drm/i915: Avoid pageflipping freeze when we miss the flip prepare interrupt
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob1bd0c672ec905555391d37219059cd199dd5c478
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static const intel_limit_t intel_limits_i8xx_dvo = {
346 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
347 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
348 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
349 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
350 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
351 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
352 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
353 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
354 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
355 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
356 .find_pll = intel_find_best_PLL,
359 static const intel_limit_t intel_limits_i8xx_lvds = {
360 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
361 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
362 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
363 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
364 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
365 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
366 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
367 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
368 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
369 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
370 .find_pll = intel_find_best_PLL,
373 static const intel_limit_t intel_limits_i9xx_sdvo = {
374 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
375 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
376 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
377 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
378 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
379 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
380 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
381 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
382 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
383 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
384 .find_pll = intel_find_best_PLL,
387 static const intel_limit_t intel_limits_i9xx_lvds = {
388 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
389 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
390 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
391 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
392 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
393 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
394 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
395 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
396 /* The single-channel range is 25-112Mhz, and dual-channel
397 * is 80-224Mhz. Prefer single channel as much as possible.
399 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
400 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
401 .find_pll = intel_find_best_PLL,
404 /* below parameter and function is for G4X Chipset Family*/
405 static const intel_limit_t intel_limits_g4x_sdvo = {
406 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
407 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
408 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
409 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
410 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
411 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
412 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
413 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
414 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
415 .p2_slow = G4X_P2_SDVO_SLOW,
416 .p2_fast = G4X_P2_SDVO_FAST
418 .find_pll = intel_g4x_find_best_PLL,
421 static const intel_limit_t intel_limits_g4x_hdmi = {
422 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
423 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
424 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
425 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
426 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
427 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
428 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
429 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
430 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
431 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
432 .p2_fast = G4X_P2_HDMI_DAC_FAST
434 .find_pll = intel_g4x_find_best_PLL,
437 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
438 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
439 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
440 .vco = { .min = G4X_VCO_MIN,
441 .max = G4X_VCO_MAX },
442 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
443 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
444 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
445 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
446 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
447 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
448 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
450 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
451 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
452 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
454 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
455 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
456 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
458 .find_pll = intel_g4x_find_best_PLL,
461 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
462 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
463 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
464 .vco = { .min = G4X_VCO_MIN,
465 .max = G4X_VCO_MAX },
466 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
467 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
468 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
469 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
470 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
471 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
472 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
474 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
475 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
476 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
478 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
479 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
480 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
482 .find_pll = intel_g4x_find_best_PLL,
485 static const intel_limit_t intel_limits_g4x_display_port = {
486 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
487 .max = G4X_DOT_DISPLAY_PORT_MAX },
488 .vco = { .min = G4X_VCO_MIN,
489 .max = G4X_VCO_MAX},
490 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
491 .max = G4X_N_DISPLAY_PORT_MAX },
492 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
493 .max = G4X_M_DISPLAY_PORT_MAX },
494 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
495 .max = G4X_M1_DISPLAY_PORT_MAX },
496 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
497 .max = G4X_M2_DISPLAY_PORT_MAX },
498 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
499 .max = G4X_P_DISPLAY_PORT_MAX },
500 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
501 .max = G4X_P1_DISPLAY_PORT_MAX},
502 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
503 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
504 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
505 .find_pll = intel_find_pll_g4x_dp,
508 static const intel_limit_t intel_limits_pineview_sdvo = {
509 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
510 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
511 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
512 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
513 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
514 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
515 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
516 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
517 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
518 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
519 .find_pll = intel_find_best_PLL,
522 static const intel_limit_t intel_limits_pineview_lvds = {
523 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
524 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
525 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
526 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
527 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
528 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
529 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
530 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
531 /* Pineview only supports single-channel mode. */
532 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
533 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
534 .find_pll = intel_find_best_PLL,
537 static const intel_limit_t intel_limits_ironlake_dac = {
538 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
539 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
540 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
541 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
542 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
543 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
544 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
545 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
546 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
547 .p2_slow = IRONLAKE_DAC_P2_SLOW,
548 .p2_fast = IRONLAKE_DAC_P2_FAST },
549 .find_pll = intel_g4x_find_best_PLL,
552 static const intel_limit_t intel_limits_ironlake_single_lvds = {
553 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
554 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
555 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
556 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
557 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
558 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
559 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
560 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
561 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
562 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
563 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
564 .find_pll = intel_g4x_find_best_PLL,
567 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
568 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
569 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
570 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
571 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
572 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
573 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
574 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
575 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
576 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
577 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
578 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
579 .find_pll = intel_g4x_find_best_PLL,
582 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
583 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
584 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
585 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
586 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
587 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
588 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
589 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
590 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
591 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
592 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
593 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
594 .find_pll = intel_g4x_find_best_PLL,
597 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
598 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
599 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
600 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
601 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
602 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
603 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
604 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
605 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
606 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
607 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
608 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
609 .find_pll = intel_g4x_find_best_PLL,
612 static const intel_limit_t intel_limits_ironlake_display_port = {
613 .dot = { .min = IRONLAKE_DOT_MIN,
614 .max = IRONLAKE_DOT_MAX },
615 .vco = { .min = IRONLAKE_VCO_MIN,
616 .max = IRONLAKE_VCO_MAX},
617 .n = { .min = IRONLAKE_DP_N_MIN,
618 .max = IRONLAKE_DP_N_MAX },
619 .m = { .min = IRONLAKE_DP_M_MIN,
620 .max = IRONLAKE_DP_M_MAX },
621 .m1 = { .min = IRONLAKE_M1_MIN,
622 .max = IRONLAKE_M1_MAX },
623 .m2 = { .min = IRONLAKE_M2_MIN,
624 .max = IRONLAKE_M2_MAX },
625 .p = { .min = IRONLAKE_DP_P_MIN,
626 .max = IRONLAKE_DP_P_MAX },
627 .p1 = { .min = IRONLAKE_DP_P1_MIN,
628 .max = IRONLAKE_DP_P1_MAX},
629 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
630 .p2_slow = IRONLAKE_DP_P2_SLOW,
631 .p2_fast = IRONLAKE_DP_P2_FAST },
632 .find_pll = intel_find_pll_ironlake_dp,
635 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
637 struct drm_device *dev = crtc->dev;
638 struct drm_i915_private *dev_priv = dev->dev_private;
639 const intel_limit_t *limit;
640 int refclk = 120;
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
644 refclk = 100;
646 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
647 LVDS_CLKB_POWER_UP) {
648 /* LVDS dual channel */
649 if (refclk == 100)
650 limit = &intel_limits_ironlake_dual_lvds_100m;
651 else
652 limit = &intel_limits_ironlake_dual_lvds;
653 } else {
654 if (refclk == 100)
655 limit = &intel_limits_ironlake_single_lvds_100m;
656 else
657 limit = &intel_limits_ironlake_single_lvds;
659 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
660 HAS_eDP)
661 limit = &intel_limits_ironlake_display_port;
662 else
663 limit = &intel_limits_ironlake_dac;
665 return limit;
668 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
670 struct drm_device *dev = crtc->dev;
671 struct drm_i915_private *dev_priv = dev->dev_private;
672 const intel_limit_t *limit;
674 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
676 LVDS_CLKB_POWER_UP)
677 /* LVDS with dual channel */
678 limit = &intel_limits_g4x_dual_channel_lvds;
679 else
680 /* LVDS with dual channel */
681 limit = &intel_limits_g4x_single_channel_lvds;
682 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
683 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
684 limit = &intel_limits_g4x_hdmi;
685 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
686 limit = &intel_limits_g4x_sdvo;
687 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
688 limit = &intel_limits_g4x_display_port;
689 } else /* The option is for other outputs */
690 limit = &intel_limits_i9xx_sdvo;
692 return limit;
695 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
697 struct drm_device *dev = crtc->dev;
698 const intel_limit_t *limit;
700 if (HAS_PCH_SPLIT(dev))
701 limit = intel_ironlake_limit(crtc);
702 else if (IS_G4X(dev)) {
703 limit = intel_g4x_limit(crtc);
704 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
705 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
706 limit = &intel_limits_i9xx_lvds;
707 else
708 limit = &intel_limits_i9xx_sdvo;
709 } else if (IS_PINEVIEW(dev)) {
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
711 limit = &intel_limits_pineview_lvds;
712 else
713 limit = &intel_limits_pineview_sdvo;
714 } else {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_i8xx_lvds;
717 else
718 limit = &intel_limits_i8xx_dvo;
720 return limit;
723 /* m1 is reserved as 0 in Pineview, n is a ring counter */
724 static void pineview_clock(int refclk, intel_clock_t *clock)
726 clock->m = clock->m2 + 2;
727 clock->p = clock->p1 * clock->p2;
728 clock->vco = refclk * clock->m / clock->n;
729 clock->dot = clock->vco / clock->p;
732 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
734 if (IS_PINEVIEW(dev)) {
735 pineview_clock(refclk, clock);
736 return;
738 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
739 clock->p = clock->p1 * clock->p2;
740 clock->vco = refclk * clock->m / (clock->n + 2);
741 clock->dot = clock->vco / clock->p;
745 * Returns whether any output on the specified pipe is of the specified type
747 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
749 struct drm_device *dev = crtc->dev;
750 struct drm_mode_config *mode_config = &dev->mode_config;
751 struct drm_encoder *l_entry;
753 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
754 if (l_entry && l_entry->crtc == crtc) {
755 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
756 if (intel_encoder->type == type)
757 return true;
760 return false;
763 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
765 * Returns whether the given set of divisors are valid for a given refclk with
766 * the given connectors.
769 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
771 const intel_limit_t *limit = intel_limit (crtc);
772 struct drm_device *dev = crtc->dev;
774 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
775 INTELPllInvalid ("p1 out of range\n");
776 if (clock->p < limit->p.min || limit->p.max < clock->p)
777 INTELPllInvalid ("p out of range\n");
778 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
779 INTELPllInvalid ("m2 out of range\n");
780 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
781 INTELPllInvalid ("m1 out of range\n");
782 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
783 INTELPllInvalid ("m1 <= m2\n");
784 if (clock->m < limit->m.min || limit->m.max < clock->m)
785 INTELPllInvalid ("m out of range\n");
786 if (clock->n < limit->n.min || limit->n.max < clock->n)
787 INTELPllInvalid ("n out of range\n");
788 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
789 INTELPllInvalid ("vco out of range\n");
790 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
791 * connector, etc., rather than just a single range.
793 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
794 INTELPllInvalid ("dot out of range\n");
796 return true;
799 static bool
800 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
801 int target, int refclk, intel_clock_t *best_clock)
804 struct drm_device *dev = crtc->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 intel_clock_t clock;
807 int err = target;
809 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
810 (I915_READ(LVDS)) != 0) {
812 * For LVDS, if the panel is on, just rely on its current
813 * settings for dual-channel. We haven't figured out how to
814 * reliably set up different single/dual channel state, if we
815 * even can.
817 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
818 LVDS_CLKB_POWER_UP)
819 clock.p2 = limit->p2.p2_fast;
820 else
821 clock.p2 = limit->p2.p2_slow;
822 } else {
823 if (target < limit->p2.dot_limit)
824 clock.p2 = limit->p2.p2_slow;
825 else
826 clock.p2 = limit->p2.p2_fast;
829 memset (best_clock, 0, sizeof (*best_clock));
831 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
832 clock.m1++) {
833 for (clock.m2 = limit->m2.min;
834 clock.m2 <= limit->m2.max; clock.m2++) {
835 /* m1 is always 0 in Pineview */
836 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
837 break;
838 for (clock.n = limit->n.min;
839 clock.n <= limit->n.max; clock.n++) {
840 for (clock.p1 = limit->p1.min;
841 clock.p1 <= limit->p1.max; clock.p1++) {
842 int this_err;
844 intel_clock(dev, refclk, &clock);
846 if (!intel_PLL_is_valid(crtc, &clock))
847 continue;
849 this_err = abs(clock.dot - target);
850 if (this_err < err) {
851 *best_clock = clock;
852 err = this_err;
859 return (err != target);
862 static bool
863 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
864 int target, int refclk, intel_clock_t *best_clock)
866 struct drm_device *dev = crtc->dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 intel_clock_t clock;
869 int max_n;
870 bool found;
871 /* approximately equals target * 0.00585 */
872 int err_most = (target >> 8) + (target >> 9);
873 found = false;
875 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
876 int lvds_reg;
878 if (HAS_PCH_SPLIT(dev))
879 lvds_reg = PCH_LVDS;
880 else
881 lvds_reg = LVDS;
882 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
883 LVDS_CLKB_POWER_UP)
884 clock.p2 = limit->p2.p2_fast;
885 else
886 clock.p2 = limit->p2.p2_slow;
887 } else {
888 if (target < limit->p2.dot_limit)
889 clock.p2 = limit->p2.p2_slow;
890 else
891 clock.p2 = limit->p2.p2_fast;
894 memset(best_clock, 0, sizeof(*best_clock));
895 max_n = limit->n.max;
896 /* based on hardware requirement, prefer smaller n to precision */
897 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 /* based on hardware requirement, prefere larger m1,m2 */
899 for (clock.m1 = limit->m1.max;
900 clock.m1 >= limit->m1.min; clock.m1--) {
901 for (clock.m2 = limit->m2.max;
902 clock.m2 >= limit->m2.min; clock.m2--) {
903 for (clock.p1 = limit->p1.max;
904 clock.p1 >= limit->p1.min; clock.p1--) {
905 int this_err;
907 intel_clock(dev, refclk, &clock);
908 if (!intel_PLL_is_valid(crtc, &clock))
909 continue;
910 this_err = abs(clock.dot - target) ;
911 if (this_err < err_most) {
912 *best_clock = clock;
913 err_most = this_err;
914 max_n = clock.n;
915 found = true;
921 return found;
924 static bool
925 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
926 int target, int refclk, intel_clock_t *best_clock)
928 struct drm_device *dev = crtc->dev;
929 intel_clock_t clock;
931 /* return directly when it is eDP */
932 if (HAS_eDP)
933 return true;
935 if (target < 200000) {
936 clock.n = 1;
937 clock.p1 = 2;
938 clock.p2 = 10;
939 clock.m1 = 12;
940 clock.m2 = 9;
941 } else {
942 clock.n = 2;
943 clock.p1 = 1;
944 clock.p2 = 10;
945 clock.m1 = 14;
946 clock.m2 = 8;
948 intel_clock(dev, refclk, &clock);
949 memcpy(best_clock, &clock, sizeof(intel_clock_t));
950 return true;
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956 int target, int refclk, intel_clock_t *best_clock)
958 intel_clock_t clock;
959 if (target < 200000) {
960 clock.p1 = 2;
961 clock.p2 = 10;
962 clock.n = 2;
963 clock.m1 = 23;
964 clock.m2 = 8;
965 } else {
966 clock.p1 = 1;
967 clock.p2 = 10;
968 clock.n = 1;
969 clock.m1 = 14;
970 clock.m2 = 2;
972 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973 clock.p = (clock.p1 * clock.p2);
974 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975 clock.vco = 0;
976 memcpy(best_clock, &clock, sizeof(intel_clock_t));
977 return true;
981 * intel_wait_for_vblank - wait for vblank on a given pipe
982 * @dev: drm device
983 * @pipe: pipe to wait for
985 * Wait for vblank to occur on a given pipe. Needed for various bits of
986 * mode setting code.
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993 /* Clear existing vblank status. Note this will clear any other
994 * sticky status fields as well.
996 * This races with i915_driver_irq_handler() with the result
997 * that either function could miss a vblank event. Here it is not
998 * fatal, as we will either wait upon the next vblank interrupt or
999 * timeout. Generally speaking intel_wait_for_vblank() is only
1000 * called during modeset at which time the GPU should be idle and
1001 * should *not* be performing page flips and thus not waiting on
1002 * vblanks...
1003 * Currently, the result of us stealing a vblank from the irq
1004 * handler is that a single frame will be skipped during swapbuffers.
1006 I915_WRITE(pipestat_reg,
1007 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009 /* Wait for vblank interrupt bit to set */
1010 if (wait_for((I915_READ(pipestat_reg) &
1011 PIPE_VBLANK_INTERRUPT_STATUS),
1012 50, 0))
1013 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
1018 * @dev: drm device
1019 * @pipe: pipe to wait for
1021 * After disabling a pipe, we can't wait for vblank in the usual way,
1022 * spinning on the vblank interrupt status bit, since we won't actually
1023 * see an interrupt when the pipe is disabled.
1025 * So this function waits for the display line value to settle (it
1026 * usually ends up stopping at the start of the next frame).
1028 void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033 u32 last_line;
1035 /* Wait for the display line to settle */
1036 do {
1037 last_line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1038 mdelay(5);
1039 } while (((I915_READ(pipedsl_reg) & DSL_LINEMASK) != last_line) &&
1040 time_after(timeout, jiffies));
1042 if (time_after(jiffies, timeout))
1043 DRM_DEBUG_KMS("vblank wait timed out\n");
1046 /* Parameters have changed, update FBC info */
1047 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1049 struct drm_device *dev = crtc->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 struct drm_framebuffer *fb = crtc->fb;
1052 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1053 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1055 int plane, i;
1056 u32 fbc_ctl, fbc_ctl2;
1058 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1060 if (fb->pitch < dev_priv->cfb_pitch)
1061 dev_priv->cfb_pitch = fb->pitch;
1063 /* FBC_CTL wants 64B units */
1064 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1065 dev_priv->cfb_fence = obj_priv->fence_reg;
1066 dev_priv->cfb_plane = intel_crtc->plane;
1067 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1069 /* Clear old tags */
1070 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1071 I915_WRITE(FBC_TAG + (i * 4), 0);
1073 /* Set it up... */
1074 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1075 if (obj_priv->tiling_mode != I915_TILING_NONE)
1076 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1077 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1078 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1080 /* enable it... */
1081 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1082 if (IS_I945GM(dev))
1083 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1084 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1085 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1086 if (obj_priv->tiling_mode != I915_TILING_NONE)
1087 fbc_ctl |= dev_priv->cfb_fence;
1088 I915_WRITE(FBC_CONTROL, fbc_ctl);
1090 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1091 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1094 void i8xx_disable_fbc(struct drm_device *dev)
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 u32 fbc_ctl;
1099 if (!I915_HAS_FBC(dev))
1100 return;
1102 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1103 return; /* Already off, just return */
1105 /* Disable compression */
1106 fbc_ctl = I915_READ(FBC_CONTROL);
1107 fbc_ctl &= ~FBC_CTL_EN;
1108 I915_WRITE(FBC_CONTROL, fbc_ctl);
1110 /* Wait for compressing bit to clear */
1111 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10, 0)) {
1112 DRM_DEBUG_KMS("FBC idle timed out\n");
1113 return;
1116 DRM_DEBUG_KMS("disabled FBC\n");
1119 static bool i8xx_fbc_enabled(struct drm_device *dev)
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1128 struct drm_device *dev = crtc->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_framebuffer *fb = crtc->fb;
1131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1132 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1134 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1135 DPFC_CTL_PLANEB);
1136 unsigned long stall_watermark = 200;
1137 u32 dpfc_ctl;
1139 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1140 dev_priv->cfb_fence = obj_priv->fence_reg;
1141 dev_priv->cfb_plane = intel_crtc->plane;
1143 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1144 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1145 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1146 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1147 } else {
1148 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1151 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1152 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1153 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1154 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1155 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1157 /* enable it... */
1158 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1160 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1163 void g4x_disable_fbc(struct drm_device *dev)
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 dpfc_ctl;
1168 /* Disable compression */
1169 dpfc_ctl = I915_READ(DPFC_CONTROL);
1170 dpfc_ctl &= ~DPFC_CTL_EN;
1171 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1173 DRM_DEBUG_KMS("disabled FBC\n");
1176 static bool g4x_fbc_enabled(struct drm_device *dev)
1178 struct drm_i915_private *dev_priv = dev->dev_private;
1180 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1183 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1185 struct drm_device *dev = crtc->dev;
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 struct drm_framebuffer *fb = crtc->fb;
1188 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1189 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1191 int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1192 DPFC_CTL_PLANEB;
1193 unsigned long stall_watermark = 200;
1194 u32 dpfc_ctl;
1196 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1197 dev_priv->cfb_fence = obj_priv->fence_reg;
1198 dev_priv->cfb_plane = intel_crtc->plane;
1200 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1201 dpfc_ctl &= DPFC_RESERVED;
1202 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1203 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1204 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1205 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1206 } else {
1207 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1210 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1211 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1212 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1213 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1214 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1215 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1216 /* enable it... */
1217 I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1218 DPFC_CTL_EN);
1220 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1223 void ironlake_disable_fbc(struct drm_device *dev)
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 u32 dpfc_ctl;
1228 /* Disable compression */
1229 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1230 dpfc_ctl &= ~DPFC_CTL_EN;
1231 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1233 DRM_DEBUG_KMS("disabled FBC\n");
1236 static bool ironlake_fbc_enabled(struct drm_device *dev)
1238 struct drm_i915_private *dev_priv = dev->dev_private;
1240 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1243 bool intel_fbc_enabled(struct drm_device *dev)
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1247 if (!dev_priv->display.fbc_enabled)
1248 return false;
1250 return dev_priv->display.fbc_enabled(dev);
1253 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1255 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1257 if (!dev_priv->display.enable_fbc)
1258 return;
1260 dev_priv->display.enable_fbc(crtc, interval);
1263 void intel_disable_fbc(struct drm_device *dev)
1265 struct drm_i915_private *dev_priv = dev->dev_private;
1267 if (!dev_priv->display.disable_fbc)
1268 return;
1270 dev_priv->display.disable_fbc(dev);
1274 * intel_update_fbc - enable/disable FBC as needed
1275 * @crtc: CRTC to point the compressor at
1276 * @mode: mode in use
1278 * Set up the framebuffer compression hardware at mode set time. We
1279 * enable it if possible:
1280 * - plane A only (on pre-965)
1281 * - no pixel mulitply/line duplication
1282 * - no alpha buffer discard
1283 * - no dual wide
1284 * - framebuffer <= 2048 in width, 1536 in height
1286 * We can't assume that any compression will take place (worst case),
1287 * so the compressed buffer has to be the same size as the uncompressed
1288 * one. It also must reside (along with the line length buffer) in
1289 * stolen memory.
