mount_crypt_stat_list
);
269 mount_crypt_stat
->num_global_auth_toks
--;
270 if (auth_tok
->global_auth_tok_key
271 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
272 key_put(auth_tok
->global_auth_tok_key
);
273 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
275 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
276 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
280 * virt_to_scatterlist
281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 * the number of scatterlist structs required in array
285 * @sg_size: Max array size
287 * Fills in a scatterlist array with page references for a passed
290 * Returns the number of scatterlist structs in array used
292 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
298 int remainder_of_page
;
300 sg_init_table(sg
, sg_size
);
302 while (size
> 0 && i
< sg_size
) {
303 pg
= virt_to_page(addr
);
304 offset
= offset_in_page(addr
);
306 sg_set_page(&sg
[i
], pg
, 0, offset
);
307 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
308 if (size
>= remainder_of_page
) {
310 sg
[i
].length
= remainder_of_page
;
311 addr
+= remainder_of_page
;
312 size
-= remainder_of_page
;
327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption
334 * Returns the number of bytes encrypted; negative value on error
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
337 struct scatterlist
*dest_sg
,
338 struct scatterlist
*src_sg
, int size
,
341 struct blkcipher_desc desc
= {
342 .tfm
= crypt_stat
->tfm
,
344 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
348 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
349 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
350 if (unlikely(ecryptfs_verbosity
> 0)) {
351 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
352 crypt_stat
->key_size
);
353 ecryptfs_dump_hex(crypt_stat
->key
,
354 crypt_stat
->key_size
);
356 /* Consider doing this once, when the file is opened */
357 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
358 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
359 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
360 crypt_stat
->key_size
);
361 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
364 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
366 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
370 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
371 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
372 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
378 * ecryptfs_lower_offset_for_extent
380 * Convert an eCryptfs page index into a lower byte offset
382 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
383 struct ecryptfs_crypt_stat
*crypt_stat
)
385 (*offset
) = ecryptfs_lower_header_size(crypt_stat
)
386 + (crypt_stat
->extent_size
* extent_num
);
390 * ecryptfs_encrypt_extent
391 * @enc_extent_page: Allocated page into which to encrypt the data in
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
395 * @page: Page containing plaintext data extent to encrypt
396 * @extent_offset: Page extent offset for use in generating IV
398 * Encrypts one extent of data.
400 * Return zero on success; non-zero otherwise
402 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
403 struct ecryptfs_crypt_stat
*crypt_stat
,
405 unsigned long extent_offset
)
408 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
411 extent_base
= (((loff_t
)page
->index
)
412 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
413 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
414 (extent_base
+ extent_offset
));
416 ecryptfs_printk(KERN_ERR
, "Error attempting to "
417 "derive IV for extent [0x%.16x]; "
418 "rc = [%d]\n", (extent_base
+ extent_offset
),
422 if (unlikely(ecryptfs_verbosity
> 0)) {
423 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
425 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
426 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
428 ecryptfs_dump_hex((char *)
430 + (extent_offset
* crypt_stat
->extent_size
)),
433 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
435 * crypt_stat
->extent_size
),
436 crypt_stat
->extent_size
, extent_iv
);
438 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
439 "page->index = [%ld], extent_offset = [%ld]; "
440 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
445 if (unlikely(ecryptfs_verbosity
> 0)) {
446 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
447 "rc = [%d]\n", (extent_base
+ extent_offset
),
449 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
451 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
458 * ecryptfs_encrypt_page
459 * @page: Page mapped from the eCryptfs inode for the file; contains
460 * decrypted content that needs to be encrypted (to a temporary
461 * page; not in place) and written out to the lower file
463 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
464 * that eCryptfs pages may straddle the lower pages -- for instance,
465 * if the file was created on a machine with an 8K page size
466 * (resulting in an 8K header), and then the file is copied onto a
467 * host with a 32K page size, then when reading page 0 of the eCryptfs
468 * file, 24K of page 0 of the lower file will be read and decrypted,
469 * and then 8K of page 1 of the lower file will be read and decrypted.
