[PATCH] switch viocd
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / bio.c
blob77a55bcceedbc6afc79f7a081c0f0af5e7c4f46e
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
31 static struct kmem_cache *bio_slab __read_mostly;
33 static mempool_t *bio_split_pool __read_mostly;
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
45 #undef BV
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
51 struct bio_set *fs_bio_set;
53 unsigned int bvec_nr_vecs(unsigned short idx)
55 return bvec_slabs[idx].nr_vecs;
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
60 struct bio_vec *bvl;
63 * If 'bs' is given, lookup the pool and do the mempool alloc.
64 * If not, this is a bio_kmalloc() allocation and just do a
65 * kzalloc() for the exact number of vecs right away.
67 if (bs) {
69 * see comment near bvec_array define!
71 switch (nr) {
72 case 1:
73 *idx = 0;
74 break;
75 case 2 ... 4:
76 *idx = 1;
77 break;
78 case 5 ... 16:
79 *idx = 2;
80 break;
81 case 17 ... 64:
82 *idx = 3;
83 break;
84 case 65 ... 128:
85 *idx = 4;
86 break;
87 case 129 ... BIO_MAX_PAGES:
88 *idx = 5;
89 break;
90 default:
91 return NULL;
95 * idx now points to the pool we want to allocate from
97 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
98 if (bvl)
99 memset(bvl, 0,
100 bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
101 } else
102 bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask);
104 return bvl;
107 void bio_free(struct bio *bio, struct bio_set *bio_set)
109 if (bio->bi_io_vec) {
110 const int pool_idx = BIO_POOL_IDX(bio);
112 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
114 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
117 if (bio_integrity(bio))
118 bio_integrity_free(bio, bio_set);
120 mempool_free(bio, bio_set->bio_pool);
124 * default destructor for a bio allocated with bio_alloc_bioset()
126 static void bio_fs_destructor(struct bio *bio)
128 bio_free(bio, fs_bio_set);
131 static void bio_kmalloc_destructor(struct bio *bio)
133 kfree(bio->bi_io_vec);
134 kfree(bio);
137 void bio_init(struct bio *bio)
139 memset(bio, 0, sizeof(*bio));
140 bio->bi_flags = 1 << BIO_UPTODATE;
141 bio->bi_comp_cpu = -1;
142 atomic_set(&bio->bi_cnt, 1);
146 * bio_alloc_bioset - allocate a bio for I/O
147 * @gfp_mask: the GFP_ mask given to the slab allocator
148 * @nr_iovecs: number of iovecs to pre-allocate
149 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
151 * Description:
152 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
153 * If %__GFP_WAIT is set then we will block on the internal pool waiting
154 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
155 * fall back to just using @kmalloc to allocate the required memory.
157 * allocate bio and iovecs from the memory pools specified by the
158 * bio_set structure, or @kmalloc if none given.
160 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
162 struct bio *bio;
164 if (bs)
165 bio = mempool_alloc(bs->bio_pool, gfp_mask);
166 else
167 bio = kmalloc(sizeof(*bio), gfp_mask);
169 if (likely(bio)) {
170 struct bio_vec *bvl = NULL;
172 bio_init(bio);
173 if (likely(nr_iovecs)) {
174 unsigned long uninitialized_var(idx);
176 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
177 if (unlikely(!bvl)) {
178 if (bs)
179 mempool_free(bio, bs->bio_pool);
180 else
181 kfree(bio);
182 bio = NULL;
183 goto out;
185 bio->bi_flags |= idx << BIO_POOL_OFFSET;
186 bio->bi_max_vecs = bvec_nr_vecs(idx);
188 bio->bi_io_vec = bvl;
190 out:
191 return bio;
194 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
196 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
198 if (bio)
199 bio->bi_destructor = bio_fs_destructor;
201 return bio;
205 * Like bio_alloc(), but doesn't use a mempool backing. This means that
206 * it CAN fail, but while bio_alloc() can only be used for allocations
207 * that have a short (finite) life span, bio_kmalloc() should be used
208 * for more permanent bio allocations (like allocating some bio's for
209 * initalization or setup purposes).
211 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
213 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
215 if (bio)
216 bio->bi_destructor = bio_kmalloc_destructor;
218 return bio;
221 void zero_fill_bio(struct bio *bio)
223 unsigned long flags;
224 struct bio_vec *bv;
225 int i;
227 bio_for_each_segment(bv, bio, i) {
228 char *data = bvec_kmap_irq(bv, &flags);
229 memset(data, 0, bv->bv_len);
230 flush_dcache_page(bv->bv_page);
231 bvec_kunmap_irq(data, &flags);
234 EXPORT_SYMBOL(zero_fill_bio);
237 * bio_put - release a reference to a bio
238 * @bio: bio to release reference to
240 * Description:
241 * Put a reference to a &struct bio, either one you have gotten with
242 * bio_alloc or bio_get. The last put of a bio will free it.
