2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 static const struct inode_operations btrfs_dir_inode_operations
;
60 static const struct inode_operations btrfs_symlink_inode_operations
;
61 static const struct inode_operations btrfs_dir_ro_inode_operations
;
62 static const struct inode_operations btrfs_special_inode_operations
;
63 static const struct inode_operations btrfs_file_inode_operations
;
64 static const struct address_space_operations btrfs_aops
;
65 static const struct address_space_operations btrfs_symlink_aops
;
66 static const struct file_operations btrfs_dir_file_operations
;
67 static struct extent_io_ops btrfs_extent_io_ops
;
69 static struct kmem_cache
*btrfs_inode_cachep
;
70 struct kmem_cache
*btrfs_trans_handle_cachep
;
71 struct kmem_cache
*btrfs_transaction_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
75 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
76 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
77 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
78 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
79 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
80 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
81 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
82 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
85 static void btrfs_truncate(struct inode
*inode
);
86 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
87 static noinline
int cow_file_range(struct inode
*inode
,
88 struct page
*locked_page
,
89 u64 start
, u64 end
, int *page_started
,
90 unsigned long *nr_written
, int unlock
);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
93 struct inode
*inode
, struct inode
*dir
)
97 err
= btrfs_init_acl(trans
, inode
, dir
);
99 err
= btrfs_xattr_security_init(trans
, inode
, dir
);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
, struct inode
*inode
,
110 u64 start
, size_t size
, size_t compressed_size
,
111 struct page
**compressed_pages
)
113 struct btrfs_key key
;
114 struct btrfs_path
*path
;
115 struct extent_buffer
*leaf
;
116 struct page
*page
= NULL
;
119 struct btrfs_file_extent_item
*ei
;
122 size_t cur_size
= size
;
124 unsigned long offset
;
125 int use_compress
= 0;
127 if (compressed_size
&& compressed_pages
) {
129 cur_size
= compressed_size
;
132 path
= btrfs_alloc_path();
136 path
->leave_spinning
= 1;
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
170 kaddr
= kmap_atomic(cpage
, KM_USER0
);
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
172 kunmap_atomic(kaddr
, KM_USER0
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
179 BTRFS_COMPRESS_ZLIB
);
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
203 btrfs_update_inode(trans
, root
, inode
);
207 btrfs_free_path(path
);
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
218 struct btrfs_root
*root
,
219 struct inode
*inode
, u64 start
, u64 end
,
220 size_t compressed_size
,
221 struct page
**compressed_pages
)
223 u64 isize
= i_size_read(inode
);
224 u64 actual_end
= min(end
+ 1, isize
);
225 u64 inline_len
= actual_end
- start
;
226 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
227 ~((u64
)root
->sectorsize
- 1);
229 u64 data_len
= inline_len
;
233 data_len
= compressed_size
;
236 actual_end
>= PAGE_CACHE_SIZE
||
237 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
239 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
241 data_len
> root
->fs_info
->max_inline
) {
245 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
249 if (isize
> actual_end
)
250 inline_len
= min_t(u64
, isize
, actual_end
);
251 ret
= insert_inline_extent(trans
, root
, inode
, start
,
252 inline_len
, compressed_size
,
255 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
259 struct async_extent
{
264 unsigned long nr_pages
;
265 struct list_head list
;
270 struct btrfs_root
*root
;
271 struct page
*locked_page
;
274 struct list_head extents
;
275 struct btrfs_work work
;
278 static noinline
int add_async_extent(struct async_cow
*cow
,
279 u64 start
, u64 ram_size
,
282 unsigned long nr_pages
)
284 struct async_extent
*async_extent
;
286 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
287 async_extent
->start
= start
;
288 async_extent
->ram_size
= ram_size
;
289 async_extent
->compressed_size
= compressed_size
;
290 async_extent
->pages
= pages
;
291 async_extent
->nr_pages
= nr_pages
;
292 list_add_tail(&async_extent
->list
, &cow
->extents
);
297 * we create compressed extents in two phases. The first
298 * phase compresses a range of pages that have already been
299 * locked (both pages and state bits are locked).