471 * Returns zero on success; negative on error
473 int ecryptfs_encrypt_page(struct page
*page
)
475 struct inode
*ecryptfs_inode
;
476 struct ecryptfs_crypt_stat
*crypt_stat
;
477 char *enc_extent_virt
;
478 struct page
*enc_extent_page
= NULL
;
479 loff_t extent_offset
;
482 ecryptfs_inode
= page
->mapping
->host
;
484 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
485 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
486 enc_extent_page
= alloc_page(GFP_USER
);
487 if (!enc_extent_page
) {
489 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
490 "encrypted extent\n");
493 enc_extent_virt
= kmap(enc_extent_page
);
494 for (extent_offset
= 0;
495 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
499 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
502 printk(KERN_ERR
"%s: Error encrypting extent; "
503 "rc = [%d]\n", __func__
, rc
);
506 ecryptfs_lower_offset_for_extent(
507 &offset
, ((((loff_t
)page
->index
)
509 / crypt_stat
->extent_size
))
510 + extent_offset
), crypt_stat
);
511 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
512 offset
, crypt_stat
->extent_size
);
514 ecryptfs_printk(KERN_ERR
, "Error attempting "
515 "to write lower page; rc = [%d]"
522 if (enc_extent_page
) {
523 kunmap(enc_extent_page
);
524 __free_page(enc_extent_page
);
529 static int ecryptfs_decrypt_extent(struct page
*page
,
530 struct ecryptfs_crypt_stat
*crypt_stat
,
531 struct page
*enc_extent_page
,
532 unsigned long extent_offset
)
535 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
538 extent_base
= (((loff_t
)page
->index
)
539 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
540 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
541 (extent_base
+ extent_offset
));
543 ecryptfs_printk(KERN_ERR
, "Error attempting to "
544 "derive IV for extent [0x%.16x]; "
545 "rc = [%d]\n", (extent_base
+ extent_offset
),
549 if (unlikely(ecryptfs_verbosity
> 0)) {
550 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
552 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
553 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
555 ecryptfs_dump_hex((char *)
556 (page_address(enc_extent_page
)
557 + (extent_offset
* crypt_stat
->extent_size
)),
560 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
562 * crypt_stat
->extent_size
),
564 crypt_stat
->extent_size
, extent_iv
);
566 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
568 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
573 if (unlikely(ecryptfs_verbosity
> 0)) {
574 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16x]; "
575 "rc = [%d]\n", (extent_base
+ extent_offset
),
577 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
579 ecryptfs_dump_hex((char *)(page_address(page
)
581 * crypt_stat
->extent_size
)), 8);
588 * ecryptfs_decrypt_page
589 * @page: Page mapped from the eCryptfs inode for the file; data read
590 * and decrypted from the lower file will be written into this
593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594 * that eCryptfs pages may straddle the lower pages -- for instance,
595 * if the file was created on a machine with an 8K page size
596 * (resulting in an 8K header), and then the file is copied onto a
597 * host with a 32K page size, then when reading page 0 of the eCryptfs
598 * file, 24K of page 0 of the lower file will be read and decrypted,
599 * and then 8K of page 1 of the lower file will be read and decrypted.
601 * Returns zero on success; negative on error
603 int ecryptfs_decrypt_page(struct page
*page
)
605 struct inode
*ecryptfs_inode
;
606 struct ecryptfs_crypt_stat
*crypt_stat
;
607 char *enc_extent_virt
;
608 struct page
*enc_extent_page
= NULL
;
609 unsigned long extent_offset
;
612 ecryptfs_inode
= page
->mapping
->host
;
614 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
615 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
616 enc_extent_page
= alloc_page(GFP_USER
);
617 if (!enc_extent_page
) {
619 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
620 "encrypted extent\n");
623 enc_extent_virt
= kmap(enc_extent_page
);
624 for (extent_offset
= 0;
625 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
629 ecryptfs_lower_offset_for_extent(
630 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
631 / crypt_stat
->extent_size
))
632 + extent_offset
), crypt_stat
);
633 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
634 crypt_stat
->extent_size
,
637 ecryptfs_printk(KERN_ERR
, "Error attempting "
638 "to read lower page; rc = [%d]"
642 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
645 printk(KERN_ERR
"%s: Error encrypting extent; "
646 "rc = [%d]\n", __func__
, rc
);
651 if (enc_extent_page
) {
652 kunmap(enc_extent_page
);
653 __free_page(enc_extent_page
);
659 * decrypt_scatterlist
660 * @crypt_stat: Cryptographic context
661 * @dest_sg: The destination scatterlist to decrypt into
662 * @src_sg: The source scatterlist to decrypt from
663 * @size: The number of bytes to decrypt
664 * @iv: The initialization vector to use for the decryption
666 * Returns the number of bytes decrypted; negative value on error
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
669 struct scatterlist
*dest_sg
,
670 struct scatterlist
*src_sg
, int size
,
673 struct blkcipher_desc desc
= {
674 .tfm
= crypt_stat
->tfm
,
676 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
680 /* Consider doing this once, when the file is opened */
681 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
682 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
683 crypt_stat
->key_size
);
685 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
687 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
691 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
692 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
693 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
695 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
705 * ecryptfs_encrypt_page_offset
706 * @crypt_stat: The cryptographic context
707 * @dst_page: The page to encrypt into
708 * @dst_offset: The offset in the page to encrypt into
709 * @src_page: The page to encrypt from
710 * @src_offset: The offset in the page to encrypt from
711 * @size: The number of bytes to encrypt
712 * @iv: The initialization vector to use for the encryption
714 * Returns the number of bytes encrypted
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
718 struct page
*dst_page
, int dst_offset
,
719 struct page
*src_page
, int src_offset
, int size
,
722 struct scatterlist src_sg
, dst_sg
;
724 sg_init_table(&src_sg
, 1);
725 sg_init_table(&dst_sg
, 1);
727 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
728 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
729 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
733 * ecryptfs_decrypt_page_offset
734 * @crypt_stat: The cryptographic context
735 * @dst_page: The page to decrypt into
736 * @dst_offset: The offset in the page to decrypt into
737 * @src_page: The page to decrypt from
738 * @src_offset: The offset in the page to decrypt from
739 * @size: The number of bytes to decrypt
740 * @iv: The initialization vector to use for the decryption
742 * Returns the number of bytes decrypted
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
746 struct page
*dst_page
, int dst_offset
,
747 struct page
*src_page
, int src_offset
, int size
,
750 struct scatterlist src_sg
, dst_sg
;
752 sg_init_table(&src_sg
, 1);
753 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
755 sg_init_table(&dst_sg
, 1);
756 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
758 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
764 * ecryptfs_init_crypt_ctx
765 * @crypt_stat: Uninitialized crypt stats structure
767 * Initialize the crypto context.
