4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy
)
125 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
130 static inline int task_has_rt_policy(struct task_struct
*p
)
132 return rt_policy(p
->policy
);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array
{
139 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
140 struct list_head queue
[MAX_RT_PRIO
];
143 struct rt_bandwidth
{
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock
;
148 struct hrtimer rt_period_timer
;
151 static struct rt_bandwidth def_rt_bandwidth
;
153 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
155 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
157 struct rt_bandwidth
*rt_b
=
158 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
164 now
= hrtimer_cb_get_time(timer
);
165 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
170 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
173 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
177 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
179 rt_b
->rt_period
= ns_to_ktime(period
);
180 rt_b
->rt_runtime
= runtime
;
182 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
184 hrtimer_init(&rt_b
->rt_period_timer
,
185 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
186 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime
>= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
198 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
201 if (hrtimer_active(&rt_b
->rt_period_timer
))
204 raw_spin_lock(&rt_b
->rt_runtime_lock
);
209 if (hrtimer_active(&rt_b
->rt_period_timer
))
212 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
213 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
215 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
216 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
217 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
218 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
219 HRTIMER_MODE_ABS_PINNED
, 0);
221 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
227 hrtimer_cancel(&rt_b
->rt_period_timer
);
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex
);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
243 static LIST_HEAD(task_groups
);
245 /* task group related information */
247 struct cgroup_subsys_state css
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity
**se
;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq
**cfs_rq
;
254 unsigned long shares
;
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity
**rt_se
;
259 struct rt_rq
**rt_rq
;
261 struct rt_bandwidth rt_bandwidth
;
265 struct list_head list
;
267 struct task_group
*parent
;
268 struct list_head siblings
;
269 struct list_head children
;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock
);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group
.children
);
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group
;
309 /* return group to which a task belongs */
310 static inline struct task_group
*task_group(struct task_struct
*p
)
312 struct task_group
*tg
;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
316 struct task_group
, css
);
318 tg
= &init_task_group
;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
337 p
->se
.parent
= task_group(p
)->se
[cpu
];
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
342 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
349 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
350 static inline struct task_group
*task_group(struct task_struct
*p
)
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
359 struct load_weight load
;
360 unsigned long nr_running
;
365 struct rb_root tasks_timeline
;
366 struct rb_node
*rb_leftmost
;
368 struct list_head tasks
;
369 struct list_head
*balance_iterator
;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity
*curr
, *next
, *last
;
377 unsigned int nr_spread_over
;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list
;
391 struct task_group
*tg
; /* group that "owns" this runqueue */
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight
;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
405 unsigned long h_load
;
408 * this cpu's part of tg->shares
410 unsigned long shares
;
413 * load.weight at the time we set shares
415 unsigned long rq_weight
;
420 /* Real-Time classes' related field in a runqueue: */
422 struct rt_prio_array active
;
423 unsigned long rt_nr_running
;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 int curr
; /* highest queued rt task prio */
428 int next
; /* next highest */
433 unsigned long rt_nr_migratory
;
434 unsigned long rt_nr_total
;
436 struct plist_head pushable_tasks
;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock
;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted
;
448 struct list_head leaf_rt_rq_list
;
449 struct task_group
*tg
;
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
466 cpumask_var_t online
;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask
;
475 struct cpupri cpupri
;
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain
;
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running
;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
507 unsigned char in_nohz_recently
;
509 unsigned int skip_clock_update
;
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load
;
513 unsigned long nr_load_updates
;
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list
;
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list
;
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
533 unsigned long nr_uninterruptible
;
535 struct task_struct
*curr
, *idle
;
536 unsigned long next_balance
;
537 struct mm_struct
*prev_mm
;
544 struct root_domain
*rd
;
545 struct sched_domain
*sd
;
547 unsigned char idle_at_tick
;
548 /* For active balancing */
552 struct cpu_stop_work active_balance_work
;
553 /* cpu of this runqueue: */
557 unsigned long avg_load_per_task
;
565 /* calc_load related fields */
566 unsigned long calc_load_update
;
567 long calc_load_active
;
569 #ifdef CONFIG_SCHED_HRTICK
571 int hrtick_csd_pending
;
572 struct call_single_data hrtick_csd
;
574 struct hrtimer hrtick_timer
;
577 #ifdef CONFIG_SCHEDSTATS
579 struct sched_info rq_sched_info
;
580 unsigned long long rq_cpu_time
;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
583 /* sys_sched_yield() stats */
584 unsigned int yld_count
;
586 /* schedule() stats */
587 unsigned int sched_switch
;
588 unsigned int sched_count
;
589 unsigned int sched_goidle
;
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count
;
593 unsigned int ttwu_local
;
596 unsigned int bkl_count
;
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
603 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
605 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
611 if (test_tsk_need_resched(p
))
612 rq
->skip_clock_update
= 1;
615 static inline int cpu_of(struct rq
*rq
)
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
645 inline void update_rq_clock(struct rq
*rq
)
647 if (!rq
->skip_clock_update
)
648 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
657 # define const_debug static const
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu
)
670 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug
unsigned int sysctl_sched_features
=
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly
char *sched_feat_names
[] = {
700 #include "sched_features.h"
706 static int sched_feat_show(struct seq_file
*m
, void *v
)
710 for (i
= 0; sched_feat_names
[i
]; i
++) {
711 if (!(sysctl_sched_features
& (1UL << i
)))
713 seq_printf(m
, "%s ", sched_feat_names
[i
]);
721 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
722 size_t cnt
, loff_t
*ppos
)
732 if (copy_from_user(&buf
, ubuf
, cnt
))
737 if (strncmp(buf
, "NO_", 3) == 0) {
742 for (i
= 0; sched_feat_names
[i
]; i
++) {
743 int len
= strlen(sched_feat_names
[i
]);
745 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * ratelimit for updating the group shares.
798 unsigned int sysctl_sched_shares_ratelimit
= 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
806 unsigned int sysctl_sched_shares_thresh
= 4;
809 * period over which we average the RT time consumption, measured
814 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period
= 1000000;
822 static __read_mostly
int scheduler_running
;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime
= 950000;
830 static inline u64
global_rt_period(void)
832 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
835 static inline u64
global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime
< 0)
840 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
852 return rq
->curr
== p
;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq
->lock
.owner
= current
;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
878 raw_spin_unlock_irq(&rq
->lock
);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
887 return task_current(rq
, p
);
891 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq
->lock
);
904 raw_spin_unlock(&rq
->lock
);
908 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 static inline int task_is_waking(struct task_struct
*p
)
931 return unlikely(p
->state
== TASK_WAKING
);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
963 local_irq_save(*flags
);
965 raw_spin_lock(&rq
->lock
);
966 if (likely(rq
== task_rq(p
)))
968 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 void task_rq_unlock_wait(struct task_struct
*p
)
974 struct rq
*rq
= task_rq(p
);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 raw_spin_unlock_wait(&rq
->lock
);
980 static void __task_rq_unlock(struct rq
*rq
)
983 raw_spin_unlock(&rq
->lock
);
986 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
989 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq
*this_rq_lock(void)
1000 local_irq_disable();
1002 raw_spin_lock(&rq
->lock
);
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq
*rq
)
1026 if (!sched_feat(HRTICK
))
1028 if (!cpu_active(cpu_of(rq
)))
1030 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1033 static void hrtick_clear(struct rq
*rq
)
1035 if (hrtimer_active(&rq
->hrtick_timer
))
1036 hrtimer_cancel(&rq
->hrtick_timer
);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1045 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1047 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1049 raw_spin_lock(&rq
->lock
);
1050 update_rq_clock(rq
);
1051 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1052 raw_spin_unlock(&rq
->lock
);
1054 return HRTIMER_NORESTART
;
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg
)
1063 struct rq
*rq
= arg
;
1065 raw_spin_lock(&rq
->lock
);
1066 hrtimer_restart(&rq
->hrtick_timer
);
1067 rq
->hrtick_csd_pending
= 0;
1068 raw_spin_unlock(&rq
->lock
);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq
*rq
, u64 delay
)
1078 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1079 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1081 hrtimer_set_expires(timer
, time
);
1083 if (rq
== this_rq()) {
1084 hrtimer_restart(timer
);
1085 } else if (!rq
->hrtick_csd_pending
) {
1086 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1087 rq
->hrtick_csd_pending
= 1;
1092 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1094 int cpu
= (int)(long)hcpu
;
1097 case CPU_UP_CANCELED
:
1098 case CPU_UP_CANCELED_FROZEN
:
1099 case CPU_DOWN_PREPARE
:
1100 case CPU_DOWN_PREPARE_FROZEN
:
1102 case CPU_DEAD_FROZEN
:
1103 hrtick_clear(cpu_rq(cpu
));
1110 static __init
void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick
, 0);
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq
*rq
, u64 delay
)
1122 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1123 HRTIMER_MODE_REL_PINNED
, 0);
1126 static inline void init_hrtick(void)
1129 #endif /* CONFIG_SMP */
1131 static void init_rq_hrtick(struct rq
*rq
)
1134 rq
->hrtick_csd_pending
= 0;
1136 rq
->hrtick_csd
.flags
= 0;
1137 rq
->hrtick_csd
.func
= __hrtick_start
;
1138 rq
->hrtick_csd
.info
= rq
;
1141 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1142 rq
->hrtick_timer
.function
= hrtick
;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq
*rq
)
1149 static inline void init_rq_hrtick(struct rq
*rq
)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171 static void resched_task(struct task_struct
*p
)
1175 assert_raw_spin_locked(&task_rq(p
)->lock
);
1177 if (test_tsk_need_resched(p
))
1180 set_tsk_need_resched(p
);
1183 if (cpu
== smp_processor_id())
1186 /* NEED_RESCHED must be visible before we test polling */
1188 if (!tsk_is_polling(p
))
1189 smp_send_reschedule(cpu
);
1192 static void resched_cpu(int cpu
)
1194 struct rq
*rq
= cpu_rq(cpu
);
1195 unsigned long flags
;
1197 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1199 resched_task(cpu_curr(cpu
));
1200 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu
)
1216 struct rq
*rq
= cpu_rq(cpu
);
1218 if (cpu
== smp_processor_id())
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq
->curr
!= rq
->idle
)
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_need_resched(rq
->idle
);
1238 /* NEED_RESCHED must be visible before we test polling */
1240 if (!tsk_is_polling(rq
->idle
))
1241 smp_send_reschedule(cpu
);
1244 int nohz_ratelimit(int cpu
)
1246 struct rq
*rq
= cpu_rq(cpu
);
1247 u64 diff
= rq
->clock
- rq
->nohz_stamp
;
1249 rq
->nohz_stamp
= rq
->clock
;
1251 return diff
< (NSEC_PER_SEC
/ HZ
) >> 1;
1254 #endif /* CONFIG_NO_HZ */
1256 static u64
sched_avg_period(void)
1258 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1261 static void sched_avg_update(struct rq
*rq
)
1263 s64 period
= sched_avg_period();
1265 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1266 rq
->age_stamp
+= period
;
1271 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1273 rq
->rt_avg
+= rt_delta
;
1274 sched_avg_update(rq
);
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct
*p
)
1280 assert_raw_spin_locked(&task_rq(p
)->lock
);
1281 set_tsk_need_resched(p
);
1284 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1287 #endif /* CONFIG_SMP */
1289 #if BITS_PER_LONG == 32
1290 # define WMULT_CONST (~0UL)
1292 # define WMULT_CONST (1UL << 32)
1295 #define WMULT_SHIFT 32
1298 * Shift right and round:
1300 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303 * delta *= weight / lw
1305 static unsigned long
1306 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1307 struct load_weight
*lw
)
1311 if (!lw
->inv_weight
) {
1312 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1315 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1319 tmp
= (u64
)delta_exec
* weight
;
1321 * Check whether we'd overflow the 64-bit multiplication:
1323 if (unlikely(tmp
> WMULT_CONST
))
1324 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1327 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1329 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1332 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1338 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 * scaled version of the new time slice allocation that they receive on time
1353 #define WEIGHT_IDLEPRIO 3
1354 #define WMULT_IDLEPRIO 1431655765
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
1368 static const int prio_to_weight
[40] = {
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1386 static const u32 prio_to_wmult
[40] = {
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 /* Time spent by the tasks of the cpu accounting group executing in ... */
1398 enum cpuacct_stat_index
{
1399 CPUACCT_STAT_USER
, /* ... user mode */
1400 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1402 CPUACCT_STAT_NSTATS
,
1405 #ifdef CONFIG_CGROUP_CPUACCT
1406 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1407 static void cpuacct_update_stats(struct task_struct
*tsk
,
1408 enum cpuacct_stat_index idx
, cputime_t val
);
1410 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1411 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1412 enum cpuacct_stat_index idx
, cputime_t val
) {}
1415 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1417 update_load_add(&rq
->load
, load
);
1420 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1422 update_load_sub(&rq
->load
, load
);
1425 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1426 typedef int (*tg_visitor
)(struct task_group
*, void *);
1429 * Iterate the full tree, calling @down when first entering a node and @up when
1430 * leaving it for the final time.
1432 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1434 struct task_group
*parent
, *child
;
1438 parent
= &root_task_group
;
1440 ret
= (*down
)(parent
, data
);
1443 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1450 ret
= (*up
)(parent
, data
);
1455 parent
= parent
->parent
;
1464 static int tg_nop(struct task_group
*tg
, void *data
)
1471 /* Used instead of source_load when we know the type == 0 */
1472 static unsigned long weighted_cpuload(const int cpu
)
1474 return cpu_rq(cpu
)->load
.weight
;
1478 * Return a low guess at the load of a migration-source cpu weighted
1479 * according to the scheduling class and "nice" value.
1481 * We want to under-estimate the load of migration sources, to
1482 * balance conservatively.
1484 static unsigned long source_load(int cpu
, int type
)
1486 struct rq
*rq
= cpu_rq(cpu
);
1487 unsigned long total
= weighted_cpuload(cpu
);
1489 if (type
== 0 || !sched_feat(LB_BIAS
))
1492 return min(rq
->cpu_load
[type
-1], total
);
1496 * Return a high guess at the load of a migration-target cpu weighted
1497 * according to the scheduling class and "nice" value.
1499 static unsigned long target_load(int cpu
, int type
)
1501 struct rq
*rq
= cpu_rq(cpu
);
1502 unsigned long total
= weighted_cpuload(cpu
);
1504 if (type
== 0 || !sched_feat(LB_BIAS
))
1507 return max(rq
->cpu_load
[type
-1], total
);
1510 static struct sched_group
*group_of(int cpu
)
1512 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1520 static unsigned long power_of(int cpu
)
1522 struct sched_group
*group
= group_of(cpu
);
1525 return SCHED_LOAD_SCALE
;
1527 return group
->cpu_power
;
1530 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1532 static unsigned long cpu_avg_load_per_task(int cpu
)
1534 struct rq
*rq
= cpu_rq(cpu
);
1535 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1538 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1540 rq
->avg_load_per_task
= 0;
1542 return rq
->avg_load_per_task
;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1547 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1549 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1552 * Calculate and set the cpu's group shares.
1554 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1555 unsigned long sd_shares
,
1556 unsigned long sd_rq_weight
,
1557 unsigned long *usd_rq_weight
)
1559 unsigned long shares
, rq_weight
;
1562 rq_weight
= usd_rq_weight
[cpu
];
1565 rq_weight
= NICE_0_LOAD
;
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
1573 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1574 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1576 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1577 sysctl_sched_shares_thresh
) {
1578 struct rq
*rq
= cpu_rq(cpu
);
1579 unsigned long flags
;
1581 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1582 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1583 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1584 __set_se_shares(tg
->se
[cpu
], shares
);
1585 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
1594 static int tg_shares_up(struct task_group
*tg
, void *data
)
1596 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1597 unsigned long *usd_rq_weight
;
1598 struct sched_domain
*sd
= data
;
1599 unsigned long flags
;
1605 local_irq_save(flags
);
1606 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1608 for_each_cpu(i
, sched_domain_span(sd
)) {
1609 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1610 usd_rq_weight
[i
] = weight
;
1612 rq_weight
+= weight
;
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1619 weight
= NICE_0_LOAD
;
1621 sum_weight
+= weight
;
1622 shares
+= tg
->cfs_rq
[i
]->shares
;
1626 rq_weight
= sum_weight
;
1628 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1629 shares
= tg
->shares
;
1631 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1632 shares
= tg
->shares
;
1634 for_each_cpu(i
, sched_domain_span(sd
))
1635 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1637 local_irq_restore(flags
);
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
1647 static int tg_load_down(struct task_group
*tg
, void *data
)
1650 long cpu
= (long)data
;
1653 load
= cpu_rq(cpu
)->load
.weight
;
1655 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1656 load
*= tg
->cfs_rq
[cpu
]->shares
;
1657 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1660 tg
->cfs_rq
[cpu
]->h_load
= load
;
1665 static void update_shares(struct sched_domain
*sd
)
1670 if (root_task_group_empty())
1673 now
= cpu_clock(raw_smp_processor_id());
1674 elapsed
= now
- sd
->last_update
;
1676 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1677 sd
->last_update
= now
;
1678 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1682 static void update_h_load(long cpu
)
1684 if (root_task_group_empty())
1687 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1692 static inline void update_shares(struct sched_domain
*sd
)
1698 #ifdef CONFIG_PREEMPT
1700 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1710 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1711 __releases(this_rq
->lock
)
1712 __acquires(busiest
->lock
)
1713 __acquires(this_rq
->lock
)
1715 raw_spin_unlock(&this_rq
->lock
);
1716 double_rq_lock(this_rq
, busiest
);
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1729 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1730 __releases(this_rq
->lock
)
1731 __acquires(busiest
->lock
)
1732 __acquires(this_rq
->lock
)
1736 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1737 if (busiest
< this_rq
) {
1738 raw_spin_unlock(&this_rq
->lock
);
1739 raw_spin_lock(&busiest
->lock
);
1740 raw_spin_lock_nested(&this_rq
->lock
,
1741 SINGLE_DEPTH_NESTING
);
1744 raw_spin_lock_nested(&busiest
->lock
,
1745 SINGLE_DEPTH_NESTING
);
1750 #endif /* CONFIG_PREEMPT */
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq
->lock
);
1763 return _double_lock_balance(this_rq
, busiest
);
1766 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1767 __releases(busiest
->lock
)
1769 raw_spin_unlock(&busiest
->lock
);
1770 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1774 * double_rq_lock - safely lock two runqueues
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1779 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1780 __acquires(rq1
->lock
)
1781 __acquires(rq2
->lock
)
1783 BUG_ON(!irqs_disabled());
1785 raw_spin_lock(&rq1
->lock
);
1786 __acquire(rq2
->lock
); /* Fake it out ;) */
1789 raw_spin_lock(&rq1
->lock
);
1790 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1792 raw_spin_lock(&rq2
->lock
);
1793 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1799 * double_rq_unlock - safely unlock two runqueues
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1804 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1805 __releases(rq1
->lock
)
1806 __releases(rq2
->lock
)
1808 raw_spin_unlock(&rq1
->lock
);
1810 raw_spin_unlock(&rq2
->lock
);
1812 __release(rq2
->lock
);
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1821 cfs_rq
->shares
= shares
;
1826 static void calc_load_account_idle(struct rq
*this_rq
);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1830 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1832 set_task_rq(p
, cpu
);
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1840 task_thread_info(p
)->cpu
= cpu
;
1844 static const struct sched_class rt_sched_class
;
1846 #define sched_class_highest (&rt_sched_class)
1847 #define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
1850 #include "sched_stats.h"
1852 static void inc_nr_running(struct rq
*rq
)
1857 static void dec_nr_running(struct rq
*rq
)
1862 static void set_load_weight(struct task_struct
*p
)
1864 if (task_has_rt_policy(p
)) {
1865 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1866 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1871 * SCHED_IDLE tasks get minimal weight:
1873 if (p
->policy
== SCHED_IDLE
) {
1874 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1875 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1879 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1880 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1883 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1885 update_rq_clock(rq
);
1886 sched_info_queued(p
);
1887 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1891 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1893 update_rq_clock(rq
);
1894 sched_info_dequeued(p
);
1895 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1900 * activate_task - move a task to the runqueue.
