1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_cap_data
{
90 kernel_cap_t permitted
;
91 kernel_cap_t inheritable
;
93 unsigned int fE
; /* effective bit of a file capability */
94 kernel_cap_t effective
; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
105 int name_len
; /* number of name's characters to log */
106 unsigned name_put
; /* call __putname() for this name */
114 struct audit_cap_data fcap
;
115 unsigned int fcap_ver
;
118 struct audit_aux_data
{
119 struct audit_aux_data
*next
;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve
{
129 struct audit_aux_data d
;
132 struct mm_struct
*mm
;
135 struct audit_aux_data_pids
{
136 struct audit_aux_data d
;
137 pid_t target_pid
[AUDIT_AUX_PIDS
];
138 uid_t target_auid
[AUDIT_AUX_PIDS
];
139 uid_t target_uid
[AUDIT_AUX_PIDS
];
140 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
141 u32 target_sid
[AUDIT_AUX_PIDS
];
142 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
146 struct audit_aux_data_bprm_fcaps
{
147 struct audit_aux_data d
;
148 struct audit_cap_data fcap
;
149 unsigned int fcap_ver
;
150 struct audit_cap_data old_pcap
;
151 struct audit_cap_data new_pcap
;
154 struct audit_aux_data_capset
{
155 struct audit_aux_data d
;
157 struct audit_cap_data cap
;
160 struct audit_tree_refs
{
161 struct audit_tree_refs
*next
;
162 struct audit_chunk
*c
[31];
165 /* The per-task audit context. */
166 struct audit_context
{
167 int dummy
; /* must be the first element */
168 int in_syscall
; /* 1 if task is in a syscall */
169 enum audit_state state
, current_state
;
170 unsigned int serial
; /* serial number for record */
171 int major
; /* syscall number */
172 struct timespec ctime
; /* time of syscall entry */
173 unsigned long argv
[4]; /* syscall arguments */
174 long return_code
;/* syscall return code */
176 int return_valid
; /* return code is valid */
178 struct audit_names names
[AUDIT_NAMES
];
179 char * filterkey
; /* key for rule that triggered record */
181 struct audit_context
*previous
; /* For nested syscalls */
182 struct audit_aux_data
*aux
;
183 struct audit_aux_data
*aux_pids
;
184 struct sockaddr_storage
*sockaddr
;
186 /* Save things to print about task_struct */
188 uid_t uid
, euid
, suid
, fsuid
;
189 gid_t gid
, egid
, sgid
, fsgid
;
190 unsigned long personality
;
196 unsigned int target_sessionid
;
198 char target_comm
[TASK_COMM_LEN
];
200 struct audit_tree_refs
*trees
, *first_trees
;
201 struct list_head killed_trees
;
219 unsigned long qbytes
;
223 struct mq_attr mqstat
;
232 unsigned int msg_prio
;
233 struct timespec abs_timeout
;
242 struct audit_cap_data cap
;
253 static inline int open_arg(int flags
, int mask
)
255 int n
= ACC_MODE(flags
);
256 if (flags
& (O_TRUNC
| O_CREAT
))
257 n
|= AUDIT_PERM_WRITE
;
261 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
268 switch (audit_classify_syscall(ctx
->arch
, n
)) {
270 if ((mask
& AUDIT_PERM_WRITE
) &&
271 audit_match_class(AUDIT_CLASS_WRITE
, n
))
273 if ((mask
& AUDIT_PERM_READ
) &&
274 audit_match_class(AUDIT_CLASS_READ
, n
))
276 if ((mask
& AUDIT_PERM_ATTR
) &&
277 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
280 case 1: /* 32bit on biarch */
281 if ((mask
& AUDIT_PERM_WRITE
) &&
282 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
284 if ((mask
& AUDIT_PERM_READ
) &&
285 audit_match_class(AUDIT_CLASS_READ_32
, n
))
287 if ((mask
& AUDIT_PERM_ATTR
) &&
288 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
292 return mask
& ACC_MODE(ctx
->argv
[1]);
294 return mask
& ACC_MODE(ctx
->argv
[2]);
295 case 4: /* socketcall */
296 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
298 return mask
& AUDIT_PERM_EXEC
;
304 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
306 unsigned index
= which
& ~S_IFMT
;
307 mode_t mode
= which
& S_IFMT
;
312 if (index
>= ctx
->name_count
)
314 if (ctx
->names
[index
].ino
== -1)
316 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
323 * ->first_trees points to its beginning, ->trees - to the current end of data.
324 * ->tree_count is the number of free entries in array pointed to by ->trees.
325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
327 * it's going to remain 1-element for almost any setup) until we free context itself.
328 * References in it _are_ dropped - at the same time we free/drop aux stuff.
331 #ifdef CONFIG_AUDIT_TREE
332 static void audit_set_auditable(struct audit_context
*ctx
)
336 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
340 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
342 struct audit_tree_refs
*p
= ctx
->trees
;
343 int left
= ctx
->tree_count
;
345 p
->c
[--left
] = chunk
;
346 ctx
->tree_count
= left
;
355 ctx
->tree_count
= 30;
361 static int grow_tree_refs(struct audit_context
*ctx
)
363 struct audit_tree_refs
*p
= ctx
->trees
;
364 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
370 p
->next
= ctx
->trees
;
372 ctx
->first_trees
= ctx
->trees
;
373 ctx
->tree_count
= 31;
378 static void unroll_tree_refs(struct audit_context
*ctx
,
379 struct audit_tree_refs
*p
, int count
)
381 #ifdef CONFIG_AUDIT_TREE
382 struct audit_tree_refs
*q
;
385 /* we started with empty chain */
386 p
= ctx
->first_trees
;
388 /* if the very first allocation has failed, nothing to do */
393 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
395 audit_put_chunk(q
->c
[n
]);
399 while (n
-- > ctx
->tree_count
) {
400 audit_put_chunk(q
->c
[n
]);
404 ctx
->tree_count
= count
;
408 static void free_tree_refs(struct audit_context
*ctx
)
410 struct audit_tree_refs
*p
, *q
;
411 for (p
= ctx
->first_trees
; p
; p
= q
) {
417 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
419 #ifdef CONFIG_AUDIT_TREE
420 struct audit_tree_refs
*p
;
425 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
426 for (n
= 0; n
< 31; n
++)
427 if (audit_tree_match(p
->c
[n
], tree
))
432 for (n
= ctx
->tree_count
; n
< 31; n
++)
433 if (audit_tree_match(p
->c
[n
], tree
))
440 /* Determine if any context name data matches a rule's watch data */
441 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 static int audit_filter_rules(struct task_struct
*tsk
,
444 struct audit_krule
*rule
,
445 struct audit_context
*ctx
,
446 struct audit_names
*name
,
447 enum audit_state
*state
)
449 const struct cred
*cred
= get_task_cred(tsk
);
450 int i
, j
, need_sid
= 1;
453 for (i
= 0; i
< rule
->field_count
; i
++) {
454 struct audit_field
*f
= &rule
->fields
[i
];
459 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
464 ctx
->ppid
= sys_getppid();
465 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
469 result
= audit_comparator(cred
->uid
, f
->op
, f
->val
);
472 result
= audit_comparator(cred
->euid
, f
->op
, f
->val
);
475 result
= audit_comparator(cred
->suid
, f
->op
, f
->val
);
478 result
= audit_comparator(cred
->fsuid
, f
->op
, f
->val
);
481 result
= audit_comparator(cred
->gid
, f
->op
, f
->val
);
484 result
= audit_comparator(cred
->egid
, f
->op
, f
->val
);
487 result
= audit_comparator(cred
->sgid
, f
->op
, f
->val
);
490 result
= audit_comparator(cred
->fsgid
, f
->op
, f
->val
);
493 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