769 * TODO: Performance: Keep a cache of initialized cipher contexts;
770 * only init if needed
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
777 if (!crypt_stat
->cipher
) {
778 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
781 ecryptfs_printk(KERN_DEBUG
,
782 "Initializing cipher [%s]; strlen = [%d]; "
783 "key_size_bits = [%d]\n",
784 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
785 crypt_stat
->key_size
<< 3);
786 if (crypt_stat
->tfm
) {
790 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
791 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
792 crypt_stat
->cipher
, "cbc");
795 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
797 kfree(full_alg_name
);
798 if (IS_ERR(crypt_stat
->tfm
)) {
799 rc
= PTR_ERR(crypt_stat
->tfm
);
800 crypt_stat
->tfm
= NULL
;
801 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
802 "Error initializing cipher [%s]\n",
806 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
809 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
814 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
818 crypt_stat
->extent_mask
= 0xFFFFFFFF;
819 crypt_stat
->extent_shift
= 0;
820 if (crypt_stat
->extent_size
== 0)
822 extent_size_tmp
= crypt_stat
->extent_size
;
823 while ((extent_size_tmp
& 0x01) == 0) {
824 extent_size_tmp
>>= 1;
825 crypt_stat
->extent_mask
<<= 1;
826 crypt_stat
->extent_shift
++;
830 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
832 /* Default values; may be overwritten as we are parsing the
834 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
835 set_extent_mask_and_shift(crypt_stat
);
836 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
837 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
838 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
840 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
841 crypt_stat
->metadata_size
=
842 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
844 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
849 * ecryptfs_compute_root_iv
852 * On error, sets the root IV to all 0's.
854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
857 char dst
[MD5_DIGEST_SIZE
];
859 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
860 BUG_ON(crypt_stat
->iv_bytes
<= 0);
861 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
863 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
864 "cannot generate root IV\n");
867 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
868 crypt_stat
->key_size
);
870 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
871 "MD5 while generating root IV\n");
874 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
877 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
878 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
885 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
886 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
887 ecryptfs_compute_root_iv(crypt_stat
);
888 if (unlikely(ecryptfs_verbosity
> 0)) {
889 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
890 ecryptfs_dump_hex(crypt_stat
->key
,
891 crypt_stat
->key_size
);
896 * ecryptfs_copy_mount_wide_flags_to_inode_flags
897 * @crypt_stat: The inode's cryptographic context
898 * @mount_crypt_stat: The mount point's cryptographic context
900 * This function propagates the mount-wide flags to individual inode
903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904 struct ecryptfs_crypt_stat
*crypt_stat
,
905 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
907 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
908 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
909 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
910 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
911 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
912 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
913 if (mount_crypt_stat
->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
915 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
916 else if (mount_crypt_stat
->flags
917 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
918 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 struct ecryptfs_crypt_stat
*crypt_stat
,
924 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
926 struct ecryptfs_global_auth_tok
*global_auth_tok
;
929 mutex_lock(&crypt_stat
->keysig_list_mutex
);
930 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
932 list_for_each_entry(global_auth_tok
,
933 &mount_crypt_stat
->global_auth_tok_list
,
934 mount_crypt_stat_list
) {
935 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
937 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
939 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
945 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
946 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
951 * ecryptfs_set_default_crypt_stat_vals
952 * @crypt_stat: The inode's cryptographic context
953 * @mount_crypt_stat: The mount point's cryptographic context
955 * Default values in the event that policy does not override them.
957 static void ecryptfs_set_default_crypt_stat_vals(
958 struct ecryptfs_crypt_stat
*crypt_stat
,
959 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
961 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
963 ecryptfs_set_default_sizes(crypt_stat
);
964 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
965 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
966 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
967 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
968 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
972 * ecryptfs_new_file_context
973 * @ecryptfs_dentry: The eCryptfs dentry
975 * If the crypto context for the file has not yet been established,
976 * this is where we do that. Establishing a new crypto context
977 * involves the following decisions:
978 * - What cipher to use?
979 * - What set of authentication tokens to use?
980 * Here we just worry about getting enough information into the
981 * authentication tokens so that we know that they are available.
982 * We associate the available authentication tokens with the new file
983 * via the set of signatures in the crypt_stat struct. Later, when
984 * the headers are actually written out, we may again defer to
985 * userspace to perform the encryption of the session key; for the
986 * foreseeable future, this will be the case with public key packets.