1291 * We need to enable/disable FBC on a global basis.
1293 static void intel_update_fbc(struct drm_crtc *crtc,
1294 struct drm_display_mode *mode)
1296 struct drm_device *dev = crtc->dev;
1297 struct drm_i915_private *dev_priv = dev->dev_private;
1298 struct drm_framebuffer *fb = crtc->fb;
1299 struct intel_framebuffer *intel_fb;
1300 struct drm_i915_gem_object *obj_priv;
1301 struct drm_crtc *tmp_crtc;
1302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1303 int plane = intel_crtc->plane;
1304 int crtcs_enabled = 0;
1306 DRM_DEBUG_KMS("\n");
1308 if (!i915_powersave)
1309 return;
1311 if (!I915_HAS_FBC(dev))
1312 return;
1314 if (!crtc->fb)
1315 return;
1317 intel_fb = to_intel_framebuffer(fb);
1318 obj_priv = to_intel_bo(intel_fb->obj);
1321 * If FBC is already on, we just have to verify that we can
1322 * keep it that way...
1323 * Need to disable if:
1324 * - more than one pipe is active
1325 * - changing FBC params (stride, fence, mode)
1326 * - new fb is too large to fit in compressed buffer
1327 * - going to an unsupported config (interlace, pixel multiply, etc.)
1329 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1330 if (tmp_crtc->enabled)
1331 crtcs_enabled++;
1333 DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1334 if (crtcs_enabled > 1) {
1335 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1336 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1337 goto out_disable;
1339 if (intel_fb->obj->size > dev_priv->cfb_size) {
1340 DRM_DEBUG_KMS("framebuffer too large, disabling "
1341 "compression\n");
1342 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1343 goto out_disable;
1345 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1346 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1347 DRM_DEBUG_KMS("mode incompatible with compression, "
1348 "disabling\n");
1349 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1350 goto out_disable;
1352 if ((mode->hdisplay > 2048) ||
1353 (mode->vdisplay > 1536)) {
1354 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1355 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1356 goto out_disable;
1358 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1359 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1360 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1361 goto out_disable;
1363 if (obj_priv->tiling_mode != I915_TILING_X) {
1364 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1365 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1366 goto out_disable;
1369 /* If the kernel debugger is active, always disable compression */
1370 if (in_dbg_master())
1371 goto out_disable;
1373 if (intel_fbc_enabled(dev)) {
1374 /* We can re-enable it in this case, but need to update pitch */
1375 if ((fb->pitch > dev_priv->cfb_pitch) ||
1376 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1377 (plane != dev_priv->cfb_plane))
1378 intel_disable_fbc(dev);
1381 /* Now try to turn it back on if possible */
1382 if (!intel_fbc_enabled(dev))
1383 intel_enable_fbc(crtc, 500);
1385 return;
1387 out_disable:
1388 /* Multiple disables should be harmless */
1389 if (intel_fbc_enabled(dev)) {
1390 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1391 intel_disable_fbc(dev);
1396 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1399 u32 alignment;
1400 int ret;
1402 switch (obj_priv->tiling_mode) {
1403 case I915_TILING_NONE:
1404 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1405 alignment = 128 * 1024;
1406 else if (IS_I965G(dev))
1407 alignment = 4 * 1024;
1408 else
1409 alignment = 64 * 1024;
1410 break;
1411 case I915_TILING_X:
1412 /* pin() will align the object as required by fence */
1413 alignment = 0;
1414 break;
1415 case I915_TILING_Y:
1416 /* FIXME: Is this true? */
1417 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1418 return -EINVAL;
1419 default:
1420 BUG();
1423 ret = i915_gem_object_pin(obj, alignment);
1424 if (ret != 0)
1425 return ret;
1427 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1428 * fence, whereas 965+ only requires a fence if using
1429 * framebuffer compression. For simplicity, we always install
1430 * a fence as the cost is not that onerous.
1432 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1433 obj_priv->tiling_mode != I915_TILING_NONE) {
1434 ret = i915_gem_object_get_fence_reg(obj);
1435 if (ret != 0) {
1436 i915_gem_object_unpin(obj);
1437 return ret;
1441 return 0;
1444 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1445 static int
1446 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1447 int x, int y)
1449 struct drm_device *dev = crtc->dev;
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1452 struct intel_framebuffer *intel_fb;
1453 struct drm_i915_gem_object *obj_priv;
1454 struct drm_gem_object *obj;
1455 int plane = intel_crtc->plane;
1456 unsigned long Start, Offset;
1457 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1458 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1459 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1460 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1461 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1462 u32 dspcntr;
1464 switch (plane) {
1465 case 0:
1466 case 1:
1467 break;
1468 default:
1469 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1470 return -EINVAL;
1473 intel_fb = to_intel_framebuffer(fb);
1474 obj = intel_fb->obj;
1475 obj_priv = to_intel_bo(obj);
1477 dspcntr = I915_READ(dspcntr_reg);
1478 /* Mask out pixel format bits in case we change it */
1479 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1480 switch (fb->bits_per_pixel) {
1481 case 8:
1482 dspcntr |= DISPPLANE_8BPP;
1483 break;
1484 case 16:
1485 if (fb->depth == 15)
1486 dspcntr |= DISPPLANE_15_16BPP;
1487 else
1488 dspcntr |= DISPPLANE_16BPP;
1489 break;
1490 case 24:
1491 case 32:
1492 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1493 break;
1494 default:
1495 DRM_ERROR("Unknown color depth\n");
1496 return -EINVAL;
1498 if (IS_I965G(dev)) {
1499 if (obj_priv->tiling_mode != I915_TILING_NONE)
1500 dspcntr |= DISPPLANE_TILED;
1501 else
1502 dspcntr &= ~DISPPLANE_TILED;
1505 if (HAS_PCH_SPLIT(dev))
1506 /* must disable */
1507 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1509 I915_WRITE(dspcntr_reg, dspcntr);
1511 Start = obj_priv->gtt_offset;
1512 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1514 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1515 Start, Offset, x, y, fb->pitch);
1516 I915_WRITE(dspstride, fb->pitch);
1517 if (IS_I965G(dev)) {
1518 I915_WRITE(dspsurf, Start);
1519 I915_WRITE(dsptileoff, (y << 16) | x);
1520 I915_WRITE(dspbase, Offset);
1521 } else {
1522 I915_WRITE(dspbase, Start + Offset);
1524 POSTING_READ(dspbase);
1526 if (IS_I965G(dev) || plane == 0)
1527 intel_update_fbc(crtc, &crtc->mode);
1529 intel_wait_for_vblank(dev, intel_crtc->pipe);
1530 intel_increase_pllclock(crtc, true);
1532 return 0;
1535 static int
1536 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1537 struct drm_framebuffer *old_fb)
1539 struct drm_device *dev = crtc->dev;
1540 struct drm_i915_master_private *master_priv;
1541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1542 struct intel_framebuffer *intel_fb;
1543 struct drm_i915_gem_object *obj_priv;
1544 struct drm_gem_object *obj;
1545 int pipe = intel_crtc->pipe;
1546 int plane = intel_crtc->plane;
1547 int ret;
1549 /* no fb bound */
1550 if (!crtc->fb) {
1551 DRM_DEBUG_KMS("No FB bound\n");
1552 return 0;
1555 switch (plane) {
1556 case 0:
1557 case 1:
1558 break;
1559 default:
1560 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1561 return -EINVAL;
1564 intel_fb = to_intel_framebuffer(crtc->fb);
1565 obj = intel_fb->obj;
1566 obj_priv = to_intel_bo(obj);
1568 mutex_lock(&dev->struct_mutex);
1569 ret = intel_pin_and_fence_fb_obj(dev, obj);
1570 if (ret != 0) {
1571 mutex_unlock(&dev->struct_mutex);
1572 return ret;
1575 ret = i915_gem_object_set_to_display_plane(obj);
1576 if (ret != 0) {
1577 i915_gem_object_unpin(obj);
1578 mutex_unlock(&dev->struct_mutex);
1579 return ret;
1582 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
1583 if (ret) {
1584 i915_gem_object_unpin(obj);
1585 mutex_unlock(&dev->struct_mutex);
1586 return ret;
1589 if (old_fb) {
1590 intel_fb = to_intel_framebuffer(old_fb);
1591 obj_priv = to_intel_bo(intel_fb->obj);
1592 i915_gem_object_unpin(intel_fb->obj);
1595 mutex_unlock(&dev->struct_mutex);
1597 if (!dev->primary->master)
1598 return 0;
1600 master_priv = dev->primary->master->driver_priv;
1601 if (!master_priv->sarea_priv)
1602 return 0;
1604 if (pipe) {
1605 master_priv->sarea_priv->pipeB_x = x;
1606 master_priv->sarea_priv->pipeB_y = y;
1607 } else {
1608 master_priv->sarea_priv->pipeA_x = x;
1609 master_priv->sarea_priv->pipeA_y = y;
1612 return 0;
1615 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1617 struct drm_device *dev = crtc->dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 u32 dpa_ctl;
1621 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1622 dpa_ctl = I915_READ(DP_A);
1623 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1625 if (clock < 200000) {
1626 u32 temp;
1627 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1628 /* workaround for 160Mhz:
1629 1) program 0x4600c bits 15:0 = 0x8124
1630 2) program 0x46010 bit 0 = 1
1631 3) program 0x46034 bit 24 = 1
1632 4) program 0x64000 bit 14 = 1
1634 temp = I915_READ(0x4600c);
1635 temp &= 0xffff0000;
1636 I915_WRITE(0x4600c, temp | 0x8124);
1638 temp = I915_READ(0x46010);
1639 I915_WRITE(0x46010, temp | 1);
1641 temp = I915_READ(0x46034);
1642 I915_WRITE(0x46034, temp | (1 << 24));
1643 } else {
1644 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1646 I915_WRITE(DP_A, dpa_ctl);
1648 udelay(500);
1651 /* The FDI link training functions for ILK/Ibexpeak. */
1652 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1654 struct drm_device *dev = crtc->dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1657 int pipe = intel_crtc->pipe;
1658 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1659 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1660 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1661 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1662 u32 temp, tries = 0;
1664 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1665 for train result */
1666 temp = I915_READ(fdi_rx_imr_reg);
1667 temp &= ~FDI_RX_SYMBOL_LOCK;
1668 temp &= ~FDI_RX_BIT_LOCK;
1669 I915_WRITE(fdi_rx_imr_reg, temp);
1670 I915_READ(fdi_rx_imr_reg);
1671 udelay(150);
1673 /* enable CPU FDI TX and PCH FDI RX */
1674 temp = I915_READ(fdi_tx_reg);
1675 temp |= FDI_TX_ENABLE;
1676 temp &= ~(7 << 19);
1677 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1678 temp &= ~FDI_LINK_TRAIN_NONE;
1679 temp |= FDI_LINK_TRAIN_PATTERN_1;
1680 I915_WRITE(fdi_tx_reg, temp);
1681 I915_READ(fdi_tx_reg);
1683 temp = I915_READ(fdi_rx_reg);
1684 temp &= ~FDI_LINK_TRAIN_NONE;
1685 temp |= FDI_LINK_TRAIN_PATTERN_1;
1686 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1687 I915_READ(fdi_rx_reg);
1688 udelay(150);
1690 for (tries = 0; tries < 5; tries++) {
1691 temp = I915_READ(fdi_rx_iir_reg);
1692 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1694 if ((temp & FDI_RX_BIT_LOCK)) {
1695 DRM_DEBUG_KMS("FDI train 1 done.\n");
1696 I915_WRITE(fdi_rx_iir_reg,
1697 temp | FDI_RX_BIT_LOCK);
1698 break;
1701 if (tries == 5)
1702 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1704 /* Train 2 */
1705 temp = I915_READ(fdi_tx_reg);
1706 temp &= ~FDI_LINK_TRAIN_NONE;
1707 temp |= FDI_LINK_TRAIN_PATTERN_2;
1708 I915_WRITE(fdi_tx_reg, temp);
1710 temp = I915_READ(fdi_rx_reg);
1711 temp &= ~FDI_LINK_TRAIN_NONE;
1712 temp |= FDI_LINK_TRAIN_PATTERN_2;
1713 I915_WRITE(fdi_rx_reg, temp);
1714 udelay(150);
1716 tries = 0;
1718 for (tries = 0; tries < 5; tries++) {
1719 temp = I915_READ(fdi_rx_iir_reg);
1720 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1722 if (temp & FDI_RX_SYMBOL_LOCK) {
1723 I915_WRITE(fdi_rx_iir_reg,
1724 temp | FDI_RX_SYMBOL_LOCK);
1725 DRM_DEBUG_KMS("FDI train 2 done.\n");
1726 break;
1729 if (tries == 5)
1730 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1732 DRM_DEBUG_KMS("FDI train done\n");
1735 static int snb_b_fdi_train_param [] = {
1736 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1737 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1738 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1739 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1742 /* The FDI link training functions for SNB/Cougarpoint. */
1743 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1745 struct drm_device *dev = crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1748 int pipe = intel_crtc->pipe;
1749 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1750 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1751 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1752 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1753 u32 temp, i;
1755 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1756 for train result */
1757 temp = I915_READ(fdi_rx_imr_reg);
1758 temp &= ~FDI_RX_SYMBOL_LOCK;
1759 temp &= ~FDI_RX_BIT_LOCK;
1760 I915_WRITE(fdi_rx_imr_reg, temp);
1761 I915_READ(fdi_rx_imr_reg);
1762 udelay(150);
1764 /* enable CPU FDI TX and PCH FDI RX */
1765 temp = I915_READ(fdi_tx_reg);
1766 temp |= FDI_TX_ENABLE;
1767 temp &= ~(7 << 19);
1768 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1769 temp &= ~FDI_LINK_TRAIN_NONE;
1770 temp |= FDI_LINK_TRAIN_PATTERN_1;
1771 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1772 /* SNB-B */
1773 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1774 I915_WRITE(fdi_tx_reg, temp);
1775 I915_READ(fdi_tx_reg);
1777 temp = I915_READ(fdi_rx_reg);
1778 if (HAS_PCH_CPT(dev)) {
1779 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1780 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1781 } else {
1782 temp &= ~FDI_LINK_TRAIN_NONE;
1783 temp |= FDI_LINK_TRAIN_PATTERN_1;
1785 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1786 I915_READ(fdi_rx_reg);
1787 udelay(150);
1789 for (i = 0; i < 4; i++ ) {
1790 temp = I915_READ(fdi_tx_reg);
1791 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1792 temp |= snb_b_fdi_train_param[i];
1793 I915_WRITE(fdi_tx_reg, temp);
1794 udelay(500);
1796 temp = I915_READ(fdi_rx_iir_reg);
1797 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1799 if (temp & FDI_RX_BIT_LOCK) {
1800 I915_WRITE(fdi_rx_iir_reg,
1801 temp | FDI_RX_BIT_LOCK);
1802 DRM_DEBUG_KMS("FDI train 1 done.\n");
1803 break;
1806 if (i == 4)
1807 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1809 /* Train 2 */
1810 temp = I915_READ(fdi_tx_reg);
1811 temp &= ~FDI_LINK_TRAIN_NONE;
1812 temp |= FDI_LINK_TRAIN_PATTERN_2;
1813 if (IS_GEN6(dev)) {
1814 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1815 /* SNB-B */
1816 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1818 I915_WRITE(fdi_tx_reg, temp);
1820 temp = I915_READ(fdi_rx_reg);
1821 if (HAS_PCH_CPT(dev)) {
1822 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1823 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1824 } else {
1825 temp &= ~FDI_LINK_TRAIN_NONE;
1826 temp |= FDI_LINK_TRAIN_PATTERN_2;
1828 I915_WRITE(fdi_rx_reg, temp);
1829 udelay(150);
1831 for (i = 0; i < 4; i++ ) {
1832 temp = I915_READ(fdi_tx_reg);
1833 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1834 temp |= snb_b_fdi_train_param[i];
1835 I915_WRITE(fdi_tx_reg, temp);
1836 udelay(500);
1838 temp = I915_READ(fdi_rx_iir_reg);
1839 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1841 if (temp & FDI_RX_SYMBOL_LOCK) {
1842 I915_WRITE(fdi_rx_iir_reg,
1843 temp | FDI_RX_SYMBOL_LOCK);
1844 DRM_DEBUG_KMS("FDI train 2 done.\n");
1845 break;
1848 if (i == 4)
1849 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1851 DRM_DEBUG_KMS("FDI train done.\n");
1854 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1856 struct drm_device *dev = crtc->dev;
1857 struct drm_i915_private *dev_priv = dev->dev_private;
1858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1859 int pipe = intel_crtc->pipe;
1860 int plane = intel_crtc->plane;
1861 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1862 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1863 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1864 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1865 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1866 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1867 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1868 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1869 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1870 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1871 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1872 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1873 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1874 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1875 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1876 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1877 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1878 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1879 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1880 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1881 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1882 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1883 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1884 u32 temp;
1885 u32 pipe_bpc;
1887 temp = I915_READ(pipeconf_reg);
1888 pipe_bpc = temp & PIPE_BPC_MASK;
1890 /* XXX: When our outputs are all unaware of DPMS modes other than off
1891 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1893 switch (mode) {
1894 case DRM_MODE_DPMS_ON:
1895 case DRM_MODE_DPMS_STANDBY:
1896 case DRM_MODE_DPMS_SUSPEND:
1897 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
1899 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1900 temp = I915_READ(PCH_LVDS);
1901 if ((temp & LVDS_PORT_EN) == 0) {
1902 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1903 POSTING_READ(PCH_LVDS);
1907 if (!HAS_eDP) {
1909 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1910 temp = I915_READ(fdi_rx_reg);
1912 * make the BPC in FDI Rx be consistent with that in
1913 * pipeconf reg.