1902 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1904 if (task_contributes_to_load(p
))
1905 rq
->nr_uninterruptible
--;
1907 enqueue_task(rq
, p
, flags
);
1912 * deactivate_task - remove a task from the runqueue.
1914 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1916 if (task_contributes_to_load(p
))
1917 rq
->nr_uninterruptible
++;
1919 dequeue_task(rq
, p
, flags
);
1923 #include "sched_idletask.c"
1924 #include "sched_fair.c"
1925 #include "sched_rt.c"
1926 #ifdef CONFIG_SCHED_DEBUG
1927 # include "sched_debug.c"
1931 * __normal_prio - return the priority that is based on the static prio
1933 static inline int __normal_prio(struct task_struct
*p
)
1935 return p
->static_prio
;
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1945 static inline int normal_prio(struct task_struct
*p
)
1949 if (task_has_rt_policy(p
))
1950 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1952 prio
= __normal_prio(p
);
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1963 static int effective_prio(struct task_struct
*p
)
1965 p
->normal_prio
= normal_prio(p
);
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1971 if (!rt_prio(p
->prio
))
1972 return p
->normal_prio
;
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1980 inline int task_curr(const struct task_struct
*p
)
1982 return cpu_curr(task_cpu(p
)) == p
;
1985 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1986 const struct sched_class
*prev_class
,
1987 int oldprio
, int running
)
1989 if (prev_class
!= p
->sched_class
) {
1990 if (prev_class
->switched_from
)
1991 prev_class
->switched_from(rq
, p
, running
);
1992 p
->sched_class
->switched_to(rq
, p
, running
);
1994 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1999 * Is this task likely cache-hot:
2002 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2006 if (p
->sched_class
!= &fair_sched_class
)
2010 * Buddy candidates are cache hot:
2012 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2013 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2014 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2017 if (sysctl_sched_migration_cost
== -1)
2019 if (sysctl_sched_migration_cost
== 0)
2022 delta
= now
- p
->se
.exec_start
;
2024 return delta
< (s64
)sysctl_sched_migration_cost
;
2027 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2029 #ifdef CONFIG_SCHED_DEBUG
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2034 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2035 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2038 trace_sched_migrate_task(p
, new_cpu
);
2040 if (task_cpu(p
) != new_cpu
) {
2041 p
->se
.nr_migrations
++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2045 __set_task_cpu(p
, new_cpu
);
2048 struct migration_arg
{
2049 struct task_struct
*task
;
2053 static int migration_cpu_stop(void *data
);
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2059 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2061 struct rq
*rq
= task_rq(p
);
2064 * If the task is not on a runqueue (and not running), then
2065 * the next wake-up will properly place the task.
2067 return p
->se
.on_rq
|| task_running(rq
, p
);
2071 * wait_task_inactive - wait for a thread to unschedule.
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2086 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2088 unsigned long flags
;
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2113 while (task_running(rq
, p
)) {
2114 if (match_state
&& unlikely(p
->state
!= match_state
))
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2124 rq
= task_rq_lock(p
, &flags
);
2125 trace_sched_wait_task(p
);
2126 running
= task_running(rq
, p
);
2127 on_rq
= p
->se
.on_rq
;
2129 if (!match_state
|| p
->state
== match_state
)
2130 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2131 task_rq_unlock(rq
, &flags
);
2134 * If it changed from the expected state, bail out now.
2136 if (unlikely(!ncsw
))
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2143 * Oops. Go back and try again..
2145 if (unlikely(running
)) {
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2155 * So if it was still runnable (but just not actively
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2159 if (unlikely(on_rq
)) {
2160 schedule_timeout_uninterruptible(1);
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2188 void kick_process(struct task_struct
*p
)
2194 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2195 smp_send_reschedule(cpu
);
2198 EXPORT_SYMBOL_GPL(kick_process
);
2199 #endif /* CONFIG_SMP */
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2210 void task_oncpu_function_call(struct task_struct
*p
,
2211 void (*func
) (void *info
), void *info
)
2218 smp_call_function_single(cpu
, func
, info
, 1);
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2226 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2229 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2233 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2236 /* Any allowed, online CPU? */
2237 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2238 if (dest_cpu
< nr_cpu_ids
)
2241 /* No more Mr. Nice Guy. */
2242 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2243 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2249 if (p
->mm
&& printk_ratelimit()) {
2250 printk(KERN_INFO
"process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p
), p
->comm
, cpu
);
2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2263 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2265 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2272 * Since this is common to all placement strategies, this lives here.
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2277 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2279 cpu
= select_fallback_rq(task_cpu(p
), p
);
2284 static void update_avg(u64
*avg
, u64 sample
)
2286 s64 diff
= sample
- *avg
;
2292 * try_to_wake_up - wake up a thread
2293 * @p: the to-be-woken-up thread
2294 * @state: the mask of task states that can be woken
2295 * @sync: do a synchronous wakeup?
2297 * Put it on the run-queue if it's not already there. The "current"
2298 * thread is always on the run-queue (except when the actual
2299 * re-schedule is in progress), and as such you're allowed to do
2300 * the simpler "current->state = TASK_RUNNING" to mark yourself
2301 * runnable without the overhead of this.
2303 * returns failure only if the task is already active.
2305 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2308 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2309 unsigned long flags
;
2310 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2313 this_cpu
= get_cpu();
2316 rq
= task_rq_lock(p
, &flags
);
2317 if (!(p
->state
& state
))
2327 if (unlikely(task_running(rq
, p
)))
2331 * In order to handle concurrent wakeups and release the rq->lock
2332 * we put the task in TASK_WAKING state.
2334 * First fix up the nr_uninterruptible count:
2336 if (task_contributes_to_load(p
)) {
2337 if (likely(cpu_online(orig_cpu
)))
2338 rq
->nr_uninterruptible
--;
2340 this_rq()->nr_uninterruptible
--;
2342 p
->state
= TASK_WAKING
;
2344 if (p
->sched_class
->task_waking
) {
2345 p
->sched_class
->task_waking(rq
, p
);
2346 en_flags
|= ENQUEUE_WAKING
;
2349 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2350 if (cpu
!= orig_cpu
)
2351 set_task_cpu(p
, cpu
);
2352 __task_rq_unlock(rq
);
2355 raw_spin_lock(&rq
->lock
);
2358 * We migrated the task without holding either rq->lock, however
2359 * since the task is not on the task list itself, nobody else
2360 * will try and migrate the task, hence the rq should match the
2361 * cpu we just moved it to.
2363 WARN_ON(task_cpu(p
) != cpu
);
2364 WARN_ON(p
->state
!= TASK_WAKING
);
2366 #ifdef CONFIG_SCHEDSTATS
2367 schedstat_inc(rq
, ttwu_count
);
2368 if (cpu
== this_cpu
)
2369 schedstat_inc(rq
, ttwu_local
);
2371 struct sched_domain
*sd
;
2372 for_each_domain(this_cpu
, sd
) {
2373 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2374 schedstat_inc(sd
, ttwu_wake_remote
);
2379 #endif /* CONFIG_SCHEDSTATS */
2382 #endif /* CONFIG_SMP */
2383 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2384 if (wake_flags
& WF_SYNC
)
2385 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2386 if (orig_cpu
!= cpu
)
2387 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2388 if (cpu
== this_cpu
)
2389 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2391 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2392 activate_task(rq
, p
, en_flags
);
2396 trace_sched_wakeup(p
, success
);
2397 check_preempt_curr(rq
, p
, wake_flags
);
2399 p
->state
= TASK_RUNNING
;
2401 if (p
->sched_class
->task_woken
)
2402 p
->sched_class
->task_woken(rq
, p
);
2404 if (unlikely(rq
->idle_stamp
)) {
2405 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2406 u64 max
= 2*sysctl_sched_migration_cost
;
2411 update_avg(&rq
->avg_idle
, delta
);
2416 task_rq_unlock(rq
, &flags
);
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2433 int wake_up_process(struct task_struct
*p
)
2435 return try_to_wake_up(p
, TASK_ALL
, 0);
2437 EXPORT_SYMBOL(wake_up_process
);
2439 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2441 return try_to_wake_up(p
, state
, 0);
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
2448 * __sched_fork() is basic setup used by init_idle() too:
2450 static void __sched_fork(struct task_struct
*p
)
2452 p
->se
.exec_start
= 0;
2453 p
->se
.sum_exec_runtime
= 0;
2454 p
->se
.prev_sum_exec_runtime
= 0;
2455 p
->se
.nr_migrations
= 0;
2457 #ifdef CONFIG_SCHEDSTATS
2458 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2461 INIT_LIST_HEAD(&p
->rt
.run_list
);
2463 INIT_LIST_HEAD(&p
->se
.group_node
);
2465 #ifdef CONFIG_PREEMPT_NOTIFIERS
2466 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2471 * fork()/clone()-time setup:
2473 void sched_fork(struct task_struct
*p
, int clone_flags
)
2475 int cpu
= get_cpu();
2479 * We mark the process as running here. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2483 p
->state
= TASK_RUNNING
;
2486 * Revert to default priority/policy on fork if requested.
2488 if (unlikely(p
->sched_reset_on_fork
)) {
2489 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2490 p
->policy
= SCHED_NORMAL
;
2491 p
->normal_prio
= p
->static_prio
;
2494 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2495 p
->static_prio
= NICE_TO_PRIO(0);
2496 p
->normal_prio
= p
->static_prio
;
2501 * We don't need the reset flag anymore after the fork. It has
2502 * fulfilled its duty:
2504 p
->sched_reset_on_fork
= 0;
2508 * Make sure we do not leak PI boosting priority to the child.
2510 p
->prio
= current
->normal_prio
;
2512 if (!rt_prio(p
->prio
))
2513 p
->sched_class
= &fair_sched_class
;
2515 if (p
->sched_class
->task_fork
)
2516 p
->sched_class
->task_fork(p
);
2518 set_task_cpu(p
, cpu
);
2520 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2521 if (likely(sched_info_on()))
2522 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2524 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2527 #ifdef CONFIG_PREEMPT
2528 /* Want to start with kernel preemption disabled. */
2529 task_thread_info(p
)->preempt_count
= 1;
2531 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2537 * wake_up_new_task - wake up a newly created task for the first time.
2539 * This function will do some initial scheduler statistics housekeeping
2540 * that must be done for every newly created context, then puts the task
2541 * on the runqueue and wakes it.
2543 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2545 unsigned long flags
;
2547 int cpu __maybe_unused
= get_cpu();
2550 rq
= task_rq_lock(p
, &flags
);
2551 p
->state
= TASK_WAKING
;
2554 * Fork balancing, do it here and not earlier because:
2555 * - cpus_allowed can change in the fork path
2556 * - any previously selected cpu might disappear through hotplug
2558 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2559 * without people poking at ->cpus_allowed.
2561 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2562 set_task_cpu(p
, cpu
);
2564 p
->state
= TASK_RUNNING
;
2565 task_rq_unlock(rq
, &flags
);
2568 rq
= task_rq_lock(p
, &flags
);
2569 activate_task(rq
, p
, 0);
2570 trace_sched_wakeup_new(p
, 1);
2571 check_preempt_curr(rq
, p
, WF_FORK
);
2573 if (p
->sched_class
->task_woken
)
2574 p
->sched_class
->task_woken(rq
, p
);
2576 task_rq_unlock(rq
, &flags
);
2580 #ifdef CONFIG_PREEMPT_NOTIFIERS
2583 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2584 * @notifier: notifier struct to register
2586 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2588 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2590 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2593 * preempt_notifier_unregister - no longer interested in preemption notifications
2594 * @notifier: notifier struct to unregister
2596 * This is safe to call from within a preemption notifier.
2598 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2600 hlist_del(¬ifier
->link
);
2602 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2604 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2606 struct preempt_notifier
*notifier
;
2607 struct hlist_node
*node
;
2609 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2610 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2614 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2615 struct task_struct
*next
)
2617 struct preempt_notifier
*notifier
;
2618 struct hlist_node
*node
;
2620 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2621 notifier
->ops
->sched_out(notifier
, next
);
2624 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2626 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2631 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2632 struct task_struct
*next
)
2636 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2648 * prepare_task_switch sets up locking and calls architecture specific
2652 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2653 struct task_struct
*next
)
2655 fire_sched_out_preempt_notifiers(prev
, next
);
2656 prepare_lock_switch(rq
, next
);
2657 prepare_arch_switch(next
);
2661 * finish_task_switch - clean up after a task-switch
2662 * @rq: runqueue associated with task-switch
2663 * @prev: the thread we just switched away from.
2665 * finish_task_switch must be called after the context switch, paired
2666 * with a prepare_task_switch call before the context switch.
2667 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2668 * and do any other architecture-specific cleanup actions.
2670 * Note that we may have delayed dropping an mm in context_switch(). If
2671 * so, we finish that here outside of the runqueue lock. (Doing it
2672 * with the lock held can cause deadlocks; see schedule() for
2675 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2676 __releases(rq
->lock
)
2678 struct mm_struct
*mm
= rq
->prev_mm
;
2684 * A task struct has one reference for the use as "current".
2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
2688 * The test for TASK_DEAD must occur while the runqueue locks are
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2692 * Manfred Spraul <manfred@colorfullife.com>
2694 prev_state
= prev
->state
;
2695 finish_arch_switch(prev
);
2696 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2697 local_irq_disable();
2698 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2699 perf_event_task_sched_in(current
);
2700 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2702 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2703 finish_lock_switch(rq
, prev
);
2705 fire_sched_in_preempt_notifiers(current
);
2708 if (unlikely(prev_state
== TASK_DEAD
)) {
2710 * Remove function-return probe instances associated with this
2711 * task and put them back on the free list.
2713 kprobe_flush_task(prev
);
2714 put_task_struct(prev
);
2720 /* assumes rq->lock is held */
2721 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2723 if (prev
->sched_class
->pre_schedule
)
2724 prev
->sched_class
->pre_schedule(rq
, prev
);
2727 /* rq->lock is NOT held, but preemption is disabled */
2728 static inline void post_schedule(struct rq
*rq
)
2730 if (rq
->post_schedule
) {
2731 unsigned long flags
;
2733 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2734 if (rq
->curr
->sched_class
->post_schedule
)
2735 rq
->curr
->sched_class
->post_schedule(rq
);
2736 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2738 rq
->post_schedule
= 0;
2744 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2748 static inline void post_schedule(struct rq
*rq
)
2755 * schedule_tail - first thing a freshly forked thread must call.
2756 * @prev: the thread we just switched away from.
2758 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2759 __releases(rq
->lock
)
2761 struct rq
*rq
= this_rq();
2763 finish_task_switch(rq
, prev
);
2766 * FIXME: do we need to worry about rq being invalidated by the
2771 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2775 if (current
->set_child_tid
)
2776 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2784 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2785 struct task_struct
*next
)
2787 struct mm_struct
*mm
, *oldmm
;
2789 prepare_task_switch(rq
, prev
, next
);
2790 trace_sched_switch(prev
, next
);
2792 oldmm
= prev
->active_mm
;
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2798 arch_start_context_switch(prev
);
2801 next
->active_mm
= oldmm
;
2802 atomic_inc(&oldmm
->mm_count
);
2803 enter_lazy_tlb(oldmm
, next
);
2805 switch_mm(oldmm
, mm
, next
);
2807 if (likely(!prev
->mm
)) {
2808 prev
->active_mm
= NULL
;
2809 rq
->prev_mm
= oldmm
;
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2817 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2818 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev
, next
, prev
);
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2830 finish_task_switch(this_rq(), prev
);
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2840 unsigned long nr_running(void)
2842 unsigned long i
, sum
= 0;
2844 for_each_online_cpu(i
)
2845 sum
+= cpu_rq(i
)->nr_running
;
2850 unsigned long nr_uninterruptible(void)
2852 unsigned long i
, sum
= 0;
2854 for_each_possible_cpu(i
)
2855 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
2861 if (unlikely((long)sum
< 0))
2867 unsigned long long nr_context_switches(void)
2870 unsigned long long sum
= 0;
2872 for_each_possible_cpu(i
)
2873 sum
+= cpu_rq(i
)->nr_switches
;
2878 unsigned long nr_iowait(void)
2880 unsigned long i
, sum
= 0;
2882 for_each_possible_cpu(i
)
2883 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2888 unsigned long nr_iowait_cpu(void)
2890 struct rq
*this = this_rq();
2891 return atomic_read(&this->nr_iowait
);
2894 unsigned long this_cpu_load(void)
2896 struct rq
*this = this_rq();
2897 return this->cpu_load
[0];
2901 /* Variables and functions for calc_load */
2902 static atomic_long_t calc_load_tasks
;
2903 static unsigned long calc_load_update
;
2904 unsigned long avenrun
[3];
2905 EXPORT_SYMBOL(avenrun
);
2907 static long calc_load_fold_active(struct rq
*this_rq
)
2909 long nr_active
, delta
= 0;
2911 nr_active
= this_rq
->nr_running
;
2912 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2914 if (nr_active
!= this_rq
->calc_load_active
) {
2915 delta
= nr_active
- this_rq
->calc_load_active
;
2916 this_rq
->calc_load_active
= nr_active
;
2924 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2926 * When making the ILB scale, we should try to pull this in as well.
2928 static atomic_long_t calc_load_tasks_idle
;
2930 static void calc_load_account_idle(struct rq
*this_rq
)
2934 delta
= calc_load_fold_active(this_rq
);
2936 atomic_long_add(delta
, &calc_load_tasks_idle
);
2939 static long calc_load_fold_idle(void)
2944 * Its got a race, we don't care...
2946 if (atomic_long_read(&calc_load_tasks_idle
))
2947 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2952 static void calc_load_account_idle(struct rq
*this_rq
)
2956 static inline long calc_load_fold_idle(void)
2963 * get_avenrun - get the load average array
2964 * @loads: pointer to dest load array
2965 * @offset: offset to add
2966 * @shift: shift count to shift the result left
2968 * These values are estimates at best, so no need for locking.
2970 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2972 loads
[0] = (avenrun
[0] + offset
) << shift
;
2973 loads
[1] = (avenrun
[1] + offset
) << shift
;
2974 loads
[2] = (avenrun
[2] + offset
) << shift
;
2977 static unsigned long
2978 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2981 load
+= active
* (FIXED_1
- exp
);
2982 return load
>> FSHIFT
;
2986 * calc_load - update the avenrun load estimates 10 ticks after the
2987 * CPUs have updated calc_load_tasks.
2989 void calc_global_load(void)
2991 unsigned long upd
= calc_load_update
+ 10;
2994 if (time_before(jiffies
, upd
))
2997 active
= atomic_long_read(&calc_load_tasks
);
2998 active
= active
> 0 ? active
* FIXED_1
: 0;
3000 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3001 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3002 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3004 calc_load_update
+= LOAD_FREQ
;
3008 * Called from update_cpu_load() to periodically update this CPU's
3011 static void calc_load_account_active(struct rq
*this_rq
)
3015 if (time_before(jiffies
, this_rq
->calc_load_update
))
3018 delta
= calc_load_fold_active(this_rq
);
3019 delta
+= calc_load_fold_idle();
3021 atomic_long_add(delta
, &calc_load_tasks
);
3023 this_rq
->calc_load_update
+= LOAD_FREQ
;
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
3030 static void update_cpu_load(struct rq
*this_rq
)
3032 unsigned long this_load
= this_rq
->load
.weight
;
3035 this_rq
->nr_load_updates
++;
3037 /* Update our load: */
3038 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3039 unsigned long old_load
, new_load
;
3041 /* scale is effectively 1 << i now, and >> i divides by scale */
3043 old_load
= this_rq
->cpu_load
[i
];
3044 new_load
= this_load
;
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3050 if (new_load
> old_load
)
3051 new_load
+= scale
-1;
3052 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3055 calc_load_account_active(this_rq
);
3061 * sched_exec - execve() is a valuable balancing opportunity, because at
3062 * this point the task has the smallest effective memory and cache footprint.
