rt2x00: Update copyright year to 2009
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobcd4447502d8bc42cde49586349f76ac20852bdaa
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
33 * Radio control handlers.
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 int status;
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
48 * Initialize all data queues.
50 rt2x00queue_init_queues(rt2x00dev);
53 * Enable radio.
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
68 * Enable RX.
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
73 * Start the TX queues.
75 ieee80211_wake_queues(rt2x00dev->hw);
77 return 0;
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
86 * Stop the TX queues.
88 ieee80211_stop_queues(rt2x00dev->hw);
91 * Disable RX.
93 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
96 * Disable radio.
98 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100 rt2x00led_led_activity(rt2x00dev, false);
101 rt2x00leds_led_radio(rt2x00dev, false);
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
107 * When we are disabling the RX, we should also stop the link tuner.
109 if (state == STATE_RADIO_RX_OFF)
110 rt2x00link_stop_tuner(rt2x00dev);
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
115 * When we are enabling the RX, we should also start the link tuner.
117 if (state == STATE_RADIO_RX_ON)
118 rt2x00link_start_tuner(rt2x00dev);
121 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 struct rt2x00_dev *rt2x00dev =
124 container_of(work, struct rt2x00_dev, filter_work);
126 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130 struct ieee80211_vif *vif)
132 struct rt2x00_dev *rt2x00dev = data;
133 struct rt2x00_intf *intf = vif_to_intf(vif);
134 struct ieee80211_bss_conf conf;
135 int delayed_flags;
138 * Copy all data we need during this action under the protection
139 * of a spinlock. Otherwise race conditions might occur which results
140 * into an invalid configuration.
142 spin_lock(&intf->lock);
144 memcpy(&conf, &vif->bss_conf, sizeof(conf));
145 delayed_flags = intf->delayed_flags;
146 intf->delayed_flags = 0;
148 spin_unlock(&intf->lock);
151 * It is possible the radio was disabled while the work had been
152 * scheduled. If that happens we should return here immediately,
153 * note that in the spinlock protected area above the delayed_flags
154 * have been cleared correctly.
156 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
157 return;
159 if (delayed_flags & DELAYED_UPDATE_BEACON)
160 rt2x00queue_update_beacon(rt2x00dev, vif);
162 if (delayed_flags & DELAYED_CONFIG_ERP)
163 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165 if (delayed_flags & DELAYED_LED_ASSOC)
166 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
169 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 struct rt2x00_dev *rt2x00dev =
172 container_of(work, struct rt2x00_dev, intf_work);
175 * Iterate over each interface and perform the
176 * requested configurations.
178 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
179 rt2x00lib_intf_scheduled_iter,
180 rt2x00dev);
184 * Interrupt context handlers.
186 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
187 struct ieee80211_vif *vif)
189 struct rt2x00_dev *rt2x00dev = data;
190 struct rt2x00_intf *intf = vif_to_intf(vif);
192 if (vif->type != NL80211_IFTYPE_AP &&
193 vif->type != NL80211_IFTYPE_ADHOC &&
194 vif->type != NL80211_IFTYPE_MESH_POINT &&
195 vif->type != NL80211_IFTYPE_WDS)
196 return;
199 * Clean up the beacon skb.
201 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
202 intf->beacon->skb = NULL;
204 spin_lock(&intf->lock);
205 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
206 spin_unlock(&intf->lock);
209 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
212 return;
214 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
215 rt2x00lib_beacondone_iter,
216 rt2x00dev);
218 schedule_work(&rt2x00dev->intf_work);
220 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222 void rt2x00lib_txdone(struct queue_entry *entry,
223 struct txdone_entry_desc *txdesc)
225 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
226 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
227 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
228 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
229 u8 rate_idx, rate_flags;
232 * Unmap the skb.
234 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237 * If the IV/EIV data was stripped from the frame before it was
238 * passed to the hardware, we should now reinsert it again because
239 * mac80211 will expect the the same data to be present it the
240 * frame as it was passed to us.
242 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
243 rt2x00crypto_tx_insert_iv(entry->skb);
246 * Send frame to debugfs immediately, after this call is completed
247 * we are going to overwrite the skb->cb array.
249 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
252 * Update TX statistics.