1915 temp &= ~(0x7 << 16);
1916 temp |= (pipe_bpc << 11);
1917 temp &= ~(7 << 19);
1918 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1919 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1920 I915_READ(fdi_rx_reg);
1921 udelay(200);
1923 /* Switch from Rawclk to PCDclk */
1924 temp = I915_READ(fdi_rx_reg);
1925 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1926 I915_READ(fdi_rx_reg);
1927 udelay(200);
1929 /* Enable CPU FDI TX PLL, always on for Ironlake */
1930 temp = I915_READ(fdi_tx_reg);
1931 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1932 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1933 I915_READ(fdi_tx_reg);
1934 udelay(100);
1938 /* Enable panel fitting for LVDS */
1939 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
1940 || HAS_eDP || intel_pch_has_edp(crtc)) {
1941 if (dev_priv->pch_pf_size) {
1942 temp = I915_READ(pf_ctl_reg);
1943 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1944 I915_WRITE(pf_win_pos, dev_priv->pch_pf_pos);
1945 I915_WRITE(pf_win_size, dev_priv->pch_pf_size);
1946 } else
1947 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1950 /* Enable CPU pipe */
1951 temp = I915_READ(pipeconf_reg);
1952 if ((temp & PIPEACONF_ENABLE) == 0) {
1953 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1954 I915_READ(pipeconf_reg);
1955 udelay(100);
1958 /* configure and enable CPU plane */
1959 temp = I915_READ(dspcntr_reg);
1960 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1961 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1962 /* Flush the plane changes */
1963 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1966 if (!HAS_eDP) {
1967 /* For PCH output, training FDI link */
1968 if (IS_GEN6(dev))
1969 gen6_fdi_link_train(crtc);
1970 else
1971 ironlake_fdi_link_train(crtc);
1973 /* enable PCH DPLL */
1974 temp = I915_READ(pch_dpll_reg);
1975 if ((temp & DPLL_VCO_ENABLE) == 0) {
1976 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1977 I915_READ(pch_dpll_reg);
1979 udelay(200);
1981 if (HAS_PCH_CPT(dev)) {
1982 /* Be sure PCH DPLL SEL is set */
1983 temp = I915_READ(PCH_DPLL_SEL);
1984 if (trans_dpll_sel == 0 &&
1985 (temp & TRANSA_DPLL_ENABLE) == 0)
1986 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1987 else if (trans_dpll_sel == 1 &&
1988 (temp & TRANSB_DPLL_ENABLE) == 0)
1989 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1990 I915_WRITE(PCH_DPLL_SEL, temp);
1991 I915_READ(PCH_DPLL_SEL);
1994 /* set transcoder timing */
1995 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1996 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1997 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1999 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2000 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2001 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2003 /* enable normal train */
2004 temp = I915_READ(fdi_tx_reg);
2005 temp &= ~FDI_LINK_TRAIN_NONE;
2006 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2007 FDI_TX_ENHANCE_FRAME_ENABLE);
2008 I915_READ(fdi_tx_reg);
2010 temp = I915_READ(fdi_rx_reg);
2011 if (HAS_PCH_CPT(dev)) {
2012 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2013 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2014 } else {
2015 temp &= ~FDI_LINK_TRAIN_NONE;
2016 temp |= FDI_LINK_TRAIN_NONE;
2018 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2019 I915_READ(fdi_rx_reg);
2021 /* wait one idle pattern time */
2022 udelay(100);
2024 /* For PCH DP, enable TRANS_DP_CTL */
2025 if (HAS_PCH_CPT(dev) &&
2026 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2027 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2028 int reg;
2030 reg = I915_READ(trans_dp_ctl);
2031 reg &= ~(TRANS_DP_PORT_SEL_MASK |
2032 TRANS_DP_SYNC_MASK);
2033 reg |= (TRANS_DP_OUTPUT_ENABLE |
2034 TRANS_DP_ENH_FRAMING);
2036 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2037 reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2038 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2039 reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2041 switch (intel_trans_dp_port_sel(crtc)) {
2042 case PCH_DP_B:
2043 reg |= TRANS_DP_PORT_SEL_B;
2044 break;
2045 case PCH_DP_C:
2046 reg |= TRANS_DP_PORT_SEL_C;
2047 break;
2048 case PCH_DP_D:
2049 reg |= TRANS_DP_PORT_SEL_D;
2050 break;
2051 default:
2052 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2053 reg |= TRANS_DP_PORT_SEL_B;
2054 break;
2057 I915_WRITE(trans_dp_ctl, reg);
2058 POSTING_READ(trans_dp_ctl);
2061 /* enable PCH transcoder */
2062 temp = I915_READ(transconf_reg);
2064 * make the BPC in transcoder be consistent with
2065 * that in pipeconf reg.
2067 temp &= ~PIPE_BPC_MASK;
2068 temp |= pipe_bpc;
2069 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2070 I915_READ(transconf_reg);
2072 if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 100, 1))
2073 DRM_ERROR("failed to enable transcoder\n");
2076 intel_crtc_load_lut(crtc);
2078 intel_update_fbc(crtc, &crtc->mode);
2079 break;
2081 case DRM_MODE_DPMS_OFF:
2082 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2084 drm_vblank_off(dev, pipe);
2085 /* Disable display plane */
2086 temp = I915_READ(dspcntr_reg);
2087 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2088 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2089 /* Flush the plane changes */
2090 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2091 I915_READ(dspbase_reg);
2094 if (dev_priv->cfb_plane == plane &&
2095 dev_priv->display.disable_fbc)
2096 dev_priv->display.disable_fbc(dev);
2098 /* disable cpu pipe, disable after all planes disabled */
2099 temp = I915_READ(pipeconf_reg);
2100 if ((temp & PIPEACONF_ENABLE) != 0) {
2101 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2103 /* wait for cpu pipe off, pipe state */
2104 if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50, 1))
2105 DRM_ERROR("failed to turn off cpu pipe\n");
2106 } else
2107 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2109 udelay(100);
2111 /* Disable PF */
2112 temp = I915_READ(pf_ctl_reg);
2113 if ((temp & PF_ENABLE) != 0) {
2114 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2115 I915_READ(pf_ctl_reg);
2117 I915_WRITE(pf_win_size, 0);
2118 POSTING_READ(pf_win_size);
2121 /* disable CPU FDI tx and PCH FDI rx */
2122 temp = I915_READ(fdi_tx_reg);
2123 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2124 I915_READ(fdi_tx_reg);
2126 temp = I915_READ(fdi_rx_reg);
2127 /* BPC in FDI rx is consistent with that in pipeconf */
2128 temp &= ~(0x07 << 16);
2129 temp |= (pipe_bpc << 11);
2130 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2131 I915_READ(fdi_rx_reg);
2133 udelay(100);
2135 /* still set train pattern 1 */
2136 temp = I915_READ(fdi_tx_reg);
2137 temp &= ~FDI_LINK_TRAIN_NONE;
2138 temp |= FDI_LINK_TRAIN_PATTERN_1;
2139 I915_WRITE(fdi_tx_reg, temp);
2140 POSTING_READ(fdi_tx_reg);
2142 temp = I915_READ(fdi_rx_reg);
2143 if (HAS_PCH_CPT(dev)) {
2144 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2145 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2146 } else {
2147 temp &= ~FDI_LINK_TRAIN_NONE;
2148 temp |= FDI_LINK_TRAIN_PATTERN_1;
2150 I915_WRITE(fdi_rx_reg, temp);
2151 POSTING_READ(fdi_rx_reg);
2153 udelay(100);
2155 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2156 temp = I915_READ(PCH_LVDS);
2157 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2158 I915_READ(PCH_LVDS);
2159 udelay(100);
2162 /* disable PCH transcoder */
2163 temp = I915_READ(transconf_reg);
2164 if ((temp & TRANS_ENABLE) != 0) {
2165 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2167 /* wait for PCH transcoder off, transcoder state */
2168 if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50, 1))
2169 DRM_ERROR("failed to disable transcoder\n");
2172 temp = I915_READ(transconf_reg);
2173 /* BPC in transcoder is consistent with that in pipeconf */
2174 temp &= ~PIPE_BPC_MASK;
2175 temp |= pipe_bpc;
2176 I915_WRITE(transconf_reg, temp);
2177 I915_READ(transconf_reg);
2178 udelay(100);
2180 if (HAS_PCH_CPT(dev)) {
2181 /* disable TRANS_DP_CTL */
2182 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2183 int reg;
2185 reg = I915_READ(trans_dp_ctl);
2186 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2187 I915_WRITE(trans_dp_ctl, reg);
2188 POSTING_READ(trans_dp_ctl);
2190 /* disable DPLL_SEL */
2191 temp = I915_READ(PCH_DPLL_SEL);
2192 if (trans_dpll_sel == 0)
2193 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2194 else
2195 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2196 I915_WRITE(PCH_DPLL_SEL, temp);
2197 I915_READ(PCH_DPLL_SEL);
2201 /* disable PCH DPLL */
2202 temp = I915_READ(pch_dpll_reg);
2203 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2204 I915_READ(pch_dpll_reg);
2206 /* Switch from PCDclk to Rawclk */
2207 temp = I915_READ(fdi_rx_reg);
2208 temp &= ~FDI_SEL_PCDCLK;
2209 I915_WRITE(fdi_rx_reg, temp);
2210 I915_READ(fdi_rx_reg);
2212 /* Disable CPU FDI TX PLL */
2213 temp = I915_READ(fdi_tx_reg);
2214 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2215 I915_READ(fdi_tx_reg);
2216 udelay(100);
2218 temp = I915_READ(fdi_rx_reg);
2219 temp &= ~FDI_RX_PLL_ENABLE;
2220 I915_WRITE(fdi_rx_reg, temp);
2221 I915_READ(fdi_rx_reg);
2223 /* Wait for the clocks to turn off. */
2224 udelay(100);
2225 break;
2229 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2231 struct intel_overlay *overlay;
2232 int ret;
2234 if (!enable && intel_crtc->overlay) {
2235 overlay = intel_crtc->overlay;
2236 mutex_lock(&overlay->dev->struct_mutex);
2237 for (;;) {
2238 ret = intel_overlay_switch_off(overlay);
2239 if (ret == 0)
2240 break;
2242 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2243 if (ret != 0) {
2244 /* overlay doesn't react anymore. Usually
2245 * results in a black screen and an unkillable
2246 * X server. */
2247 BUG();
2248 overlay->hw_wedged = HW_WEDGED;
2249 break;
2252 mutex_unlock(&overlay->dev->struct_mutex);
2254 /* Let userspace switch the overlay on again. In most cases userspace
2255 * has to recompute where to put it anyway. */
2257 return;
2260 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2262 struct drm_device *dev = crtc->dev;
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265 int pipe = intel_crtc->pipe;
2266 int plane = intel_crtc->plane;
2267 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2268 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2269 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2270 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2271 u32 temp;
2273 /* XXX: When our outputs are all unaware of DPMS modes other than off
2274 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2276 switch (mode) {
2277 case DRM_MODE_DPMS_ON:
2278 case DRM_MODE_DPMS_STANDBY:
2279 case DRM_MODE_DPMS_SUSPEND:
2280 /* Enable the DPLL */
2281 temp = I915_READ(dpll_reg);
2282 if ((temp & DPLL_VCO_ENABLE) == 0) {
2283 I915_WRITE(dpll_reg, temp);
2284 I915_READ(dpll_reg);
2285 /* Wait for the clocks to stabilize. */
2286 udelay(150);
2287 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2288 I915_READ(dpll_reg);
2289 /* Wait for the clocks to stabilize. */
2290 udelay(150);
2291 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2292 I915_READ(dpll_reg);
2293 /* Wait for the clocks to stabilize. */
2294 udelay(150);
2297 /* Enable the pipe */
2298 temp = I915_READ(pipeconf_reg);
2299 if ((temp & PIPEACONF_ENABLE) == 0)
2300 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2302 /* Enable the plane */
2303 temp = I915_READ(dspcntr_reg);
2304 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2305 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2306 /* Flush the plane changes */
2307 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2310 intel_crtc_load_lut(crtc);
2312 if ((IS_I965G(dev) || plane == 0))
2313 intel_update_fbc(crtc, &crtc->mode);
2315 /* Give the overlay scaler a chance to enable if it's on this pipe */
2316 intel_crtc_dpms_overlay(intel_crtc, true);
2317 break;
2318 case DRM_MODE_DPMS_OFF:
2319 /* Give the overlay scaler a chance to disable if it's on this pipe */
2320 intel_crtc_dpms_overlay(intel_crtc, false);
2321 drm_vblank_off(dev, pipe);
2323 if (dev_priv->cfb_plane == plane &&
2324 dev_priv->display.disable_fbc)
2325 dev_priv->display.disable_fbc(dev);
2327 /* Disable display plane */
2328 temp = I915_READ(dspcntr_reg);
2329 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2330 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2331 /* Flush the plane changes */
2332 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2333 I915_READ(dspbase_reg);
2336 /* Wait for vblank for the disable to take effect */
2337 intel_wait_for_vblank_off(dev, pipe);
2339 /* Don't disable pipe A or pipe A PLLs if needed */
2340 if (pipeconf_reg == PIPEACONF &&
2341 (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2342 goto skip_pipe_off;
2344 /* Next, disable display pipes */
2345 temp = I915_READ(pipeconf_reg);
2346 if ((temp & PIPEACONF_ENABLE) != 0) {
2347 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2348 I915_READ(pipeconf_reg);
2351 /* Wait for vblank for the disable to take effect. */
2352 intel_wait_for_vblank_off(dev, pipe);
2354 temp = I915_READ(dpll_reg);
2355 if ((temp & DPLL_VCO_ENABLE) != 0) {
2356 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2357 I915_READ(dpll_reg);
2359 skip_pipe_off:
2360 /* Wait for the clocks to turn off. */
2361 udelay(150);
2362 break;
2367 * Sets the power management mode of the pipe and plane.
2369 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2371 struct drm_device *dev = crtc->dev;
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 struct drm_i915_master_private *master_priv;
2374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2375 int pipe = intel_crtc->pipe;
2376 bool enabled;
2378 intel_crtc->dpms_mode = mode;
2379 intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
2381 /* When switching on the display, ensure that SR is disabled
2382 * with multiple pipes prior to enabling to new pipe.
2384 * When switching off the display, make sure the cursor is
2385 * properly hidden prior to disabling the pipe.
2387 if (mode == DRM_MODE_DPMS_ON)
2388 intel_update_watermarks(dev);
2389 else
2390 intel_crtc_update_cursor(crtc);
2392 dev_priv->display.dpms(crtc, mode);
2394 if (mode == DRM_MODE_DPMS_ON)
2395 intel_crtc_update_cursor(crtc);
2396 else
2397 intel_update_watermarks(dev);
2399 if (!dev->primary->master)
2400 return;
2402 master_priv = dev->primary->master->driver_priv;
2403 if (!master_priv->sarea_priv)
2404 return;
2406 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2408 switch (pipe) {
2409 case 0:
2410 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2411 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2412 break;
2413 case 1:
2414 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2415 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2416 break;
2417 default:
2418 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2419 break;
2423 static void intel_crtc_prepare (struct drm_crtc *crtc)
2425 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2426 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2429 static void intel_crtc_commit (struct drm_crtc *crtc)
2431 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2432 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2435 void intel_encoder_prepare (struct drm_encoder *encoder)
2437 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2438 /* lvds has its own version of prepare see intel_lvds_prepare */
2439 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2442 void intel_encoder_commit (struct drm_encoder *encoder)
2444 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2445 /* lvds has its own version of commit see intel_lvds_commit */
2446 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2449 void intel_encoder_destroy(struct drm_encoder *encoder)
2451 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
2453 if (intel_encoder->ddc_bus)
2454 intel_i2c_destroy(intel_encoder->ddc_bus);
2456 if (intel_encoder->i2c_bus)
2457 intel_i2c_destroy(intel_encoder->i2c_bus);
2459 drm_encoder_cleanup(encoder);
2460 kfree(intel_encoder);
2463 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2464 struct drm_display_mode *mode,
2465 struct drm_display_mode *adjusted_mode)
2467 struct drm_device *dev = crtc->dev;
2468 if (HAS_PCH_SPLIT(dev)) {
2469 /* FDI link clock is fixed at 2.7G */
2470 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2471 return false;
2473 return true;
2476 static int i945_get_display_clock_speed(struct drm_device *dev)
2478 return 400000;
2481 static int i915_get_display_clock_speed(struct drm_device *dev)
2483 return 333000;
2486 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2488 return 200000;
2491 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2493 u16 gcfgc = 0;
2495 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2497 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2498 return 133000;
2499 else {
2500 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2501 case GC_DISPLAY_CLOCK_333_MHZ:
2502 return 333000;
2503 default:
2504 case GC_DISPLAY_CLOCK_190_200_MHZ:
2505 return 190000;
2510 static int i865_get_display_clock_speed(struct drm_device *dev)
2512 return 266000;
2515 static int i855_get_display_clock_speed(struct drm_device *dev)
2517 u16 hpllcc = 0;
2518 /* Assume that the hardware is in the high speed state. This
2519 * should be the default.