3064 void sched_exec(void)
3066 struct task_struct
*p
= current
;
3067 unsigned long flags
;
3071 rq
= task_rq_lock(p
, &flags
);
3072 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3073 if (dest_cpu
== smp_processor_id())
3077 * select_task_rq() can race against ->cpus_allowed
3079 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3080 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3081 struct migration_arg arg
= { p
, dest_cpu
};
3083 task_rq_unlock(rq
, &flags
);
3084 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3088 task_rq_unlock(rq
, &flags
);
3093 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3095 EXPORT_PER_CPU_SYMBOL(kstat
);
3098 * Return any ns on the sched_clock that have not yet been accounted in
3099 * @p in case that task is currently running.
3101 * Called with task_rq_lock() held on @rq.
3103 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3107 if (task_current(rq
, p
)) {
3108 update_rq_clock(rq
);
3109 ns
= rq
->clock
- p
->se
.exec_start
;
3117 unsigned long long task_delta_exec(struct task_struct
*p
)
3119 unsigned long flags
;
3123 rq
= task_rq_lock(p
, &flags
);
3124 ns
= do_task_delta_exec(p
, rq
);
3125 task_rq_unlock(rq
, &flags
);
3131 * Return accounted runtime for the task.
3132 * In case the task is currently running, return the runtime plus current's
3133 * pending runtime that have not been accounted yet.
3135 unsigned long long task_sched_runtime(struct task_struct
*p
)
3137 unsigned long flags
;
3141 rq
= task_rq_lock(p
, &flags
);
3142 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3143 task_rq_unlock(rq
, &flags
);
3149 * Return sum_exec_runtime for the thread group.
3150 * In case the task is currently running, return the sum plus current's
3151 * pending runtime that have not been accounted yet.
3153 * Note that the thread group might have other running tasks as well,
3154 * so the return value not includes other pending runtime that other
3155 * running tasks might have.
3157 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3159 struct task_cputime totals
;
3160 unsigned long flags
;
3164 rq
= task_rq_lock(p
, &flags
);
3165 thread_group_cputime(p
, &totals
);
3166 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3167 task_rq_unlock(rq
, &flags
);
3173 * Account user cpu time to a process.
3174 * @p: the process that the cpu time gets accounted to
3175 * @cputime: the cpu time spent in user space since the last update
3176 * @cputime_scaled: cputime scaled by cpu frequency
3178 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3179 cputime_t cputime_scaled
)
3181 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3184 /* Add user time to process. */
3185 p
->utime
= cputime_add(p
->utime
, cputime
);
3186 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3187 account_group_user_time(p
, cputime
);
3189 /* Add user time to cpustat. */
3190 tmp
= cputime_to_cputime64(cputime
);
3191 if (TASK_NICE(p
) > 0)
3192 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3194 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3196 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3197 /* Account for user time used */
3198 acct_update_integrals(p
);
3202 * Account guest cpu time to a process.
3203 * @p: the process that the cpu time gets accounted to
3204 * @cputime: the cpu time spent in virtual machine since the last update
3205 * @cputime_scaled: cputime scaled by cpu frequency
3207 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3208 cputime_t cputime_scaled
)
3211 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3213 tmp
= cputime_to_cputime64(cputime
);
3215 /* Add guest time to process. */
3216 p
->utime
= cputime_add(p
->utime
, cputime
);
3217 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3218 account_group_user_time(p
, cputime
);
3219 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3221 /* Add guest time to cpustat. */
3222 if (TASK_NICE(p
) > 0) {
3223 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3224 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3226 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3227 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3232 * Account system cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in kernel space since the last update
3236 * @cputime_scaled: cputime scaled by cpu frequency
3238 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3239 cputime_t cputime
, cputime_t cputime_scaled
)
3241 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3244 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3245 account_guest_time(p
, cputime
, cputime_scaled
);
3249 /* Add system time to process. */
3250 p
->stime
= cputime_add(p
->stime
, cputime
);
3251 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3252 account_group_system_time(p
, cputime
);
3254 /* Add system time to cpustat. */
3255 tmp
= cputime_to_cputime64(cputime
);
3256 if (hardirq_count() - hardirq_offset
)
3257 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3258 else if (softirq_count())
3259 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3261 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3263 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3265 /* Account for system time used */
3266 acct_update_integrals(p
);
3270 * Account for involuntary wait time.
3271 * @steal: the cpu time spent in involuntary wait
3273 void account_steal_time(cputime_t cputime
)
3275 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3276 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3278 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3282 * Account for idle time.
3283 * @cputime: the cpu time spent in idle wait
3285 void account_idle_time(cputime_t cputime
)
3287 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3288 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3289 struct rq
*rq
= this_rq();
3291 if (atomic_read(&rq
->nr_iowait
) > 0)
3292 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3294 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3297 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3300 * Account a single tick of cpu time.
3301 * @p: the process that the cpu time gets accounted to
3302 * @user_tick: indicates if the tick is a user or a system tick
3304 void account_process_tick(struct task_struct
*p
, int user_tick
)
3306 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3307 struct rq
*rq
= this_rq();
3310 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3311 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3312 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3315 account_idle_time(cputime_one_jiffy
);
3319 * Account multiple ticks of steal time.
3320 * @p: the process from which the cpu time has been stolen
3321 * @ticks: number of stolen ticks
3323 void account_steal_ticks(unsigned long ticks
)
3325 account_steal_time(jiffies_to_cputime(ticks
));
3329 * Account multiple ticks of idle time.
3330 * @ticks: number of stolen ticks
3332 void account_idle_ticks(unsigned long ticks
)
3334 account_idle_time(jiffies_to_cputime(ticks
));
3340 * Use precise platform statistics if available:
3342 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3343 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3349 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3351 struct task_cputime cputime
;
3353 thread_group_cputime(p
, &cputime
);
3355 *ut
= cputime
.utime
;
3356 *st
= cputime
.stime
;
3360 #ifndef nsecs_to_cputime
3361 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3364 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3366 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3369 * Use CFS's precise accounting:
3371 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3376 temp
= (u64
)(rtime
* utime
);
3377 do_div(temp
, total
);
3378 utime
= (cputime_t
)temp
;
3383 * Compare with previous values, to keep monotonicity:
3385 p
->prev_utime
= max(p
->prev_utime
, utime
);
3386 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3388 *ut
= p
->prev_utime
;
3389 *st
= p
->prev_stime
;
3393 * Must be called with siglock held.
3395 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3397 struct signal_struct
*sig
= p
->signal
;
3398 struct task_cputime cputime
;
3399 cputime_t rtime
, utime
, total
;
3401 thread_group_cputime(p
, &cputime
);
3403 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3404 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3409 temp
= (u64
)(rtime
* cputime
.utime
);
3410 do_div(temp
, total
);
3411 utime
= (cputime_t
)temp
;
3415 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3416 sig
->prev_stime
= max(sig
->prev_stime
,
3417 cputime_sub(rtime
, sig
->prev_utime
));
3419 *ut
= sig
->prev_utime
;
3420 *st
= sig
->prev_stime
;
3425 * This function gets called by the timer code, with HZ frequency.
3426 * We call it with interrupts disabled.
3428 * It also gets called by the fork code, when changing the parent's
3431 void scheduler_tick(void)
3433 int cpu
= smp_processor_id();
3434 struct rq
*rq
= cpu_rq(cpu
);
3435 struct task_struct
*curr
= rq
->curr
;
3439 raw_spin_lock(&rq
->lock
);
3440 update_rq_clock(rq
);
3441 update_cpu_load(rq
);
3442 curr
->sched_class
->task_tick(rq
, curr
, 0);
3443 raw_spin_unlock(&rq
->lock
);
3445 perf_event_task_tick(curr
);
3448 rq
->idle_at_tick
= idle_cpu(cpu
);
3449 trigger_load_balance(rq
, cpu
);
3453 notrace
unsigned long get_parent_ip(unsigned long addr
)
3455 if (in_lock_functions(addr
)) {
3456 addr
= CALLER_ADDR2
;
3457 if (in_lock_functions(addr
))
3458 addr
= CALLER_ADDR3
;
3463 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3464 defined(CONFIG_PREEMPT_TRACER))
3466 void __kprobes
add_preempt_count(int val
)
3468 #ifdef CONFIG_DEBUG_PREEMPT
3472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3475 preempt_count() += val
;
3476 #ifdef CONFIG_DEBUG_PREEMPT
3478 * Spinlock count overflowing soon?
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3483 if (preempt_count() == val
)
3484 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3486 EXPORT_SYMBOL(add_preempt_count
);
3488 void __kprobes
sub_preempt_count(int val
)
3490 #ifdef CONFIG_DEBUG_PREEMPT
3494 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3497 * Is the spinlock portion underflowing?
3499 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3500 !(preempt_count() & PREEMPT_MASK
)))
3504 if (preempt_count() == val
)
3505 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3506 preempt_count() -= val
;
3508 EXPORT_SYMBOL(sub_preempt_count
);
3513 * Print scheduling while atomic bug:
3515 static noinline
void __schedule_bug(struct task_struct
*prev
)
3517 struct pt_regs
*regs
= get_irq_regs();
3519 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3520 prev
->comm
, prev
->pid
, preempt_count());
3522 debug_show_held_locks(prev
);
3524 if (irqs_disabled())
3525 print_irqtrace_events(prev
);
3534 * Various schedule()-time debugging checks and statistics:
3536 static inline void schedule_debug(struct task_struct
*prev
)
3539 * Test if we are atomic. Since do_exit() needs to call into
3540 * schedule() atomically, we ignore that path for now.
3541 * Otherwise, whine if we are scheduling when we should not be.
3543 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3544 __schedule_bug(prev
);
3546 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3548 schedstat_inc(this_rq(), sched_count
);
3549 #ifdef CONFIG_SCHEDSTATS
3550 if (unlikely(prev
->lock_depth
>= 0)) {
3551 schedstat_inc(this_rq(), bkl_count
);
3552 schedstat_inc(prev
, sched_info
.bkl_count
);
3557 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3560 update_rq_clock(rq
);
3561 rq
->skip_clock_update
= 0;
3562 prev
->sched_class
->put_prev_task(rq
, prev
);
3566 * Pick up the highest-prio task:
3568 static inline struct task_struct
*
3569 pick_next_task(struct rq
*rq
)
3571 const struct sched_class
*class;
3572 struct task_struct
*p
;
3575 * Optimization: we know that if all tasks are in
3576 * the fair class we can call that function directly:
3578 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3579 p
= fair_sched_class
.pick_next_task(rq
);
3584 class = sched_class_highest
;
3586 p
= class->pick_next_task(rq
);
3590 * Will never be NULL as the idle class always
3591 * returns a non-NULL p:
3593 class = class->next
;
3598 * schedule() is the main scheduler function.
3600 asmlinkage
void __sched
schedule(void)
3602 struct task_struct
*prev
, *next
;
3603 unsigned long *switch_count
;
3609 cpu
= smp_processor_id();
3611 rcu_note_context_switch(cpu
);
3613 switch_count
= &prev
->nivcsw
;
3615 release_kernel_lock(prev
);
3616 need_resched_nonpreemptible
:
3618 schedule_debug(prev
);
3620 if (sched_feat(HRTICK
))
3623 raw_spin_lock_irq(&rq
->lock
);
3624 clear_tsk_need_resched(prev
);
3626 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3627 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3628 prev
->state
= TASK_RUNNING
;
3630 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3631 switch_count
= &prev
->nvcsw
;
3634 pre_schedule(rq
, prev
);
3636 if (unlikely(!rq
->nr_running
))
3637 idle_balance(cpu
, rq
);
3639 put_prev_task(rq
, prev
);
3640 next
= pick_next_task(rq
);
3642 if (likely(prev
!= next
)) {
3643 sched_info_switch(prev
, next
);
3644 perf_event_task_sched_out(prev
, next
);
3650 context_switch(rq
, prev
, next
); /* unlocks the rq */
3652 * the context switch might have flipped the stack from under
3653 * us, hence refresh the local variables.
3655 cpu
= smp_processor_id();
3658 raw_spin_unlock_irq(&rq
->lock
);
3662 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3664 switch_count
= &prev
->nivcsw
;
3665 goto need_resched_nonpreemptible
;
3668 preempt_enable_no_resched();
3672 EXPORT_SYMBOL(schedule
);
3674 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3676 * Look out! "owner" is an entirely speculative pointer
3677 * access and not reliable.
3679 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3684 if (!sched_feat(OWNER_SPIN
))
3687 #ifdef CONFIG_DEBUG_PAGEALLOC
3689 * Need to access the cpu field knowing that
3690 * DEBUG_PAGEALLOC could have unmapped it if
3691 * the mutex owner just released it and exited.
3693 if (probe_kernel_address(&owner
->cpu
, cpu
))
3700 * Even if the access succeeded (likely case),
3701 * the cpu field may no longer be valid.
3703 if (cpu
>= nr_cpumask_bits
)
3707 * We need to validate that we can do a
3708 * get_cpu() and that we have the percpu area.
3710 if (!cpu_online(cpu
))
3717 * Owner changed, break to re-assess state.
3719 if (lock
->owner
!= owner
)
3723 * Is that owner really running on that cpu?
3725 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3735 #ifdef CONFIG_PREEMPT
3737 * this is the entry point to schedule() from in-kernel preemption
3738 * off of preempt_enable. Kernel preemptions off return from interrupt
3739 * occur there and call schedule directly.
3741 asmlinkage
void __sched
preempt_schedule(void)
3743 struct thread_info
*ti
= current_thread_info();
3746 * If there is a non-zero preempt_count or interrupts are disabled,
3747 * we do not want to preempt the current task. Just return..
3749 if (likely(ti
->preempt_count
|| irqs_disabled()))
3753 add_preempt_count(PREEMPT_ACTIVE
);
3755 sub_preempt_count(PREEMPT_ACTIVE
);
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3762 } while (need_resched());
3764 EXPORT_SYMBOL(preempt_schedule
);
3767 * this is the entry point to schedule() from kernel preemption
3768 * off of irq context.
3769 * Note, that this is called and return with irqs disabled. This will
3770 * protect us against recursive calling from irq.
3772 asmlinkage
void __sched
preempt_schedule_irq(void)
3774 struct thread_info
*ti
= current_thread_info();
3776 /* Catch callers which need to be fixed */
3777 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3780 add_preempt_count(PREEMPT_ACTIVE
);
3783 local_irq_disable();
3784 sub_preempt_count(PREEMPT_ACTIVE
);
3787 * Check again in case we missed a preemption opportunity
3788 * between schedule and now.
3791 } while (need_resched());
3794 #endif /* CONFIG_PREEMPT */
3796 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3799 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3801 EXPORT_SYMBOL(default_wake_function
);
3804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3806 * number) then we wake all the non-exclusive tasks and one exclusive task.
3808 * There are circumstances in which we can try to wake a task which has already
3809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3812 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3813 int nr_exclusive
, int wake_flags
, void *key
)
3815 wait_queue_t
*curr
, *next
;
3817 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3818 unsigned flags
= curr
->flags
;
3820 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3821 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3827 * __wake_up - wake up threads blocked on a waitqueue.
3829 * @mode: which threads
3830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3831 * @key: is directly passed to the wakeup function
3833 * It may be assumed that this function implies a write memory barrier before
3834 * changing the task state if and only if any tasks are woken up.
3836 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3837 int nr_exclusive
, void *key
)
3839 unsigned long flags
;
3841 spin_lock_irqsave(&q
->lock
, flags
);
3842 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3843 spin_unlock_irqrestore(&q
->lock
, flags
);
3845 EXPORT_SYMBOL(__wake_up
);
3848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3850 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3852 __wake_up_common(q
, mode
, 1, 0, NULL
);
3854 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3856 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3858 __wake_up_common(q
, mode
, 1, 0, key
);
3862 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3864 * @mode: which threads
3865 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3866 * @key: opaque value to be passed to wakeup targets
3868 * The sync wakeup differs that the waker knows that it will schedule
3869 * away soon, so while the target thread will be woken up, it will not
3870 * be migrated to another CPU - ie. the two threads are 'synchronized'
3871 * with each other. This can prevent needless bouncing between CPUs.
3873 * On UP it can prevent extra preemption.
3875 * It may be assumed that this function implies a write memory barrier before
3876 * changing the task state if and only if any tasks are woken up.
3878 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3879 int nr_exclusive
, void *key
)
3881 unsigned long flags
;
3882 int wake_flags
= WF_SYNC
;
3887 if (unlikely(!nr_exclusive
))
3890 spin_lock_irqsave(&q
->lock
, flags
);
3891 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3892 spin_unlock_irqrestore(&q
->lock
, flags
);
3894 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3897 * __wake_up_sync - see __wake_up_sync_key()
3899 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3901 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3903 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3906 * complete: - signals a single thread waiting on this completion
3907 * @x: holds the state of this particular completion
3909 * This will wake up a single thread waiting on this completion. Threads will be
3910 * awakened in the same order in which they were queued.
3912 * See also complete_all(), wait_for_completion() and related routines.
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
3917 void complete(struct completion
*x
)
3919 unsigned long flags
;
3921 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3923 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3924 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3926 EXPORT_SYMBOL(complete
);
3929 * complete_all: - signals all threads waiting on this completion
3930 * @x: holds the state of this particular completion
3932 * This will wake up all threads waiting on this particular completion event.
3934 * It may be assumed that this function implies a write memory barrier before
3935 * changing the task state if and only if any tasks are woken up.
3937 void complete_all(struct completion
*x
)
3939 unsigned long flags
;
3941 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3942 x
->done
+= UINT_MAX
/2;
3943 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3944 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3946 EXPORT_SYMBOL(complete_all
);
3948 static inline long __sched
3949 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3952 DECLARE_WAITQUEUE(wait
, current
);
3954 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3956 if (signal_pending_state(state
, current
)) {
3957 timeout
= -ERESTARTSYS
;
3960 __set_current_state(state
);
3961 spin_unlock_irq(&x
->wait
.lock
);
3962 timeout
= schedule_timeout(timeout
);
3963 spin_lock_irq(&x
->wait
.lock
);
3964 } while (!x
->done
&& timeout
);
3965 __remove_wait_queue(&x
->wait
, &wait
);
3970 return timeout
?: 1;
3974 wait_for_common(struct completion
*x
, long timeout
, int state
)
3978 spin_lock_irq(&x
->wait
.lock
);
3979 timeout
= do_wait_for_common(x
, timeout
, state
);
3980 spin_unlock_irq(&x
->wait
.lock
);
3985 * wait_for_completion: - waits for completion of a task
3986 * @x: holds the state of this particular completion
3988 * This waits to be signaled for completion of a specific task. It is NOT
3989 * interruptible and there is no timeout.
3991 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3992 * and interrupt capability. Also see complete().