497 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
501 if (ctx
&& ctx
->return_valid
)
502 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
505 if (ctx
&& ctx
->return_valid
) {
507 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
509 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
514 result
= audit_comparator(MAJOR(name
->dev
),
517 for (j
= 0; j
< ctx
->name_count
; j
++) {
518 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
527 result
= audit_comparator(MINOR(name
->dev
),
530 for (j
= 0; j
< ctx
->name_count
; j
++) {
531 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
540 result
= (name
->ino
== f
->val
);
542 for (j
= 0; j
< ctx
->name_count
; j
++) {
543 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
551 if (name
&& audit_watch_inode(rule
->watch
) != (unsigned long)-1)
552 result
= (name
->dev
== audit_watch_dev(rule
->watch
) &&
553 name
->ino
== audit_watch_inode(rule
->watch
));
557 result
= match_tree_refs(ctx
, rule
->tree
);
562 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
564 case AUDIT_SUBJ_USER
:
565 case AUDIT_SUBJ_ROLE
:
566 case AUDIT_SUBJ_TYPE
:
569 /* NOTE: this may return negative values indicating
570 a temporary error. We simply treat this as a
571 match for now to avoid losing information that
572 may be wanted. An error message will also be
576 security_task_getsecid(tsk
, &sid
);
579 result
= security_audit_rule_match(sid
, f
->type
,
588 case AUDIT_OBJ_LEV_LOW
:
589 case AUDIT_OBJ_LEV_HIGH
:
590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
593 /* Find files that match */
595 result
= security_audit_rule_match(
596 name
->osid
, f
->type
, f
->op
,
599 for (j
= 0; j
< ctx
->name_count
; j
++) {
600 if (security_audit_rule_match(
609 /* Find ipc objects that match */
610 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
612 if (security_audit_rule_match(ctx
->ipc
.osid
,
623 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
625 case AUDIT_FILTERKEY
:
626 /* ignore this field for filtering */
630 result
= audit_match_perm(ctx
, f
->val
);
633 result
= audit_match_filetype(ctx
, f
->val
);
644 if (rule
->prio
<= ctx
->prio
)
646 if (rule
->filterkey
) {
647 kfree(ctx
->filterkey
);
648 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
650 ctx
->prio
= rule
->prio
;
652 switch (rule
->action
) {
653 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
654 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
660 /* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
664 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
666 struct audit_entry
*e
;
667 enum audit_state state
;
670 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
671 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
672 if (state
== AUDIT_RECORD_CONTEXT
)
673 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
679 return AUDIT_BUILD_CONTEXT
;
682 /* At syscall entry and exit time, this filter is called if the
683 * audit_state is not low enough that auditing cannot take place, but is
684 * also not high enough that we already know we have to write an audit
685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
687 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
688 struct audit_context
*ctx
,
689 struct list_head
*list
)
691 struct audit_entry
*e
;
692 enum audit_state state
;
694 if (audit_pid
&& tsk
->tgid
== audit_pid
)
695 return AUDIT_DISABLED
;
698 if (!list_empty(list
)) {
699 int word
= AUDIT_WORD(ctx
->major
);
700 int bit
= AUDIT_BIT(ctx
->major
);
702 list_for_each_entry_rcu(e
, list
, list
) {
703 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
704 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
707 ctx
->current_state
= state
;
713 return AUDIT_BUILD_CONTEXT
;
716 /* At syscall exit time, this filter is called if any audit_names[] have been
717 * collected during syscall processing. We only check rules in sublists at hash
718 * buckets applicable to the inode numbers in audit_names[].
719 * Regarding audit_state, same rules apply as for audit_filter_syscall().
721 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
724 struct audit_entry
*e
;
725 enum audit_state state
;
727 if (audit_pid
&& tsk
->tgid
== audit_pid
)
731 for (i
= 0; i
< ctx
->name_count
; i
++) {
732 int word
= AUDIT_WORD(ctx
->major
);
733 int bit
= AUDIT_BIT(ctx
->major
);
734 struct audit_names
*n
= &ctx
->names
[i
];
735 int h
= audit_hash_ino((u32
)n
->ino
);
736 struct list_head
*list
= &audit_inode_hash
[h
];
738 if (list_empty(list
))
741 list_for_each_entry_rcu(e
, list
, list
) {
742 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
743 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
745 ctx
->current_state
= state
;
753 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
757 struct audit_context
*context
= tsk
->audit_context
;
759 if (likely(!context
))
761 context
->return_valid
= return_valid
;
764 * we need to fix up the return code in the audit logs if the actual
765 * return codes are later going to be fixed up by the arch specific
768 * This is actually a test for:
769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
772 * but is faster than a bunch of ||
774 if (unlikely(return_code
<= -ERESTARTSYS
) &&
775 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
776 (return_code
!= -ENOIOCTLCMD
))
777 context
->return_code
= -EINTR
;
779 context
->return_code
= return_code
;
781 if (context
->in_syscall
&& !context
->dummy
) {
782 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
783 audit_filter_inodes(tsk
, context
);
786 tsk
->audit_context
= NULL
;
790 static inline void audit_free_names(struct audit_context
*context
)
795 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
796 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
797 " name_count=%d put_count=%d"
798 " ino_count=%d [NOT freeing]\n",
800 context
->serial
, context
->major
, context
->in_syscall
,
801 context
->name_count
, context
->put_count
,
803 for (i
= 0; i
< context
->name_count
; i
++) {
804 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
805 context
->names
[i
].name
,
806 context
->names
[i
].name
?: "(null)");
813 context
->put_count
= 0;
814 context
->ino_count
= 0;
817 for (i
= 0; i
< context
->name_count
; i
++) {
818 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
819 __putname(context
->names
[i
].name
);
821 context
->name_count
= 0;
822 path_put(&context
->pwd
);
823 context
->pwd
.dentry
= NULL
;
824 context
->pwd
.mnt
= NULL
;
827 static inline void audit_free_aux(struct audit_context
*context
)
829 struct audit_aux_data
*aux
;
831 while ((aux
= context
->aux
)) {
832 context
->aux
= aux
->next
;
835 while ((aux
= context
->aux_pids
)) {
836 context
->aux_pids
= aux
->next
;
841 static inline void audit_zero_context(struct audit_context
*context
,
842 enum audit_state state
)
844 memset(context
, 0, sizeof(*context
));
845 context
->state
= state
;
846 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
849 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
851 struct audit_context
*context
;
853 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