2521 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2522 case GC_CLOCK_133_200:
2523 case GC_CLOCK_100_200:
2524 return 200000;
2525 case GC_CLOCK_166_250:
2526 return 250000;
2527 case GC_CLOCK_100_133:
2528 return 133000;
2531 /* Shouldn't happen */
2532 return 0;
2535 static int i830_get_display_clock_speed(struct drm_device *dev)
2537 return 133000;
2541 * Return the pipe currently connected to the panel fitter,
2542 * or -1 if the panel fitter is not present or not in use
2544 int intel_panel_fitter_pipe (struct drm_device *dev)
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 u32 pfit_control;
2549 /* i830 doesn't have a panel fitter */
2550 if (IS_I830(dev))
2551 return -1;
2553 pfit_control = I915_READ(PFIT_CONTROL);
2555 /* See if the panel fitter is in use */
2556 if ((pfit_control & PFIT_ENABLE) == 0)
2557 return -1;
2559 /* 965 can place panel fitter on either pipe */
2560 if (IS_I965G(dev))
2561 return (pfit_control >> 29) & 0x3;
2563 /* older chips can only use pipe 1 */
2564 return 1;
2567 struct fdi_m_n {
2568 u32 tu;
2569 u32 gmch_m;
2570 u32 gmch_n;
2571 u32 link_m;
2572 u32 link_n;
2575 static void
2576 fdi_reduce_ratio(u32 *num, u32 *den)
2578 while (*num > 0xffffff || *den > 0xffffff) {
2579 *num >>= 1;
2580 *den >>= 1;
2584 #define DATA_N 0x800000
2585 #define LINK_N 0x80000
2587 static void
2588 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2589 int link_clock, struct fdi_m_n *m_n)
2591 u64 temp;
2593 m_n->tu = 64; /* default size */
2595 temp = (u64) DATA_N * pixel_clock;
2596 temp = div_u64(temp, link_clock);
2597 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2598 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2599 m_n->gmch_n = DATA_N;
2600 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2602 temp = (u64) LINK_N * pixel_clock;
2603 m_n->link_m = div_u64(temp, link_clock);
2604 m_n->link_n = LINK_N;
2605 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2609 struct intel_watermark_params {
2610 unsigned long fifo_size;
2611 unsigned long max_wm;
2612 unsigned long default_wm;
2613 unsigned long guard_size;
2614 unsigned long cacheline_size;
2617 /* Pineview has different values for various configs */
2618 static struct intel_watermark_params pineview_display_wm = {
2619 PINEVIEW_DISPLAY_FIFO,
2620 PINEVIEW_MAX_WM,
2621 PINEVIEW_DFT_WM,
2622 PINEVIEW_GUARD_WM,
2623 PINEVIEW_FIFO_LINE_SIZE
2625 static struct intel_watermark_params pineview_display_hplloff_wm = {
2626 PINEVIEW_DISPLAY_FIFO,
2627 PINEVIEW_MAX_WM,
2628 PINEVIEW_DFT_HPLLOFF_WM,
2629 PINEVIEW_GUARD_WM,
2630 PINEVIEW_FIFO_LINE_SIZE
2632 static struct intel_watermark_params pineview_cursor_wm = {
2633 PINEVIEW_CURSOR_FIFO,
2634 PINEVIEW_CURSOR_MAX_WM,
2635 PINEVIEW_CURSOR_DFT_WM,
2636 PINEVIEW_CURSOR_GUARD_WM,
2637 PINEVIEW_FIFO_LINE_SIZE,
2639 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2640 PINEVIEW_CURSOR_FIFO,
2641 PINEVIEW_CURSOR_MAX_WM,
2642 PINEVIEW_CURSOR_DFT_WM,
2643 PINEVIEW_CURSOR_GUARD_WM,
2644 PINEVIEW_FIFO_LINE_SIZE
2646 static struct intel_watermark_params g4x_wm_info = {
2647 G4X_FIFO_SIZE,
2648 G4X_MAX_WM,
2649 G4X_MAX_WM,
2651 G4X_FIFO_LINE_SIZE,
2653 static struct intel_watermark_params g4x_cursor_wm_info = {
2654 I965_CURSOR_FIFO,
2655 I965_CURSOR_MAX_WM,
2656 I965_CURSOR_DFT_WM,
2658 G4X_FIFO_LINE_SIZE,
2660 static struct intel_watermark_params i965_cursor_wm_info = {
2661 I965_CURSOR_FIFO,
2662 I965_CURSOR_MAX_WM,
2663 I965_CURSOR_DFT_WM,
2665 I915_FIFO_LINE_SIZE,
2667 static struct intel_watermark_params i945_wm_info = {
2668 I945_FIFO_SIZE,
2669 I915_MAX_WM,
2672 I915_FIFO_LINE_SIZE
2674 static struct intel_watermark_params i915_wm_info = {
2675 I915_FIFO_SIZE,
2676 I915_MAX_WM,
2679 I915_FIFO_LINE_SIZE
2681 static struct intel_watermark_params i855_wm_info = {
2682 I855GM_FIFO_SIZE,
2683 I915_MAX_WM,
2686 I830_FIFO_LINE_SIZE
2688 static struct intel_watermark_params i830_wm_info = {
2689 I830_FIFO_SIZE,
2690 I915_MAX_WM,
2693 I830_FIFO_LINE_SIZE
2696 static struct intel_watermark_params ironlake_display_wm_info = {
2697 ILK_DISPLAY_FIFO,
2698 ILK_DISPLAY_MAXWM,
2699 ILK_DISPLAY_DFTWM,
2701 ILK_FIFO_LINE_SIZE
2704 static struct intel_watermark_params ironlake_cursor_wm_info = {
2705 ILK_CURSOR_FIFO,
2706 ILK_CURSOR_MAXWM,
2707 ILK_CURSOR_DFTWM,
2709 ILK_FIFO_LINE_SIZE
2712 static struct intel_watermark_params ironlake_display_srwm_info = {
2713 ILK_DISPLAY_SR_FIFO,
2714 ILK_DISPLAY_MAX_SRWM,
2715 ILK_DISPLAY_DFT_SRWM,
2717 ILK_FIFO_LINE_SIZE
2720 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2721 ILK_CURSOR_SR_FIFO,
2722 ILK_CURSOR_MAX_SRWM,
2723 ILK_CURSOR_DFT_SRWM,
2725 ILK_FIFO_LINE_SIZE
2729 * intel_calculate_wm - calculate watermark level
2730 * @clock_in_khz: pixel clock
2731 * @wm: chip FIFO params
2732 * @pixel_size: display pixel size
2733 * @latency_ns: memory latency for the platform
2735 * Calculate the watermark level (the level at which the display plane will
2736 * start fetching from memory again). Each chip has a different display
2737 * FIFO size and allocation, so the caller needs to figure that out and pass
2738 * in the correct intel_watermark_params structure.
2740 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2741 * on the pixel size. When it reaches the watermark level, it'll start
2742 * fetching FIFO line sized based chunks from memory until the FIFO fills
2743 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2744 * will occur, and a display engine hang could result.
2746 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2747 struct intel_watermark_params *wm,
2748 int pixel_size,
2749 unsigned long latency_ns)
2751 long entries_required, wm_size;
2754 * Note: we need to make sure we don't overflow for various clock &
2755 * latency values.
2756 * clocks go from a few thousand to several hundred thousand.
2757 * latency is usually a few thousand
2759 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2760 1000;
2761 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2763 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2765 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2767 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2769 /* Don't promote wm_size to unsigned... */
2770 if (wm_size > (long)wm->max_wm)
2771 wm_size = wm->max_wm;
2772 if (wm_size <= 0) {
2773 wm_size = wm->default_wm;
2774 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2775 " entries required = %ld, available = %lu.\n",
2776 entries_required + wm->guard_size,
2777 wm->fifo_size);
2780 return wm_size;
2783 struct cxsr_latency {
2784 int is_desktop;
2785 int is_ddr3;
2786 unsigned long fsb_freq;
2787 unsigned long mem_freq;
2788 unsigned long display_sr;
2789 unsigned long display_hpll_disable;
2790 unsigned long cursor_sr;
2791 unsigned long cursor_hpll_disable;
2794 static const struct cxsr_latency cxsr_latency_table[] = {
2795 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2796 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2797 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2798 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2799 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2801 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2802 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2803 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2804 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2805 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2807 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2808 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2809 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2810 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2811 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2813 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2814 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2815 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2816 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2817 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2819 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2820 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2821 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2822 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2823 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2825 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2826 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2827 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2828 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2829 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2832 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2833 int is_ddr3,
2834 int fsb,
2835 int mem)
2837 const struct cxsr_latency *latency;
2838 int i;
2840 if (fsb == 0 || mem == 0)
2841 return NULL;
2843 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2844 latency = &cxsr_latency_table[i];
2845 if (is_desktop == latency->is_desktop &&
2846 is_ddr3 == latency->is_ddr3 &&
2847 fsb == latency->fsb_freq && mem == latency->mem_freq)
2848 return latency;
2851 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2853 return NULL;
2856 static void pineview_disable_cxsr(struct drm_device *dev)
2858 struct drm_i915_private *dev_priv = dev->dev_private;
2860 /* deactivate cxsr */
2861 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2865 * Latency for FIFO fetches is dependent on several factors:
2866 * - memory configuration (speed, channels)
2867 * - chipset
2868 * - current MCH state
2869 * It can be fairly high in some situations, so here we assume a fairly
2870 * pessimal value. It's a tradeoff between extra memory fetches (if we
2871 * set this value too high, the FIFO will fetch frequently to stay full)
2872 * and power consumption (set it too low to save power and we might see
2873 * FIFO underruns and display "flicker").
2875 * A value of 5us seems to be a good balance; safe for very low end
2876 * platforms but not overly aggressive on lower latency configs.
2878 static const int latency_ns = 5000;
2880 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 uint32_t dsparb = I915_READ(DSPARB);
2884 int size;
2886 size = dsparb & 0x7f;
2887 if (plane)
2888 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2890 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2891 plane ? "B" : "A", size);
2893 return size;
2896 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 uint32_t dsparb = I915_READ(DSPARB);
2900 int size;
2902 size = dsparb & 0x1ff;
2903 if (plane)
2904 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2905 size >>= 1; /* Convert to cachelines */
2907 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2908 plane ? "B" : "A", size);
2910 return size;
2913 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2915 struct drm_i915_private *dev_priv = dev->dev_private;
2916 uint32_t dsparb = I915_READ(DSPARB);
2917 int size;
2919 size = dsparb & 0x7f;
2920 size >>= 2; /* Convert to cachelines */
2922 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2923 plane ? "B" : "A",
2924 size);
2926 return size;
2929 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 uint32_t dsparb = I915_READ(DSPARB);
2933 int size;
2935 size = dsparb & 0x7f;
2936 size >>= 1; /* Convert to cachelines */
2938 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2939 plane ? "B" : "A", size);
2941 return size;
2944 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
2945 int planeb_clock, int sr_hdisplay, int unused,
2946 int pixel_size)
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 const struct cxsr_latency *latency;
2950 u32 reg;
2951 unsigned long wm;
2952 int sr_clock;
2954 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2955 dev_priv->fsb_freq, dev_priv->mem_freq);
2956 if (!latency) {
2957 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2958 pineview_disable_cxsr(dev);
2959 return;
2962 if (!planea_clock || !planeb_clock) {
2963 sr_clock = planea_clock ? planea_clock : planeb_clock;
2965 /* Display SR */
2966 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2967 pixel_size, latency->display_sr);
2968 reg = I915_READ(DSPFW1);
2969 reg &= ~DSPFW_SR_MASK;
2970 reg |= wm << DSPFW_SR_SHIFT;
2971 I915_WRITE(DSPFW1, reg);
2972 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2974 /* cursor SR */
2975 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2976 pixel_size, latency->cursor_sr);
2977 reg = I915_READ(DSPFW3);
2978 reg &= ~DSPFW_CURSOR_SR_MASK;
2979 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2980 I915_WRITE(DSPFW3, reg);
2982 /* Display HPLL off SR */
2983 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2984 pixel_size, latency->display_hpll_disable);
2985 reg = I915_READ(DSPFW3);
2986 reg &= ~DSPFW_HPLL_SR_MASK;
2987 reg |= wm & DSPFW_HPLL_SR_MASK;
2988 I915_WRITE(DSPFW3, reg);
2990 /* cursor HPLL off SR */
2991 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2992 pixel_size, latency->cursor_hpll_disable);
2993 reg = I915_READ(DSPFW3);
2994 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2995 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2996 I915_WRITE(DSPFW3, reg);
2997 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2999 /* activate cxsr */
3000 I915_WRITE(DSPFW3,
3001 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3002 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3003 } else {
3004 pineview_disable_cxsr(dev);
3005 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3009 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3010 int planeb_clock, int sr_hdisplay, int sr_htotal,
3011 int pixel_size)
3013 struct drm_i915_private *dev_priv = dev->dev_private;
3014 int total_size, cacheline_size;
3015 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3016 struct intel_watermark_params planea_params, planeb_params;
3017 unsigned long line_time_us;
3018 int sr_clock, sr_entries = 0, entries_required;
3020 /* Create copies of the base settings for each pipe */
3021 planea_params = planeb_params = g4x_wm_info;
3023 /* Grab a couple of global values before we overwrite them */
3024 total_size = planea_params.fifo_size;
3025 cacheline_size = planea_params.cacheline_size;
3028 * Note: we need to make sure we don't overflow for various clock &
3029 * latency values.
3030 * clocks go from a few thousand to several hundred thousand.
3031 * latency is usually a few thousand
3033 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3034 1000;
3035 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3036 planea_wm = entries_required + planea_params.guard_size;
3038 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3039 1000;
3040 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3041 planeb_wm = entries_required + planeb_params.guard_size;
3043 cursora_wm = cursorb_wm = 16;
3044 cursor_sr = 32;
3046 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3048 /* Calc sr entries for one plane configs */
3049 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3050 /* self-refresh has much higher latency */
3051 static const int sr_latency_ns = 12000;
3053 sr_clock = planea_clock ? planea_clock : planeb_clock;
3054 line_time_us = ((sr_htotal * 1000) / sr_clock);
3056 /* Use ns/us then divide to preserve precision */
3057 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3058 pixel_size * sr_hdisplay;
3059 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3061 entries_required = (((sr_latency_ns / line_time_us) +
3062 1000) / 1000) * pixel_size * 64;
3063 entries_required = DIV_ROUND_UP(entries_required,
3064 g4x_cursor_wm_info.cacheline_size);
3065 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3067 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3068 cursor_sr = g4x_cursor_wm_info.max_wm;
3069 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3070 "cursor %d\n", sr_entries, cursor_sr);
3072 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3073 } else {
3074 /* Turn off self refresh if both pipes are enabled */
3075 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3076 & ~FW_BLC_SELF_EN);
3079 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3080 planea_wm, planeb_wm, sr_entries);
3082 planea_wm &= 0x3f;
3083 planeb_wm &= 0x3f;
3085 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3086 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3087 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3088 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3089 (cursora_wm << DSPFW_CURSORA_SHIFT));
3090 /* HPLL off in SR has some issues on G4x... disable it */
3091 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3092 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3095 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3096 int planeb_clock, int sr_hdisplay, int sr_htotal,
3097 int pixel_size)
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 unsigned long line_time_us;
3101 int sr_clock, sr_entries, srwm = 1;
3102 int cursor_sr = 16;
3104 /* Calc sr entries for one plane configs */
3105 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3106 /* self-refresh has much higher latency */
3107 static const int sr_latency_ns = 12000;
3109 sr_clock = planea_clock ? planea_clock : planeb_clock;
3110 line_time_us = ((sr_htotal * 1000) / sr_clock);
3112 /* Use ns/us then divide to preserve precision */
3113 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3114 pixel_size * sr_hdisplay;
3115 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3116 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3117 srwm = I965_FIFO_SIZE - sr_entries;
3118 if (srwm < 0)
3119 srwm = 1;
3120 srwm &= 0x1ff;
3122 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3123 pixel_size * 64;
3124 sr_entries = DIV_ROUND_UP(sr_entries,
3125 i965_cursor_wm_info.cacheline_size);
3126 cursor_sr = i965_cursor_wm_info.fifo_size -
3127 (sr_entries + i965_cursor_wm_info.guard_size);
3129 if (cursor_sr > i965_cursor_wm_info.max_wm)
3130 cursor_sr = i965_cursor_wm_info.max_wm;
3132 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3133 "cursor %d\n", srwm, cursor_sr);
3135 if (IS_I965GM(dev))
3136 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3137 } else {
3138 /* Turn off self refresh if both pipes are enabled */
3139 if (IS_I965GM(dev))
3140 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3141 & ~FW_BLC_SELF_EN);
3144 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3145 srwm);
3147 /* 965 has limitations... */
3148 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3149 (8 << 0));
3150 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3151 /* update cursor SR watermark */
3152 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3155 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3156 int planeb_clock, int sr_hdisplay, int sr_htotal,
3157 int pixel_size)
3159 struct drm_i915_private *dev_priv = dev->dev_private;
3160 uint32_t fwater_lo;
3161 uint32_t fwater_hi;
3162 int total_size, cacheline_size, cwm, srwm = 1;
3163 int planea_wm, planeb_wm;
3164 struct intel_watermark_params planea_params, planeb_params;
3165 unsigned long line_time_us;
3166 int sr_clock, sr_entries = 0;
3168 /* Create copies of the base settings for each pipe */
3169 if (IS_I965GM(dev) || IS_I945GM(dev))
3170 planea_params = planeb_params = i945_wm_info;
3171 else if (IS_I9XX(dev))
3172 planea_params = planeb_params = i915_wm_info;
3173 else
3174 planea_params = planeb_params = i855_wm_info;
3176 /* Grab a couple of global values before we overwrite them */
3177 total_size = planea_params.fifo_size;
3178 cacheline_size = planea_params.cacheline_size;
3180 /* Update per-plane FIFO sizes */
3181 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3182 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3184 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3185 pixel_size, latency_ns);
3186 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3187 pixel_size, latency_ns);
3188 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3191 * Overlay gets an aggressive default since video jitter is bad.
3193 cwm = 2;
3195 /* Calc sr entries for one plane configs */
3196 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3197 (!planea_clock || !planeb_clock)) {
3198 /* self-refresh has much higher latency */
3199 static const int sr_latency_ns = 6000;
3201 sr_clock = planea_clock ? planea_clock : planeb_clock;
3202 line_time_us = ((sr_htotal * 1000) / sr_clock);
3204 /* Use ns/us then divide to preserve precision */
3205 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3206 pixel_size * sr_hdisplay;
3207 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3208 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3209 srwm = total_size - sr_entries;
3210 if (srwm < 0)
3211 srwm = 1;
3213 if (IS_I945G(dev) || IS_I945GM(dev))
3214 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3215 else if (IS_I915GM(dev)) {
3216 /* 915M has a smaller SRWM field */
3217 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3218 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3220 } else {
3221 /* Turn off self refresh if both pipes are enabled */
3222 if (IS_I945G(dev) || IS_I945GM(dev)) {
3223 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3224 & ~FW_BLC_SELF_EN);
3225 } else if (IS_I915GM(dev)) {
3226 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3230 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3231 planea_wm, planeb_wm, cwm, srwm);
3233 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3234 fwater_hi = (cwm & 0x1f);
3236 /* Set request length to 8 cachelines per fetch */
3237 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3238 fwater_hi = fwater_hi | (1 << 8);
3240 I915_WRITE(FW_BLC, fwater_lo);
3241 I915_WRITE(FW_BLC2, fwater_hi);
3244 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3245 int unused2, int unused3, int pixel_size)
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3249 int planea_wm;
3251 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3253 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3254 pixel_size, latency_ns);
3255 fwater_lo |= (3<<8) | planea_wm;
3257 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3259 I915_WRITE(FW_BLC, fwater_lo);
3262 #define ILK_LP0_PLANE_LATENCY 700
3263 #define ILK_LP0_CURSOR_LATENCY 1300
3265 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3266 int planeb_clock, int sr_hdisplay, int sr_htotal,
3267 int pixel_size)
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3271 int sr_wm, cursor_wm;
3272 unsigned long line_time_us;
3273 int sr_clock, entries_required;
3274 u32 reg_value;
3275 int line_count;
3276 int planea_htotal = 0, planeb_htotal = 0;
3277 struct drm_crtc *crtc;
3279 /* Need htotal for all active display plane */
3280 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3283 if (intel_crtc->plane == 0)
3284 planea_htotal = crtc->mode.htotal;
3285 else
3286 planeb_htotal = crtc->mode.htotal;
3290 /* Calculate and update the watermark for plane A */
3291 if (planea_clock) {
3292 entries_required = ((planea_clock / 1000) * pixel_size *
3293 ILK_LP0_PLANE_LATENCY) / 1000;
3294 entries_required = DIV_ROUND_UP(entries_required,
3295 ironlake_display_wm_info.cacheline_size);
3296 planea_wm = entries_required +
3297 ironlake_display_wm_info.guard_size;
3299 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3300 planea_wm = ironlake_display_wm_info.max_wm;
3302 /* Use the large buffer method to calculate cursor watermark */
3303 line_time_us = (planea_htotal * 1000) / planea_clock;
3305 /* Use ns/us then divide to preserve precision */
3306 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3308 /* calculate the cursor watermark for cursor A */
3309 entries_required = line_count * 64 * pixel_size;
3310 entries_required = DIV_ROUND_UP(entries_required,
3311 ironlake_cursor_wm_info.cacheline_size);
3312 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3313 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3314 cursora_wm = ironlake_cursor_wm_info.max_wm;
3316 reg_value = I915_READ(WM0_PIPEA_ILK);
3317 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3318 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3319 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3320 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3321 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3322 "cursor: %d\n", planea_wm, cursora_wm);
3324 /* Calculate and update the watermark for plane B */
3325 if (planeb_clock) {
3326 entries_required = ((planeb_clock / 1000) * pixel_size *
3327 ILK_LP0_PLANE_LATENCY) / 1000;
3328 entries_required = DIV_ROUND_UP(entries_required,
3329 ironlake_display_wm_info.cacheline_size);
3330 planeb_wm = entries_required +
3331 ironlake_display_wm_info.guard_size;
3333 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3334 planeb_wm = ironlake_display_wm_info.max_wm;
3336 /* Use the large buffer method to calculate cursor watermark */
3337 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3339 /* Use ns/us then divide to preserve precision */
3340 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3342 /* calculate the cursor watermark for cursor B */
3343 entries_required = line_count * 64 * pixel_size;
3344 entries_required = DIV_ROUND_UP(entries_required,
3345 ironlake_cursor_wm_info.cacheline_size);
3346 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3347 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3348 cursorb_wm = ironlake_cursor_wm_info.max_wm;
3350 reg_value = I915_READ(WM0_PIPEB_ILK);
3351 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3352 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3353 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3354 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3355 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3356 "cursor: %d\n", planeb_wm, cursorb_wm);
3360 * Calculate and update the self-refresh watermark only when one
3361 * display plane is used.