3994 void __sched
wait_for_completion(struct completion
*x
)
3996 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3998 EXPORT_SYMBOL(wait_for_completion
);
4001 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4002 * @x: holds the state of this particular completion
4003 * @timeout: timeout value in jiffies
4005 * This waits for either a completion of a specific task to be signaled or for a
4006 * specified timeout to expire. The timeout is in jiffies. It is not
4009 unsigned long __sched
4010 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4012 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4014 EXPORT_SYMBOL(wait_for_completion_timeout
);
4017 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4018 * @x: holds the state of this particular completion
4020 * This waits for completion of a specific task to be signaled. It is
4023 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4025 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4026 if (t
== -ERESTARTSYS
)
4030 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4033 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4034 * @x: holds the state of this particular completion
4035 * @timeout: timeout value in jiffies
4037 * This waits for either a completion of a specific task to be signaled or for a
4038 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4040 unsigned long __sched
4041 wait_for_completion_interruptible_timeout(struct completion
*x
,
4042 unsigned long timeout
)
4044 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4046 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4049 * wait_for_completion_killable: - waits for completion of a task (killable)
4050 * @x: holds the state of this particular completion
4052 * This waits to be signaled for completion of a specific task. It can be
4053 * interrupted by a kill signal.
4055 int __sched
wait_for_completion_killable(struct completion
*x
)
4057 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4058 if (t
== -ERESTARTSYS
)
4062 EXPORT_SYMBOL(wait_for_completion_killable
);
4065 * try_wait_for_completion - try to decrement a completion without blocking
4066 * @x: completion structure
4068 * Returns: 0 if a decrement cannot be done without blocking
4069 * 1 if a decrement succeeded.
4071 * If a completion is being used as a counting completion,
4072 * attempt to decrement the counter without blocking. This
4073 * enables us to avoid waiting if the resource the completion
4074 * is protecting is not available.
4076 bool try_wait_for_completion(struct completion
*x
)
4078 unsigned long flags
;
4081 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4086 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4089 EXPORT_SYMBOL(try_wait_for_completion
);
4092 * completion_done - Test to see if a completion has any waiters
4093 * @x: completion structure
4095 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4096 * 1 if there are no waiters.
4099 bool completion_done(struct completion
*x
)
4101 unsigned long flags
;
4104 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4107 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4110 EXPORT_SYMBOL(completion_done
);
4113 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4115 unsigned long flags
;
4118 init_waitqueue_entry(&wait
, current
);
4120 __set_current_state(state
);
4122 spin_lock_irqsave(&q
->lock
, flags
);
4123 __add_wait_queue(q
, &wait
);
4124 spin_unlock(&q
->lock
);
4125 timeout
= schedule_timeout(timeout
);
4126 spin_lock_irq(&q
->lock
);
4127 __remove_wait_queue(q
, &wait
);
4128 spin_unlock_irqrestore(&q
->lock
, flags
);
4133 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4135 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4137 EXPORT_SYMBOL(interruptible_sleep_on
);
4140 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4142 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4144 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4146 void __sched
sleep_on(wait_queue_head_t
*q
)
4148 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4150 EXPORT_SYMBOL(sleep_on
);
4152 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4154 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4156 EXPORT_SYMBOL(sleep_on_timeout
);
4158 #ifdef CONFIG_RT_MUTEXES
4161 * rt_mutex_setprio - set the current priority of a task
4163 * @prio: prio value (kernel-internal form)
4165 * This function changes the 'effective' priority of a task. It does
4166 * not touch ->normal_prio like __setscheduler().
4168 * Used by the rt_mutex code to implement priority inheritance logic.
4170 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4172 unsigned long flags
;
4173 int oldprio
, on_rq
, running
;
4175 const struct sched_class
*prev_class
;
4177 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4179 rq
= task_rq_lock(p
, &flags
);
4182 prev_class
= p
->sched_class
;
4183 on_rq
= p
->se
.on_rq
;
4184 running
= task_current(rq
, p
);
4186 dequeue_task(rq
, p
, 0);
4188 p
->sched_class
->put_prev_task(rq
, p
);
4191 p
->sched_class
= &rt_sched_class
;
4193 p
->sched_class
= &fair_sched_class
;
4198 p
->sched_class
->set_curr_task(rq
);
4200 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4202 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4204 task_rq_unlock(rq
, &flags
);
4209 void set_user_nice(struct task_struct
*p
, long nice
)
4211 int old_prio
, delta
, on_rq
;
4212 unsigned long flags
;
4215 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4218 * We have to be careful, if called from sys_setpriority(),
4219 * the task might be in the middle of scheduling on another CPU.
4221 rq
= task_rq_lock(p
, &flags
);
4223 * The RT priorities are set via sched_setscheduler(), but we still
4224 * allow the 'normal' nice value to be set - but as expected
4225 * it wont have any effect on scheduling until the task is
4226 * SCHED_FIFO/SCHED_RR:
4228 if (task_has_rt_policy(p
)) {
4229 p
->static_prio
= NICE_TO_PRIO(nice
);
4232 on_rq
= p
->se
.on_rq
;
4234 dequeue_task(rq
, p
, 0);
4236 p
->static_prio
= NICE_TO_PRIO(nice
);
4239 p
->prio
= effective_prio(p
);
4240 delta
= p
->prio
- old_prio
;
4243 enqueue_task(rq
, p
, 0);
4245 * If the task increased its priority or is running and
4246 * lowered its priority, then reschedule its CPU:
4248 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4249 resched_task(rq
->curr
);
4252 task_rq_unlock(rq
, &flags
);
4254 EXPORT_SYMBOL(set_user_nice
);
4257 * can_nice - check if a task can reduce its nice value
4261 int can_nice(const struct task_struct
*p
, const int nice
)
4263 /* convert nice value [19,-20] to rlimit style value [1,40] */
4264 int nice_rlim
= 20 - nice
;
4266 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4267 capable(CAP_SYS_NICE
));
4270 #ifdef __ARCH_WANT_SYS_NICE
4273 * sys_nice - change the priority of the current process.
4274 * @increment: priority increment
4276 * sys_setpriority is a more generic, but much slower function that
4277 * does similar things.
4279 SYSCALL_DEFINE1(nice
, int, increment
)
4284 * Setpriority might change our priority at the same moment.
4285 * We don't have to worry. Conceptually one call occurs first
4286 * and we have a single winner.
4288 if (increment
< -40)
4293 nice
= TASK_NICE(current
) + increment
;
4299 if (increment
< 0 && !can_nice(current
, nice
))
4302 retval
= security_task_setnice(current
, nice
);
4306 set_user_nice(current
, nice
);
4313 * task_prio - return the priority value of a given task.
4314 * @p: the task in question.
4316 * This is the priority value as seen by users in /proc.
4317 * RT tasks are offset by -200. Normal tasks are centered
4318 * around 0, value goes from -16 to +15.
4320 int task_prio(const struct task_struct
*p
)
4322 return p
->prio
- MAX_RT_PRIO
;
4326 * task_nice - return the nice value of a given task.
4327 * @p: the task in question.
4329 int task_nice(const struct task_struct
*p
)
4331 return TASK_NICE(p
);
4333 EXPORT_SYMBOL(task_nice
);
4336 * idle_cpu - is a given cpu idle currently?
4337 * @cpu: the processor in question.
4339 int idle_cpu(int cpu
)
4341 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4345 * idle_task - return the idle task for a given cpu.
4346 * @cpu: the processor in question.
4348 struct task_struct
*idle_task(int cpu
)
4350 return cpu_rq(cpu
)->idle
;
4354 * find_process_by_pid - find a process with a matching PID value.
4355 * @pid: the pid in question.
4357 static struct task_struct
*find_process_by_pid(pid_t pid
)
4359 return pid
? find_task_by_vpid(pid
) : current
;
4362 /* Actually do priority change: must hold rq lock. */
4364 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4366 BUG_ON(p
->se
.on_rq
);
4369 p
->rt_priority
= prio
;
4370 p
->normal_prio
= normal_prio(p
);
4371 /* we are holding p->pi_lock already */
4372 p
->prio
= rt_mutex_getprio(p
);
4373 if (rt_prio(p
->prio
))
4374 p
->sched_class
= &rt_sched_class
;
4376 p
->sched_class
= &fair_sched_class
;
4381 * check the target process has a UID that matches the current process's
4383 static bool check_same_owner(struct task_struct
*p
)
4385 const struct cred
*cred
= current_cred(), *pcred
;
4389 pcred
= __task_cred(p
);
4390 match
= (cred
->euid
== pcred
->euid
||
4391 cred
->euid
== pcred
->uid
);
4396 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4397 struct sched_param
*param
, bool user
)
4399 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4400 unsigned long flags
;
4401 const struct sched_class
*prev_class
;
4405 /* may grab non-irq protected spin_locks */
4406 BUG_ON(in_interrupt());
4408 /* double check policy once rq lock held */
4410 reset_on_fork
= p
->sched_reset_on_fork
;
4411 policy
= oldpolicy
= p
->policy
;
4413 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4414 policy
&= ~SCHED_RESET_ON_FORK
;
4416 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4417 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4418 policy
!= SCHED_IDLE
)
4423 * Valid priorities for SCHED_FIFO and SCHED_RR are
4424 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4425 * SCHED_BATCH and SCHED_IDLE is 0.
4427 if (param
->sched_priority
< 0 ||
4428 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4429 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4431 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4435 * Allow unprivileged RT tasks to decrease priority:
4437 if (user
&& !capable(CAP_SYS_NICE
)) {
4438 if (rt_policy(policy
)) {
4439 unsigned long rlim_rtprio
;
4441 if (!lock_task_sighand(p
, &flags
))
4443 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4444 unlock_task_sighand(p
, &flags
);
4446 /* can't set/change the rt policy */
4447 if (policy
!= p
->policy
&& !rlim_rtprio
)
4450 /* can't increase priority */
4451 if (param
->sched_priority
> p
->rt_priority
&&
4452 param
->sched_priority
> rlim_rtprio
)
4456 * Like positive nice levels, dont allow tasks to
4457 * move out of SCHED_IDLE either:
4459 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4462 /* can't change other user's priorities */
4463 if (!check_same_owner(p
))
4466 /* Normal users shall not reset the sched_reset_on_fork flag */
4467 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4472 #ifdef CONFIG_RT_GROUP_SCHED
4474 * Do not allow realtime tasks into groups that have no runtime
4477 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4478 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4482 retval
= security_task_setscheduler(p
, policy
, param
);
4488 * make sure no PI-waiters arrive (or leave) while we are
4489 * changing the priority of the task:
4491 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4493 * To be able to change p->policy safely, the apropriate
4494 * runqueue lock must be held.
4496 rq
= __task_rq_lock(p
);
4497 /* recheck policy now with rq lock held */
4498 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4499 policy
= oldpolicy
= -1;
4500 __task_rq_unlock(rq
);
4501 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4504 on_rq
= p
->se
.on_rq
;
4505 running
= task_current(rq
, p
);
4507 deactivate_task(rq
, p
, 0);
4509 p
->sched_class
->put_prev_task(rq
, p
);
4511 p
->sched_reset_on_fork
= reset_on_fork
;
4514 prev_class
= p
->sched_class
;
4515 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4518 p
->sched_class
->set_curr_task(rq
);
4520 activate_task(rq
, p
, 0);
4522 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4524 __task_rq_unlock(rq
);
4525 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4527 rt_mutex_adjust_pi(p
);
4533 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4534 * @p: the task in question.
4535 * @policy: new policy.
4536 * @param: structure containing the new RT priority.
4538 * NOTE that the task may be already dead.
4540 int sched_setscheduler(struct task_struct
*p
, int policy
,
4541 struct sched_param
*param
)
4543 return __sched_setscheduler(p
, policy
, param
, true);
4545 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4548 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4549 * @p: the task in question.
4550 * @policy: new policy.
4551 * @param: structure containing the new RT priority.
4553 * Just like sched_setscheduler, only don't bother checking if the
4554 * current context has permission. For example, this is needed in
4555 * stop_machine(): we create temporary high priority worker threads,
4556 * but our caller might not have that capability.
4558 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4559 struct sched_param
*param
)
4561 return __sched_setscheduler(p
, policy
, param
, false);
4565 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4567 struct sched_param lparam
;
4568 struct task_struct
*p
;
4571 if (!param
|| pid
< 0)
4573 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4578 p
= find_process_by_pid(pid
);
4580 retval
= sched_setscheduler(p
, policy
, &lparam
);
4587 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4588 * @pid: the pid in question.
4589 * @policy: new policy.
4590 * @param: structure containing the new RT priority.
4592 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4593 struct sched_param __user
*, param
)
4595 /* negative values for policy are not valid */
4599 return do_sched_setscheduler(pid
, policy
, param
);
4603 * sys_sched_setparam - set/change the RT priority of a thread
4604 * @pid: the pid in question.
4605 * @param: structure containing the new RT priority.
4607 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4609 return do_sched_setscheduler(pid
, -1, param
);
4613 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4614 * @pid: the pid in question.
4616 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4618 struct task_struct
*p
;
4626 p
= find_process_by_pid(pid
);
4628 retval
= security_task_getscheduler(p
);
4631 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4638 * sys_sched_getparam - get the RT priority of a thread
4639 * @pid: the pid in question.
4640 * @param: structure containing the RT priority.
4642 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4644 struct sched_param lp
;
4645 struct task_struct
*p
;
4648 if (!param
|| pid
< 0)
4652 p
= find_process_by_pid(pid
);
4657 retval
= security_task_getscheduler(p
);
4661 lp
.sched_priority
= p
->rt_priority
;
4665 * This one might sleep, we cannot do it with a spinlock held ...
4667 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4676 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4678 cpumask_var_t cpus_allowed
, new_mask
;
4679 struct task_struct
*p
;
4685 p
= find_process_by_pid(pid
);
4692 /* Prevent p going away */
4696 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4700 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4702 goto out_free_cpus_allowed
;
4705 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4708 retval
= security_task_setscheduler(p
, 0, NULL
);
4712 cpuset_cpus_allowed(p
, cpus_allowed
);
4713 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4715 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4718 cpuset_cpus_allowed(p
, cpus_allowed
);
4719 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4721 * We must have raced with a concurrent cpuset
4722 * update. Just reset the cpus_allowed to the
4723 * cpuset's cpus_allowed
4725 cpumask_copy(new_mask
, cpus_allowed
);
4730 free_cpumask_var(new_mask
);
4731 out_free_cpus_allowed
:
4732 free_cpumask_var(cpus_allowed
);
4739 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4740 struct cpumask
*new_mask
)
4742 if (len
< cpumask_size())
4743 cpumask_clear(new_mask
);
4744 else if (len
> cpumask_size())
4745 len
= cpumask_size();
4747 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4751 * sys_sched_setaffinity - set the cpu affinity of a process
4752 * @pid: pid of the process
4753 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4754 * @user_mask_ptr: user-space pointer to the new cpu mask
4756 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4757 unsigned long __user
*, user_mask_ptr
)
4759 cpumask_var_t new_mask
;
4762 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4765 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4767 retval
= sched_setaffinity(pid
, new_mask
);
4768 free_cpumask_var(new_mask
);
4772 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4774 struct task_struct
*p
;
4775 unsigned long flags
;
4783 p
= find_process_by_pid(pid
);
4787 retval
= security_task_getscheduler(p
);
4791 rq
= task_rq_lock(p
, &flags
);
4792 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4793 task_rq_unlock(rq
, &flags
);
4803 * sys_sched_getaffinity - get the cpu affinity of a process
4804 * @pid: pid of the process
4805 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4806 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4808 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4809 unsigned long __user
*, user_mask_ptr
)
4814 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4816 if (len
& (sizeof(unsigned long)-1))
4819 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4822 ret
= sched_getaffinity(pid
, mask
);
4824 size_t retlen
= min_t(size_t, len
, cpumask_size());
4826 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4831 free_cpumask_var(mask
);
4837 * sys_sched_yield - yield the current processor to other threads.
4839 * This function yields the current CPU to other tasks. If there are no
4840 * other threads running on this CPU then this function will return.
4842 SYSCALL_DEFINE0(sched_yield
)
4844 struct rq
*rq
= this_rq_lock();
4846 schedstat_inc(rq
, yld_count
);
4847 current
->sched_class
->yield_task(rq
);
4850 * Since we are going to call schedule() anyway, there's
4851 * no need to preempt or enable interrupts:
4853 __release(rq
->lock
);
4854 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4855 do_raw_spin_unlock(&rq
->lock
);
4856 preempt_enable_no_resched();
4863 static inline int should_resched(void)
4865 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4868 static void __cond_resched(void)
4870 add_preempt_count(PREEMPT_ACTIVE
);
4872 sub_preempt_count(PREEMPT_ACTIVE
);
4875 int __sched
_cond_resched(void)
4877 if (should_resched()) {
4883 EXPORT_SYMBOL(_cond_resched
);
4886 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4887 * call schedule, and on return reacquire the lock.
4889 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4890 * operations here to prevent schedule() from being called twice (once via
4891 * spin_unlock(), once by hand).
4893 int __cond_resched_lock(spinlock_t
*lock
)
4895 int resched
= should_resched();
4898 lockdep_assert_held(lock
);
4900 if (spin_needbreak(lock
) || resched
) {
4911 EXPORT_SYMBOL(__cond_resched_lock
);
4913 int __sched
__cond_resched_softirq(void)
4915 BUG_ON(!in_softirq());
4917 if (should_resched()) {
4925 EXPORT_SYMBOL(__cond_resched_softirq
);
4928 * yield - yield the current processor to other threads.
4930 * This is a shortcut for kernel-space yielding - it marks the
4931 * thread runnable and calls sys_sched_yield().
4933 void __sched
yield(void)
4935 set_current_state(TASK_RUNNING
);
4938 EXPORT_SYMBOL(yield
);
4941 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4942 * that process accounting knows that this is a task in IO wait state.
4944 void __sched
io_schedule(void)
4946 struct rq
*rq
= raw_rq();
4948 delayacct_blkio_start();
4949 atomic_inc(&rq
->nr_iowait
);
4950 current
->in_iowait
= 1;
4952 current
->in_iowait
= 0;
4953 atomic_dec(&rq
->nr_iowait
);
4954 delayacct_blkio_end();
4956 EXPORT_SYMBOL(io_schedule
);
4958 long __sched
io_schedule_timeout(long timeout
)
4960 struct rq
*rq
= raw_rq();
4963 delayacct_blkio_start();
4964 atomic_inc(&rq
->nr_iowait
);
4965 current
->in_iowait
= 1;
4966 ret
= schedule_timeout(timeout
);
4967 current
->in_iowait
= 0;
4968 atomic_dec(&rq
->nr_iowait
);
4969 delayacct_blkio_end();
4974 * sys_sched_get_priority_max - return maximum RT priority.
4975 * @policy: scheduling class.
4977 * this syscall returns the maximum rt_priority that can be used
4978 * by a given scheduling class.
4980 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4987 ret
= MAX_USER_RT_PRIO
-1;
4999 * sys_sched_get_priority_min - return minimum RT priority.
5000 * @policy: scheduling class.
5002 * this syscall returns the minimum rt_priority that can be used
5003 * by a given scheduling class.
5005 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5023 * sys_sched_rr_get_interval - return the default timeslice of a process.
5024 * @pid: pid of the process.
5025 * @interval: userspace pointer to the timeslice value.
5027 * this syscall writes the default timeslice value of a given process
5028 * into the user-space timespec buffer. A value of '0' means infinity.