988 * Returns zero on success; non-zero otherwise
990 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
992 struct ecryptfs_crypt_stat
*crypt_stat
=
993 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
994 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
995 &ecryptfs_superblock_to_private(
996 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1000 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
1001 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
1002 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1004 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1007 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1008 "to the inode key sigs; rc = [%d]\n", rc
);
1012 strlen(mount_crypt_stat
->global_default_cipher_name
);
1013 memcpy(crypt_stat
->cipher
,
1014 mount_crypt_stat
->global_default_cipher_name
,
1016 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1017 crypt_stat
->key_size
=
1018 mount_crypt_stat
->global_default_cipher_key_size
;
1019 ecryptfs_generate_new_key(crypt_stat
);
1020 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1022 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1023 "context for cipher [%s]: rc = [%d]\n",
1024 crypt_stat
->cipher
, rc
);
1030 * contains_ecryptfs_marker - check for the ecryptfs marker
1031 * @data: The data block in which to check
1033 * Returns one if marker found; zero if not found
1035 static int contains_ecryptfs_marker(char *data
)
1039 m_1
= get_unaligned_be32(data
);
1040 m_2
= get_unaligned_be32(data
+ 4);
1041 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1043 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1044 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1045 MAGIC_ECRYPTFS_MARKER
);
1046 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1047 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1051 struct ecryptfs_flag_map_elem
{
1056 /* Add support for additional flags by adding elements here. */
1057 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1058 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1059 {0x00000002, ECRYPTFS_ENCRYPTED
},
1060 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1061 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1065 * ecryptfs_process_flags
1066 * @crypt_stat: The cryptographic context
1067 * @page_virt: Source data to be parsed
1068 * @bytes_read: Updated with the number of bytes read
1070 * Returns zero on success; non-zero if the flag set is invalid
1072 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1073 char *page_virt
, int *bytes_read
)
1079 flags
= get_unaligned_be32(page_virt
);
1080 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1081 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1082 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1083 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1085 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1086 /* Version is in top 8 bits of the 32-bit flag vector */
1087 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1093 * write_ecryptfs_marker
1094 * @page_virt: The pointer to in a page to begin writing the marker
1095 * @written: Number of bytes written
1097 * Marker = 0x3c81b7f5
1099 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1103 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1104 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1105 put_unaligned_be32(m_1
, page_virt
);
1106 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1107 put_unaligned_be32(m_2
, page_virt
);
1108 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1111 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
1112 struct ecryptfs_crypt_stat
*crypt_stat
,
1118 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1119 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1120 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1121 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1122 /* Version is in top 8 bits of the 32-bit flag vector */
1123 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1124 put_unaligned_be32(flags
, page_virt
);
1128 struct ecryptfs_cipher_code_str_map_elem
{
1129 char cipher_str
[16];
1133 /* Add support for additional ciphers by adding elements here. The
1134 * cipher_code is whatever OpenPGP applicatoins use to identify the
1135 * ciphers. List in order of probability. */
1136 static struct ecryptfs_cipher_code_str_map_elem
1137 ecryptfs_cipher_code_str_map
[] = {
1138 {"aes",RFC2440_CIPHER_AES_128
},
1139 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1140 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1141 {"cast5", RFC2440_CIPHER_CAST_5
},
1142 {"twofish", RFC2440_CIPHER_TWOFISH
},
1143 {"cast6", RFC2440_CIPHER_CAST_6
},
1144 {"aes", RFC2440_CIPHER_AES_192
},
1145 {"aes", RFC2440_CIPHER_AES_256
}
1149 * ecryptfs_code_for_cipher_string
1150 * @cipher_name: The string alias for the cipher
1151 * @key_bytes: Length of key in bytes; used for AES code selection
1153 * Returns zero on no match, or the cipher code on match
1155 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1159 struct ecryptfs_cipher_code_str_map_elem
*map
=
1160 ecryptfs_cipher_code_str_map
;
1162 if (strcmp(cipher_name
, "aes") == 0) {
1163 switch (key_bytes
) {
1165 code
= RFC2440_CIPHER_AES_128
;
1168 code
= RFC2440_CIPHER_AES_192
;
1171 code
= RFC2440_CIPHER_AES_256
;
1174 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1175 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1176 code
= map
[i
].cipher_code
;
1184 * ecryptfs_cipher_code_to_string
1185 * @str: Destination to write out the cipher name
1186 * @cipher_code: The code to convert to cipher name string
1188 * Returns zero on success
1190 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1196 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1197 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1198 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1199 if (str
[0] == '\0') {
1200 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1201 "[%d]\n", cipher_code
);
1207 int ecryptfs_read_and_validate_header_region(char *data
,
1208 struct inode
*ecryptfs_inode
)
1210 struct ecryptfs_crypt_stat
*crypt_stat
=
1211 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1214 if (crypt_stat
->extent_size
== 0)
1215 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
1216 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1219 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1223 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1232 ecryptfs_write_header_metadata(char *virt
,
1233 struct ecryptfs_crypt_stat
*crypt_stat
,
1236 u32 header_extent_size
;
1237 u16 num_header_extents_at_front
;
1239 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1240 num_header_extents_at_front
=
1241 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1242 put_unaligned_be32(header_extent_size
, virt
);