244 void bio_put(struct bio *bio)
246 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
249 * last put frees it
251 if (atomic_dec_and_test(&bio->bi_cnt)) {
252 bio->bi_next = NULL;
253 bio->bi_destructor(bio);
257 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
259 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
260 blk_recount_segments(q, bio);
262 return bio->bi_phys_segments;
266 * __bio_clone - clone a bio
267 * @bio: destination bio
268 * @bio_src: bio to clone
270 * Clone a &bio. Caller will own the returned bio, but not
271 * the actual data it points to. Reference count of returned
272 * bio will be one.
274 void __bio_clone(struct bio *bio, struct bio *bio_src)
276 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
277 bio_src->bi_max_vecs * sizeof(struct bio_vec));
280 * most users will be overriding ->bi_bdev with a new target,
281 * so we don't set nor calculate new physical/hw segment counts here
283 bio->bi_sector = bio_src->bi_sector;
284 bio->bi_bdev = bio_src->bi_bdev;
285 bio->bi_flags |= 1 << BIO_CLONED;
286 bio->bi_rw = bio_src->bi_rw;
287 bio->bi_vcnt = bio_src->bi_vcnt;
288 bio->bi_size = bio_src->bi_size;
289 bio->bi_idx = bio_src->bi_idx;
293 * bio_clone - clone a bio
294 * @bio: bio to clone
295 * @gfp_mask: allocation priority
297 * Like __bio_clone, only also allocates the returned bio
299 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
301 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
303 if (!b)
304 return NULL;
306 b->bi_destructor = bio_fs_destructor;
307 __bio_clone(b, bio);
309 if (bio_integrity(bio)) {
310 int ret;
312 ret = bio_integrity_clone(b, bio, fs_bio_set);
314 if (ret < 0)
315 return NULL;
318 return b;
322 * bio_get_nr_vecs - return approx number of vecs
323 * @bdev: I/O target
325 * Return the approximate number of pages we can send to this target.
326 * There's no guarantee that you will be able to fit this number of pages
327 * into a bio, it does not account for dynamic restrictions that vary
328 * on offset.
330 int bio_get_nr_vecs(struct block_device *bdev)
332 struct request_queue *q = bdev_get_queue(bdev);
333 int nr_pages;
335 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
336 if (nr_pages > q->max_phys_segments)
337 nr_pages = q->max_phys_segments;
338 if (nr_pages > q->max_hw_segments)
339 nr_pages = q->max_hw_segments;
341 return nr_pages;
344 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
345 *page, unsigned int len, unsigned int offset,
346 unsigned short max_sectors)
348 int retried_segments = 0;
349 struct bio_vec *bvec;
352 * cloned bio must not modify vec list
354 if (unlikely(bio_flagged(bio, BIO_CLONED)))
355 return 0;
357 if (((bio->bi_size + len) >> 9) > max_sectors)
358 return 0;
361 * For filesystems with a blocksize smaller than the pagesize
362 * we will often be called with the same page as last time and
363 * a consecutive offset. Optimize this special case.
365 if (bio->bi_vcnt > 0) {
366 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
368 if (page == prev->bv_page &&
369 offset == prev->bv_offset + prev->bv_len) {
370 prev->bv_len += len;
372 if (q->merge_bvec_fn) {
373 struct bvec_merge_data bvm = {
374 .bi_bdev = bio->bi_bdev,
375 .bi_sector = bio->bi_sector,
376 .bi_size = bio->bi_size,
377 .bi_rw = bio->bi_rw,
380 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
381 prev->bv_len -= len;
382 return 0;
386 goto done;
390 if (bio->bi_vcnt >= bio->bi_max_vecs)
391 return 0;
394 * we might lose a segment or two here, but rather that than
395 * make this too complex.