5030 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5031 struct timespec __user
*, interval
)
5033 struct task_struct
*p
;
5034 unsigned int time_slice
;
5035 unsigned long flags
;
5045 p
= find_process_by_pid(pid
);
5049 retval
= security_task_getscheduler(p
);
5053 rq
= task_rq_lock(p
, &flags
);
5054 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5055 task_rq_unlock(rq
, &flags
);
5058 jiffies_to_timespec(time_slice
, &t
);
5059 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5067 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5069 void sched_show_task(struct task_struct
*p
)
5071 unsigned long free
= 0;
5074 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5075 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5076 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5077 #if BITS_PER_LONG == 32
5078 if (state
== TASK_RUNNING
)
5079 printk(KERN_CONT
" running ");
5081 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5083 if (state
== TASK_RUNNING
)
5084 printk(KERN_CONT
" running task ");
5086 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5088 #ifdef CONFIG_DEBUG_STACK_USAGE
5089 free
= stack_not_used(p
);
5091 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5092 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5093 (unsigned long)task_thread_info(p
)->flags
);
5095 show_stack(p
, NULL
);
5098 void show_state_filter(unsigned long state_filter
)
5100 struct task_struct
*g
, *p
;
5102 #if BITS_PER_LONG == 32
5104 " task PC stack pid father\n");
5107 " task PC stack pid father\n");
5109 read_lock(&tasklist_lock
);
5110 do_each_thread(g
, p
) {
5112 * reset the NMI-timeout, listing all files on a slow
5113 * console might take alot of time:
5115 touch_nmi_watchdog();
5116 if (!state_filter
|| (p
->state
& state_filter
))
5118 } while_each_thread(g
, p
);
5120 touch_all_softlockup_watchdogs();
5122 #ifdef CONFIG_SCHED_DEBUG
5123 sysrq_sched_debug_show();
5125 read_unlock(&tasklist_lock
);
5127 * Only show locks if all tasks are dumped:
5130 debug_show_all_locks();
5133 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5135 idle
->sched_class
= &idle_sched_class
;
5139 * init_idle - set up an idle thread for a given CPU
5140 * @idle: task in question
5141 * @cpu: cpu the idle task belongs to
5143 * NOTE: this function does not set the idle thread's NEED_RESCHED
5144 * flag, to make booting more robust.
5146 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5148 struct rq
*rq
= cpu_rq(cpu
);
5149 unsigned long flags
;
5151 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5154 idle
->state
= TASK_RUNNING
;
5155 idle
->se
.exec_start
= sched_clock();
5157 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5158 __set_task_cpu(idle
, cpu
);
5160 rq
->curr
= rq
->idle
= idle
;
5161 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5164 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5166 /* Set the preempt count _outside_ the spinlocks! */
5167 #if defined(CONFIG_PREEMPT)
5168 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5170 task_thread_info(idle
)->preempt_count
= 0;
5173 * The idle tasks have their own, simple scheduling class:
5175 idle
->sched_class
= &idle_sched_class
;
5176 ftrace_graph_init_task(idle
);
5180 * In a system that switches off the HZ timer nohz_cpu_mask
5181 * indicates which cpus entered this state. This is used
5182 * in the rcu update to wait only for active cpus. For system
5183 * which do not switch off the HZ timer nohz_cpu_mask should
5184 * always be CPU_BITS_NONE.
5186 cpumask_var_t nohz_cpu_mask
;
5189 * Increase the granularity value when there are more CPUs,
5190 * because with more CPUs the 'effective latency' as visible
5191 * to users decreases. But the relationship is not linear,
5192 * so pick a second-best guess by going with the log2 of the
5195 * This idea comes from the SD scheduler of Con Kolivas:
5197 static int get_update_sysctl_factor(void)
5199 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5200 unsigned int factor
;
5202 switch (sysctl_sched_tunable_scaling
) {
5203 case SCHED_TUNABLESCALING_NONE
:
5206 case SCHED_TUNABLESCALING_LINEAR
:
5209 case SCHED_TUNABLESCALING_LOG
:
5211 factor
= 1 + ilog2(cpus
);
5218 static void update_sysctl(void)
5220 unsigned int factor
= get_update_sysctl_factor();
5222 #define SET_SYSCTL(name) \
5223 (sysctl_##name = (factor) * normalized_sysctl_##name)
5224 SET_SYSCTL(sched_min_granularity
);
5225 SET_SYSCTL(sched_latency
);
5226 SET_SYSCTL(sched_wakeup_granularity
);
5227 SET_SYSCTL(sched_shares_ratelimit
);
5231 static inline void sched_init_granularity(void)
5238 * This is how migration works:
5240 * 1) we invoke migration_cpu_stop() on the target CPU using
5242 * 2) stopper starts to run (implicitly forcing the migrated thread
5244 * 3) it checks whether the migrated task is still in the wrong runqueue.
5245 * 4) if it's in the wrong runqueue then the migration thread removes
5246 * it and puts it into the right queue.
5247 * 5) stopper completes and stop_one_cpu() returns and the migration
5252 * Change a given task's CPU affinity. Migrate the thread to a
5253 * proper CPU and schedule it away if the CPU it's executing on
5254 * is removed from the allowed bitmask.
5256 * NOTE: the caller must have a valid reference to the task, the
5257 * task must not exit() & deallocate itself prematurely. The
5258 * call is not atomic; no spinlocks may be held.
5260 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5262 unsigned long flags
;
5264 unsigned int dest_cpu
;
5268 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5269 * drop the rq->lock and still rely on ->cpus_allowed.
5272 while (task_is_waking(p
))
5274 rq
= task_rq_lock(p
, &flags
);
5275 if (task_is_waking(p
)) {
5276 task_rq_unlock(rq
, &flags
);
5280 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5285 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5286 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5291 if (p
->sched_class
->set_cpus_allowed
)
5292 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5294 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5295 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5298 /* Can the task run on the task's current CPU? If so, we're done */
5299 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5302 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5303 if (migrate_task(p
, dest_cpu
)) {
5304 struct migration_arg arg
= { p
, dest_cpu
};
5305 /* Need help from migration thread: drop lock and wait. */
5306 task_rq_unlock(rq
, &flags
);
5307 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5308 tlb_migrate_finish(p
->mm
);
5312 task_rq_unlock(rq
, &flags
);
5316 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5319 * Move (not current) task off this cpu, onto dest cpu. We're doing
5320 * this because either it can't run here any more (set_cpus_allowed()
5321 * away from this CPU, or CPU going down), or because we're
5322 * attempting to rebalance this task on exec (sched_exec).
5324 * So we race with normal scheduler movements, but that's OK, as long
5325 * as the task is no longer on this CPU.
5327 * Returns non-zero if task was successfully migrated.
5329 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5331 struct rq
*rq_dest
, *rq_src
;
5334 if (unlikely(!cpu_active(dest_cpu
)))
5337 rq_src
= cpu_rq(src_cpu
);
5338 rq_dest
= cpu_rq(dest_cpu
);
5340 double_rq_lock(rq_src
, rq_dest
);
5341 /* Already moved. */
5342 if (task_cpu(p
) != src_cpu
)
5344 /* Affinity changed (again). */
5345 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5349 * If we're not on a rq, the next wake-up will ensure we're
5353 deactivate_task(rq_src
, p
, 0);
5354 set_task_cpu(p
, dest_cpu
);
5355 activate_task(rq_dest
, p
, 0);
5356 check_preempt_curr(rq_dest
, p
, 0);
5361 double_rq_unlock(rq_src
, rq_dest
);
5366 * migration_cpu_stop - this will be executed by a highprio stopper thread
5367 * and performs thread migration by bumping thread off CPU then
5368 * 'pushing' onto another runqueue.
5370 static int migration_cpu_stop(void *data
)
5372 struct migration_arg
*arg
= data
;
5375 * The original target cpu might have gone down and we might
5376 * be on another cpu but it doesn't matter.
5378 local_irq_disable();
5379 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5384 #ifdef CONFIG_HOTPLUG_CPU
5386 * Figure out where task on dead CPU should go, use force if necessary.
5388 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5390 struct rq
*rq
= cpu_rq(dead_cpu
);
5391 int needs_cpu
, uninitialized_var(dest_cpu
);
5392 unsigned long flags
;
5394 local_irq_save(flags
);
5396 raw_spin_lock(&rq
->lock
);
5397 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5399 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5400 raw_spin_unlock(&rq
->lock
);
5402 * It can only fail if we race with set_cpus_allowed(),
5403 * in the racer should migrate the task anyway.
5406 __migrate_task(p
, dead_cpu
, dest_cpu
);
5407 local_irq_restore(flags
);
5411 * While a dead CPU has no uninterruptible tasks queued at this point,
5412 * it might still have a nonzero ->nr_uninterruptible counter, because
5413 * for performance reasons the counter is not stricly tracking tasks to
5414 * their home CPUs. So we just add the counter to another CPU's counter,
5415 * to keep the global sum constant after CPU-down:
5417 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5419 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5420 unsigned long flags
;
5422 local_irq_save(flags
);
5423 double_rq_lock(rq_src
, rq_dest
);
5424 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5425 rq_src
->nr_uninterruptible
= 0;
5426 double_rq_unlock(rq_src
, rq_dest
);
5427 local_irq_restore(flags
);
5430 /* Run through task list and migrate tasks from the dead cpu. */
5431 static void migrate_live_tasks(int src_cpu
)
5433 struct task_struct
*p
, *t
;
5435 read_lock(&tasklist_lock
);
5437 do_each_thread(t
, p
) {
5441 if (task_cpu(p
) == src_cpu
)
5442 move_task_off_dead_cpu(src_cpu
, p
);
5443 } while_each_thread(t
, p
);
5445 read_unlock(&tasklist_lock
);
5449 * Schedules idle task to be the next runnable task on current CPU.
5450 * It does so by boosting its priority to highest possible.
5451 * Used by CPU offline code.
5453 void sched_idle_next(void)
5455 int this_cpu
= smp_processor_id();
5456 struct rq
*rq
= cpu_rq(this_cpu
);
5457 struct task_struct
*p
= rq
->idle
;
5458 unsigned long flags
;
5460 /* cpu has to be offline */
5461 BUG_ON(cpu_online(this_cpu
));
5464 * Strictly not necessary since rest of the CPUs are stopped by now
5465 * and interrupts disabled on the current cpu.
5467 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5469 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5471 activate_task(rq
, p
, 0);
5473 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5477 * Ensures that the idle task is using init_mm right before its cpu goes
5480 void idle_task_exit(void)
5482 struct mm_struct
*mm
= current
->active_mm
;
5484 BUG_ON(cpu_online(smp_processor_id()));
5487 switch_mm(mm
, &init_mm
, current
);
5491 /* called under rq->lock with disabled interrupts */
5492 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5494 struct rq
*rq
= cpu_rq(dead_cpu
);
5496 /* Must be exiting, otherwise would be on tasklist. */
5497 BUG_ON(!p
->exit_state
);
5499 /* Cannot have done final schedule yet: would have vanished. */
5500 BUG_ON(p
->state
== TASK_DEAD
);
5505 * Drop lock around migration; if someone else moves it,
5506 * that's OK. No task can be added to this CPU, so iteration is
5509 raw_spin_unlock_irq(&rq
->lock
);
5510 move_task_off_dead_cpu(dead_cpu
, p
);
5511 raw_spin_lock_irq(&rq
->lock
);
5516 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5517 static void migrate_dead_tasks(unsigned int dead_cpu
)
5519 struct rq
*rq
= cpu_rq(dead_cpu
);
5520 struct task_struct
*next
;
5523 if (!rq
->nr_running
)
5525 next
= pick_next_task(rq
);
5528 next
->sched_class
->put_prev_task(rq
, next
);
5529 migrate_dead(dead_cpu
, next
);
5535 * remove the tasks which were accounted by rq from calc_load_tasks.
5537 static void calc_global_load_remove(struct rq
*rq
)
5539 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5540 rq
->calc_load_active
= 0;
5542 #endif /* CONFIG_HOTPLUG_CPU */
5544 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5546 static struct ctl_table sd_ctl_dir
[] = {
5548 .procname
= "sched_domain",
5554 static struct ctl_table sd_ctl_root
[] = {
5556 .procname
= "kernel",
5558 .child
= sd_ctl_dir
,
5563 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5565 struct ctl_table
*entry
=
5566 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5571 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5573 struct ctl_table
*entry
;
5576 * In the intermediate directories, both the child directory and
5577 * procname are dynamically allocated and could fail but the mode
5578 * will always be set. In the lowest directory the names are
5579 * static strings and all have proc handlers.
5581 for (entry
= *tablep
; entry
->mode
; entry
++) {
5583 sd_free_ctl_entry(&entry
->child
);
5584 if (entry
->proc_handler
== NULL
)
5585 kfree(entry
->procname
);
5593 set_table_entry(struct ctl_table
*entry
,
5594 const char *procname
, void *data
, int maxlen
,
5595 mode_t mode
, proc_handler
*proc_handler
)
5597 entry
->procname
= procname
;
5599 entry
->maxlen
= maxlen
;
5601 entry
->proc_handler
= proc_handler
;
5604 static struct ctl_table
*
5605 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5607 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5612 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5613 sizeof(long), 0644, proc_doulongvec_minmax
);
5614 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5615 sizeof(long), 0644, proc_doulongvec_minmax
);
5616 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5617 sizeof(int), 0644, proc_dointvec_minmax
);
5618 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5619 sizeof(int), 0644, proc_dointvec_minmax
);
5620 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5621 sizeof(int), 0644, proc_dointvec_minmax
);
5622 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5623 sizeof(int), 0644, proc_dointvec_minmax
);
5624 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5625 sizeof(int), 0644, proc_dointvec_minmax
);
5626 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5627 sizeof(int), 0644, proc_dointvec_minmax
);
5628 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5629 sizeof(int), 0644, proc_dointvec_minmax
);
5630 set_table_entry(&table
[9], "cache_nice_tries",
5631 &sd
->cache_nice_tries
,
5632 sizeof(int), 0644, proc_dointvec_minmax
);
5633 set_table_entry(&table
[10], "flags", &sd
->flags
,
5634 sizeof(int), 0644, proc_dointvec_minmax
);
5635 set_table_entry(&table
[11], "name", sd
->name
,
5636 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5637 /* &table[12] is terminator */
5642 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5644 struct ctl_table
*entry
, *table
;
5645 struct sched_domain
*sd
;
5646 int domain_num
= 0, i
;
5649 for_each_domain(cpu
, sd
)
5651 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5656 for_each_domain(cpu
, sd
) {
5657 snprintf(buf
, 32, "domain%d", i
);
5658 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5660 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5667 static struct ctl_table_header
*sd_sysctl_header
;
5668 static void register_sched_domain_sysctl(void)
5670 int i
, cpu_num
= num_possible_cpus();
5671 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5674 WARN_ON(sd_ctl_dir
[0].child
);
5675 sd_ctl_dir
[0].child
= entry
;
5680 for_each_possible_cpu(i
) {
5681 snprintf(buf
, 32, "cpu%d", i
);
5682 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5684 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5688 WARN_ON(sd_sysctl_header
);
5689 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5692 /* may be called multiple times per register */
5693 static void unregister_sched_domain_sysctl(void)
5695 if (sd_sysctl_header
)
5696 unregister_sysctl_table(sd_sysctl_header
);
5697 sd_sysctl_header
= NULL
;
5698 if (sd_ctl_dir
[0].child
)
5699 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5702 static void register_sched_domain_sysctl(void)
5705 static void unregister_sched_domain_sysctl(void)
5710 static void set_rq_online(struct rq
*rq
)
5713 const struct sched_class
*class;
5715 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5718 for_each_class(class) {
5719 if (class->rq_online
)
5720 class->rq_online(rq
);
5725 static void set_rq_offline(struct rq
*rq
)
5728 const struct sched_class
*class;
5730 for_each_class(class) {
5731 if (class->rq_offline
)
5732 class->rq_offline(rq
);
5735 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5741 * migration_call - callback that gets triggered when a CPU is added.
5742 * Here we can start up the necessary migration thread for the new CPU.
5744 static int __cpuinit
5745 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5747 int cpu
= (long)hcpu
;
5748 unsigned long flags
;
5749 struct rq
*rq
= cpu_rq(cpu
);
5753 case CPU_UP_PREPARE
:
5754 case CPU_UP_PREPARE_FROZEN
:
5755 rq
->calc_load_update
= calc_load_update
;
5759 case CPU_ONLINE_FROZEN
:
5760 /* Update our root-domain */
5761 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5763 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5767 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5770 #ifdef CONFIG_HOTPLUG_CPU
5772 case CPU_DEAD_FROZEN
:
5773 migrate_live_tasks(cpu
);
5774 /* Idle task back to normal (off runqueue, low prio) */
5775 raw_spin_lock_irq(&rq
->lock
);
5776 deactivate_task(rq
, rq
->idle
, 0);
5777 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5778 rq
->idle
->sched_class
= &idle_sched_class
;
5779 migrate_dead_tasks(cpu
);
5780 raw_spin_unlock_irq(&rq
->lock
);
5781 migrate_nr_uninterruptible(rq
);
5782 BUG_ON(rq
->nr_running
!= 0);
5783 calc_global_load_remove(rq
);
5787 case CPU_DYING_FROZEN
:
5788 /* Update our root-domain */
5789 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5791 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5794 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5802 * Register at high priority so that task migration (migrate_all_tasks)
5803 * happens before everything else. This has to be lower priority than
5804 * the notifier in the perf_event subsystem, though.
5806 static struct notifier_block __cpuinitdata migration_notifier
= {
5807 .notifier_call
= migration_call
,
5811 static int __init
migration_init(void)
5813 void *cpu
= (void *)(long)smp_processor_id();
5816 /* Start one for the boot CPU: */
5817 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5818 BUG_ON(err
== NOTIFY_BAD
);
5819 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5820 register_cpu_notifier(&migration_notifier
);
5824 early_initcall(migration_init
);
5829 #ifdef CONFIG_SCHED_DEBUG
5831 static __read_mostly
int sched_domain_debug_enabled
;
5833 static int __init
sched_domain_debug_setup(char *str
)
5835 sched_domain_debug_enabled
= 1;
5839 early_param("sched_debug", sched_domain_debug_setup
);
5841 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5842 struct cpumask
*groupmask
)
5844 struct sched_group
*group
= sd
->groups
;
5847 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5848 cpumask_clear(groupmask
);
5850 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5852 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5853 printk("does not load-balance\n");
5855 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5860 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5862 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5863 printk(KERN_ERR
"ERROR: domain->span does not contain "
5866 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5867 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5871 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5875 printk(KERN_ERR
"ERROR: group is NULL\n");
5879 if (!group
->cpu_power
) {
5880 printk(KERN_CONT
"\n");
5881 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5886 if (!cpumask_weight(sched_group_cpus(group
))) {
5887 printk(KERN_CONT
"\n");
5888 printk(KERN_ERR
"ERROR: empty group\n");
5892 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5893 printk(KERN_CONT
"\n");
5894 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5898 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5900 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5902 printk(KERN_CONT
" %s", str
);
5903 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
5904 printk(KERN_CONT
" (cpu_power = %d)",
5908 group
= group
->next
;
5909 } while (group
!= sd
->groups
);
5910 printk(KERN_CONT
"\n");
5912 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5913 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5916 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5917 printk(KERN_ERR
"ERROR: parent span is not a superset "
5918 "of domain->span\n");
5922 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5924 cpumask_var_t groupmask
;
5927 if (!sched_domain_debug_enabled
)
5931 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5935 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5937 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
5938 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
5943 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
5950 free_cpumask_var(groupmask
);
5952 #else /* !CONFIG_SCHED_DEBUG */
5953 # define sched_domain_debug(sd, cpu) do { } while (0)
5954 #endif /* CONFIG_SCHED_DEBUG */
5956 static int sd_degenerate(struct sched_domain
*sd
)
5958 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5961 /* Following flags need at least 2 groups */
5962 if (sd
->flags
& (SD_LOAD_BALANCE
|
5963 SD_BALANCE_NEWIDLE
|
5967 SD_SHARE_PKG_RESOURCES
)) {
5968 if (sd
->groups
!= sd
->groups
->next
)
5972 /* Following flags don't use groups */
5973 if (sd
->flags
& (SD_WAKE_AFFINE
))
5980 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5982 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5984 if (sd_degenerate(parent
))
5987 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5990 /* Flags needing groups don't count if only 1 group in parent */
5991 if (parent
->groups
== parent
->groups
->next
) {
5992 pflags
&= ~(SD_LOAD_BALANCE
|
5993 SD_BALANCE_NEWIDLE
|
5997 SD_SHARE_PKG_RESOURCES
);
5998 if (nr_node_ids
== 1)
5999 pflags
&= ~SD_SERIALIZE
;
6001 if (~cflags
& pflags
)
6007 static void free_rootdomain(struct root_domain
*rd
)
6009 synchronize_sched();
6011 cpupri_cleanup(&rd
->cpupri
);
6013 free_cpumask_var(rd
->rto_mask
);
6014 free_cpumask_var(rd
->online
);
6015 free_cpumask_var(rd
->span
);
6019 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6021 struct root_domain
*old_rd
= NULL
;
6022 unsigned long flags
;
6024 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6029 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6032 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6035 * If we dont want to free the old_rt yet then
6036 * set old_rd to NULL to skip the freeing later
6039 if (!atomic_dec_and_test(&old_rd
->refcount
))
6043 atomic_inc(&rd
->refcount
);
6046 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6047 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6050 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6053 free_rootdomain(old_rd
);
6056 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6058 gfp_t gfp
= GFP_KERNEL
;
6060 memset(rd
, 0, sizeof(*rd
));
6065 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6067 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6069 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6072 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6077 free_cpumask_var(rd
->rto_mask
);
6079 free_cpumask_var(rd
->online
);
6081 free_cpumask_var(rd
->span
);
6086 static void init_defrootdomain(void)
6088 init_rootdomain(&def_root_domain
, true);
6090 atomic_set(&def_root_domain
.refcount
, 1);
6093 static struct root_domain
*alloc_rootdomain(void)
6095 struct root_domain
*rd
;
6097 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6101 if (init_rootdomain(rd
, false) != 0) {
6110 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6111 * hold the hotplug lock.