1244 put_unaligned_be16(num_header_extents_at_front
, virt
);
1248 struct kmem_cache
*ecryptfs_header_cache_1
;
1249 struct kmem_cache
*ecryptfs_header_cache_2
;
1252 * ecryptfs_write_headers_virt
1253 * @page_virt: The virtual address to write the headers to
1254 * @max: The size of memory allocated at page_virt
1255 * @size: Set to the number of bytes written by this function
1256 * @crypt_stat: The cryptographic context
1257 * @ecryptfs_dentry: The eCryptfs dentry
1262 * Octets 0-7: Unencrypted file size (big-endian)
1263 * Octets 8-15: eCryptfs special marker
1264 * Octets 16-19: Flags
1265 * Octet 16: File format version number (between 0 and 255)
1266 * Octets 17-18: Reserved
1267 * Octet 19: Bit 1 (lsb): Reserved
1269 * Bits 3-8: Reserved
1270 * Octets 20-23: Header extent size (big-endian)
1271 * Octets 24-25: Number of header extents at front of file
1273 * Octet 26: Begin RFC 2440 authentication token packet set
1275 * Lower data (CBC encrypted)
1277 * Lower data (CBC encrypted)
1280 * Returns zero on success
1282 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1284 struct ecryptfs_crypt_stat
*crypt_stat
,
1285 struct dentry
*ecryptfs_dentry
)
1291 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1292 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1294 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1297 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1300 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1301 ecryptfs_dentry
, &written
,
1304 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1305 "set; rc = [%d]\n", rc
);
1314 ecryptfs_write_metadata_to_contents(struct dentry
*ecryptfs_dentry
,
1315 char *virt
, size_t virt_len
)
1319 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1322 printk(KERN_ERR
"%s: Error attempting to write header "
1323 "information to lower file; rc = [%d]\n", __func__
, rc
);
1330 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1331 char *page_virt
, size_t size
)
1335 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1340 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1345 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1347 return (unsigned long) page_address(page
);
1352 * ecryptfs_write_metadata
1353 * @ecryptfs_dentry: The eCryptfs dentry
1355 * Write the file headers out. This will likely involve a userspace
1356 * callout, in which the session key is encrypted with one or more
1357 * public keys and/or the passphrase necessary to do the encryption is
1358 * retrieved via a prompt. Exactly what happens at this point should
1359 * be policy-dependent.
1361 * Returns zero on success; non-zero on error
1363 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1365 struct ecryptfs_crypt_stat
*crypt_stat
=
1366 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1373 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1374 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1375 printk(KERN_ERR
"Key is invalid; bailing out\n");
1380 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1385 virt_len
= crypt_stat
->metadata_size
;
1386 order
= get_order(virt_len
);
1387 /* Released in this function */
1388 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1390 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1394 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1397 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1401 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1402 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1405 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_dentry
, virt
,
1408 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1409 "rc = [%d]\n", __func__
, rc
);
1413 free_pages((unsigned long)virt
, order
);
1418 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1419 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1420 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1421 char *virt
, int *bytes_read
,
1422 int validate_header_size
)
1425 u32 header_extent_size
;
1426 u16 num_header_extents_at_front
;
1428 header_extent_size
= get_unaligned_be32(virt
);
1429 virt
+= sizeof(__be32
);
1430 num_header_extents_at_front
= get_unaligned_be16(virt
);
1431 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1432 * (size_t)header_extent_size
));
1433 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1434 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1435 && (crypt_stat
->metadata_size
1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1438 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1439 crypt_stat
->metadata_size
);
1445 * set_default_header_data
1446 * @crypt_stat: The cryptographic context
1448 * For version 0 file format; this function is only for backwards
1449 * compatibility for files created with the prior versions of
1452 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1454 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1458 * ecryptfs_read_headers_virt
1459 * @page_virt: The virtual address into which to read the headers
1460 * @crypt_stat: The cryptographic context
1461 * @ecryptfs_dentry: The eCryptfs dentry
1462 * @validate_header_size: Whether to validate the header size while reading
1464 * Read/parse the header data. The header format is detailed in the
1465 * comment block for the ecryptfs_write_headers_virt() function.
1467 * Returns zero on success
1469 static int ecryptfs_read_headers_virt(char *page_virt
,
1470 struct ecryptfs_crypt_stat
*crypt_stat
,
1471 struct dentry
*ecryptfs_dentry
,
1472 int validate_header_size
)
1478 ecryptfs_set_default_sizes(crypt_stat
);
1479 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1480 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1481 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1482 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1487 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1488 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1491 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1494 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1495 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1496 "file version [%d] is supported by this "
1497 "version of eCryptfs\n",
1498 crypt_stat
->file_version
,
1499 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1503 offset
+= bytes_read
;
1504 if (crypt_stat
->file_version
>= 1) {
1505 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1506 &bytes_read
, validate_header_size
);
1508 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1509 "metadata; rc = [%d]\n", rc
);
1511 offset
+= bytes_read
;
1513 set_default_header_data(crypt_stat
);
1514 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1521 * ecryptfs_read_xattr_region
1522 * @page_virt: The vitual address into which to read the xattr data
1523 * @ecryptfs_inode: The eCryptfs inode
1525 * Attempts to read the crypto metadata from the extended attribute
1526 * region of the lower file.