301 * This is done inside an ordered work queue, and the compression
302 * is spread across many cpus. The actual IO submission is step
303 * two, and the ordered work queue takes care of making sure that
304 * happens in the same order things were put onto the queue by
305 * writepages and friends.
307 * If this code finds it can't get good compression, it puts an
308 * entry onto the work queue to write the uncompressed bytes. This
309 * makes sure that both compressed inodes and uncompressed inodes
310 * are written in the same order that pdflush sent them down.
312 static noinline
int compress_file_range(struct inode
*inode
,
313 struct page
*locked_page
,
315 struct async_cow
*async_cow
,
318 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
319 struct btrfs_trans_handle
*trans
;
323 u64 blocksize
= root
->sectorsize
;
325 u64 isize
= i_size_read(inode
);
327 struct page
**pages
= NULL
;
328 unsigned long nr_pages
;
329 unsigned long nr_pages_ret
= 0;
330 unsigned long total_compressed
= 0;
331 unsigned long total_in
= 0;
332 unsigned long max_compressed
= 128 * 1024;
333 unsigned long max_uncompressed
= 128 * 1024;
339 actual_end
= min_t(u64
, isize
, end
+ 1);
342 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
343 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
346 * we don't want to send crud past the end of i_size through
347 * compression, that's just a waste of CPU time. So, if the
348 * end of the file is before the start of our current
349 * requested range of bytes, we bail out to the uncompressed
350 * cleanup code that can deal with all of this.
352 * It isn't really the fastest way to fix things, but this is a
353 * very uncommon corner.
355 if (actual_end
<= start
)
356 goto cleanup_and_bail_uncompressed
;
358 total_compressed
= actual_end
- start
;
360 /* we want to make sure that amount of ram required to uncompress
361 * an extent is reasonable, so we limit the total size in ram
362 * of a compressed extent to 128k. This is a crucial number
363 * because it also controls how easily we can spread reads across
364 * cpus for decompression.
366 * We also want to make sure the amount of IO required to do
367 * a random read is reasonably small, so we limit the size of
368 * a compressed extent to 128k.
370 total_compressed
= min(total_compressed
, max_uncompressed
);
371 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
372 num_bytes
= max(blocksize
, num_bytes
);
373 disk_num_bytes
= num_bytes
;
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
383 (btrfs_test_opt(root
, COMPRESS
) ||
384 (BTRFS_I(inode
)->force_compress
))) {
386 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
388 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
389 total_compressed
, pages
,
390 nr_pages
, &nr_pages_ret
,
396 unsigned long offset
= total_compressed
&
397 (PAGE_CACHE_SIZE
- 1);
398 struct page
*page
= pages
[nr_pages_ret
- 1];
401 /* zero the tail end of the last page, we might be
402 * sending it down to disk
405 kaddr
= kmap_atomic(page
, KM_USER0
);
406 memset(kaddr
+ offset
, 0,
407 PAGE_CACHE_SIZE
- offset
);
408 kunmap_atomic(kaddr
, KM_USER0
);
414 trans
= btrfs_join_transaction(root
, 1);
416 btrfs_set_trans_block_group(trans
, inode
);
418 /* lets try to make an inline extent */
419 if (ret
|| total_in
< (actual_end
- start
)) {
420 /* we didn't compress the entire range, try
421 * to make an uncompressed inline extent.
423 ret
= cow_file_range_inline(trans
, root
, inode
,
424 start
, end
, 0, NULL
);
426 /* try making a compressed inline extent */
427 ret
= cow_file_range_inline(trans
, root
, inode
,
429 total_compressed
, pages
);
433 * inline extent creation worked, we don't need
434 * to create any more async work items. Unlock
435 * and free up our temp pages.