398 while (bio->bi_phys_segments >= q->max_phys_segments
399 || bio->bi_phys_segments >= q->max_hw_segments) {
401 if (retried_segments)
402 return 0;
404 retried_segments = 1;
405 blk_recount_segments(q, bio);
409 * setup the new entry, we might clear it again later if we
410 * cannot add the page
412 bvec = &bio->bi_io_vec[bio->bi_vcnt];
413 bvec->bv_page = page;
414 bvec->bv_len = len;
415 bvec->bv_offset = offset;
418 * if queue has other restrictions (eg varying max sector size
419 * depending on offset), it can specify a merge_bvec_fn in the
420 * queue to get further control
422 if (q->merge_bvec_fn) {
423 struct bvec_merge_data bvm = {
424 .bi_bdev = bio->bi_bdev,
425 .bi_sector = bio->bi_sector,
426 .bi_size = bio->bi_size,
427 .bi_rw = bio->bi_rw,
431 * merge_bvec_fn() returns number of bytes it can accept
432 * at this offset
434 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
435 bvec->bv_page = NULL;
436 bvec->bv_len = 0;
437 bvec->bv_offset = 0;
438 return 0;
442 /* If we may be able to merge these biovecs, force a recount */
443 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
444 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
446 bio->bi_vcnt++;
447 bio->bi_phys_segments++;
448 done:
449 bio->bi_size += len;
450 return len;
454 * bio_add_pc_page - attempt to add page to bio
455 * @q: the target queue
456 * @bio: destination bio
457 * @page: page to add
458 * @len: vec entry length
459 * @offset: vec entry offset
461 * Attempt to add a page to the bio_vec maplist. This can fail for a
462 * number of reasons, such as the bio being full or target block
463 * device limitations. The target block device must allow bio's
464 * smaller than PAGE_SIZE, so it is always possible to add a single
465 * page to an empty bio. This should only be used by REQ_PC bios.
467 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
468 unsigned int len, unsigned int offset)
470 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
474 * bio_add_page - attempt to add page to bio
475 * @bio: destination bio
476 * @page: page to add
477 * @len: vec entry length
478 * @offset: vec entry offset
480 * Attempt to add a page to the bio_vec maplist. This can fail for a
481 * number of reasons, such as the bio being full or target block
482 * device limitations. The target block device must allow bio's
483 * smaller than PAGE_SIZE, so it is always possible to add a single
484 * page to an empty bio.
486 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
487 unsigned int offset)
489 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
490 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
493 struct bio_map_data {
494 struct bio_vec *iovecs;
495 struct sg_iovec *sgvecs;
496 int nr_sgvecs;
497 int is_our_pages;
500 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
501 struct sg_iovec *iov, int iov_count,
502 int is_our_pages)
504 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
505 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
506 bmd->nr_sgvecs = iov_count;
507 bmd->is_our_pages = is_our_pages;
508 bio->bi_private = bmd;
511 static void bio_free_map_data(struct bio_map_data *bmd)
513 kfree(bmd->iovecs);
514 kfree(bmd->sgvecs);
515 kfree(bmd);
518 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
519 gfp_t gfp_mask)
521 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
523 if (!bmd)
524 return NULL;
526 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
527 if (!bmd->iovecs) {
528 kfree(bmd);
529 return NULL;
532 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
533 if (bmd->sgvecs)
534 return bmd;
536 kfree(bmd->iovecs);
537 kfree(bmd);
538 return NULL;
541 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
542 struct sg_iovec *iov, int iov_count, int uncopy,
543 int do_free_page)
545 int ret = 0, i;
546 struct bio_vec *bvec;
547 int iov_idx = 0;
548 unsigned int iov_off = 0;
549 int read = bio_data_dir(bio) == READ;
551 __bio_for_each_segment(bvec, bio, i, 0) {
552 char *bv_addr = page_address(bvec->bv_page);
553 unsigned int bv_len = iovecs[i].bv_len;
555 while (bv_len && iov_idx < iov_count) {
556 unsigned int bytes;
557 char *iov_addr;
559 bytes = min_t(unsigned int,
560 iov[iov_idx].iov_len - iov_off, bv_len);
561 iov_addr = iov[iov_idx].iov_base + iov_off;
563 if (!ret) {
564 if (!read && !uncopy)
565 ret = copy_from_user(bv_addr, iov_addr,
566 bytes);
567 if (read && uncopy)
568 ret = copy_to_user(iov_addr, bv_addr,
569 bytes);
571 if (ret)
572 ret = -EFAULT;
575 bv_len -= bytes;
576 bv_addr += bytes;
577 iov_addr += bytes;
578 iov_off += bytes;
580 if (iov[iov_idx].iov_len == iov_off) {
581 iov_idx++;
582 iov_off = 0;
586 if (do_free_page)
587 __free_page(bvec->bv_page);
590 return ret;
594 * bio_uncopy_user - finish previously mapped bio
595 * @bio: bio being terminated
597 * Free pages allocated from bio_copy_user() and write back data
598 * to user space in case of a read.