855 audit_zero_context(context
, state
);
856 INIT_LIST_HEAD(&context
->killed_trees
);
861 * audit_alloc - allocate an audit context block for a task
864 * Filter on the task information and allocate a per-task audit context
865 * if necessary. Doing so turns on system call auditing for the
866 * specified task. This is called from copy_process, so no lock is
869 int audit_alloc(struct task_struct
*tsk
)
871 struct audit_context
*context
;
872 enum audit_state state
;
875 if (likely(!audit_ever_enabled
))
876 return 0; /* Return if not auditing. */
878 state
= audit_filter_task(tsk
, &key
);
879 if (likely(state
== AUDIT_DISABLED
))
882 if (!(context
= audit_alloc_context(state
))) {
884 audit_log_lost("out of memory in audit_alloc");
887 context
->filterkey
= key
;
889 tsk
->audit_context
= context
;
890 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
894 static inline void audit_free_context(struct audit_context
*context
)
896 struct audit_context
*previous
;
900 previous
= context
->previous
;
901 if (previous
|| (count
&& count
< 10)) {
903 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
904 " freeing multiple contexts (%d)\n",
905 context
->serial
, context
->major
,
906 context
->name_count
, count
);
908 audit_free_names(context
);
909 unroll_tree_refs(context
, NULL
, 0);
910 free_tree_refs(context
);
911 audit_free_aux(context
);
912 kfree(context
->filterkey
);
913 kfree(context
->sockaddr
);
918 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
921 void audit_log_task_context(struct audit_buffer
*ab
)
928 security_task_getsecid(current
, &sid
);
932 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
934 if (error
!= -EINVAL
)
939 audit_log_format(ab
, " subj=%s", ctx
);
940 security_release_secctx(ctx
, len
);
944 audit_panic("error in audit_log_task_context");
948 EXPORT_SYMBOL(audit_log_task_context
);
950 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
952 char name
[sizeof(tsk
->comm
)];
953 struct mm_struct
*mm
= tsk
->mm
;
954 struct vm_area_struct
*vma
;
958 get_task_comm(name
, tsk
);
959 audit_log_format(ab
, " comm=");
960 audit_log_untrustedstring(ab
, name
);
963 down_read(&mm
->mmap_sem
);
966 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
968 audit_log_d_path(ab
, "exe=",
969 &vma
->vm_file
->f_path
);
974 up_read(&mm
->mmap_sem
);
976 audit_log_task_context(ab
);
979 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
980 uid_t auid
, uid_t uid
, unsigned int sessionid
,
983 struct audit_buffer
*ab
;
988 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
992 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
994 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
995 audit_log_format(ab
, " obj=(none)");
998 audit_log_format(ab
, " obj=%s", ctx
);
999 security_release_secctx(ctx
, len
);
1001 audit_log_format(ab
, " ocomm=");
1002 audit_log_untrustedstring(ab
, comm
);
1009 * to_send and len_sent accounting are very loose estimates. We aren't
1010 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1011 * within about 500 bytes (next page boundry)
1013 * why snprintf? an int is up to 12 digits long. if we just assumed when
1014 * logging that a[%d]= was going to be 16 characters long we would be wasting
1015 * space in every audit message. In one 7500 byte message we can log up to
1016 * about 1000 min size arguments. That comes down to about 50% waste of space
1017 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 static int audit_log_single_execve_arg(struct audit_context
*context
,
1020 struct audit_buffer
**ab
,
1023 const char __user
*p
,
1026 char arg_num_len_buf
[12];
1027 const char __user
*tmp_p
= p
;
1028 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1029 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1030 size_t len
, len_left
, to_send
;
1031 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1032 unsigned int i
, has_cntl
= 0, too_long
= 0;
1035 /* strnlen_user includes the null we don't want to send */
1036 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1039 * We just created this mm, if we can't find the strings
1040 * we just copied into it something is _very_ wrong. Similar
1041 * for strings that are too long, we should not have created
1044 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1046 send_sig(SIGKILL
, current
, 0);
1050 /* walk the whole argument looking for non-ascii chars */
1052 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1053 to_send
= MAX_EXECVE_AUDIT_LEN
;
1056 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1058 * There is no reason for this copy to be short. We just
1059 * copied them here, and the mm hasn't been exposed to user-
1064 send_sig(SIGKILL
, current
, 0);
1067 buf
[to_send
] = '\0';
1068 has_cntl
= audit_string_contains_control(buf
, to_send
);
1071 * hex messages get logged as 2 bytes, so we can only
1072 * send half as much in each message
1074 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1077 len_left
-= to_send
;
1079 } while (len_left
> 0);
1083 if (len
> max_execve_audit_len
)
1086 /* rewalk the argument actually logging the message */
1087 for (i
= 0; len_left
> 0; i
++) {
1090 if (len_left
> max_execve_audit_len
)
1091 to_send
= max_execve_audit_len
;
1095 /* do we have space left to send this argument in this ab? */
1096 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1098 room_left
-= (to_send
* 2);
1100 room_left
-= to_send
;
1101 if (room_left
< 0) {
1104 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1110 * first record needs to say how long the original string was
1111 * so we can be sure nothing was lost.
1113 if ((i
== 0) && (too_long
))
1114 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1115 has_cntl
? 2*len
: len
);
1118 * normally arguments are small enough to fit and we already
1119 * filled buf above when we checked for control characters
1120 * so don't bother with another copy_from_user
1122 if (len
>= max_execve_audit_len
)
1123 ret
= copy_from_user(buf
, p
, to_send
);
1128 send_sig(SIGKILL
, current
, 0);
1131 buf
[to_send
] = '\0';
1133 /* actually log it */
1134 audit_log_format(*ab
, " a%d", arg_num
);
1136 audit_log_format(*ab
, "[%d]", i
);
1137 audit_log_format(*ab
, "=");
1139 audit_log_n_hex(*ab
, buf
, to_send
);
1141 audit_log_string(*ab
, buf
);
1144 len_left
-= to_send
;
1145 *len_sent
+= arg_num_len
;
1147 *len_sent
+= to_send
* 2;
1149 *len_sent
+= to_send
;
1151 /* include the null we didn't log */
1155 static void audit_log_execve_info(struct audit_context
*context
,
1156 struct audit_buffer
**ab
,
1157 struct audit_aux_data_execve
*axi
)
1160 size_t len
, len_sent
= 0;
1161 const char __user
*p
;
1164 if (axi
->mm
!= current
->mm
)
1165 return; /* execve failed, no additional info */
1167 p
= (const char __user
*)axi
->mm
->arg_start
;
1169 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1172 * we need some kernel buffer to hold the userspace args. Just
1173 * allocate one big one rather than allocating one of the right size
1174 * for every single argument inside audit_log_single_execve_arg()
1175 * should be <8k allocation so should be pretty safe.