437 extent_clear_unlock_delalloc(inode
,
438 &BTRFS_I(inode
)->io_tree
,
440 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
441 EXTENT_CLEAR_DELALLOC
|
442 EXTENT_CLEAR_ACCOUNTING
|
443 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
445 btrfs_end_transaction(trans
, root
);
448 btrfs_end_transaction(trans
, root
);
453 * we aren't doing an inline extent round the compressed size
454 * up to a block size boundary so the allocator does sane
457 total_compressed
= (total_compressed
+ blocksize
- 1) &
461 * one last check to make sure the compression is really a
462 * win, compare the page count read with the blocks on disk
464 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
465 ~(PAGE_CACHE_SIZE
- 1);
466 if (total_compressed
>= total_in
) {
469 disk_num_bytes
= total_compressed
;
470 num_bytes
= total_in
;
473 if (!will_compress
&& pages
) {
475 * the compression code ran but failed to make things smaller,
476 * free any pages it allocated and our page pointer array
478 for (i
= 0; i
< nr_pages_ret
; i
++) {
479 WARN_ON(pages
[i
]->mapping
);
480 page_cache_release(pages
[i
]);
484 total_compressed
= 0;
487 /* flag the file so we don't compress in the future */
488 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
489 !(BTRFS_I(inode
)->force_compress
)) {
490 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
496 /* the async work queues will take care of doing actual
497 * allocation on disk for these compressed pages,
498 * and will submit them to the elevator.
500 add_async_extent(async_cow
, start
, num_bytes
,
501 total_compressed
, pages
, nr_pages_ret
);
503 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
510 cleanup_and_bail_uncompressed
:
512 * No compression, but we still need to write the pages in
513 * the file we've been given so far. redirty the locked
514 * page if it corresponds to our extent and set things up
515 * for the async work queue to run cow_file_range to do
516 * the normal delalloc dance
518 if (page_offset(locked_page
) >= start
&&
519 page_offset(locked_page
) <= end
) {
520 __set_page_dirty_nobuffers(locked_page
);
521 /* unlocked later on in the async handlers */
523 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
531 for (i
= 0; i
< nr_pages_ret
; i
++) {
532 WARN_ON(pages
[i
]->mapping
);
533 page_cache_release(pages
[i
]);
541 * phase two of compressed writeback. This is the ordered portion
542 * of the code, which only gets called in the order the work was
543 * queued. We walk all the async extents created by compress_file_range
544 * and send them down to the disk.
546 static noinline
int submit_compressed_extents(struct inode
*inode
,
547 struct async_cow
*async_cow
)
549 struct async_extent
*async_extent
;
551 struct btrfs_trans_handle
*trans
;
552 struct btrfs_key ins
;
553 struct extent_map
*em
;
554 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
555 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
556 struct extent_io_tree
*io_tree
;
559 if (list_empty(&async_cow
->extents
))
563 while (!list_empty(&async_cow
->extents
)) {
564 async_extent
= list_entry(async_cow
->extents
.next
,
565 struct async_extent
, list
);
566 list_del(&async_extent
->list
);
568 io_tree
= &BTRFS_I(inode
)->io_tree
;
571 /* did the compression code fall back to uncompressed IO? */
572 if (!async_extent
->pages
) {
573 int page_started
= 0;
574 unsigned long nr_written
= 0;
576 lock_extent(io_tree
, async_extent
->start
,
577 async_extent
->start
+
578 async_extent
->ram_size
- 1, GFP_NOFS
);
580 /* allocate blocks */
581 ret
= cow_file_range(inode
, async_cow
->locked_page
,
583 async_extent
->start
+
584 async_extent
->ram_size
- 1,
585 &page_started
, &nr_written
, 0);
588 * if page_started, cow_file_range inserted an
589 * inline extent and took care of all the unlocking
590 * and IO for us. Otherwise, we need to submit
591 * all those pages down to the drive.