600 int bio_uncopy_user(struct bio *bio)
602 struct bio_map_data *bmd = bio->bi_private;
603 int ret = 0;
605 if (!bio_flagged(bio, BIO_NULL_MAPPED))
606 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
607 bmd->nr_sgvecs, 1, bmd->is_our_pages);
608 bio_free_map_data(bmd);
609 bio_put(bio);
610 return ret;
614 * bio_copy_user_iov - copy user data to bio
615 * @q: destination block queue
616 * @map_data: pointer to the rq_map_data holding pages (if necessary)
617 * @iov: the iovec.
618 * @iov_count: number of elements in the iovec
619 * @write_to_vm: bool indicating writing to pages or not
620 * @gfp_mask: memory allocation flags
622 * Prepares and returns a bio for indirect user io, bouncing data
623 * to/from kernel pages as necessary. Must be paired with
624 * call bio_uncopy_user() on io completion.
626 struct bio *bio_copy_user_iov(struct request_queue *q,
627 struct rq_map_data *map_data,
628 struct sg_iovec *iov, int iov_count,
629 int write_to_vm, gfp_t gfp_mask)
631 struct bio_map_data *bmd;
632 struct bio_vec *bvec;
633 struct page *page;
634 struct bio *bio;
635 int i, ret;
636 int nr_pages = 0;
637 unsigned int len = 0;
639 for (i = 0; i < iov_count; i++) {
640 unsigned long uaddr;
641 unsigned long end;
642 unsigned long start;
644 uaddr = (unsigned long)iov[i].iov_base;
645 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
646 start = uaddr >> PAGE_SHIFT;
648 nr_pages += end - start;
649 len += iov[i].iov_len;
652 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
653 if (!bmd)
654 return ERR_PTR(-ENOMEM);
656 ret = -ENOMEM;
657 bio = bio_alloc(gfp_mask, nr_pages);
658 if (!bio)
659 goto out_bmd;
661 bio->bi_rw |= (!write_to_vm << BIO_RW);
663 ret = 0;
664 i = 0;
665 while (len) {
666 unsigned int bytes;
668 if (map_data)
669 bytes = 1U << (PAGE_SHIFT + map_data->page_order);
670 else
671 bytes = PAGE_SIZE;
673 if (bytes > len)
674 bytes = len;
676 if (map_data) {
677 if (i == map_data->nr_entries) {
678 ret = -ENOMEM;
679 break;
681 page = map_data->pages[i++];
682 } else
683 page = alloc_page(q->bounce_gfp | gfp_mask);
684 if (!page) {
685 ret = -ENOMEM;
686 break;
689 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
690 break;
692 len -= bytes;
695 if (ret)
696 goto cleanup;
699 * success
701 if (!write_to_vm) {
702 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
703 if (ret)
704 goto cleanup;
707 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
708 return bio;
709 cleanup:
710 if (!map_data)
711 bio_for_each_segment(bvec, bio, i)
712 __free_page(bvec->bv_page);
714 bio_put(bio);
715 out_bmd:
716 bio_free_map_data(bmd);
717 return ERR_PTR(ret);
721 * bio_copy_user - copy user data to bio
722 * @q: destination block queue
723 * @map_data: pointer to the rq_map_data holding pages (if necessary)
724 * @uaddr: start of user address
725 * @len: length in bytes
726 * @write_to_vm: bool indicating writing to pages or not
727 * @gfp_mask: memory allocation flags
729 * Prepares and returns a bio for indirect user io, bouncing data
730 * to/from kernel pages as necessary. Must be paired with
731 * call bio_uncopy_user() on io completion.