3363 if (!planea_clock || !planeb_clock) {
3365 /* Read the self-refresh latency. The unit is 0.5us */
3366 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3368 sr_clock = planea_clock ? planea_clock : planeb_clock;
3369 line_time_us = ((sr_htotal * 1000) / sr_clock);
3371 /* Use ns/us then divide to preserve precision */
3372 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3373 / 1000;
3375 /* calculate the self-refresh watermark for display plane */
3376 entries_required = line_count * sr_hdisplay * pixel_size;
3377 entries_required = DIV_ROUND_UP(entries_required,
3378 ironlake_display_srwm_info.cacheline_size);
3379 sr_wm = entries_required +
3380 ironlake_display_srwm_info.guard_size;
3382 /* calculate the self-refresh watermark for display cursor */
3383 entries_required = line_count * pixel_size * 64;
3384 entries_required = DIV_ROUND_UP(entries_required,
3385 ironlake_cursor_srwm_info.cacheline_size);
3386 cursor_wm = entries_required +
3387 ironlake_cursor_srwm_info.guard_size;
3389 /* configure watermark and enable self-refresh */
3390 reg_value = I915_READ(WM1_LP_ILK);
3391 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3392 WM1_LP_CURSOR_MASK);
3393 reg_value |= WM1_LP_SR_EN |
3394 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3395 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3397 I915_WRITE(WM1_LP_ILK, reg_value);
3398 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3399 "cursor %d\n", sr_wm, cursor_wm);
3401 } else {
3402 /* Turn off self refresh if both pipes are enabled */
3403 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3407 * intel_update_watermarks - update FIFO watermark values based on current modes
3409 * Calculate watermark values for the various WM regs based on current mode
3410 * and plane configuration.
3412 * There are several cases to deal with here:
3413 * - normal (i.e. non-self-refresh)
3414 * - self-refresh (SR) mode
3415 * - lines are large relative to FIFO size (buffer can hold up to 2)
3416 * - lines are small relative to FIFO size (buffer can hold more than 2
3417 * lines), so need to account for TLB latency
3419 * The normal calculation is:
3420 * watermark = dotclock * bytes per pixel * latency
3421 * where latency is platform & configuration dependent (we assume pessimal
3422 * values here).
3424 * The SR calculation is:
3425 * watermark = (trunc(latency/line time)+1) * surface width *
3426 * bytes per pixel
3427 * where
3428 * line time = htotal / dotclock
3429 * surface width = hdisplay for normal plane and 64 for cursor
3430 * and latency is assumed to be high, as above.
3432 * The final value programmed to the register should always be rounded up,
3433 * and include an extra 2 entries to account for clock crossings.
3435 * We don't use the sprite, so we can ignore that. And on Crestline we have
3436 * to set the non-SR watermarks to 8.
3438 static void intel_update_watermarks(struct drm_device *dev)
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 struct drm_crtc *crtc;
3442 int sr_hdisplay = 0;
3443 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3444 int enabled = 0, pixel_size = 0;
3445 int sr_htotal = 0;
3447 if (!dev_priv->display.update_wm)
3448 return;
3450 /* Get the clock config from both planes */
3451 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3454 enabled++;
3455 if (intel_crtc->plane == 0) {
3456 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3457 intel_crtc->pipe, crtc->mode.clock);
3458 planea_clock = crtc->mode.clock;
3459 } else {
3460 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3461 intel_crtc->pipe, crtc->mode.clock);
3462 planeb_clock = crtc->mode.clock;
3464 sr_hdisplay = crtc->mode.hdisplay;
3465 sr_clock = crtc->mode.clock;
3466 sr_htotal = crtc->mode.htotal;
3467 if (crtc->fb)
3468 pixel_size = crtc->fb->bits_per_pixel / 8;
3469 else
3470 pixel_size = 4; /* by default */
3474 if (enabled <= 0)
3475 return;
3477 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3478 sr_hdisplay, sr_htotal, pixel_size);
3481 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3482 struct drm_display_mode *mode,
3483 struct drm_display_mode *adjusted_mode,
3484 int x, int y,
3485 struct drm_framebuffer *old_fb)
3487 struct drm_device *dev = crtc->dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3490 int pipe = intel_crtc->pipe;
3491 int plane = intel_crtc->plane;
3492 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3493 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3494 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3495 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3496 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3497 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3498 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3499 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3500 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3501 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3502 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3503 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3504 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3505 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3506 int refclk, num_connectors = 0;
3507 intel_clock_t clock, reduced_clock;
3508 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3509 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3510 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3511 struct intel_encoder *has_edp_encoder = NULL;
3512 struct drm_mode_config *mode_config = &dev->mode_config;
3513 struct drm_encoder *encoder;
3514 const intel_limit_t *limit;
3515 int ret;
3516 struct fdi_m_n m_n = {0};
3517 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3518 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3519 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3520 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3521 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3522 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3523 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3524 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3525 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3526 int lvds_reg = LVDS;
3527 u32 temp;
3528 int sdvo_pixel_multiply;
3529 int target_clock;
3531 drm_vblank_pre_modeset(dev, pipe);
3533 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3534 struct intel_encoder *intel_encoder;
3536 if (encoder->crtc != crtc)
3537 continue;
3539 intel_encoder = enc_to_intel_encoder(encoder);
3540 switch (intel_encoder->type) {
3541 case INTEL_OUTPUT_LVDS:
3542 is_lvds = true;
3543 break;
3544 case INTEL_OUTPUT_SDVO:
3545 case INTEL_OUTPUT_HDMI:
3546 is_sdvo = true;
3547 if (intel_encoder->needs_tv_clock)
3548 is_tv = true;
3549 break;
3550 case INTEL_OUTPUT_DVO:
3551 is_dvo = true;
3552 break;
3553 case INTEL_OUTPUT_TVOUT:
3554 is_tv = true;
3555 break;
3556 case INTEL_OUTPUT_ANALOG:
3557 is_crt = true;
3558 break;
3559 case INTEL_OUTPUT_DISPLAYPORT:
3560 is_dp = true;
3561 break;
3562 case INTEL_OUTPUT_EDP:
3563 has_edp_encoder = intel_encoder;
3564 break;
3567 num_connectors++;
3570 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3571 refclk = dev_priv->lvds_ssc_freq * 1000;
3572 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3573 refclk / 1000);
3574 } else if (IS_I9XX(dev)) {
3575 refclk = 96000;
3576 if (HAS_PCH_SPLIT(dev))
3577 refclk = 120000; /* 120Mhz refclk */
3578 } else {
3579 refclk = 48000;
3584 * Returns a set of divisors for the desired target clock with the given
3585 * refclk, or FALSE. The returned values represent the clock equation:
3586 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3588 limit = intel_limit(crtc);
3589 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3590 if (!ok) {
3591 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3592 drm_vblank_post_modeset(dev, pipe);
3593 return -EINVAL;
3596 /* Ensure that the cursor is valid for the new mode before changing... */
3597 intel_crtc_update_cursor(crtc);
3599 if (is_lvds && dev_priv->lvds_downclock_avail) {
3600 has_reduced_clock = limit->find_pll(limit, crtc,
3601 dev_priv->lvds_downclock,
3602 refclk,
3603 &reduced_clock);
3604 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3606 * If the different P is found, it means that we can't
3607 * switch the display clock by using the FP0/FP1.
3608 * In such case we will disable the LVDS downclock
3609 * feature.
3611 DRM_DEBUG_KMS("Different P is found for "
3612 "LVDS clock/downclock\n");
3613 has_reduced_clock = 0;
3616 /* SDVO TV has fixed PLL values depend on its clock range,
3617 this mirrors vbios setting. */
3618 if (is_sdvo && is_tv) {
3619 if (adjusted_mode->clock >= 100000
3620 && adjusted_mode->clock < 140500) {
3621 clock.p1 = 2;
3622 clock.p2 = 10;
3623 clock.n = 3;
3624 clock.m1 = 16;
3625 clock.m2 = 8;
3626 } else if (adjusted_mode->clock >= 140500
3627 && adjusted_mode->clock <= 200000) {
3628 clock.p1 = 1;
3629 clock.p2 = 10;
3630 clock.n = 6;
3631 clock.m1 = 12;
3632 clock.m2 = 8;
3636 /* FDI link */
3637 if (HAS_PCH_SPLIT(dev)) {
3638 int lane = 0, link_bw, bpp;
3639 /* eDP doesn't require FDI link, so just set DP M/N
3640 according to current link config */
3641 if (has_edp_encoder) {
3642 target_clock = mode->clock;
3643 intel_edp_link_config(has_edp_encoder,
3644 &lane, &link_bw);
3645 } else {
3646 /* DP over FDI requires target mode clock
3647 instead of link clock */
3648 if (is_dp)
3649 target_clock = mode->clock;
3650 else
3651 target_clock = adjusted_mode->clock;
3652 link_bw = 270000;
3655 /* determine panel color depth */
3656 temp = I915_READ(pipeconf_reg);
3657 temp &= ~PIPE_BPC_MASK;
3658 if (is_lvds) {
3659 int lvds_reg = I915_READ(PCH_LVDS);
3660 /* the BPC will be 6 if it is 18-bit LVDS panel */
3661 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3662 temp |= PIPE_8BPC;
3663 else
3664 temp |= PIPE_6BPC;
3665 } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
3666 switch (dev_priv->edp_bpp/3) {
3667 case 8:
3668 temp |= PIPE_8BPC;
3669 break;
3670 case 10:
3671 temp |= PIPE_10BPC;
3672 break;
3673 case 6:
3674 temp |= PIPE_6BPC;
3675 break;
3676 case 12:
3677 temp |= PIPE_12BPC;
3678 break;
3680 } else
3681 temp |= PIPE_8BPC;
3682 I915_WRITE(pipeconf_reg, temp);
3683 I915_READ(pipeconf_reg);
3685 switch (temp & PIPE_BPC_MASK) {
3686 case PIPE_8BPC:
3687 bpp = 24;
3688 break;
3689 case PIPE_10BPC:
3690 bpp = 30;
3691 break;
3692 case PIPE_6BPC:
3693 bpp = 18;
3694 break;
3695 case PIPE_12BPC:
3696 bpp = 36;
3697 break;
3698 default:
3699 DRM_ERROR("unknown pipe bpc value\n");
3700 bpp = 24;
3703 if (!lane) {
3705 * Account for spread spectrum to avoid
3706 * oversubscribing the link. Max center spread
3707 * is 2.5%; use 5% for safety's sake.
3709 u32 bps = target_clock * bpp * 21 / 20;
3710 lane = bps / (link_bw * 8) + 1;
3713 intel_crtc->fdi_lanes = lane;
3715 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3718 /* Ironlake: try to setup display ref clock before DPLL
3719 * enabling. This is only under driver's control after
3720 * PCH B stepping, previous chipset stepping should be
3721 * ignoring this setting.
3723 if (HAS_PCH_SPLIT(dev)) {
3724 temp = I915_READ(PCH_DREF_CONTROL);
3725 /* Always enable nonspread source */
3726 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3727 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3728 I915_WRITE(PCH_DREF_CONTROL, temp);
3729 POSTING_READ(PCH_DREF_CONTROL);
3731 temp &= ~DREF_SSC_SOURCE_MASK;
3732 temp |= DREF_SSC_SOURCE_ENABLE;
3733 I915_WRITE(PCH_DREF_CONTROL, temp);
3734 POSTING_READ(PCH_DREF_CONTROL);
3736 udelay(200);
3738 if (has_edp_encoder) {
3739 if (dev_priv->lvds_use_ssc) {
3740 temp |= DREF_SSC1_ENABLE;
3741 I915_WRITE(PCH_DREF_CONTROL, temp);
3742 POSTING_READ(PCH_DREF_CONTROL);
3744 udelay(200);
3746 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3747 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3748 I915_WRITE(PCH_DREF_CONTROL, temp);
3749 POSTING_READ(PCH_DREF_CONTROL);
3750 } else {
3751 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3752 I915_WRITE(PCH_DREF_CONTROL, temp);
3753 POSTING_READ(PCH_DREF_CONTROL);
3758 if (IS_PINEVIEW(dev)) {
3759 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3760 if (has_reduced_clock)
3761 fp2 = (1 << reduced_clock.n) << 16 |
3762 reduced_clock.m1 << 8 | reduced_clock.m2;
3763 } else {
3764 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3765 if (has_reduced_clock)
3766 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3767 reduced_clock.m2;
3770 if (!HAS_PCH_SPLIT(dev))
3771 dpll = DPLL_VGA_MODE_DIS;
3773 if (IS_I9XX(dev)) {
3774 if (is_lvds)
3775 dpll |= DPLLB_MODE_LVDS;
3776 else
3777 dpll |= DPLLB_MODE_DAC_SERIAL;
3778 if (is_sdvo) {
3779 dpll |= DPLL_DVO_HIGH_SPEED;
3780 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3781 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3782 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3783 else if (HAS_PCH_SPLIT(dev))
3784 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3786 if (is_dp)
3787 dpll |= DPLL_DVO_HIGH_SPEED;
3789 /* compute bitmask from p1 value */
3790 if (IS_PINEVIEW(dev))
3791 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3792 else {
3793 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3794 /* also FPA1 */
3795 if (HAS_PCH_SPLIT(dev))
3796 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3797 if (IS_G4X(dev) && has_reduced_clock)
3798 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3800 switch (clock.p2) {
3801 case 5:
3802 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3803 break;
3804 case 7:
3805 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3806 break;
3807 case 10:
3808 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3809 break;
3810 case 14:
3811 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3812 break;
3814 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3815 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3816 } else {
3817 if (is_lvds) {
3818 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3819 } else {
3820 if (clock.p1 == 2)
3821 dpll |= PLL_P1_DIVIDE_BY_TWO;
3822 else
3823 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3824 if (clock.p2 == 4)
3825 dpll |= PLL_P2_DIVIDE_BY_4;
3829 if (is_sdvo && is_tv)
3830 dpll |= PLL_REF_INPUT_TVCLKINBC;
3831 else if (is_tv)
3832 /* XXX: just matching BIOS for now */
3833 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3834 dpll |= 3;
3835 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3836 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3837 else
3838 dpll |= PLL_REF_INPUT_DREFCLK;
3840 /* setup pipeconf */
3841 pipeconf = I915_READ(pipeconf_reg);
3843 /* Set up the display plane register */
3844 dspcntr = DISPPLANE_GAMMA_ENABLE;
3846 /* Ironlake's plane is forced to pipe, bit 24 is to
3847 enable color space conversion */
3848 if (!HAS_PCH_SPLIT(dev)) {
3849 if (pipe == 0)
3850 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3851 else
3852 dspcntr |= DISPPLANE_SEL_PIPE_B;
3855 if (pipe == 0 && !IS_I965G(dev)) {
3856 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3857 * core speed.
3859 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3860 * pipe == 0 check?
3862 if (mode->clock >
3863 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3864 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3865 else
3866 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3869 dspcntr |= DISPLAY_PLANE_ENABLE;
3870 pipeconf |= PIPEACONF_ENABLE;
3871 dpll |= DPLL_VCO_ENABLE;
3874 /* Disable the panel fitter if it was on our pipe */
3875 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3876 I915_WRITE(PFIT_CONTROL, 0);
3878 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3879 drm_mode_debug_printmodeline(mode);
3881 /* assign to Ironlake registers */
3882 if (HAS_PCH_SPLIT(dev)) {
3883 fp_reg = pch_fp_reg;
3884 dpll_reg = pch_dpll_reg;
3887 if (!has_edp_encoder) {
3888 I915_WRITE(fp_reg, fp);
3889 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3890 I915_READ(dpll_reg);
3891 udelay(150);
3894 /* enable transcoder DPLL */
3895 if (HAS_PCH_CPT(dev)) {
3896 temp = I915_READ(PCH_DPLL_SEL);
3897 if (trans_dpll_sel == 0)
3898 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3899 else
3900 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3901 I915_WRITE(PCH_DPLL_SEL, temp);
3902 I915_READ(PCH_DPLL_SEL);
3903 udelay(150);
3906 if (HAS_PCH_SPLIT(dev)) {
3907 pipeconf &= ~PIPE_ENABLE_DITHER;
3908 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3911 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3912 * This is an exception to the general rule that mode_set doesn't turn
3913 * things on.
3915 if (is_lvds) {
3916 u32 lvds;
3918 if (HAS_PCH_SPLIT(dev))
3919 lvds_reg = PCH_LVDS;
3921 lvds = I915_READ(lvds_reg);
3922 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3923 if (pipe == 1) {
3924 if (HAS_PCH_CPT(dev))
3925 lvds |= PORT_TRANS_B_SEL_CPT;
3926 else
3927 lvds |= LVDS_PIPEB_SELECT;
3928 } else {
3929 if (HAS_PCH_CPT(dev))
3930 lvds &= ~PORT_TRANS_SEL_MASK;
3931 else
3932 lvds &= ~LVDS_PIPEB_SELECT;
3934 /* set the corresponsding LVDS_BORDER bit */
3935 lvds |= dev_priv->lvds_border_bits;
3936 /* Set the B0-B3 data pairs corresponding to whether we're going to
3937 * set the DPLLs for dual-channel mode or not.
3939 if (clock.p2 == 7)
3940 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3941 else
3942 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3944 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3945 * appropriately here, but we need to look more thoroughly into how
3946 * panels behave in the two modes.
3948 /* set the dithering flag */
3949 if (IS_I965G(dev)) {
3950 if (dev_priv->lvds_dither) {
3951 if (HAS_PCH_SPLIT(dev)) {
3952 pipeconf |= PIPE_ENABLE_DITHER;
3953 pipeconf |= PIPE_DITHER_TYPE_ST01;
3954 } else
3955 lvds |= LVDS_ENABLE_DITHER;
3956 } else {
3957 if (!HAS_PCH_SPLIT(dev)) {
3958 lvds &= ~LVDS_ENABLE_DITHER;
3962 I915_WRITE(lvds_reg, lvds);
3963 I915_READ(lvds_reg);
3965 if (is_dp)
3966 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3967 else if (HAS_PCH_SPLIT(dev)) {
3968 /* For non-DP output, clear any trans DP clock recovery setting.*/
3969 if (pipe == 0) {
3970 I915_WRITE(TRANSA_DATA_M1, 0);
3971 I915_WRITE(TRANSA_DATA_N1, 0);
3972 I915_WRITE(TRANSA_DP_LINK_M1, 0);
3973 I915_WRITE(TRANSA_DP_LINK_N1, 0);
3974 } else {
3975 I915_WRITE(TRANSB_DATA_M1, 0);
3976 I915_WRITE(TRANSB_DATA_N1, 0);
3977 I915_WRITE(TRANSB_DP_LINK_M1, 0);
3978 I915_WRITE(TRANSB_DP_LINK_N1, 0);
3982 if (!has_edp_encoder) {
3983 I915_WRITE(fp_reg, fp);
3984 I915_WRITE(dpll_reg, dpll);
3985 I915_READ(dpll_reg);
3986 /* Wait for the clocks to stabilize. */
3987 udelay(150);
3989 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3990 if (is_sdvo) {
3991 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3992 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3993 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3994 } else
3995 I915_WRITE(dpll_md_reg, 0);
3996 } else {
3997 /* write it again -- the BIOS does, after all */
3998 I915_WRITE(dpll_reg, dpll);
4000 I915_READ(dpll_reg);
4001 /* Wait for the clocks to stabilize. */
4002 udelay(150);
4005 if (is_lvds && has_reduced_clock && i915_powersave) {
4006 I915_WRITE(fp_reg + 4, fp2);
4007 intel_crtc->lowfreq_avail = true;
4008 if (HAS_PIPE_CXSR(dev)) {
4009 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4010 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4012 } else {
4013 I915_WRITE(fp_reg + 4, fp);
4014 intel_crtc->lowfreq_avail = false;
4015 if (HAS_PIPE_CXSR(dev)) {
4016 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4017 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4021 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4022 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4023 /* the chip adds 2 halflines automatically */
4024 adjusted_mode->crtc_vdisplay -= 1;
4025 adjusted_mode->crtc_vtotal -= 1;
4026 adjusted_mode->crtc_vblank_start -= 1;
4027 adjusted_mode->crtc_vblank_end -= 1;
4028 adjusted_mode->crtc_vsync_end -= 1;
4029 adjusted_mode->crtc_vsync_start -= 1;
4030 } else
4031 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4033 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4034 ((adjusted_mode->crtc_htotal - 1) << 16));
4035 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4036 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4037 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4038 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4039 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4040 ((adjusted_mode->crtc_vtotal - 1) << 16));
4041 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4042 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4043 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4044 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4045 /* pipesrc and dspsize control the size that is scaled from, which should
4046 * always be the user's requested size.