1528 * Returns zero on success; non-zero on error
1530 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1532 struct dentry
*lower_dentry
=
1533 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1537 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1538 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1540 if (unlikely(ecryptfs_verbosity
> 0))
1541 printk(KERN_INFO
"Error attempting to read the [%s] "
1542 "xattr from the lower file; return value = "
1543 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1551 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1552 struct dentry
*ecryptfs_dentry
)
1556 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1559 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1560 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1561 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1569 * ecryptfs_read_metadata
1571 * Common entry point for reading file metadata. From here, we could
1572 * retrieve the header information from the header region of the file,
1573 * the xattr region of the file, or some other repostory that is
1574 * stored separately from the file itself. The current implementation
1575 * supports retrieving the metadata information from the file contents
1576 * and from the xattr region.
1578 * Returns zero if valid headers found and parsed; non-zero otherwise
1580 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1583 char *page_virt
= NULL
;
1584 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1585 struct ecryptfs_crypt_stat
*crypt_stat
=
1586 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1587 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1588 &ecryptfs_superblock_to_private(
1589 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1591 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1593 /* Read the first page from the underlying file */
1594 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1597 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1601 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1604 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1606 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1608 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1609 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1611 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1612 "file header region or xattr region\n");
1616 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1618 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1620 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1621 "file xattr region either\n");
1624 if (crypt_stat
->mount_crypt_stat
->flags
1625 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1626 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1628 printk(KERN_WARNING
"Attempt to access file with "
1629 "crypto metadata only in the extended attribute "
1630 "region, but eCryptfs was mounted without "
1631 "xattr support enabled. eCryptfs will not treat "
1632 "this like an encrypted file.\n");
1638 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1639 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1645 * ecryptfs_encrypt_filename - encrypt filename
1647 * CBC-encrypts the filename. We do not want to encrypt the same
1648 * filename with the same key and IV, which may happen with hard
1649 * links, so we prepend random bits to each filename.
1651 * Returns zero on success; non-zero otherwise
1654 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1655 struct ecryptfs_crypt_stat
*crypt_stat
,
1656 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1660 filename
->encrypted_filename
= NULL
;
1661 filename
->encrypted_filename_size
= 0;
1662 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1663 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1664 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1666 size_t remaining_bytes
;
1668 rc
= ecryptfs_write_tag_70_packet(
1670 &filename
->encrypted_filename_size
,
1671 mount_crypt_stat
, NULL
,
1672 filename
->filename_size
);
1674 printk(KERN_ERR
"%s: Error attempting to get packet "
1675 "size for tag 72; rc = [%d]\n", __func__
,
1677 filename
->encrypted_filename_size
= 0;
1680 filename
->encrypted_filename
=
1681 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1682 if (!filename
->encrypted_filename
) {
1683 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1684 "to kmalloc [%zd] bytes\n", __func__
,
1685 filename
->encrypted_filename_size
);
1689 remaining_bytes
= filename
->encrypted_filename_size
;
1690 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1695 filename
->filename_size
);
1697 printk(KERN_ERR
"%s: Error attempting to generate "
1698 "tag 70 packet; rc = [%d]\n", __func__
,
1700 kfree(filename
->encrypted_filename
);
1701 filename
->encrypted_filename
= NULL
;
1702 filename
->encrypted_filename_size
= 0;
1705 filename
->encrypted_filename_size
= packet_size
;
1707 printk(KERN_ERR
"%s: No support for requested filename "
1708 "encryption method in this release\n", __func__
);
1716 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1717 const char *name
, size_t name_size
)
1721 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1722 if (!(*copied_name
)) {
1726 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1727 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1728 * in printing out the
1731 (*copied_name_size
) = name_size
;
1737 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738 * @key_tfm: Crypto context for key material, set by this function
1739 * @cipher_name: Name of the cipher
1740 * @key_size: Size of the key in bytes
1742 * Returns zero on success. Any crypto_tfm structs allocated here
1743 * should be released by other functions, such as on a superblock put
1744 * event, regardless of whether this function succeeds for fails.