733 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
734 unsigned long uaddr, unsigned int len,
735 int write_to_vm, gfp_t gfp_mask)
737 struct sg_iovec iov;
739 iov.iov_base = (void __user *)uaddr;
740 iov.iov_len = len;
742 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
745 static struct bio *__bio_map_user_iov(struct request_queue *q,
746 struct block_device *bdev,
747 struct sg_iovec *iov, int iov_count,
748 int write_to_vm, gfp_t gfp_mask)
750 int i, j;
751 int nr_pages = 0;
752 struct page **pages;
753 struct bio *bio;
754 int cur_page = 0;
755 int ret, offset;
757 for (i = 0; i < iov_count; i++) {
758 unsigned long uaddr = (unsigned long)iov[i].iov_base;
759 unsigned long len = iov[i].iov_len;
760 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
761 unsigned long start = uaddr >> PAGE_SHIFT;
763 nr_pages += end - start;
765 * buffer must be aligned to at least hardsector size for now
767 if (uaddr & queue_dma_alignment(q))
768 return ERR_PTR(-EINVAL);
771 if (!nr_pages)
772 return ERR_PTR(-EINVAL);
774 bio = bio_alloc(gfp_mask, nr_pages);
775 if (!bio)
776 return ERR_PTR(-ENOMEM);
778 ret = -ENOMEM;
779 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
780 if (!pages)
781 goto out;
783 for (i = 0; i < iov_count; i++) {
784 unsigned long uaddr = (unsigned long)iov[i].iov_base;
785 unsigned long len = iov[i].iov_len;
786 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
787 unsigned long start = uaddr >> PAGE_SHIFT;
788 const int local_nr_pages = end - start;
789 const int page_limit = cur_page + local_nr_pages;
791 ret = get_user_pages_fast(uaddr, local_nr_pages,
792 write_to_vm, &pages[cur_page]);
793 if (ret < local_nr_pages) {
794 ret = -EFAULT;
795 goto out_unmap;
798 offset = uaddr & ~PAGE_MASK;
799 for (j = cur_page; j < page_limit; j++) {
800 unsigned int bytes = PAGE_SIZE - offset;
802 if (len <= 0)
803 break;
805 if (bytes > len)
806 bytes = len;
809 * sorry...
811 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
812 bytes)
813 break;
815 len -= bytes;
816 offset = 0;
819 cur_page = j;
821 * release the pages we didn't map into the bio, if any
823 while (j < page_limit)
824 page_cache_release(pages[j++]);
827 kfree(pages);
830 * set data direction, and check if mapped pages need bouncing
832 if (!write_to_vm)
833 bio->bi_rw |= (1 << BIO_RW);
835 bio->bi_bdev = bdev;
836 bio->bi_flags |= (1 << BIO_USER_MAPPED);
837 return bio;
839 out_unmap:
840 for (i = 0; i < nr_pages; i++) {
841 if(!pages[i])
842 break;
843 page_cache_release(pages[i]);
845 out:
846 kfree(pages);
847 bio_put(bio);
848 return ERR_PTR(ret);
852 * bio_map_user - map user address into bio
853 * @q: the struct request_queue for the bio
854 * @bdev: destination block device
855 * @uaddr: start of user address
856 * @len: length in bytes
857 * @write_to_vm: bool indicating writing to pages or not
858 * @gfp_mask: memory allocation flags
860 * Map the user space address into a bio suitable for io to a block
861 * device. Returns an error pointer in case of error.
863 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
864 unsigned long uaddr, unsigned int len, int write_to_vm,
865 gfp_t gfp_mask)
867 struct sg_iovec iov;
869 iov.iov_base = (void __user *)uaddr;
870 iov.iov_len = len;
872 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
876 * bio_map_user_iov - map user sg_iovec table into bio
877 * @q: the struct request_queue for the bio
878 * @bdev: destination block device
879 * @iov: the iovec.
880 * @iov_count: number of elements in the iovec
881 * @write_to_vm: bool indicating writing to pages or not
882 * @gfp_mask: memory allocation flags
884 * Map the user space address into a bio suitable for io to a block
885 * device. Returns an error pointer in case of error.
887 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
888 struct sg_iovec *iov, int iov_count,
889 int write_to_vm, gfp_t gfp_mask)
891 struct bio *bio;
893 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
894 gfp_mask);
895 if (IS_ERR(bio))
896 return bio;
899 * subtle -- if __bio_map_user() ended up bouncing a bio,
900 * it would normally disappear when its bi_end_io is run.
901 * however, we need it for the unmap, so grab an extra
902 * reference to it
904 bio_get(bio);
906 return bio;
909 static void __bio_unmap_user(struct bio *bio)
911 struct bio_vec *bvec;
912 int i;
915 * make sure we dirty pages we wrote to
917 __bio_for_each_segment(bvec, bio, i, 0) {
918 if (bio_data_dir(bio) == READ)
919 set_page_dirty_lock(bvec->bv_page);
921 page_cache_release(bvec->bv_page);
924 bio_put(bio);
928 * bio_unmap_user - unmap a bio
929 * @bio: the bio being unmapped
931 * Unmap a bio previously mapped by bio_map_user(). Must be called with
932 * a process context.
934 * bio_unmap_user() may sleep.