254 rt2x00dev->link.qual.tx_success +=
255 test_bit(TXDONE_SUCCESS, &txdesc->flags);
256 rt2x00dev->link.qual.tx_failed +=
257 test_bit(TXDONE_FAILURE, &txdesc->flags);
259 rate_idx = skbdesc->tx_rate_idx;
260 rate_flags = skbdesc->tx_rate_flags;
263 * Initialize TX status
265 memset(&tx_info->status, 0, sizeof(tx_info->status));
266 tx_info->status.ack_signal = 0;
267 tx_info->status.rates[0].idx = rate_idx;
268 tx_info->status.rates[0].flags = rate_flags;
269 tx_info->status.rates[0].count = txdesc->retry + 1;
270 tx_info->status.rates[1].idx = -1; /* terminate */
272 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
273 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
274 tx_info->flags |= IEEE80211_TX_STAT_ACK;
275 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
276 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
279 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
280 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
281 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
282 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
283 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
287 * Only send the status report to mac80211 when TX status was
288 * requested by it. If this was a extra frame coming through
289 * a mac80211 library call (RTS/CTS) then we should not send the
290 * status report back.
292 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
293 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
294 else
295 dev_kfree_skb_irq(entry->skb);
298 * Make this entry available for reuse.
300 entry->skb = NULL;
301 entry->flags = 0;
303 rt2x00dev->ops->lib->clear_entry(entry);
305 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
306 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
309 * If the data queue was below the threshold before the txdone
310 * handler we must make sure the packet queue in the mac80211 stack
311 * is reenabled when the txdone handler has finished.
313 if (!rt2x00queue_threshold(entry->queue))
314 ieee80211_wake_queue(rt2x00dev->hw, qid);
316 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
318 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
319 struct queue_entry *entry)
321 struct rxdone_entry_desc rxdesc;
322 struct sk_buff *skb;
323 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
324 struct ieee80211_supported_band *sband;
325 const struct rt2x00_rate *rate;
326 unsigned int header_length;
327 unsigned int align;
328 unsigned int i;
329 int idx = -1;
332 * Allocate a new sk_buffer. If no new buffer available, drop the
333 * received frame and reuse the existing buffer.
335 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
336 if (!skb)
337 return;
340 * Unmap the skb.
342 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
345 * Extract the RXD details.
347 memset(&rxdesc, 0, sizeof(rxdesc));
348 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
351 * The data behind the ieee80211 header must be
352 * aligned on a 4 byte boundary.
354 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
355 align = ((unsigned long)(entry->skb->data + header_length)) & 3;
358 * Hardware might have stripped the IV/EIV/ICV data,
359 * in that case it is possible that the data was
360 * provided seperately (through hardware descriptor)
361 * in which case we should reinsert the data into the frame.
363 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
364 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
365 rt2x00crypto_rx_insert_iv(entry->skb, align,
366 header_length, &rxdesc);
367 } else if (align) {
368 skb_push(entry->skb, align);
369 /* Move entire frame in 1 command */
370 memmove(entry->skb->data, entry->skb->data + align,
371 rxdesc.size);
374 /* Update data pointers, trim buffer to correct size */
375 skb_trim(entry->skb, rxdesc.size);
378 * Update RX statistics.
380 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
381 for (i = 0; i < sband->n_bitrates; i++) {
382 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
384 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
385 (rate->plcp == rxdesc.signal)) ||
386 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
387 (rate->bitrate == rxdesc.signal))) {
388 idx = i;
389 break;
393 if (idx < 0) {
394 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
395 "signal=0x%.2x, type=%d.\n", rxdesc.signal,
396 (rxdesc.dev_flags & RXDONE_SIGNAL_MASK));
397 idx = 0;
401 * Update extra components
403 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
404 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
406 rx_status->mactime = rxdesc.timestamp;
407 rx_status->rate_idx = idx;
408 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
409 rx_status->signal = rxdesc.rssi;
410 rx_status->noise = rxdesc.noise;
411 rx_status->flag = rxdesc.flags;
412 rx_status->antenna = rt2x00dev->link.ant.active.rx;
415 * Send frame to mac80211 & debugfs.
416 * mac80211 will clean up the skb structure.
418 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
419 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
422 * Replace the skb with the freshly allocated one.