593 if (!page_started
&& !ret
)
594 extent_write_locked_range(io_tree
,
595 inode
, async_extent
->start
,
596 async_extent
->start
+
597 async_extent
->ram_size
- 1,
605 lock_extent(io_tree
, async_extent
->start
,
606 async_extent
->start
+ async_extent
->ram_size
- 1,
609 trans
= btrfs_join_transaction(root
, 1);
610 ret
= btrfs_reserve_extent(trans
, root
,
611 async_extent
->compressed_size
,
612 async_extent
->compressed_size
,
615 btrfs_end_transaction(trans
, root
);
619 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
620 WARN_ON(async_extent
->pages
[i
]->mapping
);
621 page_cache_release(async_extent
->pages
[i
]);
623 kfree(async_extent
->pages
);
624 async_extent
->nr_pages
= 0;
625 async_extent
->pages
= NULL
;
626 unlock_extent(io_tree
, async_extent
->start
,
627 async_extent
->start
+
628 async_extent
->ram_size
- 1, GFP_NOFS
);
633 * here we're doing allocation and writeback of the
636 btrfs_drop_extent_cache(inode
, async_extent
->start
,
637 async_extent
->start
+
638 async_extent
->ram_size
- 1, 0);
640 em
= alloc_extent_map(GFP_NOFS
);
641 em
->start
= async_extent
->start
;
642 em
->len
= async_extent
->ram_size
;
643 em
->orig_start
= em
->start
;
645 em
->block_start
= ins
.objectid
;
646 em
->block_len
= ins
.offset
;
647 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
648 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
649 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
652 write_lock(&em_tree
->lock
);
653 ret
= add_extent_mapping(em_tree
, em
);
654 write_unlock(&em_tree
->lock
);
655 if (ret
!= -EEXIST
) {
659 btrfs_drop_extent_cache(inode
, async_extent
->start
,
660 async_extent
->start
+
661 async_extent
->ram_size
- 1, 0);
664 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
666 async_extent
->ram_size
,
668 BTRFS_ORDERED_COMPRESSED
);
672 * clear dirty, set writeback and unlock the pages.
674 extent_clear_unlock_delalloc(inode
,
675 &BTRFS_I(inode
)->io_tree
,
677 async_extent
->start
+
678 async_extent
->ram_size
- 1,
679 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
680 EXTENT_CLEAR_UNLOCK
|
681 EXTENT_CLEAR_DELALLOC
|
682 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
684 ret
= btrfs_submit_compressed_write(inode
,
686 async_extent
->ram_size
,
688 ins
.offset
, async_extent
->pages
,
689 async_extent
->nr_pages
);
692 alloc_hint
= ins
.objectid
+ ins
.offset
;
701 * when extent_io.c finds a delayed allocation range in the file,
702 * the call backs end up in this code. The basic idea is to
703 * allocate extents on disk for the range, and create ordered data structs
704 * in ram to track those extents.
706 * locked_page is the page that writepage had locked already. We use
707 * it to make sure we don't do extra locks or unlocks.
709 * *page_started is set to one if we unlock locked_page and do everything
710 * required to start IO on it. It may be clean and already done with
713 static noinline
int cow_file_range(struct inode
*inode
,
714 struct page
*locked_page
,
715 u64 start
, u64 end
, int *page_started
,
716 unsigned long *nr_written
,
719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
720 struct btrfs_trans_handle
*trans
;
723 unsigned long ram_size
;
726 u64 blocksize
= root
->sectorsize
;
728 u64 isize
= i_size_read(inode
);
729 struct btrfs_key ins
;
730 struct extent_map
*em
;
731 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
734 trans
= btrfs_join_transaction(root
, 1);
736 btrfs_set_trans_block_group(trans
, inode
);
738 actual_end
= min_t(u64
, isize
, end
+ 1);
740 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
741 num_bytes
= max(blocksize
, num_bytes
);
742 disk_num_bytes
= num_bytes
;
746 /* lets try to make an inline extent */
747 ret
= cow_file_range_inline(trans
, root
, inode
,
748 start
, end
, 0, NULL
);
750 extent_clear_unlock_delalloc(inode
,
751 &BTRFS_I(inode
)->io_tree
,
753 EXTENT_CLEAR_UNLOCK_PAGE
|
754 EXTENT_CLEAR_UNLOCK
|
755 EXTENT_CLEAR_DELALLOC
|
756 EXTENT_CLEAR_ACCOUNTING
|
758 EXTENT_SET_WRITEBACK
|
759 EXTENT_END_WRITEBACK
);
761 *nr_written
= *nr_written
+
762 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
769 BUG_ON(disk_num_bytes
>
770 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
773 read_lock(&BTRFS_I(inode
)->extent_tree
.lock
);
774 em
= search_extent_mapping(&BTRFS_I(inode
)->extent_tree
,
778 * if block start isn't an actual block number then find the
779 * first block in this inode and use that as a hint. If that
780 * block is also bogus then just don't worry about it.