936 void bio_unmap_user(struct bio *bio)
938 __bio_unmap_user(bio);
939 bio_put(bio);
942 static void bio_map_kern_endio(struct bio *bio, int err)
944 bio_put(bio);
948 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
949 unsigned int len, gfp_t gfp_mask)
951 unsigned long kaddr = (unsigned long)data;
952 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 unsigned long start = kaddr >> PAGE_SHIFT;
954 const int nr_pages = end - start;
955 int offset, i;
956 struct bio *bio;
958 bio = bio_alloc(gfp_mask, nr_pages);
959 if (!bio)
960 return ERR_PTR(-ENOMEM);
962 offset = offset_in_page(kaddr);
963 for (i = 0; i < nr_pages; i++) {
964 unsigned int bytes = PAGE_SIZE - offset;
966 if (len <= 0)
967 break;
969 if (bytes > len)
970 bytes = len;
972 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
973 offset) < bytes)
974 break;
976 data += bytes;
977 len -= bytes;
978 offset = 0;
981 bio->bi_end_io = bio_map_kern_endio;
982 return bio;
986 * bio_map_kern - map kernel address into bio
987 * @q: the struct request_queue for the bio
988 * @data: pointer to buffer to map
989 * @len: length in bytes
990 * @gfp_mask: allocation flags for bio allocation
992 * Map the kernel address into a bio suitable for io to a block
993 * device. Returns an error pointer in case of error.
995 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
996 gfp_t gfp_mask)
998 struct bio *bio;
1000 bio = __bio_map_kern(q, data, len, gfp_mask);
1001 if (IS_ERR(bio))
1002 return bio;
1004 if (bio->bi_size == len)
1005 return bio;
1008 * Don't support partial mappings.
1010 bio_put(bio);
1011 return ERR_PTR(-EINVAL);
1014 static void bio_copy_kern_endio(struct bio *bio, int err)
1016 struct bio_vec *bvec;
1017 const int read = bio_data_dir(bio) == READ;
1018 struct bio_map_data *bmd = bio->bi_private;
1019 int i;
1020 char *p = bmd->sgvecs[0].iov_base;
1022 __bio_for_each_segment(bvec, bio, i, 0) {
1023 char *addr = page_address(bvec->bv_page);
1024 int len = bmd->iovecs[i].bv_len;
1026 if (read && !err)
1027 memcpy(p, addr, len);
1029 __free_page(bvec->bv_page);
1030 p += len;
1033 bio_free_map_data(bmd);
1034 bio_put(bio);
1038 * bio_copy_kern - copy kernel address into bio
1039 * @q: the struct request_queue for the bio
1040 * @data: pointer to buffer to copy
1041 * @len: length in bytes
1042 * @gfp_mask: allocation flags for bio and page allocation
1043 * @reading: data direction is READ
1045 * copy the kernel address into a bio suitable for io to a block
1046 * device. Returns an error pointer in case of error.
1048 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1049 gfp_t gfp_mask, int reading)
1051 struct bio *bio;
1052 struct bio_vec *bvec;
1053 int i;
1055 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1056 if (IS_ERR(bio))
1057 return bio;
1059 if (!reading) {
1060 void *p = data;
1062 bio_for_each_segment(bvec, bio, i) {
1063 char *addr = page_address(bvec->bv_page);
1065 memcpy(addr, p, bvec->bv_len);
1066 p += bvec->bv_len;
1070 bio->bi_end_io = bio_copy_kern_endio;
1072 return bio;
1076 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1077 * for performing direct-IO in BIOs.
1079 * The problem is that we cannot run set_page_dirty() from interrupt context
1080 * because the required locks are not interrupt-safe. So what we can do is to
1081 * mark the pages dirty _before_ performing IO. And in interrupt context,
1082 * check that the pages are still dirty. If so, fine. If not, redirty them
1083 * in process context.
1085 * We special-case compound pages here: normally this means reads into hugetlb
1086 * pages. The logic in here doesn't really work right for compound pages
1087 * because the VM does not uniformly chase down the head page in all cases.
1088 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1089 * handle them at all. So we skip compound pages here at an early stage.
1091 * Note that this code is very hard to test under normal circumstances because
1092 * direct-io pins the pages with get_user_pages(). This makes
1093 * is_page_cache_freeable return false, and the VM will not clean the pages.
1094 * But other code (eg, pdflush) could clean the pages if they are mapped
1095 * pagecache.
1097 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1098 * deferred bio dirtying paths.
1102 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1104 void bio_set_pages_dirty(struct bio *bio)
1106 struct bio_vec *bvec = bio->bi_io_vec;
1107 int i;
1109 for (i = 0; i < bio->bi_vcnt; i++) {
1110 struct page *page = bvec[i].bv_page;
1112 if (page && !PageCompound(page))
1113 set_page_dirty_lock(page);
1117 static void bio_release_pages(struct bio *bio)
1119 struct bio_vec *bvec = bio->bi_io_vec;
1120 int i;
1122 for (i = 0; i < bio->bi_vcnt; i++) {
1123 struct page *page = bvec[i].bv_page;
1125 if (page)
1126 put_page(page);
1131 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1132 * If they are, then fine. If, however, some pages are clean then they must
1133 * have been written out during the direct-IO read. So we take another ref on
1134 * the BIO and the offending pages and re-dirty the pages in process context.