6114 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6116 struct rq
*rq
= cpu_rq(cpu
);
6117 struct sched_domain
*tmp
;
6119 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6120 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6122 /* Remove the sched domains which do not contribute to scheduling. */
6123 for (tmp
= sd
; tmp
; ) {
6124 struct sched_domain
*parent
= tmp
->parent
;
6128 if (sd_parent_degenerate(tmp
, parent
)) {
6129 tmp
->parent
= parent
->parent
;
6131 parent
->parent
->child
= tmp
;
6136 if (sd
&& sd_degenerate(sd
)) {
6142 sched_domain_debug(sd
, cpu
);
6144 rq_attach_root(rq
, rd
);
6145 rcu_assign_pointer(rq
->sd
, sd
);
6148 /* cpus with isolated domains */
6149 static cpumask_var_t cpu_isolated_map
;
6151 /* Setup the mask of cpus configured for isolated domains */
6152 static int __init
isolated_cpu_setup(char *str
)
6154 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6155 cpulist_parse(str
, cpu_isolated_map
);
6159 __setup("isolcpus=", isolated_cpu_setup
);
6162 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6163 * to a function which identifies what group(along with sched group) a CPU
6164 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6165 * (due to the fact that we keep track of groups covered with a struct cpumask).
6167 * init_sched_build_groups will build a circular linked list of the groups
6168 * covered by the given span, and will set each group's ->cpumask correctly,
6169 * and ->cpu_power to 0.
6172 init_sched_build_groups(const struct cpumask
*span
,
6173 const struct cpumask
*cpu_map
,
6174 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6175 struct sched_group
**sg
,
6176 struct cpumask
*tmpmask
),
6177 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6179 struct sched_group
*first
= NULL
, *last
= NULL
;
6182 cpumask_clear(covered
);
6184 for_each_cpu(i
, span
) {
6185 struct sched_group
*sg
;
6186 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6189 if (cpumask_test_cpu(i
, covered
))
6192 cpumask_clear(sched_group_cpus(sg
));
6195 for_each_cpu(j
, span
) {
6196 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6199 cpumask_set_cpu(j
, covered
);
6200 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6211 #define SD_NODES_PER_DOMAIN 16
6216 * find_next_best_node - find the next node to include in a sched_domain
6217 * @node: node whose sched_domain we're building
6218 * @used_nodes: nodes already in the sched_domain
6220 * Find the next node to include in a given scheduling domain. Simply
6221 * finds the closest node not already in the @used_nodes map.
6223 * Should use nodemask_t.
6225 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6227 int i
, n
, val
, min_val
, best_node
= 0;
6231 for (i
= 0; i
< nr_node_ids
; i
++) {
6232 /* Start at @node */
6233 n
= (node
+ i
) % nr_node_ids
;
6235 if (!nr_cpus_node(n
))
6238 /* Skip already used nodes */
6239 if (node_isset(n
, *used_nodes
))
6242 /* Simple min distance search */
6243 val
= node_distance(node
, n
);
6245 if (val
< min_val
) {
6251 node_set(best_node
, *used_nodes
);
6256 * sched_domain_node_span - get a cpumask for a node's sched_domain
6257 * @node: node whose cpumask we're constructing
6258 * @span: resulting cpumask
6260 * Given a node, construct a good cpumask for its sched_domain to span. It
6261 * should be one that prevents unnecessary balancing, but also spreads tasks
6264 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6266 nodemask_t used_nodes
;
6269 cpumask_clear(span
);
6270 nodes_clear(used_nodes
);
6272 cpumask_or(span
, span
, cpumask_of_node(node
));
6273 node_set(node
, used_nodes
);
6275 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6276 int next_node
= find_next_best_node(node
, &used_nodes
);
6278 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6281 #endif /* CONFIG_NUMA */
6283 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6286 * The cpus mask in sched_group and sched_domain hangs off the end.
6288 * ( See the the comments in include/linux/sched.h:struct sched_group
6289 * and struct sched_domain. )
6291 struct static_sched_group
{
6292 struct sched_group sg
;
6293 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6296 struct static_sched_domain
{
6297 struct sched_domain sd
;
6298 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6304 cpumask_var_t domainspan
;
6305 cpumask_var_t covered
;
6306 cpumask_var_t notcovered
;
6308 cpumask_var_t nodemask
;
6309 cpumask_var_t this_sibling_map
;
6310 cpumask_var_t this_core_map
;
6311 cpumask_var_t send_covered
;
6312 cpumask_var_t tmpmask
;
6313 struct sched_group
**sched_group_nodes
;
6314 struct root_domain
*rd
;
6318 sa_sched_groups
= 0,
6323 sa_this_sibling_map
,
6325 sa_sched_group_nodes
,
6335 * SMT sched-domains:
6337 #ifdef CONFIG_SCHED_SMT
6338 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6339 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6342 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6343 struct sched_group
**sg
, struct cpumask
*unused
)
6346 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6349 #endif /* CONFIG_SCHED_SMT */
6352 * multi-core sched-domains:
6354 #ifdef CONFIG_SCHED_MC
6355 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6356 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6357 #endif /* CONFIG_SCHED_MC */
6359 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6361 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6362 struct sched_group
**sg
, struct cpumask
*mask
)
6366 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6367 group
= cpumask_first(mask
);
6369 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6372 #elif defined(CONFIG_SCHED_MC)
6374 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6375 struct sched_group
**sg
, struct cpumask
*unused
)
6378 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6383 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6384 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6387 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6388 struct sched_group
**sg
, struct cpumask
*mask
)
6391 #ifdef CONFIG_SCHED_MC
6392 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6393 group
= cpumask_first(mask
);
6394 #elif defined(CONFIG_SCHED_SMT)
6395 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6396 group
= cpumask_first(mask
);
6401 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6407 * The init_sched_build_groups can't handle what we want to do with node
6408 * groups, so roll our own. Now each node has its own list of groups which
6409 * gets dynamically allocated.
6411 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6412 static struct sched_group
***sched_group_nodes_bycpu
;
6414 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6415 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6417 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6418 struct sched_group
**sg
,
6419 struct cpumask
*nodemask
)
6423 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6424 group
= cpumask_first(nodemask
);
6427 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6431 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6433 struct sched_group
*sg
= group_head
;
6439 for_each_cpu(j
, sched_group_cpus(sg
)) {
6440 struct sched_domain
*sd
;
6442 sd
= &per_cpu(phys_domains
, j
).sd
;
6443 if (j
!= group_first_cpu(sd
->groups
)) {
6445 * Only add "power" once for each
6451 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6454 } while (sg
!= group_head
);
6457 static int build_numa_sched_groups(struct s_data
*d
,
6458 const struct cpumask
*cpu_map
, int num
)
6460 struct sched_domain
*sd
;
6461 struct sched_group
*sg
, *prev
;
6464 cpumask_clear(d
->covered
);
6465 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6466 if (cpumask_empty(d
->nodemask
)) {
6467 d
->sched_group_nodes
[num
] = NULL
;
6471 sched_domain_node_span(num
, d
->domainspan
);
6472 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6474 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6477 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6481 d
->sched_group_nodes
[num
] = sg
;
6483 for_each_cpu(j
, d
->nodemask
) {
6484 sd
= &per_cpu(node_domains
, j
).sd
;
6489 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6491 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6494 for (j
= 0; j
< nr_node_ids
; j
++) {
6495 n
= (num
+ j
) % nr_node_ids
;
6496 cpumask_complement(d
->notcovered
, d
->covered
);
6497 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6498 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6499 if (cpumask_empty(d
->tmpmask
))
6501 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6502 if (cpumask_empty(d
->tmpmask
))
6504 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6508 "Can not alloc domain group for node %d\n", j
);
6512 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6513 sg
->next
= prev
->next
;
6514 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6521 #endif /* CONFIG_NUMA */
6524 /* Free memory allocated for various sched_group structures */
6525 static void free_sched_groups(const struct cpumask
*cpu_map
,
6526 struct cpumask
*nodemask
)
6530 for_each_cpu(cpu
, cpu_map
) {
6531 struct sched_group
**sched_group_nodes
6532 = sched_group_nodes_bycpu
[cpu
];
6534 if (!sched_group_nodes
)
6537 for (i
= 0; i
< nr_node_ids
; i
++) {
6538 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6540 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6541 if (cpumask_empty(nodemask
))
6551 if (oldsg
!= sched_group_nodes
[i
])
6554 kfree(sched_group_nodes
);
6555 sched_group_nodes_bycpu
[cpu
] = NULL
;
6558 #else /* !CONFIG_NUMA */
6559 static void free_sched_groups(const struct cpumask
*cpu_map
,
6560 struct cpumask
*nodemask
)
6563 #endif /* CONFIG_NUMA */
6566 * Initialize sched groups cpu_power.
6568 * cpu_power indicates the capacity of sched group, which is used while
6569 * distributing the load between different sched groups in a sched domain.
6570 * Typically cpu_power for all the groups in a sched domain will be same unless
6571 * there are asymmetries in the topology. If there are asymmetries, group
6572 * having more cpu_power will pickup more load compared to the group having
6575 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6577 struct sched_domain
*child
;
6578 struct sched_group
*group
;
6582 WARN_ON(!sd
|| !sd
->groups
);
6584 if (cpu
!= group_first_cpu(sd
->groups
))
6589 sd
->groups
->cpu_power
= 0;
6592 power
= SCHED_LOAD_SCALE
;
6593 weight
= cpumask_weight(sched_domain_span(sd
));
6595 * SMT siblings share the power of a single core.
6596 * Usually multiple threads get a better yield out of
6597 * that one core than a single thread would have,
6598 * reflect that in sd->smt_gain.
6600 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6601 power
*= sd
->smt_gain
;
6603 power
>>= SCHED_LOAD_SHIFT
;
6605 sd
->groups
->cpu_power
+= power
;
6610 * Add cpu_power of each child group to this groups cpu_power.
6612 group
= child
->groups
;
6614 sd
->groups
->cpu_power
+= group
->cpu_power
;
6615 group
= group
->next
;
6616 } while (group
!= child
->groups
);
6620 * Initializers for schedule domains
6621 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6624 #ifdef CONFIG_SCHED_DEBUG
6625 # define SD_INIT_NAME(sd, type) sd->name = #type
6627 # define SD_INIT_NAME(sd, type) do { } while (0)
6630 #define SD_INIT(sd, type) sd_init_##type(sd)
6632 #define SD_INIT_FUNC(type) \
6633 static noinline void sd_init_##type(struct sched_domain *sd) \
6635 memset(sd, 0, sizeof(*sd)); \
6636 *sd = SD_##type##_INIT; \
6637 sd->level = SD_LV_##type; \
6638 SD_INIT_NAME(sd, type); \
6643 SD_INIT_FUNC(ALLNODES
)
6646 #ifdef CONFIG_SCHED_SMT
6647 SD_INIT_FUNC(SIBLING
)
6649 #ifdef CONFIG_SCHED_MC
6653 static int default_relax_domain_level
= -1;
6655 static int __init
setup_relax_domain_level(char *str
)
6659 val
= simple_strtoul(str
, NULL
, 0);
6660 if (val
< SD_LV_MAX
)
6661 default_relax_domain_level
= val
;
6665 __setup("relax_domain_level=", setup_relax_domain_level
);
6667 static void set_domain_attribute(struct sched_domain
*sd
,
6668 struct sched_domain_attr
*attr
)
6672 if (!attr
|| attr
->relax_domain_level
< 0) {
6673 if (default_relax_domain_level
< 0)
6676 request
= default_relax_domain_level
;
6678 request
= attr
->relax_domain_level
;
6679 if (request
< sd
->level
) {
6680 /* turn off idle balance on this domain */
6681 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6683 /* turn on idle balance on this domain */
6684 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6688 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6689 const struct cpumask
*cpu_map
)
6692 case sa_sched_groups
:
6693 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6694 d
->sched_group_nodes
= NULL
;
6696 free_rootdomain(d
->rd
); /* fall through */
6698 free_cpumask_var(d
->tmpmask
); /* fall through */
6699 case sa_send_covered
:
6700 free_cpumask_var(d
->send_covered
); /* fall through */
6701 case sa_this_core_map
:
6702 free_cpumask_var(d
->this_core_map
); /* fall through */
6703 case sa_this_sibling_map
:
6704 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6706 free_cpumask_var(d
->nodemask
); /* fall through */
6707 case sa_sched_group_nodes
:
6709 kfree(d
->sched_group_nodes
); /* fall through */
6711 free_cpumask_var(d
->notcovered
); /* fall through */
6713 free_cpumask_var(d
->covered
); /* fall through */
6715 free_cpumask_var(d
->domainspan
); /* fall through */
6722 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6723 const struct cpumask
*cpu_map
)
6726 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6728 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6729 return sa_domainspan
;
6730 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6732 /* Allocate the per-node list of sched groups */
6733 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6734 sizeof(struct sched_group
*), GFP_KERNEL
);
6735 if (!d
->sched_group_nodes
) {
6736 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6737 return sa_notcovered
;
6739 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6741 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6742 return sa_sched_group_nodes
;
6743 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6745 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6746 return sa_this_sibling_map
;
6747 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6748 return sa_this_core_map
;
6749 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6750 return sa_send_covered
;
6751 d
->rd
= alloc_rootdomain();
6753 printk(KERN_WARNING
"Cannot alloc root domain\n");
6756 return sa_rootdomain
;
6759 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6760 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6762 struct sched_domain
*sd
= NULL
;
6764 struct sched_domain
*parent
;
6767 if (cpumask_weight(cpu_map
) >
6768 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6769 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6770 SD_INIT(sd
, ALLNODES
);
6771 set_domain_attribute(sd
, attr
);
6772 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6773 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6778 sd
= &per_cpu(node_domains
, i
).sd
;
6780 set_domain_attribute(sd
, attr
);
6781 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6782 sd
->parent
= parent
;
6785 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6790 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6791 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6792 struct sched_domain
*parent
, int i
)
6794 struct sched_domain
*sd
;
6795 sd
= &per_cpu(phys_domains
, i
).sd
;
6797 set_domain_attribute(sd
, attr
);
6798 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6799 sd
->parent
= parent
;
6802 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6806 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6807 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6808 struct sched_domain
*parent
, int i
)
6810 struct sched_domain
*sd
= parent
;
6811 #ifdef CONFIG_SCHED_MC
6812 sd
= &per_cpu(core_domains
, i
).sd
;
6814 set_domain_attribute(sd
, attr
);
6815 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
6816 sd
->parent
= parent
;
6818 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6823 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
6824 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6825 struct sched_domain
*parent
, int i
)
6827 struct sched_domain
*sd
= parent
;
6828 #ifdef CONFIG_SCHED_SMT
6829 sd
= &per_cpu(cpu_domains
, i
).sd
;
6830 SD_INIT(sd
, SIBLING
);
6831 set_domain_attribute(sd
, attr
);
6832 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
6833 sd
->parent
= parent
;
6835 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6840 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
6841 const struct cpumask
*cpu_map
, int cpu
)
6844 #ifdef CONFIG_SCHED_SMT
6845 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
6846 cpumask_and(d
->this_sibling_map
, cpu_map
,
6847 topology_thread_cpumask(cpu
));
6848 if (cpu
== cpumask_first(d
->this_sibling_map
))
6849 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
6851 d
->send_covered
, d
->tmpmask
);
6854 #ifdef CONFIG_SCHED_MC
6855 case SD_LV_MC
: /* set up multi-core groups */
6856 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
6857 if (cpu
== cpumask_first(d
->this_core_map
))
6858 init_sched_build_groups(d
->this_core_map
, cpu_map
,
6860 d
->send_covered
, d
->tmpmask
);
6863 case SD_LV_CPU
: /* set up physical groups */
6864 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
6865 if (!cpumask_empty(d
->nodemask
))
6866 init_sched_build_groups(d
->nodemask
, cpu_map
,
6868 d
->send_covered
, d
->tmpmask
);
6871 case SD_LV_ALLNODES
:
6872 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
6873 d
->send_covered
, d
->tmpmask
);
6882 * Build sched domains for a given set of cpus and attach the sched domains
6883 * to the individual cpus
6885 static int __build_sched_domains(const struct cpumask
*cpu_map
,
6886 struct sched_domain_attr
*attr
)
6888 enum s_alloc alloc_state
= sa_none
;
6890 struct sched_domain
*sd
;
6896 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6897 if (alloc_state
!= sa_rootdomain
)
6899 alloc_state
= sa_sched_groups
;
6902 * Set up domains for cpus specified by the cpu_map.
6904 for_each_cpu(i
, cpu_map
) {
6905 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
6908 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
6909 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6910 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6911 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6914 for_each_cpu(i
, cpu_map
) {
6915 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
6916 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
6919 /* Set up physical groups */
6920 for (i
= 0; i
< nr_node_ids
; i
++)
6921 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
6924 /* Set up node groups */
6926 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
6928 for (i
= 0; i
< nr_node_ids
; i
++)
6929 if (build_numa_sched_groups(&d
, cpu_map
, i
))
6933 /* Calculate CPU power for physical packages and nodes */
6934 #ifdef CONFIG_SCHED_SMT
6935 for_each_cpu(i
, cpu_map
) {
6936 sd
= &per_cpu(cpu_domains
, i
).sd
;
6937 init_sched_groups_power(i
, sd
);
6940 #ifdef CONFIG_SCHED_MC
6941 for_each_cpu(i
, cpu_map
) {
6942 sd
= &per_cpu(core_domains
, i
).sd
;
6943 init_sched_groups_power(i
, sd
);
6947 for_each_cpu(i
, cpu_map
) {
6948 sd
= &per_cpu(phys_domains
, i
).sd
;
6949 init_sched_groups_power(i
, sd
);
6953 for (i
= 0; i
< nr_node_ids
; i
++)
6954 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
6956 if (d
.sd_allnodes
) {
6957 struct sched_group
*sg
;
6959 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
6961 init_numa_sched_groups_power(sg
);
6965 /* Attach the domains */
6966 for_each_cpu(i
, cpu_map
) {
6967 #ifdef CONFIG_SCHED_SMT
6968 sd
= &per_cpu(cpu_domains
, i
).sd
;
6969 #elif defined(CONFIG_SCHED_MC)
6970 sd
= &per_cpu(core_domains
, i
).sd
;
6972 sd
= &per_cpu(phys_domains
, i
).sd
;
6974 cpu_attach_domain(sd
, d
.rd
, i
);
6977 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
6978 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
6982 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6986 static int build_sched_domains(const struct cpumask
*cpu_map
)
6988 return __build_sched_domains(cpu_map
, NULL
);
6991 static cpumask_var_t
*doms_cur
; /* current sched domains */
6992 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6993 static struct sched_domain_attr
*dattr_cur
;
6994 /* attribues of custom domains in 'doms_cur' */
6997 * Special case: If a kmalloc of a doms_cur partition (array of
6998 * cpumask) fails, then fallback to a single sched domain,
6999 * as determined by the single cpumask fallback_doms.