1177 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1179 audit_panic("out of memory for argv string\n");
1183 for (i
= 0; i
< axi
->argc
; i
++) {
1184 len
= audit_log_single_execve_arg(context
, ab
, i
,
1193 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1197 audit_log_format(ab
, " %s=", prefix
);
1198 CAP_FOR_EACH_U32(i
) {
1199 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1203 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1205 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1206 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1209 if (!cap_isclear(*perm
)) {
1210 audit_log_cap(ab
, "cap_fp", perm
);
1213 if (!cap_isclear(*inh
)) {
1214 audit_log_cap(ab
, "cap_fi", inh
);
1219 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1222 static void show_special(struct audit_context
*context
, int *call_panic
)
1224 struct audit_buffer
*ab
;
1227 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1231 switch (context
->type
) {
1232 case AUDIT_SOCKETCALL
: {
1233 int nargs
= context
->socketcall
.nargs
;
1234 audit_log_format(ab
, "nargs=%d", nargs
);
1235 for (i
= 0; i
< nargs
; i
++)
1236 audit_log_format(ab
, " a%d=%lx", i
,
1237 context
->socketcall
.args
[i
]);
1240 u32 osid
= context
->ipc
.osid
;
1242 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#o",
1243 context
->ipc
.uid
, context
->ipc
.gid
, context
->ipc
.mode
);
1247 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1248 audit_log_format(ab
, " osid=%u", osid
);
1251 audit_log_format(ab
, " obj=%s", ctx
);
1252 security_release_secctx(ctx
, len
);
1255 if (context
->ipc
.has_perm
) {
1257 ab
= audit_log_start(context
, GFP_KERNEL
,
1258 AUDIT_IPC_SET_PERM
);
1259 audit_log_format(ab
,
1260 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1261 context
->ipc
.qbytes
,
1262 context
->ipc
.perm_uid
,
1263 context
->ipc
.perm_gid
,
1264 context
->ipc
.perm_mode
);
1269 case AUDIT_MQ_OPEN
: {
1270 audit_log_format(ab
,
1271 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1272 "mq_msgsize=%ld mq_curmsgs=%ld",
1273 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1274 context
->mq_open
.attr
.mq_flags
,
1275 context
->mq_open
.attr
.mq_maxmsg
,
1276 context
->mq_open
.attr
.mq_msgsize
,
1277 context
->mq_open
.attr
.mq_curmsgs
);
1279 case AUDIT_MQ_SENDRECV
: {
1280 audit_log_format(ab
,
1281 "mqdes=%d msg_len=%zd msg_prio=%u "
1282 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1283 context
->mq_sendrecv
.mqdes
,
1284 context
->mq_sendrecv
.msg_len
,
1285 context
->mq_sendrecv
.msg_prio
,
1286 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1287 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1289 case AUDIT_MQ_NOTIFY
: {
1290 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1291 context
->mq_notify
.mqdes
,
1292 context
->mq_notify
.sigev_signo
);
1294 case AUDIT_MQ_GETSETATTR
: {
1295 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1296 audit_log_format(ab
,
1297 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1299 context
->mq_getsetattr
.mqdes
,
1300 attr
->mq_flags
, attr
->mq_maxmsg
,
1301 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1303 case AUDIT_CAPSET
: {
1304 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1305 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1306 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1307 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1313 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1315 const struct cred
*cred
;
1316 int i
, call_panic
= 0;
1317 struct audit_buffer
*ab
;
1318 struct audit_aux_data
*aux
;
1321 /* tsk == current */
1322 context
->pid
= tsk
->pid
;
1324 context
->ppid
= sys_getppid();
1325 cred
= current_cred();
1326 context
->uid
= cred
->uid
;
1327 context
->gid
= cred
->gid
;
1328 context
->euid
= cred
->euid
;
1329 context
->suid
= cred
->suid
;
1330 context
->fsuid
= cred
->fsuid
;
1331 context
->egid
= cred
->egid
;
1332 context
->sgid
= cred
->sgid
;
1333 context
->fsgid
= cred
->fsgid
;
1334 context
->personality
= tsk
->personality
;
1336 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1338 return; /* audit_panic has been called */
1339 audit_log_format(ab
, "arch=%x syscall=%d",
1340 context
->arch
, context
->major
);
1341 if (context
->personality
!= PER_LINUX
)
1342 audit_log_format(ab
, " per=%lx", context
->personality
);
1343 if (context
->return_valid
)
1344 audit_log_format(ab
, " success=%s exit=%ld",
1345 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1346 context
->return_code
);
1348 spin_lock_irq(&tsk
->sighand
->siglock
);
1349 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1350 tty
= tsk
->signal
->tty
->name
;
1353 spin_unlock_irq(&tsk
->sighand
->siglock
);
1355 audit_log_format(ab
,
1356 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1357 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1358 " euid=%u suid=%u fsuid=%u"
1359 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1364 context
->name_count
,
1370 context
->euid
, context
->suid
, context
->fsuid
,
1371 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1375 audit_log_task_info(ab
, tsk
);
1376 audit_log_key(ab
, context
->filterkey
);
1379 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1381 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1383 continue; /* audit_panic has been called */
1385 switch (aux
->type
) {
1387 case AUDIT_EXECVE
: {
1388 struct audit_aux_data_execve
*axi
= (void *)aux
;
1389 audit_log_execve_info(context
, &ab
, axi
);
1392 case AUDIT_BPRM_FCAPS
: {
1393 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1394 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1395 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1396 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1397 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1398 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1399 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1400 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1401 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1402 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1403 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1411 show_special(context
, &call_panic
);
1413 if (context
->fds
[0] >= 0) {
1414 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1416 audit_log_format(ab
, "fd0=%d fd1=%d",
1417 context
->fds
[0], context
->fds
[1]);
1422 if (context
->sockaddr_len
) {
1423 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1425 audit_log_format(ab
, "saddr=");
1426 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1427 context
->sockaddr_len
);
1432 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1433 struct audit_aux_data_pids
*axs
= (void *)aux
;
1435 for (i
= 0; i
< axs
->pid_count
; i
++)
1436 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1437 axs
->target_auid
[i
],
1439 axs
->target_sessionid
[i
],
1441 axs
->target_comm
[i
]))
1445 if (context
->target_pid
&&
1446 audit_log_pid_context(context
, context
->target_pid
,
1447 context
->target_auid
, context
->target_uid
,
1448 context
->target_sessionid
,
1449 context
->target_sid
, context
->target_comm
))
1452 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1453 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1455 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1459 for (i
= 0; i
< context
->name_count
; i
++) {
1460 struct audit_names
*n
= &context
->names
[i
];
1462 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1464 continue; /* audit_panic has been called */
1466 audit_log_format(ab
, "item=%d", i
);
1469 switch(n
->name_len
) {
1470 case AUDIT_NAME_FULL
:
1471 /* log the full path */
1472 audit_log_format(ab
, " name=");
1473 audit_log_untrustedstring(ab
, n
->name
);
1476 /* name was specified as a relative path and the
1477 * directory component is the cwd */
1478 audit_log_d_path(ab
, "name=", &context
->pwd
);
1481 /* log the name's directory component */
1482 audit_log_format(ab
, " name=");
1483 audit_log_n_untrustedstring(ab
, n
->name
,
1487 audit_log_format(ab
, " name=(null)");
1489 if (n
->ino
!= (unsigned long)-1) {
1490 audit_log_format(ab
, " inode=%lu"
1491 " dev=%02x:%02x mode=%#o"
1492 " ouid=%u ogid=%u rdev=%02x:%02x",
1505 if (security_secid_to_secctx(
1506 n
->osid
, &ctx
, &len
)) {
1507 audit_log_format(ab
, " osid=%u", n
->osid
);
1510 audit_log_format(ab
, " obj=%s", ctx
);
1511 security_release_secctx(ctx
, len
);
1515 audit_log_fcaps(ab
, n
);
1520 /* Send end of event record to help user space know we are finished */
1521 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1525 audit_panic("error converting sid to string");
1529 * audit_free - free a per-task audit context
1530 * @tsk: task whose audit context block to free
1532 * Called from copy_process and do_exit
1534 void audit_free(struct task_struct
*tsk
)
1536 struct audit_context
*context
;
1538 context
= audit_get_context(tsk
, 0, 0);
1539 if (likely(!context
))
1542 /* Check for system calls that do not go through the exit
1543 * function (e.g., exit_group), then free context block.