1747 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1748 char *cipher_name
, size_t *key_size
)
1750 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1751 char *full_alg_name
= NULL
;
1755 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1757 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1758 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1761 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1765 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1766 if (IS_ERR(*key_tfm
)) {
1767 rc
= PTR_ERR(*key_tfm
);
1768 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1769 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1772 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1773 if (*key_size
== 0) {
1774 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1776 *key_size
= alg
->max_keysize
;
1778 get_random_bytes(dummy_key
, *key_size
);
1779 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1781 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1782 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1788 kfree(full_alg_name
);
1792 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1793 static struct list_head key_tfm_list
;
1794 struct mutex key_tfm_list_mutex
;
1796 int __init
ecryptfs_init_crypto(void)
1798 mutex_init(&key_tfm_list_mutex
);
1799 INIT_LIST_HEAD(&key_tfm_list
);
1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1806 * Called only at module unload time
1808 int ecryptfs_destroy_crypto(void)
1810 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1812 mutex_lock(&key_tfm_list_mutex
);
1813 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1815 list_del(&key_tfm
->key_tfm_list
);
1816 if (key_tfm
->key_tfm
)
1817 crypto_free_blkcipher(key_tfm
->key_tfm
);
1818 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1820 mutex_unlock(&key_tfm_list_mutex
);
1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1828 struct ecryptfs_key_tfm
*tmp_tfm
;
1831 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1833 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1834 if (key_tfm
!= NULL
)
1835 (*key_tfm
) = tmp_tfm
;
1838 printk(KERN_ERR
"Error attempting to allocate from "
1839 "ecryptfs_key_tfm_cache\n");
1842 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1843 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1844 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1845 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1846 tmp_tfm
->key_size
= key_size
;
1847 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1848 tmp_tfm
->cipher_name
,
1849 &tmp_tfm
->key_size
);
1851 printk(KERN_ERR
"Error attempting to initialize key TFM "
1852 "cipher with name = [%s]; rc = [%d]\n",
1853 tmp_tfm
->cipher_name
, rc
);
1854 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1855 if (key_tfm
!= NULL
)
1859 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866 * @cipher_name: the name of the cipher to search for
1867 * @key_tfm: set to corresponding tfm if found
1869 * Searches for cached key_tfm matching @cipher_name
1870 * Must be called with &key_tfm_list_mutex held
1871 * Returns 1 if found, with @key_tfm set
1872 * Returns 0 if not found, with @key_tfm set to NULL
1874 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1876 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1878 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1880 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1881 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1883 (*key_tfm
) = tmp_key_tfm
;
1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1895 * @tfm: set to cached tfm found, or new tfm created
1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897 * @cipher_name: the name of the cipher to search for and/or add
1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900 * Searches for cached item first, and creates new if not found.
1901 * Returns 0 on success, non-zero if adding new cipher failed
1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1904 struct mutex
**tfm_mutex
,
1907 struct ecryptfs_key_tfm
*key_tfm
;
1911 (*tfm_mutex
) = NULL
;
1913 mutex_lock(&key_tfm_list_mutex
);
1914 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1915 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1917 printk(KERN_ERR
"Error adding new key_tfm to list; "
1922 (*tfm
) = key_tfm
->key_tfm
;
1923 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1925 mutex_unlock(&key_tfm_list_mutex
);
1929 /* 64 characters forming a 6-bit target field */
1930 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1933 "klmnopqrstuvwxyz");
1935 /* We could either offset on every reverse map or just pad some 0x00's
1936 * at the front here */
1937 static const unsigned char filename_rev_map
[] = {
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1957 * ecryptfs_encode_for_filename
1958 * @dst: Destination location for encoded filename
1959 * @dst_size: Size of the encoded filename in bytes
1960 * @src: Source location for the filename to encode
1961 * @src_size: Size of the source in bytes
1963 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1964 unsigned char *src
, size_t src_size
)
1967 size_t block_num
= 0;
1968 size_t dst_offset
= 0;
1969 unsigned char last_block
[3];
1971 if (src_size
== 0) {
1975 num_blocks
= (src_size
/ 3);
1976 if ((src_size
% 3) == 0) {
1977 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1980 last_block
[2] = 0x00;
1981 switch (src_size
% 3) {
1983 last_block
[0] = src
[src_size
- 1];
1984 last_block
[1] = 0x00;
1987 last_block
[0] = src
[src_size
- 2];
1988 last_block
[1] = src
[src_size
- 1];
1991 (*dst_size
) = (num_blocks
* 4);
1994 while (block_num
< num_blocks
) {
1995 unsigned char *src_block
;
1996 unsigned char dst_block
[4];
1998 if (block_num
== (num_blocks
- 1))
1999 src_block
= last_block
;
2001 src_block
= &src
[block_num
* 3];
2002 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
2003 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
2004 | ((src_block
[1] >> 4) & 0x0F));
2005 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2006 | ((src_block
[2] >> 6) & 0x03));
2007 dst_block
[3] = (src_block
[2] & 0x3F);
2008 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2009 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2010 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2011 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2019 * ecryptfs_decode_from_filename
2020 * @dst: If NULL, this function only sets @dst_size and returns. If
2021 * non-NULL, this function decodes the encoded octets in @src
2022 * into the memory that @dst points to.
2023 * @dst_size: Set to the size of the decoded string.
2024 * @src: The encoded set of octets to decode.
2025 * @src_size: The size of the encoded set of octets to decode.