7001 static cpumask_var_t fallback_doms
;
7004 * arch_update_cpu_topology lets virtualized architectures update the
7005 * cpu core maps. It is supposed to return 1 if the topology changed
7006 * or 0 if it stayed the same.
7008 int __attribute__((weak
)) arch_update_cpu_topology(void)
7013 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7016 cpumask_var_t
*doms
;
7018 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7021 for (i
= 0; i
< ndoms
; i
++) {
7022 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7023 free_sched_domains(doms
, i
);
7030 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7033 for (i
= 0; i
< ndoms
; i
++)
7034 free_cpumask_var(doms
[i
]);
7039 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7040 * For now this just excludes isolated cpus, but could be used to
7041 * exclude other special cases in the future.
7043 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7047 arch_update_cpu_topology();
7049 doms_cur
= alloc_sched_domains(ndoms_cur
);
7051 doms_cur
= &fallback_doms
;
7052 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7054 err
= build_sched_domains(doms_cur
[0]);
7055 register_sched_domain_sysctl();
7060 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7061 struct cpumask
*tmpmask
)
7063 free_sched_groups(cpu_map
, tmpmask
);
7067 * Detach sched domains from a group of cpus specified in cpu_map
7068 * These cpus will now be attached to the NULL domain
7070 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7072 /* Save because hotplug lock held. */
7073 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7076 for_each_cpu(i
, cpu_map
)
7077 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7078 synchronize_sched();
7079 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7082 /* handle null as "default" */
7083 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7084 struct sched_domain_attr
*new, int idx_new
)
7086 struct sched_domain_attr tmp
;
7093 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7094 new ? (new + idx_new
) : &tmp
,
7095 sizeof(struct sched_domain_attr
));
7099 * Partition sched domains as specified by the 'ndoms_new'
7100 * cpumasks in the array doms_new[] of cpumasks. This compares
7101 * doms_new[] to the current sched domain partitioning, doms_cur[].
7102 * It destroys each deleted domain and builds each new domain.
7104 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7105 * The masks don't intersect (don't overlap.) We should setup one
7106 * sched domain for each mask. CPUs not in any of the cpumasks will
7107 * not be load balanced. If the same cpumask appears both in the
7108 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7111 * The passed in 'doms_new' should be allocated using
7112 * alloc_sched_domains. This routine takes ownership of it and will
7113 * free_sched_domains it when done with it. If the caller failed the
7114 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7115 * and partition_sched_domains() will fallback to the single partition
7116 * 'fallback_doms', it also forces the domains to be rebuilt.
7118 * If doms_new == NULL it will be replaced with cpu_online_mask.
7119 * ndoms_new == 0 is a special case for destroying existing domains,
7120 * and it will not create the default domain.
7122 * Call with hotplug lock held
7124 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7125 struct sched_domain_attr
*dattr_new
)
7130 mutex_lock(&sched_domains_mutex
);
7132 /* always unregister in case we don't destroy any domains */
7133 unregister_sched_domain_sysctl();
7135 /* Let architecture update cpu core mappings. */
7136 new_topology
= arch_update_cpu_topology();
7138 n
= doms_new
? ndoms_new
: 0;
7140 /* Destroy deleted domains */
7141 for (i
= 0; i
< ndoms_cur
; i
++) {
7142 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7143 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7144 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7147 /* no match - a current sched domain not in new doms_new[] */
7148 detach_destroy_domains(doms_cur
[i
]);
7153 if (doms_new
== NULL
) {
7155 doms_new
= &fallback_doms
;
7156 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7157 WARN_ON_ONCE(dattr_new
);
7160 /* Build new domains */
7161 for (i
= 0; i
< ndoms_new
; i
++) {
7162 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7163 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7164 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7167 /* no match - add a new doms_new */
7168 __build_sched_domains(doms_new
[i
],
7169 dattr_new
? dattr_new
+ i
: NULL
);
7174 /* Remember the new sched domains */
7175 if (doms_cur
!= &fallback_doms
)
7176 free_sched_domains(doms_cur
, ndoms_cur
);
7177 kfree(dattr_cur
); /* kfree(NULL) is safe */
7178 doms_cur
= doms_new
;
7179 dattr_cur
= dattr_new
;
7180 ndoms_cur
= ndoms_new
;
7182 register_sched_domain_sysctl();
7184 mutex_unlock(&sched_domains_mutex
);
7187 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7188 static void arch_reinit_sched_domains(void)
7192 /* Destroy domains first to force the rebuild */
7193 partition_sched_domains(0, NULL
, NULL
);
7195 rebuild_sched_domains();
7199 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7201 unsigned int level
= 0;
7203 if (sscanf(buf
, "%u", &level
) != 1)
7207 * level is always be positive so don't check for
7208 * level < POWERSAVINGS_BALANCE_NONE which is 0
7209 * What happens on 0 or 1 byte write,
7210 * need to check for count as well?
7213 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7217 sched_smt_power_savings
= level
;
7219 sched_mc_power_savings
= level
;
7221 arch_reinit_sched_domains();
7226 #ifdef CONFIG_SCHED_MC
7227 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7228 struct sysdev_class_attribute
*attr
,
7231 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7233 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7234 struct sysdev_class_attribute
*attr
,
7235 const char *buf
, size_t count
)
7237 return sched_power_savings_store(buf
, count
, 0);
7239 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7240 sched_mc_power_savings_show
,
7241 sched_mc_power_savings_store
);
7244 #ifdef CONFIG_SCHED_SMT
7245 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7246 struct sysdev_class_attribute
*attr
,
7249 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7251 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7252 struct sysdev_class_attribute
*attr
,
7253 const char *buf
, size_t count
)
7255 return sched_power_savings_store(buf
, count
, 1);
7257 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7258 sched_smt_power_savings_show
,
7259 sched_smt_power_savings_store
);
7262 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7266 #ifdef CONFIG_SCHED_SMT
7268 err
= sysfs_create_file(&cls
->kset
.kobj
,
7269 &attr_sched_smt_power_savings
.attr
);
7271 #ifdef CONFIG_SCHED_MC
7272 if (!err
&& mc_capable())
7273 err
= sysfs_create_file(&cls
->kset
.kobj
,
7274 &attr_sched_mc_power_savings
.attr
);
7278 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7280 #ifndef CONFIG_CPUSETS
7282 * Add online and remove offline CPUs from the scheduler domains.
7283 * When cpusets are enabled they take over this function.
7285 static int update_sched_domains(struct notifier_block
*nfb
,
7286 unsigned long action
, void *hcpu
)
7290 case CPU_ONLINE_FROZEN
:
7291 case CPU_DOWN_PREPARE
:
7292 case CPU_DOWN_PREPARE_FROZEN
:
7293 case CPU_DOWN_FAILED
:
7294 case CPU_DOWN_FAILED_FROZEN
:
7295 partition_sched_domains(1, NULL
, NULL
);
7304 static int update_runtime(struct notifier_block
*nfb
,
7305 unsigned long action
, void *hcpu
)
7307 int cpu
= (int)(long)hcpu
;
7310 case CPU_DOWN_PREPARE
:
7311 case CPU_DOWN_PREPARE_FROZEN
:
7312 disable_runtime(cpu_rq(cpu
));
7315 case CPU_DOWN_FAILED
:
7316 case CPU_DOWN_FAILED_FROZEN
:
7318 case CPU_ONLINE_FROZEN
:
7319 enable_runtime(cpu_rq(cpu
));
7327 void __init
sched_init_smp(void)
7329 cpumask_var_t non_isolated_cpus
;
7331 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7332 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7334 #if defined(CONFIG_NUMA)
7335 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7337 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7340 mutex_lock(&sched_domains_mutex
);
7341 arch_init_sched_domains(cpu_active_mask
);
7342 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7343 if (cpumask_empty(non_isolated_cpus
))
7344 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7345 mutex_unlock(&sched_domains_mutex
);
7348 #ifndef CONFIG_CPUSETS
7349 /* XXX: Theoretical race here - CPU may be hotplugged now */
7350 hotcpu_notifier(update_sched_domains
, 0);
7353 /* RT runtime code needs to handle some hotplug events */
7354 hotcpu_notifier(update_runtime
, 0);
7358 /* Move init over to a non-isolated CPU */
7359 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7361 sched_init_granularity();
7362 free_cpumask_var(non_isolated_cpus
);
7364 init_sched_rt_class();
7367 void __init
sched_init_smp(void)
7369 sched_init_granularity();
7371 #endif /* CONFIG_SMP */
7373 const_debug
unsigned int sysctl_timer_migration
= 1;
7375 int in_sched_functions(unsigned long addr
)
7377 return in_lock_functions(addr
) ||
7378 (addr
>= (unsigned long)__sched_text_start
7379 && addr
< (unsigned long)__sched_text_end
);
7382 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7384 cfs_rq
->tasks_timeline
= RB_ROOT
;
7385 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7386 #ifdef CONFIG_FAIR_GROUP_SCHED
7389 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7392 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7394 struct rt_prio_array
*array
;
7397 array
= &rt_rq
->active
;
7398 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7399 INIT_LIST_HEAD(array
->queue
+ i
);
7400 __clear_bit(i
, array
->bitmap
);
7402 /* delimiter for bitsearch: */
7403 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7405 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7406 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7408 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7412 rt_rq
->rt_nr_migratory
= 0;
7413 rt_rq
->overloaded
= 0;
7414 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7418 rt_rq
->rt_throttled
= 0;
7419 rt_rq
->rt_runtime
= 0;
7420 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7422 #ifdef CONFIG_RT_GROUP_SCHED
7423 rt_rq
->rt_nr_boosted
= 0;
7428 #ifdef CONFIG_FAIR_GROUP_SCHED
7429 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7430 struct sched_entity
*se
, int cpu
, int add
,
7431 struct sched_entity
*parent
)
7433 struct rq
*rq
= cpu_rq(cpu
);
7434 tg
->cfs_rq
[cpu
] = cfs_rq
;
7435 init_cfs_rq(cfs_rq
, rq
);
7438 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7441 /* se could be NULL for init_task_group */
7446 se
->cfs_rq
= &rq
->cfs
;
7448 se
->cfs_rq
= parent
->my_q
;
7451 se
->load
.weight
= tg
->shares
;
7452 se
->load
.inv_weight
= 0;
7453 se
->parent
= parent
;
7457 #ifdef CONFIG_RT_GROUP_SCHED
7458 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7459 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7460 struct sched_rt_entity
*parent
)
7462 struct rq
*rq
= cpu_rq(cpu
);
7464 tg
->rt_rq
[cpu
] = rt_rq
;
7465 init_rt_rq(rt_rq
, rq
);
7467 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7469 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7471 tg
->rt_se
[cpu
] = rt_se
;
7476 rt_se
->rt_rq
= &rq
->rt
;
7478 rt_se
->rt_rq
= parent
->my_q
;
7480 rt_se
->my_q
= rt_rq
;
7481 rt_se
->parent
= parent
;
7482 INIT_LIST_HEAD(&rt_se
->run_list
);
7486 void __init
sched_init(void)
7489 unsigned long alloc_size
= 0, ptr
;
7491 #ifdef CONFIG_FAIR_GROUP_SCHED
7492 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7494 #ifdef CONFIG_RT_GROUP_SCHED
7495 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7497 #ifdef CONFIG_CPUMASK_OFFSTACK
7498 alloc_size
+= num_possible_cpus() * cpumask_size();
7501 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7503 #ifdef CONFIG_FAIR_GROUP_SCHED
7504 init_task_group
.se
= (struct sched_entity
**)ptr
;
7505 ptr
+= nr_cpu_ids
* sizeof(void **);
7507 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7508 ptr
+= nr_cpu_ids
* sizeof(void **);
7510 #endif /* CONFIG_FAIR_GROUP_SCHED */
7511 #ifdef CONFIG_RT_GROUP_SCHED
7512 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7513 ptr
+= nr_cpu_ids
* sizeof(void **);
7515 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7516 ptr
+= nr_cpu_ids
* sizeof(void **);
7518 #endif /* CONFIG_RT_GROUP_SCHED */
7519 #ifdef CONFIG_CPUMASK_OFFSTACK
7520 for_each_possible_cpu(i
) {
7521 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7522 ptr
+= cpumask_size();
7524 #endif /* CONFIG_CPUMASK_OFFSTACK */
7528 init_defrootdomain();
7531 init_rt_bandwidth(&def_rt_bandwidth
,
7532 global_rt_period(), global_rt_runtime());
7534 #ifdef CONFIG_RT_GROUP_SCHED
7535 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7536 global_rt_period(), global_rt_runtime());
7537 #endif /* CONFIG_RT_GROUP_SCHED */
7539 #ifdef CONFIG_CGROUP_SCHED
7540 list_add(&init_task_group
.list
, &task_groups
);
7541 INIT_LIST_HEAD(&init_task_group
.children
);
7543 #endif /* CONFIG_CGROUP_SCHED */
7545 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7546 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7547 __alignof__(unsigned long));
7549 for_each_possible_cpu(i
) {
7553 raw_spin_lock_init(&rq
->lock
);
7555 rq
->calc_load_active
= 0;
7556 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7557 init_cfs_rq(&rq
->cfs
, rq
);
7558 init_rt_rq(&rq
->rt
, rq
);
7559 #ifdef CONFIG_FAIR_GROUP_SCHED
7560 init_task_group
.shares
= init_task_group_load
;
7561 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7562 #ifdef CONFIG_CGROUP_SCHED
7564 * How much cpu bandwidth does init_task_group get?
7566 * In case of task-groups formed thr' the cgroup filesystem, it
7567 * gets 100% of the cpu resources in the system. This overall
7568 * system cpu resource is divided among the tasks of
7569 * init_task_group and its child task-groups in a fair manner,
7570 * based on each entity's (task or task-group's) weight
7571 * (se->load.weight).
7573 * In other words, if init_task_group has 10 tasks of weight
7574 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7575 * then A0's share of the cpu resource is:
7577 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7579 * We achieve this by letting init_task_group's tasks sit
7580 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7582 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7584 #endif /* CONFIG_FAIR_GROUP_SCHED */
7586 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7587 #ifdef CONFIG_RT_GROUP_SCHED
7588 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7589 #ifdef CONFIG_CGROUP_SCHED
7590 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7594 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7595 rq
->cpu_load
[j
] = 0;
7599 rq
->post_schedule
= 0;
7600 rq
->active_balance
= 0;
7601 rq
->next_balance
= jiffies
;
7606 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7607 rq_attach_root(rq
, &def_root_domain
);
7610 atomic_set(&rq
->nr_iowait
, 0);
7613 set_load_weight(&init_task
);
7615 #ifdef CONFIG_PREEMPT_NOTIFIERS
7616 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7620 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7623 #ifdef CONFIG_RT_MUTEXES
7624 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7628 * The boot idle thread does lazy MMU switching as well:
7630 atomic_inc(&init_mm
.mm_count
);
7631 enter_lazy_tlb(&init_mm
, current
);
7634 * Make us the idle thread. Technically, schedule() should not be
7635 * called from this thread, however somewhere below it might be,
7636 * but because we are the idle thread, we just pick up running again
7637 * when this runqueue becomes "idle".
7639 init_idle(current
, smp_processor_id());
7641 calc_load_update
= jiffies
+ LOAD_FREQ
;
7644 * During early bootup we pretend to be a normal task:
7646 current
->sched_class
= &fair_sched_class
;
7648 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7649 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7652 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7653 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7655 /* May be allocated at isolcpus cmdline parse time */
7656 if (cpu_isolated_map
== NULL
)
7657 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7662 scheduler_running
= 1;
7665 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7666 static inline int preempt_count_equals(int preempt_offset
)
7668 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7670 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7673 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7676 static unsigned long prev_jiffy
; /* ratelimiting */
7678 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7679 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7681 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7683 prev_jiffy
= jiffies
;
7686 "BUG: sleeping function called from invalid context at %s:%d\n",
7689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7690 in_atomic(), irqs_disabled(),
7691 current
->pid
, current
->comm
);
7693 debug_show_held_locks(current
);
7694 if (irqs_disabled())
7695 print_irqtrace_events(current
);
7699 EXPORT_SYMBOL(__might_sleep
);
7702 #ifdef CONFIG_MAGIC_SYSRQ
7703 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7707 on_rq
= p
->se
.on_rq
;
7709 deactivate_task(rq
, p
, 0);
7710 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7712 activate_task(rq
, p
, 0);
7713 resched_task(rq
->curr
);
7717 void normalize_rt_tasks(void)
7719 struct task_struct
*g
, *p
;
7720 unsigned long flags
;
7723 read_lock_irqsave(&tasklist_lock
, flags
);
7724 do_each_thread(g
, p
) {
7726 * Only normalize user tasks:
7731 p
->se
.exec_start
= 0;
7732 #ifdef CONFIG_SCHEDSTATS
7733 p
->se
.statistics
.wait_start
= 0;
7734 p
->se
.statistics
.sleep_start
= 0;
7735 p
->se
.statistics
.block_start
= 0;
7740 * Renice negative nice level userspace
7743 if (TASK_NICE(p
) < 0 && p
->mm
)
7744 set_user_nice(p
, 0);
7748 raw_spin_lock(&p
->pi_lock
);
7749 rq
= __task_rq_lock(p
);
7751 normalize_task(rq
, p
);
7753 __task_rq_unlock(rq
);
7754 raw_spin_unlock(&p
->pi_lock
);
7755 } while_each_thread(g
, p
);
7757 read_unlock_irqrestore(&tasklist_lock
, flags
);
7760 #endif /* CONFIG_MAGIC_SYSRQ */
7762 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7764 * These functions are only useful for the IA64 MCA handling, or kdb.
7766 * They can only be called when the whole system has been
7767 * stopped - every CPU needs to be quiescent, and no scheduling
7768 * activity can take place. Using them for anything else would
7769 * be a serious bug, and as a result, they aren't even visible
7770 * under any other configuration.
7774 * curr_task - return the current task for a given cpu.
7775 * @cpu: the processor in question.
7777 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7779 struct task_struct
*curr_task(int cpu
)
7781 return cpu_curr(cpu
);
7784 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7788 * set_curr_task - set the current task for a given cpu.
7789 * @cpu: the processor in question.
7790 * @p: the task pointer to set.
7792 * Description: This function must only be used when non-maskable interrupts
7793 * are serviced on a separate stack. It allows the architecture to switch the
7794 * notion of the current task on a cpu in a non-blocking manner. This function
7795 * must be called with all CPU's synchronized, and interrupts disabled, the
7796 * and caller must save the original value of the current task (see
7797 * curr_task() above) and restore that value before reenabling interrupts and
7798 * re-starting the system.