1136 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1137 * here on. It will run one page_cache_release() against each page and will
1138 * run one bio_put() against the BIO.
1141 static void bio_dirty_fn(struct work_struct *work);
1143 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1144 static DEFINE_SPINLOCK(bio_dirty_lock);
1145 static struct bio *bio_dirty_list;
1148 * This runs in process context
1150 static void bio_dirty_fn(struct work_struct *work)
1152 unsigned long flags;
1153 struct bio *bio;
1155 spin_lock_irqsave(&bio_dirty_lock, flags);
1156 bio = bio_dirty_list;
1157 bio_dirty_list = NULL;
1158 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1160 while (bio) {
1161 struct bio *next = bio->bi_private;
1163 bio_set_pages_dirty(bio);
1164 bio_release_pages(bio);
1165 bio_put(bio);
1166 bio = next;
1170 void bio_check_pages_dirty(struct bio *bio)
1172 struct bio_vec *bvec = bio->bi_io_vec;
1173 int nr_clean_pages = 0;
1174 int i;
1176 for (i = 0; i < bio->bi_vcnt; i++) {
1177 struct page *page = bvec[i].bv_page;
1179 if (PageDirty(page) || PageCompound(page)) {
1180 page_cache_release(page);
1181 bvec[i].bv_page = NULL;
1182 } else {
1183 nr_clean_pages++;
1187 if (nr_clean_pages) {
1188 unsigned long flags;
1190 spin_lock_irqsave(&bio_dirty_lock, flags);
1191 bio->bi_private = bio_dirty_list;
1192 bio_dirty_list = bio;
1193 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1194 schedule_work(&bio_dirty_work);
1195 } else {
1196 bio_put(bio);
1201 * bio_endio - end I/O on a bio
1202 * @bio: bio
1203 * @error: error, if any
1205 * Description:
1206 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1207 * preferred way to end I/O on a bio, it takes care of clearing
1208 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1209 * established -Exxxx (-EIO, for instance) error values in case
1210 * something went wrong. Noone should call bi_end_io() directly on a
1211 * bio unless they own it and thus know that it has an end_io
1212 * function.
1214 void bio_endio(struct bio *bio, int error)
1216 if (error)
1217 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1218 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1219 error = -EIO;
1221 if (bio->bi_end_io)
1222 bio->bi_end_io(bio, error);
1225 void bio_pair_release(struct bio_pair *bp)
1227 if (atomic_dec_and_test(&bp->cnt)) {
1228 struct bio *master = bp->bio1.bi_private;
1230 bio_endio(master, bp->error);
1231 mempool_free(bp, bp->bio2.bi_private);
1235 static void bio_pair_end_1(struct bio *bi, int err)
1237 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1239 if (err)
1240 bp->error = err;
1242 bio_pair_release(bp);
1245 static void bio_pair_end_2(struct bio *bi, int err)
1247 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1249 if (err)
1250 bp->error = err;
1252 bio_pair_release(bp);
1256 * split a bio - only worry about a bio with a single page
1257 * in it's iovec
1259 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1261 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1263 if (!bp)
1264 return bp;
1266 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1267 bi->bi_sector + first_sectors);
1269 BUG_ON(bi->bi_vcnt != 1);
1270 BUG_ON(bi->bi_idx != 0);
1271 atomic_set(&bp->cnt, 3);
1272 bp->error = 0;
1273 bp->bio1 = *bi;
1274 bp->bio2 = *bi;
1275 bp->bio2.bi_sector += first_sectors;
1276 bp->bio2.bi_size -= first_sectors << 9;
1277 bp->bio1.bi_size = first_sectors << 9;
1279 bp->bv1 = bi->bi_io_vec[0];
1280 bp->bv2 = bi->bi_io_vec[0];
1281 bp->bv2.bv_offset += first_sectors << 9;
1282 bp->bv2.bv_len -= first_sectors << 9;
1283 bp->bv1.bv_len = first_sectors << 9;
1285 bp->bio1.bi_io_vec = &bp->bv1;
1286 bp->bio2.bi_io_vec = &bp->bv2;
1288 bp->bio1.bi_max_vecs = 1;
1289 bp->bio2.bi_max_vecs = 1;
1291 bp->bio1.bi_end_io = bio_pair_end_1;
1292 bp->bio2.bi_end_io = bio_pair_end_2;
1294 bp->bio1.bi_private = bi;
1295 bp->bio2.bi_private = bio_split_pool;
1297 if (bio_integrity(bi))
1298 bio_integrity_split(bi, bp, first_sectors);
1300 return bp;
1304 * bio_sector_offset - Find hardware sector offset in bio
1305 * @bio: bio to inspect
1306 * @index: bio_vec index
1307 * @offset: offset in bv_page
1309 * Return the number of hardware sectors between beginning of bio
1310 * and an end point indicated by a bio_vec index and an offset
1311 * within that vector's page.