4048 if (!HAS_PCH_SPLIT(dev)) {
4049 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4050 (mode->hdisplay - 1));
4051 I915_WRITE(dsppos_reg, 0);
4053 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4055 if (HAS_PCH_SPLIT(dev)) {
4056 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4057 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4058 I915_WRITE(link_m1_reg, m_n.link_m);
4059 I915_WRITE(link_n1_reg, m_n.link_n);
4061 if (has_edp_encoder) {
4062 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4063 } else {
4064 /* enable FDI RX PLL too */
4065 temp = I915_READ(fdi_rx_reg);
4066 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4067 I915_READ(fdi_rx_reg);
4068 udelay(200);
4070 /* enable FDI TX PLL too */
4071 temp = I915_READ(fdi_tx_reg);
4072 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4073 I915_READ(fdi_tx_reg);
4075 /* enable FDI RX PCDCLK */
4076 temp = I915_READ(fdi_rx_reg);
4077 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4078 I915_READ(fdi_rx_reg);
4079 udelay(200);
4083 I915_WRITE(pipeconf_reg, pipeconf);
4084 I915_READ(pipeconf_reg);
4086 intel_wait_for_vblank(dev, pipe);
4088 if (IS_IRONLAKE(dev)) {
4089 /* enable address swizzle for tiling buffer */
4090 temp = I915_READ(DISP_ARB_CTL);
4091 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4094 I915_WRITE(dspcntr_reg, dspcntr);
4096 /* Flush the plane changes */
4097 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4099 intel_update_watermarks(dev);
4101 drm_vblank_post_modeset(dev, pipe);
4103 return ret;
4106 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4107 void intel_crtc_load_lut(struct drm_crtc *crtc)
4109 struct drm_device *dev = crtc->dev;
4110 struct drm_i915_private *dev_priv = dev->dev_private;
4111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4112 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4113 int i;
4115 /* The clocks have to be on to load the palette. */
4116 if (!crtc->enabled)
4117 return;
4119 /* use legacy palette for Ironlake */
4120 if (HAS_PCH_SPLIT(dev))
4121 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4122 LGC_PALETTE_B;
4124 for (i = 0; i < 256; i++) {
4125 I915_WRITE(palreg + 4 * i,
4126 (intel_crtc->lut_r[i] << 16) |
4127 (intel_crtc->lut_g[i] << 8) |
4128 intel_crtc->lut_b[i]);
4132 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4134 struct drm_device *dev = crtc->dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4137 bool visible = base != 0;
4138 u32 cntl;
4140 if (intel_crtc->cursor_visible == visible)
4141 return;
4143 cntl = I915_READ(CURACNTR);
4144 if (visible) {
4145 /* On these chipsets we can only modify the base whilst
4146 * the cursor is disabled.
4148 I915_WRITE(CURABASE, base);
4150 cntl &= ~(CURSOR_FORMAT_MASK);
4151 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4152 cntl |= CURSOR_ENABLE |
4153 CURSOR_GAMMA_ENABLE |
4154 CURSOR_FORMAT_ARGB;
4155 } else
4156 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4157 I915_WRITE(CURACNTR, cntl);
4159 intel_crtc->cursor_visible = visible;
4162 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4164 struct drm_device *dev = crtc->dev;
4165 struct drm_i915_private *dev_priv = dev->dev_private;
4166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4167 int pipe = intel_crtc->pipe;
4168 bool visible = base != 0;
4170 if (intel_crtc->cursor_visible != visible) {
4171 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4172 if (base) {
4173 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4174 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4175 cntl |= pipe << 28; /* Connect to correct pipe */
4176 } else {
4177 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4178 cntl |= CURSOR_MODE_DISABLE;
4180 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4182 intel_crtc->cursor_visible = visible;
4184 /* and commit changes on next vblank */
4185 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4188 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4189 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4191 struct drm_device *dev = crtc->dev;
4192 struct drm_i915_private *dev_priv = dev->dev_private;
4193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194 int pipe = intel_crtc->pipe;
4195 int x = intel_crtc->cursor_x;
4196 int y = intel_crtc->cursor_y;
4197 u32 base, pos;
4198 bool visible;
4200 pos = 0;
4202 if (intel_crtc->cursor_on && crtc->fb) {
4203 base = intel_crtc->cursor_addr;
4204 if (x > (int) crtc->fb->width)
4205 base = 0;
4207 if (y > (int) crtc->fb->height)
4208 base = 0;
4209 } else
4210 base = 0;
4212 if (x < 0) {
4213 if (x + intel_crtc->cursor_width < 0)
4214 base = 0;
4216 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4217 x = -x;
4219 pos |= x << CURSOR_X_SHIFT;
4221 if (y < 0) {
4222 if (y + intel_crtc->cursor_height < 0)
4223 base = 0;
4225 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4226 y = -y;
4228 pos |= y << CURSOR_Y_SHIFT;
4230 visible = base != 0;
4231 if (!visible && !intel_crtc->cursor_visible)
4232 return;
4234 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4235 if (IS_845G(dev) || IS_I865G(dev))
4236 i845_update_cursor(crtc, base);
4237 else
4238 i9xx_update_cursor(crtc, base);
4240 if (visible)
4241 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4244 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4245 struct drm_file *file_priv,
4246 uint32_t handle,
4247 uint32_t width, uint32_t height)
4249 struct drm_device *dev = crtc->dev;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4252 struct drm_gem_object *bo;
4253 struct drm_i915_gem_object *obj_priv;
4254 uint32_t addr;
4255 int ret;
4257 DRM_DEBUG_KMS("\n");
4259 /* if we want to turn off the cursor ignore width and height */
4260 if (!handle) {
4261 DRM_DEBUG_KMS("cursor off\n");
4262 addr = 0;
4263 bo = NULL;
4264 mutex_lock(&dev->struct_mutex);
4265 goto finish;
4268 /* Currently we only support 64x64 cursors */
4269 if (width != 64 || height != 64) {
4270 DRM_ERROR("we currently only support 64x64 cursors\n");
4271 return -EINVAL;
4274 bo = drm_gem_object_lookup(dev, file_priv, handle);
4275 if (!bo)
4276 return -ENOENT;
4278 obj_priv = to_intel_bo(bo);
4280 if (bo->size < width * height * 4) {
4281 DRM_ERROR("buffer is to small\n");
4282 ret = -ENOMEM;
4283 goto fail;
4286 /* we only need to pin inside GTT if cursor is non-phy */
4287 mutex_lock(&dev->struct_mutex);
4288 if (!dev_priv->info->cursor_needs_physical) {
4289 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4290 if (ret) {
4291 DRM_ERROR("failed to pin cursor bo\n");
4292 goto fail_locked;
4295 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4296 if (ret) {
4297 DRM_ERROR("failed to move cursor bo into the GTT\n");
4298 goto fail_unpin;
4301 addr = obj_priv->gtt_offset;
4302 } else {
4303 int align = IS_I830(dev) ? 16 * 1024 : 256;
4304 ret = i915_gem_attach_phys_object(dev, bo,
4305 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4306 align);
4307 if (ret) {
4308 DRM_ERROR("failed to attach phys object\n");
4309 goto fail_locked;
4311 addr = obj_priv->phys_obj->handle->busaddr;
4314 if (!IS_I9XX(dev))
4315 I915_WRITE(CURSIZE, (height << 12) | width);
4317 finish:
4318 if (intel_crtc->cursor_bo) {
4319 if (dev_priv->info->cursor_needs_physical) {
4320 if (intel_crtc->cursor_bo != bo)
4321 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4322 } else
4323 i915_gem_object_unpin(intel_crtc->cursor_bo);
4324 drm_gem_object_unreference(intel_crtc->cursor_bo);
4327 mutex_unlock(&dev->struct_mutex);
4329 intel_crtc->cursor_addr = addr;
4330 intel_crtc->cursor_bo = bo;
4331 intel_crtc->cursor_width = width;
4332 intel_crtc->cursor_height = height;
4334 intel_crtc_update_cursor(crtc);
4336 return 0;
4337 fail_unpin:
4338 i915_gem_object_unpin(bo);
4339 fail_locked:
4340 mutex_unlock(&dev->struct_mutex);
4341 fail:
4342 drm_gem_object_unreference_unlocked(bo);
4343 return ret;
4346 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4350 intel_crtc->cursor_x = x;
4351 intel_crtc->cursor_y = y;
4353 intel_crtc_update_cursor(crtc);
4355 return 0;
4358 /** Sets the color ramps on behalf of RandR */
4359 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4360 u16 blue, int regno)
4362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4364 intel_crtc->lut_r[regno] = red >> 8;
4365 intel_crtc->lut_g[regno] = green >> 8;
4366 intel_crtc->lut_b[regno] = blue >> 8;
4369 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4370 u16 *blue, int regno)
4372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4374 *red = intel_crtc->lut_r[regno] << 8;
4375 *green = intel_crtc->lut_g[regno] << 8;
4376 *blue = intel_crtc->lut_b[regno] << 8;
4379 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4380 u16 *blue, uint32_t start, uint32_t size)
4382 int end = (start + size > 256) ? 256 : start + size, i;
4383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4385 for (i = start; i < end; i++) {
4386 intel_crtc->lut_r[i] = red[i] >> 8;
4387 intel_crtc->lut_g[i] = green[i] >> 8;
4388 intel_crtc->lut_b[i] = blue[i] >> 8;
4391 intel_crtc_load_lut(crtc);
4395 * Get a pipe with a simple mode set on it for doing load-based monitor
4396 * detection.
4398 * It will be up to the load-detect code to adjust the pipe as appropriate for
4399 * its requirements. The pipe will be connected to no other encoders.
4401 * Currently this code will only succeed if there is a pipe with no encoders
4402 * configured for it. In the future, it could choose to temporarily disable
4403 * some outputs to free up a pipe for its use.
4405 * \return crtc, or NULL if no pipes are available.
4408 /* VESA 640x480x72Hz mode to set on the pipe */
4409 static struct drm_display_mode load_detect_mode = {
4410 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4411 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4414 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4415 struct drm_connector *connector,
4416 struct drm_display_mode *mode,
4417 int *dpms_mode)
4419 struct intel_crtc *intel_crtc;
4420 struct drm_crtc *possible_crtc;
4421 struct drm_crtc *supported_crtc =NULL;
4422 struct drm_encoder *encoder = &intel_encoder->enc;
4423 struct drm_crtc *crtc = NULL;
4424 struct drm_device *dev = encoder->dev;
4425 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4426 struct drm_crtc_helper_funcs *crtc_funcs;
4427 int i = -1;
4430 * Algorithm gets a little messy:
4431 * - if the connector already has an assigned crtc, use it (but make
4432 * sure it's on first)
4433 * - try to find the first unused crtc that can drive this connector,
4434 * and use that if we find one
4435 * - if there are no unused crtcs available, try to use the first
4436 * one we found that supports the connector
4439 /* See if we already have a CRTC for this connector */
4440 if (encoder->crtc) {
4441 crtc = encoder->crtc;
4442 /* Make sure the crtc and connector are running */
4443 intel_crtc = to_intel_crtc(crtc);
4444 *dpms_mode = intel_crtc->dpms_mode;
4445 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4446 crtc_funcs = crtc->helper_private;
4447 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4448 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4450 return crtc;
4453 /* Find an unused one (if possible) */
4454 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4455 i++;
4456 if (!(encoder->possible_crtcs & (1 << i)))
4457 continue;
4458 if (!possible_crtc->enabled) {
4459 crtc = possible_crtc;
4460 break;
4462 if (!supported_crtc)
4463 supported_crtc = possible_crtc;
4467 * If we didn't find an unused CRTC, don't use any.
4469 if (!crtc) {
4470 return NULL;
4473 encoder->crtc = crtc;
4474 connector->encoder = encoder;
4475 intel_encoder->load_detect_temp = true;
4477 intel_crtc = to_intel_crtc(crtc);
4478 *dpms_mode = intel_crtc->dpms_mode;
4480 if (!crtc->enabled) {
4481 if (!mode)
4482 mode = &load_detect_mode;
4483 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4484 } else {
4485 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4486 crtc_funcs = crtc->helper_private;
4487 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4490 /* Add this connector to the crtc */
4491 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4492 encoder_funcs->commit(encoder);
4494 /* let the connector get through one full cycle before testing */
4495 intel_wait_for_vblank(dev, intel_crtc->pipe);
4497 return crtc;
4500 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4501 struct drm_connector *connector, int dpms_mode)
4503 struct drm_encoder *encoder = &intel_encoder->enc;
4504 struct drm_device *dev = encoder->dev;
4505 struct drm_crtc *crtc = encoder->crtc;
4506 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4507 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4509 if (intel_encoder->load_detect_temp) {
4510 encoder->crtc = NULL;
4511 connector->encoder = NULL;
4512 intel_encoder->load_detect_temp = false;
4513 crtc->enabled = drm_helper_crtc_in_use(crtc);
4514 drm_helper_disable_unused_functions(dev);
4517 /* Switch crtc and encoder back off if necessary */
4518 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4519 if (encoder->crtc == crtc)
4520 encoder_funcs->dpms(encoder, dpms_mode);
4521 crtc_funcs->dpms(crtc, dpms_mode);
4525 /* Returns the clock of the currently programmed mode of the given pipe. */
4526 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4528 struct drm_i915_private *dev_priv = dev->dev_private;
4529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4530 int pipe = intel_crtc->pipe;
4531 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4532 u32 fp;
4533 intel_clock_t clock;
4535 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4536 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4537 else
4538 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4540 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4541 if (IS_PINEVIEW(dev)) {
4542 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4543 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4544 } else {
4545 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4546 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4549 if (IS_I9XX(dev)) {
4550 if (IS_PINEVIEW(dev))
4551 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4552 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4553 else
4554 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4555 DPLL_FPA01_P1_POST_DIV_SHIFT);
4557 switch (dpll & DPLL_MODE_MASK) {
4558 case DPLLB_MODE_DAC_SERIAL:
4559 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4560 5 : 10;
4561 break;
4562 case DPLLB_MODE_LVDS:
4563 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4564 7 : 14;
4565 break;
4566 default:
4567 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4568 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4569 return 0;
4572 /* XXX: Handle the 100Mhz refclk */
4573 intel_clock(dev, 96000, &clock);
4574 } else {
4575 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4577 if (is_lvds) {
4578 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4579 DPLL_FPA01_P1_POST_DIV_SHIFT);
4580 clock.p2 = 14;
4582 if ((dpll & PLL_REF_INPUT_MASK) ==
4583 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4584 /* XXX: might not be 66MHz */
4585 intel_clock(dev, 66000, &clock);
4586 } else
4587 intel_clock(dev, 48000, &clock);
4588 } else {
4589 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4590 clock.p1 = 2;
4591 else {
4592 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4593 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4595 if (dpll & PLL_P2_DIVIDE_BY_4)
4596 clock.p2 = 4;
4597 else
4598 clock.p2 = 2;
4600 intel_clock(dev, 48000, &clock);
4604 /* XXX: It would be nice to validate the clocks, but we can't reuse
4605 * i830PllIsValid() because it relies on the xf86_config connector
4606 * configuration being accurate, which it isn't necessarily.
4609 return clock.dot;
4612 /** Returns the currently programmed mode of the given pipe. */
4613 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4614 struct drm_crtc *crtc)
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4618 int pipe = intel_crtc->pipe;
4619 struct drm_display_mode *mode;
4620 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4621 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4622 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4623 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4625 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4626 if (!mode)
4627 return NULL;
4629 mode->clock = intel_crtc_clock_get(dev, crtc);
4630 mode->hdisplay = (htot & 0xffff) + 1;
4631 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4632 mode->hsync_start = (hsync & 0xffff) + 1;
4633 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4634 mode->vdisplay = (vtot & 0xffff) + 1;
4635 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4636 mode->vsync_start = (vsync & 0xffff) + 1;
4637 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4639 drm_mode_set_name(mode);
4640 drm_mode_set_crtcinfo(mode, 0);
4642 return mode;
4645 #define GPU_IDLE_TIMEOUT 500 /* ms */
4647 /* When this timer fires, we've been idle for awhile */
4648 static void intel_gpu_idle_timer(unsigned long arg)
4650 struct drm_device *dev = (struct drm_device *)arg;
4651 drm_i915_private_t *dev_priv = dev->dev_private;
4653 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4655 dev_priv->busy = false;
4657 queue_work(dev_priv->wq, &dev_priv->idle_work);
4660 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4662 static void intel_crtc_idle_timer(unsigned long arg)
4664 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4665 struct drm_crtc *crtc = &intel_crtc->base;
4666 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4668 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4670 intel_crtc->busy = false;
4672 queue_work(dev_priv->wq, &dev_priv->idle_work);
4675 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4677 struct drm_device *dev = crtc->dev;
4678 drm_i915_private_t *dev_priv = dev->dev_private;
4679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4680 int pipe = intel_crtc->pipe;
4681 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4682 int dpll = I915_READ(dpll_reg);
4684 if (HAS_PCH_SPLIT(dev))
4685 return;
4687 if (!dev_priv->lvds_downclock_avail)
4688 return;
4690 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4691 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4693 /* Unlock panel regs */
4694 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4695 PANEL_UNLOCK_REGS);
4697 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4698 I915_WRITE(dpll_reg, dpll);
4699 dpll = I915_READ(dpll_reg);
4700 intel_wait_for_vblank(dev, pipe);
4701 dpll = I915_READ(dpll_reg);
4702 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4703 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4705 /* ...and lock them again */
4706 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4709 /* Schedule downclock */
4710 if (schedule)
4711 mod_timer(&intel_crtc->idle_timer, jiffies +
4712 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4715 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4717 struct drm_device *dev = crtc->dev;
4718 drm_i915_private_t *dev_priv = dev->dev_private;
4719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4720 int pipe = intel_crtc->pipe;
4721 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4722 int dpll = I915_READ(dpll_reg);
4724 if (HAS_PCH_SPLIT(dev))
4725 return;
4727 if (!dev_priv->lvds_downclock_avail)
4728 return;
4731 * Since this is called by a timer, we should never get here in
4732 * the manual case.
4734 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4735 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4737 /* Unlock panel regs */
4738 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4739 PANEL_UNLOCK_REGS);
4741 dpll |= DISPLAY_RATE_SELECT_FPA1;
4742 I915_WRITE(dpll_reg, dpll);
4743 dpll = I915_READ(dpll_reg);
4744 intel_wait_for_vblank(dev, pipe);
4745 dpll = I915_READ(dpll_reg);
4746 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4747 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4749 /* ...and lock them again */
4750 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4756 * intel_idle_update - adjust clocks for idleness
4757 * @work: work struct
4759 * Either the GPU or display (or both) went idle. Check the busy status
4760 * here and adjust the CRTC and GPU clocks as necessary.