7800 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7802 void set_curr_task(int cpu
, struct task_struct
*p
)
7809 #ifdef CONFIG_FAIR_GROUP_SCHED
7810 static void free_fair_sched_group(struct task_group
*tg
)
7814 for_each_possible_cpu(i
) {
7816 kfree(tg
->cfs_rq
[i
]);
7826 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7828 struct cfs_rq
*cfs_rq
;
7829 struct sched_entity
*se
;
7833 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7836 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7840 tg
->shares
= NICE_0_LOAD
;
7842 for_each_possible_cpu(i
) {
7845 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
7846 GFP_KERNEL
, cpu_to_node(i
));
7850 se
= kzalloc_node(sizeof(struct sched_entity
),
7851 GFP_KERNEL
, cpu_to_node(i
));
7855 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
7866 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7868 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7869 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7872 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7874 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7876 #else /* !CONFG_FAIR_GROUP_SCHED */
7877 static inline void free_fair_sched_group(struct task_group
*tg
)
7882 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7887 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7891 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7894 #endif /* CONFIG_FAIR_GROUP_SCHED */
7896 #ifdef CONFIG_RT_GROUP_SCHED
7897 static void free_rt_sched_group(struct task_group
*tg
)
7901 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7903 for_each_possible_cpu(i
) {
7905 kfree(tg
->rt_rq
[i
]);
7907 kfree(tg
->rt_se
[i
]);
7915 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7917 struct rt_rq
*rt_rq
;
7918 struct sched_rt_entity
*rt_se
;
7922 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7925 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
7929 init_rt_bandwidth(&tg
->rt_bandwidth
,
7930 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
7932 for_each_possible_cpu(i
) {
7935 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
7936 GFP_KERNEL
, cpu_to_node(i
));
7940 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
7941 GFP_KERNEL
, cpu_to_node(i
));
7945 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
7956 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7958 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7959 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7962 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7964 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7966 #else /* !CONFIG_RT_GROUP_SCHED */
7967 static inline void free_rt_sched_group(struct task_group
*tg
)
7972 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7977 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7981 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7984 #endif /* CONFIG_RT_GROUP_SCHED */
7986 #ifdef CONFIG_CGROUP_SCHED
7987 static void free_sched_group(struct task_group
*tg
)
7989 free_fair_sched_group(tg
);
7990 free_rt_sched_group(tg
);
7994 /* allocate runqueue etc for a new task group */
7995 struct task_group
*sched_create_group(struct task_group
*parent
)
7997 struct task_group
*tg
;
7998 unsigned long flags
;
8001 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8003 return ERR_PTR(-ENOMEM
);
8005 if (!alloc_fair_sched_group(tg
, parent
))
8008 if (!alloc_rt_sched_group(tg
, parent
))
8011 spin_lock_irqsave(&task_group_lock
, flags
);
8012 for_each_possible_cpu(i
) {
8013 register_fair_sched_group(tg
, i
);
8014 register_rt_sched_group(tg
, i
);
8016 list_add_rcu(&tg
->list
, &task_groups
);
8018 WARN_ON(!parent
); /* root should already exist */
8020 tg
->parent
= parent
;
8021 INIT_LIST_HEAD(&tg
->children
);
8022 list_add_rcu(&tg
->siblings
, &parent
->children
);
8023 spin_unlock_irqrestore(&task_group_lock
, flags
);
8028 free_sched_group(tg
);
8029 return ERR_PTR(-ENOMEM
);
8032 /* rcu callback to free various structures associated with a task group */
8033 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8035 /* now it should be safe to free those cfs_rqs */
8036 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8039 /* Destroy runqueue etc associated with a task group */
8040 void sched_destroy_group(struct task_group
*tg
)
8042 unsigned long flags
;
8045 spin_lock_irqsave(&task_group_lock
, flags
);
8046 for_each_possible_cpu(i
) {
8047 unregister_fair_sched_group(tg
, i
);
8048 unregister_rt_sched_group(tg
, i
);
8050 list_del_rcu(&tg
->list
);
8051 list_del_rcu(&tg
->siblings
);
8052 spin_unlock_irqrestore(&task_group_lock
, flags
);
8054 /* wait for possible concurrent references to cfs_rqs complete */
8055 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8058 /* change task's runqueue when it moves between groups.
8059 * The caller of this function should have put the task in its new group
8060 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8061 * reflect its new group.
8063 void sched_move_task(struct task_struct
*tsk
)
8066 unsigned long flags
;
8069 rq
= task_rq_lock(tsk
, &flags
);
8071 running
= task_current(rq
, tsk
);
8072 on_rq
= tsk
->se
.on_rq
;
8075 dequeue_task(rq
, tsk
, 0);
8076 if (unlikely(running
))
8077 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8079 set_task_rq(tsk
, task_cpu(tsk
));
8081 #ifdef CONFIG_FAIR_GROUP_SCHED
8082 if (tsk
->sched_class
->moved_group
)
8083 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8086 if (unlikely(running
))
8087 tsk
->sched_class
->set_curr_task(rq
);
8089 enqueue_task(rq
, tsk
, 0);
8091 task_rq_unlock(rq
, &flags
);
8093 #endif /* CONFIG_CGROUP_SCHED */
8095 #ifdef CONFIG_FAIR_GROUP_SCHED
8096 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8098 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8103 dequeue_entity(cfs_rq
, se
, 0);
8105 se
->load
.weight
= shares
;
8106 se
->load
.inv_weight
= 0;
8109 enqueue_entity(cfs_rq
, se
, 0);
8112 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8114 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8115 struct rq
*rq
= cfs_rq
->rq
;
8116 unsigned long flags
;
8118 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8119 __set_se_shares(se
, shares
);
8120 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8123 static DEFINE_MUTEX(shares_mutex
);
8125 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8128 unsigned long flags
;
8131 * We can't change the weight of the root cgroup.
8136 if (shares
< MIN_SHARES
)
8137 shares
= MIN_SHARES
;
8138 else if (shares
> MAX_SHARES
)
8139 shares
= MAX_SHARES
;
8141 mutex_lock(&shares_mutex
);
8142 if (tg
->shares
== shares
)
8145 spin_lock_irqsave(&task_group_lock
, flags
);
8146 for_each_possible_cpu(i
)
8147 unregister_fair_sched_group(tg
, i
);
8148 list_del_rcu(&tg
->siblings
);
8149 spin_unlock_irqrestore(&task_group_lock
, flags
);
8151 /* wait for any ongoing reference to this group to finish */
8152 synchronize_sched();
8155 * Now we are free to modify the group's share on each cpu
8156 * w/o tripping rebalance_share or load_balance_fair.
8158 tg
->shares
= shares
;
8159 for_each_possible_cpu(i
) {
8163 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8164 set_se_shares(tg
->se
[i
], shares
);
8168 * Enable load balance activity on this group, by inserting it back on
8169 * each cpu's rq->leaf_cfs_rq_list.
8171 spin_lock_irqsave(&task_group_lock
, flags
);
8172 for_each_possible_cpu(i
)
8173 register_fair_sched_group(tg
, i
);
8174 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8175 spin_unlock_irqrestore(&task_group_lock
, flags
);
8177 mutex_unlock(&shares_mutex
);
8181 unsigned long sched_group_shares(struct task_group
*tg
)
8187 #ifdef CONFIG_RT_GROUP_SCHED
8189 * Ensure that the real time constraints are schedulable.
8191 static DEFINE_MUTEX(rt_constraints_mutex
);
8193 static unsigned long to_ratio(u64 period
, u64 runtime
)
8195 if (runtime
== RUNTIME_INF
)
8198 return div64_u64(runtime
<< 20, period
);
8201 /* Must be called with tasklist_lock held */
8202 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8204 struct task_struct
*g
, *p
;
8206 do_each_thread(g
, p
) {
8207 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8209 } while_each_thread(g
, p
);
8214 struct rt_schedulable_data
{
8215 struct task_group
*tg
;
8220 static int tg_schedulable(struct task_group
*tg
, void *data
)
8222 struct rt_schedulable_data
*d
= data
;
8223 struct task_group
*child
;
8224 unsigned long total
, sum
= 0;
8225 u64 period
, runtime
;
8227 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8228 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8231 period
= d
->rt_period
;
8232 runtime
= d
->rt_runtime
;
8236 * Cannot have more runtime than the period.
8238 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8242 * Ensure we don't starve existing RT tasks.
8244 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8247 total
= to_ratio(period
, runtime
);
8250 * Nobody can have more than the global setting allows.
8252 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8256 * The sum of our children's runtime should not exceed our own.
8258 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8259 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8260 runtime
= child
->rt_bandwidth
.rt_runtime
;
8262 if (child
== d
->tg
) {
8263 period
= d
->rt_period
;
8264 runtime
= d
->rt_runtime
;
8267 sum
+= to_ratio(period
, runtime
);
8276 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8278 struct rt_schedulable_data data
= {
8280 .rt_period
= period
,
8281 .rt_runtime
= runtime
,
8284 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8287 static int tg_set_bandwidth(struct task_group
*tg
,
8288 u64 rt_period
, u64 rt_runtime
)
8292 mutex_lock(&rt_constraints_mutex
);
8293 read_lock(&tasklist_lock
);
8294 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8298 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8299 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8300 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8302 for_each_possible_cpu(i
) {
8303 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8305 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8306 rt_rq
->rt_runtime
= rt_runtime
;
8307 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8309 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8311 read_unlock(&tasklist_lock
);
8312 mutex_unlock(&rt_constraints_mutex
);
8317 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8319 u64 rt_runtime
, rt_period
;
8321 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8322 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8323 if (rt_runtime_us
< 0)
8324 rt_runtime
= RUNTIME_INF
;
8326 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8329 long sched_group_rt_runtime(struct task_group
*tg
)
8333 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8336 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8337 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8338 return rt_runtime_us
;
8341 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8343 u64 rt_runtime
, rt_period
;
8345 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8346 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8351 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8354 long sched_group_rt_period(struct task_group
*tg
)
8358 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8359 do_div(rt_period_us
, NSEC_PER_USEC
);
8360 return rt_period_us
;
8363 static int sched_rt_global_constraints(void)
8365 u64 runtime
, period
;
8368 if (sysctl_sched_rt_period
<= 0)
8371 runtime
= global_rt_runtime();
8372 period
= global_rt_period();
8375 * Sanity check on the sysctl variables.
8377 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8380 mutex_lock(&rt_constraints_mutex
);
8381 read_lock(&tasklist_lock
);
8382 ret
= __rt_schedulable(NULL
, 0, 0);
8383 read_unlock(&tasklist_lock
);
8384 mutex_unlock(&rt_constraints_mutex
);
8389 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8391 /* Don't accept realtime tasks when there is no way for them to run */
8392 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8398 #else /* !CONFIG_RT_GROUP_SCHED */
8399 static int sched_rt_global_constraints(void)
8401 unsigned long flags
;
8404 if (sysctl_sched_rt_period
<= 0)
8408 * There's always some RT tasks in the root group
8409 * -- migration, kstopmachine etc..
8411 if (sysctl_sched_rt_runtime
== 0)
8414 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8415 for_each_possible_cpu(i
) {
8416 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8418 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8419 rt_rq
->rt_runtime
= global_rt_runtime();
8420 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8422 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8426 #endif /* CONFIG_RT_GROUP_SCHED */
8428 int sched_rt_handler(struct ctl_table
*table
, int write
,
8429 void __user
*buffer
, size_t *lenp
,
8433 int old_period
, old_runtime
;
8434 static DEFINE_MUTEX(mutex
);
8437 old_period
= sysctl_sched_rt_period
;
8438 old_runtime
= sysctl_sched_rt_runtime
;
8440 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8442 if (!ret
&& write
) {
8443 ret
= sched_rt_global_constraints();
8445 sysctl_sched_rt_period
= old_period
;
8446 sysctl_sched_rt_runtime
= old_runtime
;
8448 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8449 def_rt_bandwidth
.rt_period
=
8450 ns_to_ktime(global_rt_period());
8453 mutex_unlock(&mutex
);
8458 #ifdef CONFIG_CGROUP_SCHED
8460 /* return corresponding task_group object of a cgroup */
8461 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8463 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8464 struct task_group
, css
);
8467 static struct cgroup_subsys_state
*
8468 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8470 struct task_group
*tg
, *parent
;
8472 if (!cgrp
->parent
) {
8473 /* This is early initialization for the top cgroup */
8474 return &init_task_group
.css
;
8477 parent
= cgroup_tg(cgrp
->parent
);
8478 tg
= sched_create_group(parent
);
8480 return ERR_PTR(-ENOMEM
);
8486 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8488 struct task_group
*tg
= cgroup_tg(cgrp
);
8490 sched_destroy_group(tg
);
8494 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8496 #ifdef CONFIG_RT_GROUP_SCHED
8497 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8500 /* We don't support RT-tasks being in separate groups */
8501 if (tsk
->sched_class
!= &fair_sched_class
)
8508 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8509 struct task_struct
*tsk
, bool threadgroup
)
8511 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8515 struct task_struct
*c
;
8517 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8518 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8530 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8531 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8534 sched_move_task(tsk
);
8536 struct task_struct
*c
;
8538 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8545 #ifdef CONFIG_FAIR_GROUP_SCHED
8546 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8549 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8552 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8554 struct task_group
*tg
= cgroup_tg(cgrp
);
8556 return (u64
) tg
->shares
;
8558 #endif /* CONFIG_FAIR_GROUP_SCHED */
8560 #ifdef CONFIG_RT_GROUP_SCHED
8561 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8564 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8567 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8569 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8572 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8575 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8578 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8580 return sched_group_rt_period(cgroup_tg(cgrp
));
8582 #endif /* CONFIG_RT_GROUP_SCHED */
8584 static struct cftype cpu_files
[] = {
8585 #ifdef CONFIG_FAIR_GROUP_SCHED
8588 .read_u64
= cpu_shares_read_u64
,
8589 .write_u64
= cpu_shares_write_u64
,
8592 #ifdef CONFIG_RT_GROUP_SCHED
8594 .name
= "rt_runtime_us",
8595 .read_s64
= cpu_rt_runtime_read
,
8596 .write_s64
= cpu_rt_runtime_write
,
8599 .name
= "rt_period_us",
8600 .read_u64
= cpu_rt_period_read_uint
,
8601 .write_u64
= cpu_rt_period_write_uint
,
8606 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8608 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8611 struct cgroup_subsys cpu_cgroup_subsys
= {
8613 .create
= cpu_cgroup_create
,
8614 .destroy
= cpu_cgroup_destroy
,
8615 .can_attach
= cpu_cgroup_can_attach
,
8616 .attach
= cpu_cgroup_attach
,
8617 .populate
= cpu_cgroup_populate
,
8618 .subsys_id
= cpu_cgroup_subsys_id
,
8622 #endif /* CONFIG_CGROUP_SCHED */
8624 #ifdef CONFIG_CGROUP_CPUACCT
8627 * CPU accounting code for task groups.
8629 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8630 * (balbir@in.ibm.com).
8633 /* track cpu usage of a group of tasks and its child groups */
8635 struct cgroup_subsys_state css
;
8636 /* cpuusage holds pointer to a u64-type object on every cpu */
8637 u64 __percpu
*cpuusage
;
8638 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8639 struct cpuacct
*parent
;
8642 struct cgroup_subsys cpuacct_subsys
;
8644 /* return cpu accounting group corresponding to this container */
8645 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8647 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8648 struct cpuacct
, css
);
8651 /* return cpu accounting group to which this task belongs */
8652 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8654 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8655 struct cpuacct
, css
);
8658 /* create a new cpu accounting group */
8659 static struct cgroup_subsys_state
*cpuacct_create(
8660 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8662 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8668 ca
->cpuusage
= alloc_percpu(u64
);
8672 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8673 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8674 goto out_free_counters
;
8677 ca
->parent
= cgroup_ca(cgrp
->parent
);
8683 percpu_counter_destroy(&ca
->cpustat
[i
]);
8684 free_percpu(ca
->cpuusage
);
8688 return ERR_PTR(-ENOMEM
);
8691 /* destroy an existing cpu accounting group */
8693 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8695 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8698 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8699 percpu_counter_destroy(&ca
->cpustat
[i
]);
8700 free_percpu(ca
->cpuusage
);
8704 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8706 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8709 #ifndef CONFIG_64BIT
8711 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8713 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8715 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8723 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8725 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8727 #ifndef CONFIG_64BIT
8729 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8731 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8733 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8739 /* return total cpu usage (in nanoseconds) of a group */
8740 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8742 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8743 u64 totalcpuusage
= 0;
8746 for_each_present_cpu(i
)
8747 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8749 return totalcpuusage
;
8752 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8755 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8764 for_each_present_cpu(i
)
8765 cpuacct_cpuusage_write(ca
, i
, 0);
8771 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8774 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8778 for_each_present_cpu(i
) {
8779 percpu
= cpuacct_cpuusage_read(ca
, i
);
8780 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8782 seq_printf(m
, "\n");
8786 static const char *cpuacct_stat_desc
[] = {
8787 [CPUACCT_STAT_USER
] = "user",
8788 [CPUACCT_STAT_SYSTEM
] = "system",
8791 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8792 struct cgroup_map_cb
*cb
)
8794 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8797 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8798 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8799 val
= cputime64_to_clock_t(val
);
8800 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8805 static struct cftype files
[] = {
8808 .read_u64
= cpuusage_read
,
8809 .write_u64
= cpuusage_write
,
8812 .name
= "usage_percpu",
8813 .read_seq_string
= cpuacct_percpu_seq_read
,
8817 .read_map
= cpuacct_stats_show
,
8821 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8823 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8827 * charge this task's execution time to its accounting group.
8829 * called with rq->lock held.
8831 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8836 if (unlikely(!cpuacct_subsys
.active
))
8839 cpu
= task_cpu(tsk
);
8845 for (; ca
; ca
= ca
->parent
) {
8846 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8847 *cpuusage
+= cputime
;
8854 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8855 * in cputime_t units. As a result, cpuacct_update_stats calls
8856 * percpu_counter_add with values large enough to always overflow the
8857 * per cpu batch limit causing bad SMP scalability.
8859 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8860 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8861 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8864 #define CPUACCT_BATCH \
8865 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8867 #define CPUACCT_BATCH 0
8871 * Charge the system/user time to the task's accounting group.
8873 static void cpuacct_update_stats(struct task_struct
*tsk
,
8874 enum cpuacct_stat_index idx
, cputime_t val
)
8877 int batch
= CPUACCT_BATCH
;
8879 if (unlikely(!cpuacct_subsys
.active
))
8886 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
8892 struct cgroup_subsys cpuacct_subsys
= {
8894 .create
= cpuacct_create
,
8895 .destroy
= cpuacct_destroy
,
8896 .populate
= cpuacct_populate
,
8897 .subsys_id
= cpuacct_subsys_id
,
8899 #endif /* CONFIG_CGROUP_CPUACCT */
8903 void synchronize_sched_expedited(void)
8907 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8909 #else /* #ifndef CONFIG_SMP */
8911 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
8913 static int synchronize_sched_expedited_cpu_stop(void *data
)
8916 * There must be a full memory barrier on each affected CPU
8917 * between the time that try_stop_cpus() is called and the
8918 * time that it returns.
8920 * In the current initial implementation of cpu_stop, the
8921 * above condition is already met when the control reaches
8922 * this point and the following smp_mb() is not strictly
8923 * necessary. Do smp_mb() anyway for documentation and
8924 * robustness against future implementation changes.
8926 smp_mb(); /* See above comment block. */
8931 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8932 * approach to force grace period to end quickly. This consumes
8933 * significant time on all CPUs, and is thus not recommended for
8934 * any sort of common-case code.
8936 * Note that it is illegal to call this function while holding any
8937 * lock that is acquired by a CPU-hotplug notifier. Failing to
8938 * observe this restriction will result in deadlock.
8940 void synchronize_sched_expedited(void)
8942 int snap
, trycount
= 0;
8944 smp_mb(); /* ensure prior mod happens before capturing snap. */
8945 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
8947 while (try_stop_cpus(cpu_online_mask
,
8948 synchronize_sched_expedited_cpu_stop
,
8951 if (trycount
++ < 10)
8952 udelay(trycount
* num_online_cpus());
8954 synchronize_sched();
8957 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
8958 smp_mb(); /* ensure test happens before caller kfree */
8963 atomic_inc(&synchronize_sched_expedited_count
);
8964 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8967 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8969 #endif /* #else #ifndef CONFIG_SMP */