1544 * We use GFP_ATOMIC here because we might be doing this
1545 * in the context of the idle thread */
1546 /* that can happen only if we are called from do_exit() */
1547 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1548 audit_log_exit(context
, tsk
);
1549 if (!list_empty(&context
->killed_trees
))
1550 audit_kill_trees(&context
->killed_trees
);
1552 audit_free_context(context
);
1556 * audit_syscall_entry - fill in an audit record at syscall entry
1557 * @arch: architecture type
1558 * @major: major syscall type (function)
1559 * @a1: additional syscall register 1
1560 * @a2: additional syscall register 2
1561 * @a3: additional syscall register 3
1562 * @a4: additional syscall register 4
1564 * Fill in audit context at syscall entry. This only happens if the
1565 * audit context was created when the task was created and the state or
1566 * filters demand the audit context be built. If the state from the
1567 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1568 * then the record will be written at syscall exit time (otherwise, it
1569 * will only be written if another part of the kernel requests that it
1572 void audit_syscall_entry(int arch
, int major
,
1573 unsigned long a1
, unsigned long a2
,
1574 unsigned long a3
, unsigned long a4
)
1576 struct task_struct
*tsk
= current
;
1577 struct audit_context
*context
= tsk
->audit_context
;
1578 enum audit_state state
;
1580 if (unlikely(!context
))
1584 * This happens only on certain architectures that make system
1585 * calls in kernel_thread via the entry.S interface, instead of
1586 * with direct calls. (If you are porting to a new
1587 * architecture, hitting this condition can indicate that you
1588 * got the _exit/_leave calls backward in entry.S.)
1592 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1594 * This also happens with vm86 emulation in a non-nested manner
1595 * (entries without exits), so this case must be caught.
1597 if (context
->in_syscall
) {
1598 struct audit_context
*newctx
;
1602 "audit(:%d) pid=%d in syscall=%d;"
1603 " entering syscall=%d\n",
1604 context
->serial
, tsk
->pid
, context
->major
, major
);
1606 newctx
= audit_alloc_context(context
->state
);
1608 newctx
->previous
= context
;
1610 tsk
->audit_context
= newctx
;
1612 /* If we can't alloc a new context, the best we
1613 * can do is to leak memory (any pending putname
1614 * will be lost). The only other alternative is
1615 * to abandon auditing. */
1616 audit_zero_context(context
, context
->state
);
1619 BUG_ON(context
->in_syscall
|| context
->name_count
);
1624 context
->arch
= arch
;
1625 context
->major
= major
;
1626 context
->argv
[0] = a1
;
1627 context
->argv
[1] = a2
;
1628 context
->argv
[2] = a3
;
1629 context
->argv
[3] = a4
;
1631 state
= context
->state
;
1632 context
->dummy
= !audit_n_rules
;
1633 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1635 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1637 if (likely(state
== AUDIT_DISABLED
))
1640 context
->serial
= 0;
1641 context
->ctime
= CURRENT_TIME
;
1642 context
->in_syscall
= 1;
1643 context
->current_state
= state
;
1647 void audit_finish_fork(struct task_struct
*child
)
1649 struct audit_context
*ctx
= current
->audit_context
;
1650 struct audit_context
*p
= child
->audit_context
;
1653 if (!ctx
->in_syscall
|| ctx
->current_state
!= AUDIT_RECORD_CONTEXT
)
1655 p
->arch
= ctx
->arch
;
1656 p
->major
= ctx
->major
;
1657 memcpy(p
->argv
, ctx
->argv
, sizeof(ctx
->argv
));
1658 p
->ctime
= ctx
->ctime
;
1659 p
->dummy
= ctx
->dummy
;
1660 p
->in_syscall
= ctx
->in_syscall
;
1661 p
->filterkey
= kstrdup(ctx
->filterkey
, GFP_KERNEL
);
1662 p
->ppid
= current
->pid
;
1663 p
->prio
= ctx
->prio
;
1664 p
->current_state
= ctx
->current_state
;
1668 * audit_syscall_exit - deallocate audit context after a system call
1669 * @valid: success/failure flag
1670 * @return_code: syscall return value
1672 * Tear down after system call. If the audit context has been marked as
1673 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1674 * filtering, or because some other part of the kernel write an audit
1675 * message), then write out the syscall information. In call cases,
1676 * free the names stored from getname().