424 entry->skb = skb;
425 entry->flags = 0;
427 rt2x00dev->ops->lib->clear_entry(entry);
429 rt2x00queue_index_inc(entry->queue, Q_INDEX);
431 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
434 * Driver initialization handlers.
436 const struct rt2x00_rate rt2x00_supported_rates[12] = {
438 .flags = DEV_RATE_CCK,
439 .bitrate = 10,
440 .ratemask = BIT(0),
441 .plcp = 0x00,
444 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
445 .bitrate = 20,
446 .ratemask = BIT(1),
447 .plcp = 0x01,
450 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
451 .bitrate = 55,
452 .ratemask = BIT(2),
453 .plcp = 0x02,
456 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
457 .bitrate = 110,
458 .ratemask = BIT(3),
459 .plcp = 0x03,
462 .flags = DEV_RATE_OFDM,
463 .bitrate = 60,
464 .ratemask = BIT(4),
465 .plcp = 0x0b,
468 .flags = DEV_RATE_OFDM,
469 .bitrate = 90,
470 .ratemask = BIT(5),
471 .plcp = 0x0f,
474 .flags = DEV_RATE_OFDM,
475 .bitrate = 120,
476 .ratemask = BIT(6),
477 .plcp = 0x0a,
480 .flags = DEV_RATE_OFDM,
481 .bitrate = 180,
482 .ratemask = BIT(7),
483 .plcp = 0x0e,
486 .flags = DEV_RATE_OFDM,
487 .bitrate = 240,
488 .ratemask = BIT(8),
489 .plcp = 0x09,
492 .flags = DEV_RATE_OFDM,
493 .bitrate = 360,
494 .ratemask = BIT(9),
495 .plcp = 0x0d,
498 .flags = DEV_RATE_OFDM,
499 .bitrate = 480,
500 .ratemask = BIT(10),
501 .plcp = 0x08,
504 .flags = DEV_RATE_OFDM,
505 .bitrate = 540,
506 .ratemask = BIT(11),
507 .plcp = 0x0c,
511 static void rt2x00lib_channel(struct ieee80211_channel *entry,
512 const int channel, const int tx_power,
513 const int value)
515 entry->center_freq = ieee80211_channel_to_frequency(channel);
516 entry->hw_value = value;
517 entry->max_power = tx_power;
518 entry->max_antenna_gain = 0xff;
521 static void rt2x00lib_rate(struct ieee80211_rate *entry,
522 const u16 index, const struct rt2x00_rate *rate)
524 entry->flags = 0;
525 entry->bitrate = rate->bitrate;
526 entry->hw_value =index;
527 entry->hw_value_short = index;
529 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
530 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
533 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
534 struct hw_mode_spec *spec)
536 struct ieee80211_hw *hw = rt2x00dev->hw;
537 struct ieee80211_channel *channels;
538 struct ieee80211_rate *rates;
539 unsigned int num_rates;
540 unsigned int i;
542 num_rates = 0;
543 if (spec->supported_rates & SUPPORT_RATE_CCK)
544 num_rates += 4;
545 if (spec->supported_rates & SUPPORT_RATE_OFDM)
546 num_rates += 8;
548 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
549 if (!channels)
550 return -ENOMEM;
552 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
553 if (!rates)
554 goto exit_free_channels;
557 * Initialize Rate list.
559 for (i = 0; i < num_rates; i++)
560 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
563 * Initialize Channel list.
565 for (i = 0; i < spec->num_channels; i++) {
566 rt2x00lib_channel(&channels[i],
567 spec->channels[i].channel,
568 spec->channels_info[i].tx_power1, i);
572 * Intitialize 802.11b, 802.11g
573 * Rates: CCK, OFDM.
574 * Channels: 2.4 GHz
576 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
577 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
578 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
579 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
580 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
581 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
582 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
586 * Intitialize 802.11a
587 * Rates: OFDM.
588 * Channels: OFDM, UNII, HiperLAN2.