2028 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2029 const unsigned char *src
, size_t src_size
)
2031 u8 current_bit_offset
= 0;
2032 size_t src_byte_offset
= 0;
2033 size_t dst_byte_offset
= 0;
2036 /* Not exact; conservatively long. Every block of 4
2037 * encoded characters decodes into a block of 3
2038 * decoded characters. This segment of code provides
2039 * the caller with the maximum amount of allocated
2040 * space that @dst will need to point to in a
2041 * subsequent call. */
2042 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2045 while (src_byte_offset
< src_size
) {
2046 unsigned char src_byte
=
2047 filename_rev_map
[(int)src
[src_byte_offset
]];
2049 switch (current_bit_offset
) {
2051 dst
[dst_byte_offset
] = (src_byte
<< 2);
2052 current_bit_offset
= 6;
2055 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2056 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2058 current_bit_offset
= 4;
2061 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2062 dst
[dst_byte_offset
] = (src_byte
<< 6);
2063 current_bit_offset
= 2;
2066 dst
[dst_byte_offset
++] |= (src_byte
);
2067 dst
[dst_byte_offset
] = 0;
2068 current_bit_offset
= 0;
2073 (*dst_size
) = dst_byte_offset
;
2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081 * @name: The plaintext name
2082 * @length: The length of the plaintext
2083 * @encoded_name: The encypted name
2085 * Encrypts and encodes a filename into something that constitutes a
2086 * valid filename for a filesystem, with printable characters.
2088 * We assume that we have a properly initialized crypto context,
2089 * pointed to by crypt_stat->tfm.
2091 * Returns zero on success; non-zero on otherwise
2093 int ecryptfs_encrypt_and_encode_filename(
2094 char **encoded_name
,
2095 size_t *encoded_name_size
,
2096 struct ecryptfs_crypt_stat
*crypt_stat
,
2097 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2098 const char *name
, size_t name_size
)
2100 size_t encoded_name_no_prefix_size
;
2103 (*encoded_name
) = NULL
;
2104 (*encoded_name_size
) = 0;
2105 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2106 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2107 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2108 struct ecryptfs_filename
*filename
;
2110 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2112 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2113 "to kzalloc [%zd] bytes\n", __func__
,
2118 filename
->filename
= (char *)name
;
2119 filename
->filename_size
= name_size
;
2120 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2123 printk(KERN_ERR
"%s: Error attempting to encrypt "
2124 "filename; rc = [%d]\n", __func__
, rc
);
2128 ecryptfs_encode_for_filename(
2129 NULL
, &encoded_name_no_prefix_size
,
2130 filename
->encrypted_filename
,
2131 filename
->encrypted_filename_size
);
2132 if ((crypt_stat
&& (crypt_stat
->flags
2133 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2134 || (mount_crypt_stat
2135 && (mount_crypt_stat
->flags
2136 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2137 (*encoded_name_size
) =
2138 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 + encoded_name_no_prefix_size
);
2141 (*encoded_name_size
) =
2142 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143 + encoded_name_no_prefix_size
);
2144 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2145 if (!(*encoded_name
)) {
2146 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2147 "to kzalloc [%zd] bytes\n", __func__
,
2148 (*encoded_name_size
));
2150 kfree(filename
->encrypted_filename
);
2154 if ((crypt_stat
&& (crypt_stat
->flags
2155 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2156 || (mount_crypt_stat
2157 && (mount_crypt_stat
->flags
2158 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2159 memcpy((*encoded_name
),
2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2162 ecryptfs_encode_for_filename(
2164 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2165 &encoded_name_no_prefix_size
,
2166 filename
->encrypted_filename
,
2167 filename
->encrypted_filename_size
);
2168 (*encoded_name_size
) =
2169 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170 + encoded_name_no_prefix_size
);
2171 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2176 printk(KERN_ERR
"%s: Error attempting to encode "
2177 "encrypted filename; rc = [%d]\n", __func__
,
2179 kfree((*encoded_name
));
2180 (*encoded_name
) = NULL
;
2181 (*encoded_name_size
) = 0;
2183 kfree(filename
->encrypted_filename
);
2186 rc
= ecryptfs_copy_filename(encoded_name
,
2195 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2196 * @plaintext_name: The plaintext name
2197 * @plaintext_name_size: The plaintext name size
2198 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2199 * @name: The filename in cipher text
2200 * @name_size: The cipher text name size
2202 * Decrypts and decodes the filename.
2204 * Returns zero on error; non-zero otherwise
2206 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2207 size_t *plaintext_name_size
,
2208 struct dentry
*ecryptfs_dir_dentry
,
2209 const char *name
, size_t name_size
)
2211 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2212 &ecryptfs_superblock_to_private(
2213 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2215 size_t decoded_name_size
;
2219 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2220 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2221 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2222 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2223 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2224 const char *orig_name
= name
;
2225 size_t orig_name_size
= name_size
;
2227 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2228 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2229 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2231 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2232 if (!decoded_name
) {
2233 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2234 "to kmalloc [%zd] bytes\n", __func__
,
2239 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2241 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2242 plaintext_name_size
,
2248 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2249 "from filename; copying through filename "
2250 "as-is\n", __func__
);
2251 rc
= ecryptfs_copy_filename(plaintext_name
,
2252 plaintext_name_size
,
2253 orig_name
, orig_name_size
);
2257 rc
= ecryptfs_copy_filename(plaintext_name
,
2258 plaintext_name_size
,
2263 kfree(decoded_name
);