1678 void audit_syscall_exit(int valid
, long return_code
)
1680 struct task_struct
*tsk
= current
;
1681 struct audit_context
*context
;
1683 context
= audit_get_context(tsk
, valid
, return_code
);
1685 if (likely(!context
))
1688 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1689 audit_log_exit(context
, tsk
);
1691 context
->in_syscall
= 0;
1692 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1694 if (!list_empty(&context
->killed_trees
))
1695 audit_kill_trees(&context
->killed_trees
);
1697 if (context
->previous
) {
1698 struct audit_context
*new_context
= context
->previous
;
1699 context
->previous
= NULL
;
1700 audit_free_context(context
);
1701 tsk
->audit_context
= new_context
;
1703 audit_free_names(context
);
1704 unroll_tree_refs(context
, NULL
, 0);
1705 audit_free_aux(context
);
1706 context
->aux
= NULL
;
1707 context
->aux_pids
= NULL
;
1708 context
->target_pid
= 0;
1709 context
->target_sid
= 0;
1710 context
->sockaddr_len
= 0;
1712 context
->fds
[0] = -1;
1713 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1714 kfree(context
->filterkey
);
1715 context
->filterkey
= NULL
;
1717 tsk
->audit_context
= context
;
1721 static inline void handle_one(const struct inode
*inode
)
1723 #ifdef CONFIG_AUDIT_TREE
1724 struct audit_context
*context
;
1725 struct audit_tree_refs
*p
;
1726 struct audit_chunk
*chunk
;
1728 if (likely(list_empty(&inode
->inotify_watches
)))
1730 context
= current
->audit_context
;
1732 count
= context
->tree_count
;
1734 chunk
= audit_tree_lookup(inode
);
1738 if (likely(put_tree_ref(context
, chunk
)))
1740 if (unlikely(!grow_tree_refs(context
))) {
1741 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1742 audit_set_auditable(context
);
1743 audit_put_chunk(chunk
);
1744 unroll_tree_refs(context
, p
, count
);
1747 put_tree_ref(context
, chunk
);
1751 static void handle_path(const struct dentry
*dentry
)
1753 #ifdef CONFIG_AUDIT_TREE
1754 struct audit_context
*context
;
1755 struct audit_tree_refs
*p
;
1756 const struct dentry
*d
, *parent
;
1757 struct audit_chunk
*drop
;
1761 context
= current
->audit_context
;
1763 count
= context
->tree_count
;
1768 seq
= read_seqbegin(&rename_lock
);
1770 struct inode
*inode
= d
->d_inode
;
1771 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1772 struct audit_chunk
*chunk
;
1773 chunk
= audit_tree_lookup(inode
);
1775 if (unlikely(!put_tree_ref(context
, chunk
))) {
1781 parent
= d
->d_parent
;
1786 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1789 /* just a race with rename */
1790 unroll_tree_refs(context
, p
, count
);
1793 audit_put_chunk(drop
);
1794 if (grow_tree_refs(context
)) {
1795 /* OK, got more space */
1796 unroll_tree_refs(context
, p
, count
);
1801 "out of memory, audit has lost a tree reference\n");
1802 unroll_tree_refs(context
, p
, count
);
1803 audit_set_auditable(context
);
1811 * audit_getname - add a name to the list
1812 * @name: name to add
1814 * Add a name to the list of audit names for this context.
1815 * Called from fs/namei.c:getname().
1817 void __audit_getname(const char *name
)
1819 struct audit_context
*context
= current
->audit_context
;
1821 if (IS_ERR(name
) || !name
)
1824 if (!context
->in_syscall
) {
1825 #if AUDIT_DEBUG == 2
1826 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1827 __FILE__
, __LINE__
, context
->serial
, name
);
1832 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1833 context
->names
[context
->name_count
].name
= name
;
1834 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1835 context
->names
[context
->name_count
].name_put
= 1;
1836 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1837 context
->names
[context
->name_count
].osid
= 0;
1838 ++context
->name_count
;
1839 if (!context
->pwd
.dentry
) {
1840 read_lock(¤t
->fs
->lock
);
1841 context
->pwd
= current
->fs
->pwd
;
1842 path_get(¤t
->fs
->pwd
);
1843 read_unlock(¤t
->fs
->lock
);
1848 /* audit_putname - intercept a putname request
1849 * @name: name to intercept and delay for putname
1851 * If we have stored the name from getname in the audit context,
1852 * then we delay the putname until syscall exit.
1853 * Called from include/linux/fs.h:putname().
1855 void audit_putname(const char *name
)
1857 struct audit_context
*context
= current
->audit_context
;
1860 if (!context
->in_syscall
) {
1861 #if AUDIT_DEBUG == 2
1862 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1863 __FILE__
, __LINE__
, context
->serial
, name
);
1864 if (context
->name_count
) {
1866 for (i
= 0; i
< context
->name_count
; i
++)
1867 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1868 context
->names
[i
].name
,
1869 context
->names
[i
].name
?: "(null)");
1876 ++context
->put_count
;
1877 if (context
->put_count
> context
->name_count
) {
1878 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1879 " in_syscall=%d putname(%p) name_count=%d"
1882 context
->serial
, context
->major
,
1883 context
->in_syscall
, name
, context
->name_count
,
1884 context
->put_count
);
1891 static int audit_inc_name_count(struct audit_context
*context
,
1892 const struct inode
*inode
)
1894 if (context
->name_count
>= AUDIT_NAMES
) {
1896 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1897 "dev=%02x:%02x, inode=%lu\n",
1898 MAJOR(inode
->i_sb
->s_dev
),
1899 MINOR(inode
->i_sb
->s_dev
),
1903 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1906 context
->name_count
++;
1908 context
->ino_count
++;
1914 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
1916 struct cpu_vfs_cap_data caps
;
1919 memset(&name
->fcap
.permitted
, 0, sizeof(kernel_cap_t
));
1920 memset(&name
->fcap
.inheritable
, 0, sizeof(kernel_cap_t
));
1927 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1931 name
->fcap
.permitted
= caps
.permitted
;
1932 name
->fcap
.inheritable
= caps
.inheritable
;
1933 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1934 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
1940 /* Copy inode data into an audit_names. */
1941 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
1942 const struct inode
*inode
)
1944 name
->ino
= inode
->i_ino
;
1945 name
->dev
= inode
->i_sb
->s_dev
;
1946 name
->mode
= inode
->i_mode
;
1947 name
->uid
= inode
->i_uid
;
1948 name
->gid
= inode
->i_gid
;
1949 name
->rdev
= inode
->i_rdev
;
1950 security_inode_getsecid(inode
, &name
->osid
);
1951 audit_copy_fcaps(name
, dentry
);
1955 * audit_inode - store the inode and device from a lookup
1956 * @name: name being audited
1957 * @dentry: dentry being audited
1959 * Called from fs/namei.c:path_lookup().
1961 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1964 struct audit_context
*context
= current
->audit_context
;
1965 const struct inode
*inode
= dentry
->d_inode
;
1967 if (!context
->in_syscall
)
1969 if (context
->name_count
1970 && context
->names
[context
->name_count
-1].name
1971 && context
->names
[context
->name_count
-1].name
== name
)
1972 idx
= context
->name_count
- 1;
1973 else if (context
->name_count
> 1
1974 && context
->names
[context
->name_count
-2].name
1975 && context
->names
[context
->name_count
-2].name
== name
)
1976 idx
= context
->name_count
- 2;
1978 /* FIXME: how much do we care about inodes that have no
1979 * associated name? */
1980 if (audit_inc_name_count(context
, inode
))
1982 idx
= context
->name_count
- 1;
1983 context
->names
[idx
].name
= NULL
;
1985 handle_path(dentry
);
1986 audit_copy_inode(&context
->names
[idx
], dentry
, inode
);
1990 * audit_inode_child - collect inode info for created/removed objects
1991 * @dname: inode's dentry name
1992 * @dentry: dentry being audited
1993 * @parent: inode of dentry parent
1995 * For syscalls that create or remove filesystem objects, audit_inode
1996 * can only collect information for the filesystem object's parent.