1313 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1314 unsigned int offset)
1316 unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
1317 struct bio_vec *bv;
1318 sector_t sectors;
1319 int i;
1321 sectors = 0;
1323 if (index >= bio->bi_idx)
1324 index = bio->bi_vcnt - 1;
1326 __bio_for_each_segment(bv, bio, i, 0) {
1327 if (i == index) {
1328 if (offset > bv->bv_offset)
1329 sectors += (offset - bv->bv_offset) / sector_sz;
1330 break;
1333 sectors += bv->bv_len / sector_sz;
1336 return sectors;
1338 EXPORT_SYMBOL(bio_sector_offset);
1341 * create memory pools for biovec's in a bio_set.
1342 * use the global biovec slabs created for general use.
1344 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1346 int i;
1348 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1349 struct biovec_slab *bp = bvec_slabs + i;
1350 mempool_t **bvp = bs->bvec_pools + i;
1352 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1353 if (!*bvp)
1354 return -ENOMEM;
1356 return 0;
1359 static void biovec_free_pools(struct bio_set *bs)
1361 int i;
1363 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1364 mempool_t *bvp = bs->bvec_pools[i];
1366 if (bvp)
1367 mempool_destroy(bvp);
1372 void bioset_free(struct bio_set *bs)
1374 if (bs->bio_pool)
1375 mempool_destroy(bs->bio_pool);
1377 bioset_integrity_free(bs);
1378 biovec_free_pools(bs);
1380 kfree(bs);
1383 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1385 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1387 if (!bs)
1388 return NULL;
1390 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1391 if (!bs->bio_pool)
1392 goto bad;
1394 if (bioset_integrity_create(bs, bio_pool_size))
1395 goto bad;
1397 if (!biovec_create_pools(bs, bvec_pool_size))
1398 return bs;
1400 bad:
1401 bioset_free(bs);
1402 return NULL;
1405 static void __init biovec_init_slabs(void)
1407 int i;
1409 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1410 int size;
1411 struct biovec_slab *bvs = bvec_slabs + i;
1413 size = bvs->nr_vecs * sizeof(struct bio_vec);
1414 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1415 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1419 static int __init init_bio(void)
1421 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1423 bio_integrity_init_slab();
1424 biovec_init_slabs();
1426 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1427 if (!fs_bio_set)
1428 panic("bio: can't allocate bios\n");
1430 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1431 sizeof(struct bio_pair));
1432 if (!bio_split_pool)
1433 panic("bio: can't create split pool\n");
1435 return 0;
1438 subsys_initcall(init_bio);
1440 EXPORT_SYMBOL(bio_alloc);
1441 EXPORT_SYMBOL(bio_kmalloc);
1442 EXPORT_SYMBOL(bio_put);
1443 EXPORT_SYMBOL(bio_free);
1444 EXPORT_SYMBOL(bio_endio);
1445 EXPORT_SYMBOL(bio_init);
1446 EXPORT_SYMBOL(__bio_clone);
1447 EXPORT_SYMBOL(bio_clone);
1448 EXPORT_SYMBOL(bio_phys_segments);
1449 EXPORT_SYMBOL(bio_add_page);
1450 EXPORT_SYMBOL(bio_add_pc_page);
1451 EXPORT_SYMBOL(bio_get_nr_vecs);
1452 EXPORT_SYMBOL(bio_map_user);
1453 EXPORT_SYMBOL(bio_unmap_user);
1454 EXPORT_SYMBOL(bio_map_kern);
1455 EXPORT_SYMBOL(bio_copy_kern);
1456 EXPORT_SYMBOL(bio_pair_release);
1457 EXPORT_SYMBOL(bio_split);
1458 EXPORT_SYMBOL(bio_copy_user);
1459 EXPORT_SYMBOL(bio_uncopy_user);
1460 EXPORT_SYMBOL(bioset_create);
1461 EXPORT_SYMBOL(bioset_free);
1462 EXPORT_SYMBOL(bio_alloc_bioset);