590 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
591 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
592 spec->num_channels - 14;
593 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
594 num_rates - 4;
595 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
596 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
597 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
598 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
601 return 0;
603 exit_free_channels:
604 kfree(channels);
605 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
606 return -ENOMEM;
609 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
611 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
612 ieee80211_unregister_hw(rt2x00dev->hw);
614 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
615 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
616 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
617 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
618 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
621 kfree(rt2x00dev->spec.channels_info);
624 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
626 struct hw_mode_spec *spec = &rt2x00dev->spec;
627 int status;
629 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
630 return 0;
633 * Initialize HW modes.
635 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
636 if (status)
637 return status;
640 * Initialize HW fields.
642 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
645 * Register HW.
647 status = ieee80211_register_hw(rt2x00dev->hw);
648 if (status) {
649 rt2x00lib_remove_hw(rt2x00dev);
650 return status;
653 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
655 return 0;
659 * Initialization/uninitialization handlers.
661 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
663 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
664 return;
667 * Unregister extra components.
669 rt2x00rfkill_unregister(rt2x00dev);
672 * Allow the HW to uninitialize.
674 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
677 * Free allocated queue entries.
679 rt2x00queue_uninitialize(rt2x00dev);
682 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
684 int status;
686 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
687 return 0;
690 * Allocate all queue entries.
692 status = rt2x00queue_initialize(rt2x00dev);
693 if (status)
694 return status;
697 * Initialize the device.
699 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
700 if (status) {
701 rt2x00queue_uninitialize(rt2x00dev);
702 return status;
705 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
708 * Register the extra components.
710 rt2x00rfkill_register(rt2x00dev);
712 return 0;
715 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
717 int retval;
719 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
720 return 0;
723 * If this is the first interface which is added,
724 * we should load the firmware now.
726 retval = rt2x00lib_load_firmware(rt2x00dev);
727 if (retval)
728 return retval;
731 * Initialize the device.
733 retval = rt2x00lib_initialize(rt2x00dev);
734 if (retval)
735 return retval;
737 rt2x00dev->intf_ap_count = 0;
738 rt2x00dev->intf_sta_count = 0;
739 rt2x00dev->intf_associated = 0;
741 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
743 return 0;
746 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
748 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
749 return;
752 * Perhaps we can add something smarter here,
753 * but for now just disabling the radio should do.
755 rt2x00lib_disable_radio(rt2x00dev);
757 rt2x00dev->intf_ap_count = 0;
758 rt2x00dev->intf_sta_count = 0;
759 rt2x00dev->intf_associated = 0;
763 * driver allocation handlers.
765 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
767 int retval = -ENOMEM;
769 mutex_init(&rt2x00dev->csr_mutex);
772 * Make room for rt2x00_intf inside the per-interface
773 * structure ieee80211_vif.
775 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
778 * Determine which operating modes are supported, all modes
779 * which require beaconing, depend on the availability of
780 * beacon entries.
782 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
783 if (rt2x00dev->ops->bcn->entry_num > 0)
784 rt2x00dev->hw->wiphy->interface_modes |=
785 BIT(NL80211_IFTYPE_ADHOC) |
786 BIT(NL80211_IFTYPE_AP) |
787 BIT(NL80211_IFTYPE_MESH_POINT) |
788 BIT(NL80211_IFTYPE_WDS);
791 * Let the driver probe the device to detect the capabilities.
793 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
794 if (retval) {
795 ERROR(rt2x00dev, "Failed to allocate device.\n");
796 goto exit;
800 * Initialize configuration work.
802 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
803 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
806 * Allocate queue array.
808 retval = rt2x00queue_allocate(rt2x00dev);
809 if (retval)
810 goto exit;
813 * Initialize ieee80211 structure.
815 retval = rt2x00lib_probe_hw(rt2x00dev);
816 if (retval) {
817 ERROR(rt2x00dev, "Failed to initialize hw.\n");
818 goto exit;
822 * Register extra components.
824 rt2x00link_register(rt2x00dev);
825 rt2x00leds_register(rt2x00dev);
826 rt2x00rfkill_allocate(rt2x00dev);
827 rt2x00debug_register(rt2x00dev);
829 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
831 return 0;
833 exit:
834 rt2x00lib_remove_dev(rt2x00dev);
836 return retval;
838 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
840 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
842 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
845 * Disable radio.
847 rt2x00lib_disable_radio(rt2x00dev);
850 * Uninitialize device.