1997 * This call updates the audit context with the child's information.
1998 * Syscalls that create a new filesystem object must be hooked after
1999 * the object is created. Syscalls that remove a filesystem object
2000 * must be hooked prior, in order to capture the target inode during
2001 * unsuccessful attempts.
2003 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
2004 const struct inode
*parent
)
2007 struct audit_context
*context
= current
->audit_context
;
2008 const char *found_parent
= NULL
, *found_child
= NULL
;
2009 const struct inode
*inode
= dentry
->d_inode
;
2012 if (!context
->in_syscall
)
2017 /* determine matching parent */
2021 /* parent is more likely, look for it first */
2022 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2023 struct audit_names
*n
= &context
->names
[idx
];
2028 if (n
->ino
== parent
->i_ino
&&
2029 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2030 n
->name_len
= dirlen
; /* update parent data in place */
2031 found_parent
= n
->name
;
2036 /* no matching parent, look for matching child */
2037 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2038 struct audit_names
*n
= &context
->names
[idx
];
2043 /* strcmp() is the more likely scenario */
2044 if (!strcmp(dname
, n
->name
) ||
2045 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2047 audit_copy_inode(n
, NULL
, inode
);
2049 n
->ino
= (unsigned long)-1;
2050 found_child
= n
->name
;
2056 if (!found_parent
) {
2057 if (audit_inc_name_count(context
, parent
))
2059 idx
= context
->name_count
- 1;
2060 context
->names
[idx
].name
= NULL
;
2061 audit_copy_inode(&context
->names
[idx
], NULL
, parent
);
2065 if (audit_inc_name_count(context
, inode
))
2067 idx
= context
->name_count
- 1;
2069 /* Re-use the name belonging to the slot for a matching parent
2070 * directory. All names for this context are relinquished in
2071 * audit_free_names() */
2073 context
->names
[idx
].name
= found_parent
;
2074 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
2075 /* don't call __putname() */
2076 context
->names
[idx
].name_put
= 0;
2078 context
->names
[idx
].name
= NULL
;
2082 audit_copy_inode(&context
->names
[idx
], NULL
, inode
);
2084 context
->names
[idx
].ino
= (unsigned long)-1;
2087 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2090 * auditsc_get_stamp - get local copies of audit_context values
2091 * @ctx: audit_context for the task
2092 * @t: timespec to store time recorded in the audit_context
2093 * @serial: serial value that is recorded in the audit_context
2095 * Also sets the context as auditable.
2097 int auditsc_get_stamp(struct audit_context
*ctx
,
2098 struct timespec
*t
, unsigned int *serial
)
2100 if (!ctx
->in_syscall
)
2103 ctx
->serial
= audit_serial();
2104 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2105 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2106 *serial
= ctx
->serial
;
2109 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2114 /* global counter which is incremented every time something logs in */
2115 static atomic_t session_id
= ATOMIC_INIT(0);
2118 * audit_set_loginuid - set a task's audit_context loginuid
2119 * @task: task whose audit context is being modified
2120 * @loginuid: loginuid value
2124 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2126 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
2128 unsigned int sessionid
= atomic_inc_return(&session_id
);
2129 struct audit_context
*context
= task
->audit_context
;
2131 if (context
&& context
->in_syscall
) {
2132 struct audit_buffer
*ab
;
2134 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2136 audit_log_format(ab
, "login pid=%d uid=%u "
2137 "old auid=%u new auid=%u"
2138 " old ses=%u new ses=%u",
2139 task
->pid
, task_uid(task
),
2140 task
->loginuid
, loginuid
,
2141 task
->sessionid
, sessionid
);
2145 task
->sessionid
= sessionid
;
2146 task
->loginuid
= loginuid
;
2151 * __audit_mq_open - record audit data for a POSIX MQ open
2154 * @attr: queue attributes
2157 void __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr
*attr
)
2159 struct audit_context
*context
= current
->audit_context
;
2162 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2164 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2166 context
->mq_open
.oflag
= oflag
;
2167 context
->mq_open
.mode
= mode
;
2169 context
->type
= AUDIT_MQ_OPEN
;
2173 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2174 * @mqdes: MQ descriptor
2175 * @msg_len: Message length
2176 * @msg_prio: Message priority
2177 * @abs_timeout: Message timeout in absolute time
2180 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2181 const struct timespec
*abs_timeout
)
2183 struct audit_context
*context
= current
->audit_context
;
2184 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2187 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2189 memset(p
, 0, sizeof(struct timespec
));
2191 context
->mq_sendrecv
.mqdes
= mqdes
;
2192 context
->mq_sendrecv
.msg_len
= msg_len
;
2193 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2195 context
->type
= AUDIT_MQ_SENDRECV
;
2199 * __audit_mq_notify - record audit data for a POSIX MQ notify
2200 * @mqdes: MQ descriptor
2201 * @notification: Notification event
2205 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2207 struct audit_context
*context
= current
->audit_context
;
2210 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2212 context
->mq_notify
.sigev_signo
= 0;
2214 context
->mq_notify
.mqdes
= mqdes
;
2215 context
->type
= AUDIT_MQ_NOTIFY
;
2219 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2220 * @mqdes: MQ descriptor
2224 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2226 struct audit_context
*context
= current
->audit_context
;
2227 context
->mq_getsetattr
.mqdes
= mqdes
;
2228 context
->mq_getsetattr
.mqstat
= *mqstat
;
2229 context
->type
= AUDIT_MQ_GETSETATTR
;
2233 * audit_ipc_obj - record audit data for ipc object
2234 * @ipcp: ipc permissions
2237 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2239 struct audit_context
*context
= current
->audit_context
;
2240 context
->ipc
.uid
= ipcp
->uid
;
2241 context
->ipc
.gid
= ipcp
->gid
;
2242 context
->ipc
.mode
= ipcp
->mode
;
2243 context
->ipc
.has_perm
= 0;
2244 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2245 context
->type
= AUDIT_IPC
;
2249 * audit_ipc_set_perm - record audit data for new ipc permissions
2250 * @qbytes: msgq bytes
2251 * @uid: msgq user id
2252 * @gid: msgq group id
2253 * @mode: msgq mode (permissions)
2255 * Called only after audit_ipc_obj().