4762 static void intel_idle_update(struct work_struct *work)
4764 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4765 idle_work);
4766 struct drm_device *dev = dev_priv->dev;
4767 struct drm_crtc *crtc;
4768 struct intel_crtc *intel_crtc;
4769 int enabled = 0;
4771 if (!i915_powersave)
4772 return;
4774 mutex_lock(&dev->struct_mutex);
4776 i915_update_gfx_val(dev_priv);
4778 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4779 /* Skip inactive CRTCs */
4780 if (!crtc->fb)
4781 continue;
4783 enabled++;
4784 intel_crtc = to_intel_crtc(crtc);
4785 if (!intel_crtc->busy)
4786 intel_decrease_pllclock(crtc);
4789 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4790 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4791 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4794 mutex_unlock(&dev->struct_mutex);
4798 * intel_mark_busy - mark the GPU and possibly the display busy
4799 * @dev: drm device
4800 * @obj: object we're operating on
4802 * Callers can use this function to indicate that the GPU is busy processing
4803 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4804 * buffer), we'll also mark the display as busy, so we know to increase its
4805 * clock frequency.
4807 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4809 drm_i915_private_t *dev_priv = dev->dev_private;
4810 struct drm_crtc *crtc = NULL;
4811 struct intel_framebuffer *intel_fb;
4812 struct intel_crtc *intel_crtc;
4814 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4815 return;
4817 if (!dev_priv->busy) {
4818 if (IS_I945G(dev) || IS_I945GM(dev)) {
4819 u32 fw_blc_self;
4821 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4822 fw_blc_self = I915_READ(FW_BLC_SELF);
4823 fw_blc_self &= ~FW_BLC_SELF_EN;
4824 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4826 dev_priv->busy = true;
4827 } else
4828 mod_timer(&dev_priv->idle_timer, jiffies +
4829 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4831 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4832 if (!crtc->fb)
4833 continue;
4835 intel_crtc = to_intel_crtc(crtc);
4836 intel_fb = to_intel_framebuffer(crtc->fb);
4837 if (intel_fb->obj == obj) {
4838 if (!intel_crtc->busy) {
4839 if (IS_I945G(dev) || IS_I945GM(dev)) {
4840 u32 fw_blc_self;
4842 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4843 fw_blc_self = I915_READ(FW_BLC_SELF);
4844 fw_blc_self &= ~FW_BLC_SELF_EN;
4845 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4847 /* Non-busy -> busy, upclock */
4848 intel_increase_pllclock(crtc, true);
4849 intel_crtc->busy = true;
4850 } else {
4851 /* Busy -> busy, put off timer */
4852 mod_timer(&intel_crtc->idle_timer, jiffies +
4853 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4859 static void intel_crtc_destroy(struct drm_crtc *crtc)
4861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4863 drm_crtc_cleanup(crtc);
4864 kfree(intel_crtc);
4867 static void intel_unpin_work_fn(struct work_struct *__work)
4869 struct intel_unpin_work *work =
4870 container_of(__work, struct intel_unpin_work, work);
4872 mutex_lock(&work->dev->struct_mutex);
4873 i915_gem_object_unpin(work->old_fb_obj);
4874 drm_gem_object_unreference(work->pending_flip_obj);
4875 drm_gem_object_unreference(work->old_fb_obj);
4876 mutex_unlock(&work->dev->struct_mutex);
4877 kfree(work);
4880 static void do_intel_finish_page_flip(struct drm_device *dev,
4881 struct drm_crtc *crtc)
4883 drm_i915_private_t *dev_priv = dev->dev_private;
4884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4885 struct intel_unpin_work *work;
4886 struct drm_i915_gem_object *obj_priv;
4887 struct drm_pending_vblank_event *e;
4888 struct timeval now;
4889 unsigned long flags;
4891 /* Ignore early vblank irqs */
4892 if (intel_crtc == NULL)
4893 return;
4895 spin_lock_irqsave(&dev->event_lock, flags);
4896 work = intel_crtc->unpin_work;
4897 if (work == NULL || !work->pending) {
4898 spin_unlock_irqrestore(&dev->event_lock, flags);
4899 return;
4902 intel_crtc->unpin_work = NULL;
4903 drm_vblank_put(dev, intel_crtc->pipe);
4905 if (work->event) {
4906 e = work->event;
4907 do_gettimeofday(&now);
4908 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4909 e->event.tv_sec = now.tv_sec;
4910 e->event.tv_usec = now.tv_usec;
4911 list_add_tail(&e->base.link,
4912 &e->base.file_priv->event_list);
4913 wake_up_interruptible(&e->base.file_priv->event_wait);
4916 spin_unlock_irqrestore(&dev->event_lock, flags);
4918 obj_priv = to_intel_bo(work->pending_flip_obj);
4920 /* Initial scanout buffer will have a 0 pending flip count */
4921 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4922 atomic_dec_and_test(&obj_priv->pending_flip))
4923 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4924 schedule_work(&work->work);
4926 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4929 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4931 drm_i915_private_t *dev_priv = dev->dev_private;
4932 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4934 do_intel_finish_page_flip(dev, crtc);
4937 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4939 drm_i915_private_t *dev_priv = dev->dev_private;
4940 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4942 do_intel_finish_page_flip(dev, crtc);
4945 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4947 drm_i915_private_t *dev_priv = dev->dev_private;
4948 struct intel_crtc *intel_crtc =
4949 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4950 unsigned long flags;
4952 spin_lock_irqsave(&dev->event_lock, flags);
4953 if (intel_crtc->unpin_work) {
4954 if ((++intel_crtc->unpin_work->pending) > 1)
4955 DRM_ERROR("Prepared flip multiple times\n");
4956 } else {
4957 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4959 spin_unlock_irqrestore(&dev->event_lock, flags);
4962 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4963 struct drm_framebuffer *fb,
4964 struct drm_pending_vblank_event *event)
4966 struct drm_device *dev = crtc->dev;
4967 struct drm_i915_private *dev_priv = dev->dev_private;
4968 struct intel_framebuffer *intel_fb;
4969 struct drm_i915_gem_object *obj_priv;
4970 struct drm_gem_object *obj;
4971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4972 struct intel_unpin_work *work;
4973 unsigned long flags, offset;
4974 int pipe = intel_crtc->pipe;
4975 u32 pf, pipesrc;
4976 int ret;
4978 work = kzalloc(sizeof *work, GFP_KERNEL);
4979 if (work == NULL)
4980 return -ENOMEM;
4982 work->event = event;
4983 work->dev = crtc->dev;
4984 intel_fb = to_intel_framebuffer(crtc->fb);
4985 work->old_fb_obj = intel_fb->obj;
4986 INIT_WORK(&work->work, intel_unpin_work_fn);
4988 /* We borrow the event spin lock for protecting unpin_work */
4989 spin_lock_irqsave(&dev->event_lock, flags);
4990 if (intel_crtc->unpin_work) {
4991 spin_unlock_irqrestore(&dev->event_lock, flags);
4992 kfree(work);
4994 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4995 return -EBUSY;
4997 intel_crtc->unpin_work = work;
4998 spin_unlock_irqrestore(&dev->event_lock, flags);
5000 intel_fb = to_intel_framebuffer(fb);
5001 obj = intel_fb->obj;
5003 mutex_lock(&dev->struct_mutex);
5004 ret = intel_pin_and_fence_fb_obj(dev, obj);
5005 if (ret)
5006 goto cleanup_work;
5008 /* Reference the objects for the scheduled work. */
5009 drm_gem_object_reference(work->old_fb_obj);
5010 drm_gem_object_reference(obj);
5012 crtc->fb = fb;
5013 ret = i915_gem_object_flush_write_domain(obj);
5014 if (ret)
5015 goto cleanup_objs;
5017 ret = drm_vblank_get(dev, intel_crtc->pipe);
5018 if (ret)
5019 goto cleanup_objs;
5021 obj_priv = to_intel_bo(obj);
5022 atomic_inc(&obj_priv->pending_flip);
5023 work->pending_flip_obj = obj;
5025 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5026 u32 flip_mask;
5028 if (intel_crtc->plane)
5029 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5030 else
5031 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5033 BEGIN_LP_RING(2);
5034 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5035 OUT_RING(0);
5036 ADVANCE_LP_RING();
5039 work->enable_stall_check = true;
5041 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5042 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5044 BEGIN_LP_RING(4);
5045 switch(INTEL_INFO(dev)->gen) {
5046 case 2:
5047 OUT_RING(MI_DISPLAY_FLIP |
5048 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5049 OUT_RING(fb->pitch);
5050 OUT_RING(obj_priv->gtt_offset + offset);
5051 OUT_RING(MI_NOOP);
5052 break;
5054 case 3:
5055 OUT_RING(MI_DISPLAY_FLIP_I915 |
5056 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5057 OUT_RING(fb->pitch);
5058 OUT_RING(obj_priv->gtt_offset + offset);
5059 OUT_RING(MI_NOOP);
5060 break;
5062 case 4:
5063 case 5:
5064 /* i965+ uses the linear or tiled offsets from the
5065 * Display Registers (which do not change across a page-flip)
5066 * so we need only reprogram the base address.
5068 OUT_RING(MI_DISPLAY_FLIP |
5069 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5070 OUT_RING(fb->pitch);
5071 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5073 /* XXX Enabling the panel-fitter across page-flip is so far
5074 * untested on non-native modes, so ignore it for now.
5075 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5077 pf = 0;
5078 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5079 OUT_RING(pf | pipesrc);
5080 break;
5082 case 6:
5083 OUT_RING(MI_DISPLAY_FLIP |
5084 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5085 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5086 OUT_RING(obj_priv->gtt_offset);
5088 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5089 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5090 OUT_RING(pf | pipesrc);
5091 break;
5093 ADVANCE_LP_RING();
5095 mutex_unlock(&dev->struct_mutex);
5097 trace_i915_flip_request(intel_crtc->plane, obj);
5099 return 0;
5101 cleanup_objs:
5102 drm_gem_object_unreference(work->old_fb_obj);
5103 drm_gem_object_unreference(obj);
5104 cleanup_work:
5105 mutex_unlock(&dev->struct_mutex);
5107 spin_lock_irqsave(&dev->event_lock, flags);
5108 intel_crtc->unpin_work = NULL;
5109 spin_unlock_irqrestore(&dev->event_lock, flags);
5111 kfree(work);
5113 return ret;
5116 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5117 .dpms = intel_crtc_dpms,
5118 .mode_fixup = intel_crtc_mode_fixup,
5119 .mode_set = intel_crtc_mode_set,
5120 .mode_set_base = intel_pipe_set_base,
5121 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5122 .prepare = intel_crtc_prepare,
5123 .commit = intel_crtc_commit,
5124 .load_lut = intel_crtc_load_lut,
5127 static const struct drm_crtc_funcs intel_crtc_funcs = {
5128 .cursor_set = intel_crtc_cursor_set,
5129 .cursor_move = intel_crtc_cursor_move,
5130 .gamma_set = intel_crtc_gamma_set,
5131 .set_config = drm_crtc_helper_set_config,
5132 .destroy = intel_crtc_destroy,
5133 .page_flip = intel_crtc_page_flip,
5137 static void intel_crtc_init(struct drm_device *dev, int pipe)
5139 drm_i915_private_t *dev_priv = dev->dev_private;
5140 struct intel_crtc *intel_crtc;
5141 int i;
5143 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5144 if (intel_crtc == NULL)
5145 return;
5147 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5149 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5150 intel_crtc->pipe = pipe;
5151 intel_crtc->plane = pipe;
5152 for (i = 0; i < 256; i++) {
5153 intel_crtc->lut_r[i] = i;
5154 intel_crtc->lut_g[i] = i;
5155 intel_crtc->lut_b[i] = i;
5158 /* Swap pipes & planes for FBC on pre-965 */
5159 intel_crtc->pipe = pipe;
5160 intel_crtc->plane = pipe;
5161 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5162 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5163 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5166 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5167 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5168 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5169 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5171 intel_crtc->cursor_addr = 0;
5172 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5173 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5175 intel_crtc->busy = false;
5177 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5178 (unsigned long)intel_crtc);
5181 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5182 struct drm_file *file_priv)
5184 drm_i915_private_t *dev_priv = dev->dev_private;
5185 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5186 struct drm_mode_object *drmmode_obj;
5187 struct intel_crtc *crtc;
5189 if (!dev_priv) {
5190 DRM_ERROR("called with no initialization\n");
5191 return -EINVAL;
5194 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5195 DRM_MODE_OBJECT_CRTC);
5197 if (!drmmode_obj) {
5198 DRM_ERROR("no such CRTC id\n");
5199 return -EINVAL;
5202 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5203 pipe_from_crtc_id->pipe = crtc->pipe;
5205 return 0;
5208 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5210 struct drm_crtc *crtc = NULL;
5212 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5214 if (intel_crtc->pipe == pipe)
5215 break;
5217 return crtc;
5220 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5222 int index_mask = 0;
5223 struct drm_encoder *encoder;
5224 int entry = 0;
5226 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5227 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5228 if (type_mask & intel_encoder->clone_mask)
5229 index_mask |= (1 << entry);
5230 entry++;
5232 return index_mask;
5236 static void intel_setup_outputs(struct drm_device *dev)
5238 struct drm_i915_private *dev_priv = dev->dev_private;
5239 struct drm_encoder *encoder;
5240 bool dpd_is_edp = false;
5242 if (IS_MOBILE(dev) && !IS_I830(dev))
5243 intel_lvds_init(dev);
5245 if (HAS_PCH_SPLIT(dev)) {
5246 dpd_is_edp = intel_dpd_is_edp(dev);
5248 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5249 intel_dp_init(dev, DP_A);
5251 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5252 intel_dp_init(dev, PCH_DP_D);
5255 intel_crt_init(dev);
5257 if (HAS_PCH_SPLIT(dev)) {
5258 int found;
5260 if (I915_READ(HDMIB) & PORT_DETECTED) {
5261 /* PCH SDVOB multiplex with HDMIB */
5262 found = intel_sdvo_init(dev, PCH_SDVOB);
5263 if (!found)
5264 intel_hdmi_init(dev, HDMIB);
5265 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5266 intel_dp_init(dev, PCH_DP_B);
5269 if (I915_READ(HDMIC) & PORT_DETECTED)
5270 intel_hdmi_init(dev, HDMIC);
5272 if (I915_READ(HDMID) & PORT_DETECTED)
5273 intel_hdmi_init(dev, HDMID);
5275 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5276 intel_dp_init(dev, PCH_DP_C);
5278 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5279 intel_dp_init(dev, PCH_DP_D);
5281 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5282 bool found = false;
5284 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5285 DRM_DEBUG_KMS("probing SDVOB\n");
5286 found = intel_sdvo_init(dev, SDVOB);
5287 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5288 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5289 intel_hdmi_init(dev, SDVOB);
5292 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5293 DRM_DEBUG_KMS("probing DP_B\n");
5294 intel_dp_init(dev, DP_B);
5298 /* Before G4X SDVOC doesn't have its own detect register */
5300 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5301 DRM_DEBUG_KMS("probing SDVOC\n");
5302 found = intel_sdvo_init(dev, SDVOC);
5305 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5307 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5308 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5309 intel_hdmi_init(dev, SDVOC);
5311 if (SUPPORTS_INTEGRATED_DP(dev)) {
5312 DRM_DEBUG_KMS("probing DP_C\n");
5313 intel_dp_init(dev, DP_C);
5317 if (SUPPORTS_INTEGRATED_DP(dev) &&
5318 (I915_READ(DP_D) & DP_DETECTED)) {
5319 DRM_DEBUG_KMS("probing DP_D\n");
5320 intel_dp_init(dev, DP_D);
5322 } else if (IS_GEN2(dev))
5323 intel_dvo_init(dev);
5325 if (SUPPORTS_TV(dev))
5326 intel_tv_init(dev);
5328 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5329 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5331 encoder->possible_crtcs = intel_encoder->crtc_mask;
5332 encoder->possible_clones = intel_encoder_clones(dev,
5333 intel_encoder->clone_mask);
5337 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5339 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5341 drm_framebuffer_cleanup(fb);
5342 drm_gem_object_unreference_unlocked(intel_fb->obj);
5344 kfree(intel_fb);
5347 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5348 struct drm_file *file_priv,
5349 unsigned int *handle)
5351 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5352 struct drm_gem_object *object = intel_fb->obj;
5354 return drm_gem_handle_create(file_priv, object, handle);
5357 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5358 .destroy = intel_user_framebuffer_destroy,
5359 .create_handle = intel_user_framebuffer_create_handle,
5362 int intel_framebuffer_init(struct drm_device *dev,
5363 struct intel_framebuffer *intel_fb,
5364 struct drm_mode_fb_cmd *mode_cmd,
5365 struct drm_gem_object *obj)
5367 int ret;
5369 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5370 if (ret) {
5371 DRM_ERROR("framebuffer init failed %d\n", ret);
5372 return ret;
5375 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5376 intel_fb->obj = obj;
5377 return 0;
5380 static struct drm_framebuffer *
5381 intel_user_framebuffer_create(struct drm_device *dev,
5382 struct drm_file *filp,
5383 struct drm_mode_fb_cmd *mode_cmd)
5385 struct drm_gem_object *obj;
5386 struct intel_framebuffer *intel_fb;
5387 int ret;
5389 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5390 if (!obj)
5391 return ERR_PTR(-ENOENT);
5393 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5394 if (!intel_fb)
5395 return ERR_PTR(-ENOMEM);
5397 ret = intel_framebuffer_init(dev, intel_fb,
5398 mode_cmd, obj);
5399 if (ret) {
5400 drm_gem_object_unreference_unlocked(obj);
5401 kfree(intel_fb);
5402 return ERR_PTR(ret);
5405 return &intel_fb->base;
5408 static const struct drm_mode_config_funcs intel_mode_funcs = {
5409 .fb_create = intel_user_framebuffer_create,
5410 .output_poll_changed = intel_fb_output_poll_changed,
5413 static struct drm_gem_object *
5414 intel_alloc_context_page(struct drm_device *dev)
5416 struct drm_gem_object *ctx;
5417 int ret;
5419 ctx = i915_gem_alloc_object(dev, 4096);
5420 if (!ctx) {
5421 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5422 return NULL;
5425 mutex_lock(&dev->struct_mutex);
5426 ret = i915_gem_object_pin(ctx, 4096);
5427 if (ret) {
5428 DRM_ERROR("failed to pin power context: %d\n", ret);
5429 goto err_unref;
5432 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5433 if (ret) {
5434 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5435 goto err_unpin;
5437 mutex_unlock(&dev->struct_mutex);
5439 return ctx;
5441 err_unpin:
5442 i915_gem_object_unpin(ctx);
5443 err_unref:
5444 drm_gem_object_unreference(ctx);
5445 mutex_unlock(&dev->struct_mutex);
5446 return NULL;
5449 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5451 struct drm_i915_private *dev_priv = dev->dev_private;
5452 u16 rgvswctl;
5454 rgvswctl = I915_READ16(MEMSWCTL);
5455 if (rgvswctl & MEMCTL_CMD_STS) {
5456 DRM_DEBUG("gpu busy, RCS change rejected\n");
5457 return false; /* still busy with another command */
5460 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5461 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5462 I915_WRITE16(MEMSWCTL, rgvswctl);
5463 POSTING_READ16(MEMSWCTL);
5465 rgvswctl |= MEMCTL_CMD_STS;
5466 I915_WRITE16(MEMSWCTL, rgvswctl);
5468 return true;
5471 void ironlake_enable_drps(struct drm_device *dev)
5473 struct drm_i915_private *dev_priv = dev->dev_private;
5474 u32 rgvmodectl = I915_READ(MEMMODECTL);
5475 u8 fmax, fmin, fstart, vstart;
5477 /* 100ms RC evaluation intervals */
5478 I915_WRITE(RCUPEI, 100000);
5479 I915_WRITE(RCDNEI, 100000);
5481 /* Set max/min thresholds to 90ms and 80ms respectively */
5482 I915_WRITE(RCBMAXAVG, 90000);
5483 I915_WRITE(RCBMINAVG, 80000);
5485 I915_WRITE(MEMIHYST, 1);
5487 /* Set up min, max, and cur for interrupt handling */
5488 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5489 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5490 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5491 MEMMODE_FSTART_SHIFT;
5492 fstart = fmax;
5494 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5495 PXVFREQ_PX_SHIFT;
5497 dev_priv->fmax = fstart; /* IPS callback will increase this */
5498 dev_priv->fstart = fstart;
5500 dev_priv->max_delay = fmax;
5501 dev_priv->min_delay = fmin;
5502 dev_priv->cur_delay = fstart;
5504 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5505 fstart);
5507 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5510 * Interrupts will be enabled in ironlake_irq_postinstall
5513 I915_WRITE(VIDSTART, vstart);
5514 POSTING_READ(VIDSTART);
5516 rgvmodectl |= MEMMODE_SWMODE_EN;
5517 I915_WRITE(MEMMODECTL, rgvmodectl);
5519 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 1, 0))
5520 DRM_ERROR("stuck trying to change perf mode\n");
5521 msleep(1);
5523 ironlake_set_drps(dev, fstart);
5525 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5526 I915_READ(0x112e0);
5527 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5528 dev_priv->last_count2 = I915_READ(0x112f4);
5529 getrawmonotonic(&dev_priv->last_time2);
5532 void ironlake_disable_drps(struct drm_device *dev)
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535 u16 rgvswctl = I915_READ16(MEMSWCTL);
5537 /* Ack interrupts, disable EFC interrupt */
5538 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5539 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5540 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5541 I915_WRITE(DEIIR, DE_PCU_EVENT);
5542 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5544 /* Go back to the starting frequency */
5545 ironlake_set_drps(dev, dev_priv->fstart);
5546 msleep(1);
5547 rgvswctl |= MEMCTL_CMD_STS;
5548 I915_WRITE(MEMSWCTL, rgvswctl);
5549 msleep(1);
5553 static unsigned long intel_pxfreq(u32 vidfreq)
5555 unsigned long freq;
5556 int div = (vidfreq & 0x3f0000) >> 16;
5557 int post = (vidfreq & 0x3000) >> 12;
5558 int pre = (vidfreq & 0x7);
5560 if (!pre)
5561 return 0;
5563 freq = ((div * 133333) / ((1<<post) * pre));
5565 return freq;
5568 void intel_init_emon(struct drm_device *dev)
5570 struct drm_i915_private *dev_priv = dev->dev_private;
5571 u32 lcfuse;
5572 u8 pxw[16];
5573 int i;
5575 /* Disable to program */
5576 I915_WRITE(ECR, 0);
5577 POSTING_READ(ECR);
5579 /* Program energy weights for various events */
5580 I915_WRITE(SDEW, 0x15040d00);
5581 I915_WRITE(CSIEW0, 0x007f0000);
5582 I915_WRITE(CSIEW1, 0x1e220004);
5583 I915_WRITE(CSIEW2, 0x04000004);
5585 for (i = 0; i < 5; i++)
5586 I915_WRITE(PEW + (i * 4), 0);
5587 for (i = 0; i < 3; i++)
5588 I915_WRITE(DEW + (i * 4), 0);
5590 /* Program P-state weights to account for frequency power adjustment */
5591 for (i = 0; i < 16; i++) {
5592 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5593 unsigned long freq = intel_pxfreq(pxvidfreq);
5594 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5595 PXVFREQ_PX_SHIFT;
5596 unsigned long val;
5598 val = vid * vid;
5599 val *= (freq / 1000);
5600 val *= 255;
5601 val /= (127*127*900);
5602 if (val > 0xff)
5603 DRM_ERROR("bad pxval: %ld\n", val);
5604 pxw[i] = val;
5606 /* Render standby states get 0 weight */
5607 pxw[14] = 0;
5608 pxw[15] = 0;
5610 for (i = 0; i < 4; i++) {
5611 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5612 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5613 I915_WRITE(PXW + (i * 4), val);
5616 /* Adjust magic regs to magic values (more experimental results) */
5617 I915_WRITE(OGW0, 0);
5618 I915_WRITE(OGW1, 0);
5619 I915_WRITE(EG0, 0x00007f00);
5620 I915_WRITE(EG1, 0x0000000e);
5621 I915_WRITE(EG2, 0x000e0000);
5622 I915_WRITE(EG3, 0x68000300);
5623 I915_WRITE(EG4, 0x42000000);
5624 I915_WRITE(EG5, 0x00140031);
5625 I915_WRITE(EG6, 0);
5626 I915_WRITE(EG7, 0);
5628 for (i = 0; i < 8; i++)
5629 I915_WRITE(PXWL + (i * 4), 0);
5631 /* Enable PMON + select events */
5632 I915_WRITE(ECR, 0x80000019);
5634 lcfuse = I915_READ(LCFUSE02);
5636 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5639 void intel_init_clock_gating(struct drm_device *dev)
5641 struct drm_i915_private *dev_priv = dev->dev_private;
5644 * Disable clock gating reported to work incorrectly according to the
5645 * specs, but enable as much else as we can.