852 rt2x00lib_uninitialize(rt2x00dev);
855 * Free extra components
857 rt2x00debug_deregister(rt2x00dev);
858 rt2x00rfkill_free(rt2x00dev);
859 rt2x00leds_unregister(rt2x00dev);
862 * Free ieee80211_hw memory.
864 rt2x00lib_remove_hw(rt2x00dev);
867 * Free firmware image.
869 rt2x00lib_free_firmware(rt2x00dev);
872 * Free queue structures.
874 rt2x00queue_free(rt2x00dev);
876 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
879 * Device state handlers
881 #ifdef CONFIG_PM
882 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
884 int retval;
886 NOTICE(rt2x00dev, "Going to sleep.\n");
889 * Only continue if mac80211 has open interfaces.
891 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
892 !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
893 goto exit;
895 set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
898 * Disable radio.
900 rt2x00lib_stop(rt2x00dev);
901 rt2x00lib_uninitialize(rt2x00dev);
904 * Suspend/disable extra components.
906 rt2x00leds_suspend(rt2x00dev);
907 rt2x00debug_deregister(rt2x00dev);
909 exit:
911 * Set device mode to sleep for power management,
912 * on some hardware this call seems to consistently fail.
913 * From the specifications it is hard to tell why it fails,
914 * and if this is a "bad thing".
915 * Overall it is safe to just ignore the failure and
916 * continue suspending. The only downside is that the
917 * device will not be in optimal power save mode, but with
918 * the radio and the other components already disabled the
919 * device is as good as disabled.
921 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
922 if (retval)
923 WARNING(rt2x00dev, "Device failed to enter sleep state, "
924 "continue suspending.\n");
926 return 0;
928 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
930 static void rt2x00lib_resume_intf(void *data, u8 *mac,
931 struct ieee80211_vif *vif)
933 struct rt2x00_dev *rt2x00dev = data;
934 struct rt2x00_intf *intf = vif_to_intf(vif);
936 spin_lock(&intf->lock);
938 rt2x00lib_config_intf(rt2x00dev, intf,
939 vif->type, intf->mac, intf->bssid);
943 * AP, Ad-hoc, and Mesh Point mode require a new beacon update.
945 if (vif->type == NL80211_IFTYPE_AP ||
946 vif->type == NL80211_IFTYPE_ADHOC ||
947 vif->type == NL80211_IFTYPE_MESH_POINT ||
948 vif->type == NL80211_IFTYPE_WDS)
949 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
951 spin_unlock(&intf->lock);
954 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
956 int retval;
958 NOTICE(rt2x00dev, "Waking up.\n");
961 * Restore/enable extra components.
963 rt2x00debug_register(rt2x00dev);
964 rt2x00leds_resume(rt2x00dev);
967 * Only continue if mac80211 had open interfaces.
969 if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
970 return 0;
973 * Reinitialize device and all active interfaces.
975 retval = rt2x00lib_start(rt2x00dev);
976 if (retval)
977 goto exit;
980 * Reconfigure device.
982 retval = rt2x00mac_config(rt2x00dev->hw, ~0);
983 if (retval)
984 goto exit;
987 * Iterator over each active interface to
988 * reconfigure the hardware.
990 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
991 rt2x00lib_resume_intf, rt2x00dev);
994 * We are ready again to receive requests from mac80211.
996 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
999 * It is possible that during that mac80211 has attempted
1000 * to send frames while we were suspending or resuming.
1001 * In that case we have disabled the TX queue and should
1002 * now enable it again
1004 ieee80211_wake_queues(rt2x00dev->hw);
1007 * During interface iteration we might have changed the
1008 * delayed_flags, time to handles the event by calling
1009 * the work handler directly.
1011 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1013 return 0;
1015 exit:
1016 rt2x00lib_stop(rt2x00dev);
1017 rt2x00lib_uninitialize(rt2x00dev);
1018 rt2x00debug_deregister(rt2x00dev);
1020 return retval;
1022 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1023 #endif /* CONFIG_PM */
1026 * rt2x00lib module information.
1028 MODULE_AUTHOR(DRV_PROJECT);
1029 MODULE_VERSION(DRV_VERSION);
1030 MODULE_DESCRIPTION("rt2x00 library");
1031 MODULE_LICENSE("GPL");