2257 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2259 struct audit_context
*context
= current
->audit_context
;
2261 context
->ipc
.qbytes
= qbytes
;
2262 context
->ipc
.perm_uid
= uid
;
2263 context
->ipc
.perm_gid
= gid
;
2264 context
->ipc
.perm_mode
= mode
;
2265 context
->ipc
.has_perm
= 1;
2268 int audit_bprm(struct linux_binprm
*bprm
)
2270 struct audit_aux_data_execve
*ax
;
2271 struct audit_context
*context
= current
->audit_context
;
2273 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2276 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2280 ax
->argc
= bprm
->argc
;
2281 ax
->envc
= bprm
->envc
;
2283 ax
->d
.type
= AUDIT_EXECVE
;
2284 ax
->d
.next
= context
->aux
;
2285 context
->aux
= (void *)ax
;
2291 * audit_socketcall - record audit data for sys_socketcall
2292 * @nargs: number of args
2296 void audit_socketcall(int nargs
, unsigned long *args
)
2298 struct audit_context
*context
= current
->audit_context
;
2300 if (likely(!context
|| context
->dummy
))
2303 context
->type
= AUDIT_SOCKETCALL
;
2304 context
->socketcall
.nargs
= nargs
;
2305 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2309 * __audit_fd_pair - record audit data for pipe and socketpair
2310 * @fd1: the first file descriptor
2311 * @fd2: the second file descriptor
2314 void __audit_fd_pair(int fd1
, int fd2
)
2316 struct audit_context
*context
= current
->audit_context
;
2317 context
->fds
[0] = fd1
;
2318 context
->fds
[1] = fd2
;
2322 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2323 * @len: data length in user space
2324 * @a: data address in kernel space
2326 * Returns 0 for success or NULL context or < 0 on error.
2328 int audit_sockaddr(int len
, void *a
)
2330 struct audit_context
*context
= current
->audit_context
;
2332 if (likely(!context
|| context
->dummy
))
2335 if (!context
->sockaddr
) {
2336 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2339 context
->sockaddr
= p
;
2342 context
->sockaddr_len
= len
;
2343 memcpy(context
->sockaddr
, a
, len
);
2347 void __audit_ptrace(struct task_struct
*t
)
2349 struct audit_context
*context
= current
->audit_context
;
2351 context
->target_pid
= t
->pid
;
2352 context
->target_auid
= audit_get_loginuid(t
);
2353 context
->target_uid
= task_uid(t
);
2354 context
->target_sessionid
= audit_get_sessionid(t
);
2355 security_task_getsecid(t
, &context
->target_sid
);
2356 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2360 * audit_signal_info - record signal info for shutting down audit subsystem
2361 * @sig: signal value
2362 * @t: task being signaled
2364 * If the audit subsystem is being terminated, record the task (pid)
2365 * and uid that is doing that.
2367 int __audit_signal_info(int sig
, struct task_struct
*t
)
2369 struct audit_aux_data_pids
*axp
;
2370 struct task_struct
*tsk
= current
;
2371 struct audit_context
*ctx
= tsk
->audit_context
;
2372 uid_t uid
= current_uid(), t_uid
= task_uid(t
);
2374 if (audit_pid
&& t
->tgid
== audit_pid
) {
2375 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2376 audit_sig_pid
= tsk
->pid
;
2377 if (tsk
->loginuid
!= -1)
2378 audit_sig_uid
= tsk
->loginuid
;
2380 audit_sig_uid
= uid
;
2381 security_task_getsecid(tsk
, &audit_sig_sid
);
2383 if (!audit_signals
|| audit_dummy_context())
2387 /* optimize the common case by putting first signal recipient directly
2388 * in audit_context */
2389 if (!ctx
->target_pid
) {
2390 ctx
->target_pid
= t
->tgid
;
2391 ctx
->target_auid
= audit_get_loginuid(t
);
2392 ctx
->target_uid
= t_uid
;
2393 ctx
->target_sessionid
= audit_get_sessionid(t
);
2394 security_task_getsecid(t
, &ctx
->target_sid
);
2395 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2399 axp
= (void *)ctx
->aux_pids
;
2400 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2401 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2405 axp
->d
.type
= AUDIT_OBJ_PID
;
2406 axp
->d
.next
= ctx
->aux_pids
;
2407 ctx
->aux_pids
= (void *)axp
;
2409 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2411 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2412 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2413 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2414 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2415 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2416 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2423 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2424 * @bprm: pointer to the bprm being processed
2425 * @new: the proposed new credentials
2426 * @old: the old credentials
2428 * Simply check if the proc already has the caps given by the file and if not
2429 * store the priv escalation info for later auditing at the end of the syscall
2433 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2434 const struct cred
*new, const struct cred
*old
)
2436 struct audit_aux_data_bprm_fcaps
*ax
;
2437 struct audit_context
*context
= current
->audit_context
;
2438 struct cpu_vfs_cap_data vcaps
;
2439 struct dentry
*dentry
;
2441 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2445 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2446 ax
->d
.next
= context
->aux
;
2447 context
->aux
= (void *)ax
;
2449 dentry
= dget(bprm
->file
->f_dentry
);
2450 get_vfs_caps_from_disk(dentry
, &vcaps
);
2453 ax
->fcap
.permitted
= vcaps
.permitted
;
2454 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2455 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2456 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2458 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2459 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2460 ax
->old_pcap
.effective
= old
->cap_effective
;
2462 ax
->new_pcap
.permitted
= new->cap_permitted
;
2463 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2464 ax
->new_pcap
.effective
= new->cap_effective
;
2469 * __audit_log_capset - store information about the arguments to the capset syscall
2470 * @pid: target pid of the capset call
2471 * @new: the new credentials
2472 * @old: the old (current) credentials
2474 * Record the aguments userspace sent to sys_capset for later printing by the
2475 * audit system if applicable
2477 void __audit_log_capset(pid_t pid
,
2478 const struct cred
*new, const struct cred
*old
)
2480 struct audit_context
*context
= current
->audit_context
;
2481 context
->capset
.pid
= pid
;
2482 context
->capset
.cap
.effective
= new->cap_effective
;
2483 context
->capset
.cap
.inheritable
= new->cap_effective
;
2484 context
->capset
.cap
.permitted
= new->cap_permitted
;
2485 context
->type
= AUDIT_CAPSET
;
2489 * audit_core_dumps - record information about processes that end abnormally
2490 * @signr: signal value
2492 * If a process ends with a core dump, something fishy is going on and we
2493 * should record the event for investigation.
2495 void audit_core_dumps(long signr
)
2497 struct audit_buffer
*ab
;
2499 uid_t auid
= audit_get_loginuid(current
), uid
;
2501 unsigned int sessionid
= audit_get_sessionid(current
);
2506 if (signr
== SIGQUIT
) /* don't care for those */
2509 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2510 current_uid_gid(&uid
, &gid
);
2511 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2512 auid
, uid
, gid
, sessionid
);
2513 security_task_getsecid(current
, &sid
);
2518 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2519 audit_log_format(ab
, " ssid=%u", sid
);
2521 audit_log_format(ab
, " subj=%s", ctx
);
2522 security_release_secctx(ctx
, len
);
2525 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2526 audit_log_untrustedstring(ab
, current
->comm
);
2527 audit_log_format(ab
, " sig=%ld", signr
);
2531 struct list_head
*audit_killed_trees(void)
2533 struct audit_context
*ctx
= current
->audit_context
;
2534 if (likely(!ctx
|| !ctx
->in_syscall
))
2536 return &ctx
->killed_trees
;