5647 if (HAS_PCH_SPLIT(dev)) {
5648 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5650 if (IS_IRONLAKE(dev)) {
5651 /* Required for FBC */
5652 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5653 /* Required for CxSR */
5654 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5656 I915_WRITE(PCH_3DCGDIS0,
5657 MARIUNIT_CLOCK_GATE_DISABLE |
5658 SVSMUNIT_CLOCK_GATE_DISABLE);
5661 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5664 * According to the spec the following bits should be set in
5665 * order to enable memory self-refresh
5666 * The bit 22/21 of 0x42004
5667 * The bit 5 of 0x42020
5668 * The bit 15 of 0x45000
5670 if (IS_IRONLAKE(dev)) {
5671 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5672 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5673 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5674 I915_WRITE(ILK_DSPCLK_GATE,
5675 (I915_READ(ILK_DSPCLK_GATE) |
5676 ILK_DPARB_CLK_GATE));
5677 I915_WRITE(DISP_ARB_CTL,
5678 (I915_READ(DISP_ARB_CTL) |
5679 DISP_FBC_WM_DIS));
5682 * Based on the document from hardware guys the following bits
5683 * should be set unconditionally in order to enable FBC.
5684 * The bit 22 of 0x42000
5685 * The bit 22 of 0x42004
5686 * The bit 7,8,9 of 0x42020.
5688 if (IS_IRONLAKE_M(dev)) {
5689 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5690 I915_READ(ILK_DISPLAY_CHICKEN1) |
5691 ILK_FBCQ_DIS);
5692 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5693 I915_READ(ILK_DISPLAY_CHICKEN2) |
5694 ILK_DPARB_GATE);
5695 I915_WRITE(ILK_DSPCLK_GATE,
5696 I915_READ(ILK_DSPCLK_GATE) |
5697 ILK_DPFC_DIS1 |
5698 ILK_DPFC_DIS2 |
5699 ILK_CLK_FBC);
5701 if (IS_GEN6(dev))
5702 return;
5703 } else if (IS_G4X(dev)) {
5704 uint32_t dspclk_gate;
5705 I915_WRITE(RENCLK_GATE_D1, 0);
5706 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5707 GS_UNIT_CLOCK_GATE_DISABLE |
5708 CL_UNIT_CLOCK_GATE_DISABLE);
5709 I915_WRITE(RAMCLK_GATE_D, 0);
5710 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5711 OVRUNIT_CLOCK_GATE_DISABLE |
5712 OVCUNIT_CLOCK_GATE_DISABLE;
5713 if (IS_GM45(dev))
5714 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5715 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5716 } else if (IS_I965GM(dev)) {
5717 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5718 I915_WRITE(RENCLK_GATE_D2, 0);
5719 I915_WRITE(DSPCLK_GATE_D, 0);
5720 I915_WRITE(RAMCLK_GATE_D, 0);
5721 I915_WRITE16(DEUC, 0);
5722 } else if (IS_I965G(dev)) {
5723 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5724 I965_RCC_CLOCK_GATE_DISABLE |
5725 I965_RCPB_CLOCK_GATE_DISABLE |
5726 I965_ISC_CLOCK_GATE_DISABLE |
5727 I965_FBC_CLOCK_GATE_DISABLE);
5728 I915_WRITE(RENCLK_GATE_D2, 0);
5729 } else if (IS_I9XX(dev)) {
5730 u32 dstate = I915_READ(D_STATE);
5732 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5733 DSTATE_DOT_CLOCK_GATING;
5734 I915_WRITE(D_STATE, dstate);
5735 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5736 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5737 } else if (IS_I830(dev)) {
5738 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5742 * GPU can automatically power down the render unit if given a page
5743 * to save state.
5745 if (IS_IRONLAKE_M(dev)) {
5746 if (dev_priv->renderctx == NULL)
5747 dev_priv->renderctx = intel_alloc_context_page(dev);
5748 if (dev_priv->renderctx) {
5749 struct drm_i915_gem_object *obj_priv;
5750 obj_priv = to_intel_bo(dev_priv->renderctx);
5751 if (obj_priv) {
5752 BEGIN_LP_RING(4);
5753 OUT_RING(MI_SET_CONTEXT);
5754 OUT_RING(obj_priv->gtt_offset |
5755 MI_MM_SPACE_GTT |
5756 MI_SAVE_EXT_STATE_EN |
5757 MI_RESTORE_EXT_STATE_EN |
5758 MI_RESTORE_INHIBIT);
5759 OUT_RING(MI_NOOP);
5760 OUT_RING(MI_FLUSH);
5761 ADVANCE_LP_RING();
5763 } else {
5764 DRM_DEBUG_KMS("Failed to allocate render context."
5765 "Disable RC6\n");
5766 return;
5770 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5771 struct drm_i915_gem_object *obj_priv = NULL;
5773 if (dev_priv->pwrctx) {
5774 obj_priv = to_intel_bo(dev_priv->pwrctx);
5775 } else {
5776 struct drm_gem_object *pwrctx;
5778 pwrctx = intel_alloc_context_page(dev);
5779 if (pwrctx) {
5780 dev_priv->pwrctx = pwrctx;
5781 obj_priv = to_intel_bo(pwrctx);
5785 if (obj_priv) {
5786 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5787 I915_WRITE(MCHBAR_RENDER_STANDBY,
5788 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5793 /* Set up chip specific display functions */
5794 static void intel_init_display(struct drm_device *dev)
5796 struct drm_i915_private *dev_priv = dev->dev_private;
5798 /* We always want a DPMS function */
5799 if (HAS_PCH_SPLIT(dev))
5800 dev_priv->display.dpms = ironlake_crtc_dpms;
5801 else
5802 dev_priv->display.dpms = i9xx_crtc_dpms;
5804 if (I915_HAS_FBC(dev)) {
5805 if (IS_IRONLAKE_M(dev)) {
5806 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5807 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5808 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5809 } else if (IS_GM45(dev)) {
5810 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5811 dev_priv->display.enable_fbc = g4x_enable_fbc;
5812 dev_priv->display.disable_fbc = g4x_disable_fbc;
5813 } else if (IS_I965GM(dev)) {
5814 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5815 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5816 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5818 /* 855GM needs testing */
5821 /* Returns the core display clock speed */
5822 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5823 dev_priv->display.get_display_clock_speed =
5824 i945_get_display_clock_speed;
5825 else if (IS_I915G(dev))
5826 dev_priv->display.get_display_clock_speed =
5827 i915_get_display_clock_speed;
5828 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5829 dev_priv->display.get_display_clock_speed =
5830 i9xx_misc_get_display_clock_speed;
5831 else if (IS_I915GM(dev))
5832 dev_priv->display.get_display_clock_speed =
5833 i915gm_get_display_clock_speed;
5834 else if (IS_I865G(dev))
5835 dev_priv->display.get_display_clock_speed =
5836 i865_get_display_clock_speed;
5837 else if (IS_I85X(dev))
5838 dev_priv->display.get_display_clock_speed =
5839 i855_get_display_clock_speed;
5840 else /* 852, 830 */
5841 dev_priv->display.get_display_clock_speed =
5842 i830_get_display_clock_speed;
5844 /* For FIFO watermark updates */
5845 if (HAS_PCH_SPLIT(dev)) {
5846 if (IS_IRONLAKE(dev)) {
5847 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5848 dev_priv->display.update_wm = ironlake_update_wm;
5849 else {
5850 DRM_DEBUG_KMS("Failed to get proper latency. "
5851 "Disable CxSR\n");
5852 dev_priv->display.update_wm = NULL;
5854 } else
5855 dev_priv->display.update_wm = NULL;
5856 } else if (IS_PINEVIEW(dev)) {
5857 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5858 dev_priv->is_ddr3,
5859 dev_priv->fsb_freq,
5860 dev_priv->mem_freq)) {
5861 DRM_INFO("failed to find known CxSR latency "
5862 "(found ddr%s fsb freq %d, mem freq %d), "
5863 "disabling CxSR\n",
5864 (dev_priv->is_ddr3 == 1) ? "3": "2",
5865 dev_priv->fsb_freq, dev_priv->mem_freq);
5866 /* Disable CxSR and never update its watermark again */
5867 pineview_disable_cxsr(dev);
5868 dev_priv->display.update_wm = NULL;
5869 } else
5870 dev_priv->display.update_wm = pineview_update_wm;
5871 } else if (IS_G4X(dev))
5872 dev_priv->display.update_wm = g4x_update_wm;
5873 else if (IS_I965G(dev))
5874 dev_priv->display.update_wm = i965_update_wm;
5875 else if (IS_I9XX(dev)) {
5876 dev_priv->display.update_wm = i9xx_update_wm;
5877 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5878 } else if (IS_I85X(dev)) {
5879 dev_priv->display.update_wm = i9xx_update_wm;
5880 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5881 } else {
5882 dev_priv->display.update_wm = i830_update_wm;
5883 if (IS_845G(dev))
5884 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5885 else
5886 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5891 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5892 * resume, or other times. This quirk makes sure that's the case for
5893 * affected systems.
5895 static void quirk_pipea_force (struct drm_device *dev)
5897 struct drm_i915_private *dev_priv = dev->dev_private;
5899 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5900 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5903 struct intel_quirk {
5904 int device;
5905 int subsystem_vendor;
5906 int subsystem_device;
5907 void (*hook)(struct drm_device *dev);
5910 struct intel_quirk intel_quirks[] = {
5911 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5912 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5913 /* HP Mini needs pipe A force quirk (LP: #322104) */
5914 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5916 /* Thinkpad R31 needs pipe A force quirk */
5917 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5918 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5919 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5921 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5922 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5923 /* ThinkPad X40 needs pipe A force quirk */
5925 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5926 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5928 /* 855 & before need to leave pipe A & dpll A up */
5929 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5930 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5933 static void intel_init_quirks(struct drm_device *dev)
5935 struct pci_dev *d = dev->pdev;
5936 int i;
5938 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5939 struct intel_quirk *q = &intel_quirks[i];
5941 if (d->device == q->device &&
5942 (d->subsystem_vendor == q->subsystem_vendor ||
5943 q->subsystem_vendor == PCI_ANY_ID) &&
5944 (d->subsystem_device == q->subsystem_device ||
5945 q->subsystem_device == PCI_ANY_ID))
5946 q->hook(dev);
5950 /* Disable the VGA plane that we never use */
5951 static void i915_disable_vga(struct drm_device *dev)
5953 struct drm_i915_private *dev_priv = dev->dev_private;
5954 u8 sr1;
5955 u32 vga_reg;
5957 if (HAS_PCH_SPLIT(dev))
5958 vga_reg = CPU_VGACNTRL;
5959 else
5960 vga_reg = VGACNTRL;
5962 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5963 outb(1, VGA_SR_INDEX);
5964 sr1 = inb(VGA_SR_DATA);
5965 outb(sr1 | 1<<5, VGA_SR_DATA);
5966 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5967 udelay(300);
5969 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
5970 POSTING_READ(vga_reg);
5973 void intel_modeset_init(struct drm_device *dev)
5975 struct drm_i915_private *dev_priv = dev->dev_private;
5976 int i;
5978 drm_mode_config_init(dev);
5980 dev->mode_config.min_width = 0;
5981 dev->mode_config.min_height = 0;
5983 dev->mode_config.funcs = (void *)&intel_mode_funcs;
5985 intel_init_quirks(dev);
5987 intel_init_display(dev);
5989 if (IS_I965G(dev)) {
5990 dev->mode_config.max_width = 8192;
5991 dev->mode_config.max_height = 8192;
5992 } else if (IS_I9XX(dev)) {
5993 dev->mode_config.max_width = 4096;
5994 dev->mode_config.max_height = 4096;
5995 } else {
5996 dev->mode_config.max_width = 2048;
5997 dev->mode_config.max_height = 2048;
6000 /* set memory base */
6001 if (IS_I9XX(dev))
6002 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6003 else
6004 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6006 if (IS_MOBILE(dev) || IS_I9XX(dev))
6007 dev_priv->num_pipe = 2;
6008 else
6009 dev_priv->num_pipe = 1;
6010 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6011 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6013 for (i = 0; i < dev_priv->num_pipe; i++) {
6014 intel_crtc_init(dev, i);
6017 intel_setup_outputs(dev);
6019 intel_init_clock_gating(dev);
6021 /* Just disable it once at startup */
6022 i915_disable_vga(dev);
6024 if (IS_IRONLAKE_M(dev)) {
6025 ironlake_enable_drps(dev);
6026 intel_init_emon(dev);
6029 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6030 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6031 (unsigned long)dev);
6033 intel_setup_overlay(dev);
6036 void intel_modeset_cleanup(struct drm_device *dev)
6038 struct drm_i915_private *dev_priv = dev->dev_private;
6039 struct drm_crtc *crtc;
6040 struct intel_crtc *intel_crtc;
6042 mutex_lock(&dev->struct_mutex);
6044 drm_kms_helper_poll_fini(dev);
6045 intel_fbdev_fini(dev);
6047 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6048 /* Skip inactive CRTCs */
6049 if (!crtc->fb)
6050 continue;
6052 intel_crtc = to_intel_crtc(crtc);
6053 intel_increase_pllclock(crtc, false);
6054 del_timer_sync(&intel_crtc->idle_timer);
6057 del_timer_sync(&dev_priv->idle_timer);
6059 if (dev_priv->display.disable_fbc)
6060 dev_priv->display.disable_fbc(dev);
6062 if (dev_priv->renderctx) {
6063 struct drm_i915_gem_object *obj_priv;
6065 obj_priv = to_intel_bo(dev_priv->renderctx);
6066 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6067 I915_READ(CCID);
6068 i915_gem_object_unpin(dev_priv->renderctx);
6069 drm_gem_object_unreference(dev_priv->renderctx);
6072 if (dev_priv->pwrctx) {
6073 struct drm_i915_gem_object *obj_priv;
6075 obj_priv = to_intel_bo(dev_priv->pwrctx);
6076 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6077 I915_READ(PWRCTXA);
6078 i915_gem_object_unpin(dev_priv->pwrctx);
6079 drm_gem_object_unreference(dev_priv->pwrctx);
6082 if (IS_IRONLAKE_M(dev))
6083 ironlake_disable_drps(dev);
6085 mutex_unlock(&dev->struct_mutex);
6087 drm_mode_config_cleanup(dev);
6092 * Return which encoder is currently attached for connector.
6094 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6096 struct drm_mode_object *obj;
6097 struct drm_encoder *encoder;
6098 int i;
6100 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6101 if (connector->encoder_ids[i] == 0)
6102 break;
6104 obj = drm_mode_object_find(connector->dev,
6105 connector->encoder_ids[i],
6106 DRM_MODE_OBJECT_ENCODER);
6107 if (!obj)
6108 continue;
6110 encoder = obj_to_encoder(obj);
6111 return encoder;
6113 return NULL;
6117 * set vga decode state - true == enable VGA decode
6119 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6121 struct drm_i915_private *dev_priv = dev->dev_private;
6122 u16 gmch_ctrl;
6124 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6125 if (state)
6126 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6127 else
6128 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6129 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6130 return 0;