782 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
784 em
= search_extent_mapping(em_tree
, 0, 0);
785 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
786 alloc_hint
= em
->block_start
;
790 alloc_hint
= em
->block_start
;
794 read_unlock(&BTRFS_I(inode
)->extent_tree
.lock
);
795 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
797 while (disk_num_bytes
> 0) {
800 cur_alloc_size
= disk_num_bytes
;
801 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
802 root
->sectorsize
, 0, alloc_hint
,
806 em
= alloc_extent_map(GFP_NOFS
);
808 em
->orig_start
= em
->start
;
809 ram_size
= ins
.offset
;
810 em
->len
= ins
.offset
;
812 em
->block_start
= ins
.objectid
;
813 em
->block_len
= ins
.offset
;
814 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
815 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
818 write_lock(&em_tree
->lock
);
819 ret
= add_extent_mapping(em_tree
, em
);
820 write_unlock(&em_tree
->lock
);
821 if (ret
!= -EEXIST
) {
825 btrfs_drop_extent_cache(inode
, start
,
826 start
+ ram_size
- 1, 0);
829 cur_alloc_size
= ins
.offset
;
830 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
831 ram_size
, cur_alloc_size
, 0);
834 if (root
->root_key
.objectid
==
835 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
836 ret
= btrfs_reloc_clone_csums(inode
, start
,
841 if (disk_num_bytes
< cur_alloc_size
)
844 /* we're not doing compressed IO, don't unlock the first
845 * page (which the caller expects to stay locked), don't
846 * clear any dirty bits and don't set any writeback bits
848 * Do set the Private2 bit so we know this page was properly
849 * setup for writepage
851 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
852 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
855 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
856 start
, start
+ ram_size
- 1,
858 disk_num_bytes
-= cur_alloc_size
;
859 num_bytes
-= cur_alloc_size
;
860 alloc_hint
= ins
.objectid
+ ins
.offset
;
861 start
+= cur_alloc_size
;
865 btrfs_end_transaction(trans
, root
);
871 * work queue call back to started compression on a file and pages
873 static noinline
void async_cow_start(struct btrfs_work
*work
)
875 struct async_cow
*async_cow
;
877 async_cow
= container_of(work
, struct async_cow
, work
);
879 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
880 async_cow
->start
, async_cow
->end
, async_cow
,
883 async_cow
->inode
= NULL
;
887 * work queue call back to submit previously compressed pages
889 static noinline
void async_cow_submit(struct btrfs_work
*work
)
891 struct async_cow
*async_cow
;
892 struct btrfs_root
*root
;
893 unsigned long nr_pages
;
895 async_cow
= container_of(work
, struct async_cow
, work
);
897 root
= async_cow
->root
;
898 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
901 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
903 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
905 waitqueue_active(&root
->fs_info
->async_submit_wait
))
906 wake_up(&root
->fs_info
->async_submit_wait
);
908 if (async_cow
->inode
)
909 submit_compressed_extents(async_cow
->inode
, async_cow
);
912 static noinline
void async_cow_free(struct btrfs_work
*work
)
914 struct async_cow
*async_cow
;
915 async_cow
= container_of(work
, struct async_cow
, work
);
919 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
920 u64 start
, u64 end
, int *page_started
,
921 unsigned long *nr_written
)
923 struct async_cow
*async_cow
;
924 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
925 unsigned long nr_pages
;
927 int limit
= 10 * 1024 * 1042;
929 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
930 1, 0, NULL
, GFP_NOFS
);
931 while (start
< end
) {
932 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
933 async_cow
->inode
= inode
;
934 async_cow
->root
= root
;
935 async_cow
->locked_page
= locked_page
;
936 async_cow
->start
= start
;
938 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
941 cur_end
= min(end
, start
+ 512 * 1024 - 1);
943 async_cow
->end
= cur_end
;
944 INIT_LIST_HEAD(&async_cow
->extents
);
946 async_cow
->work
.func
= async_cow_start
;
947 async_cow
->work
.ordered_func
= async_cow_submit
;
948 async_cow
->work
.ordered_free
= async_cow_free
;
949 async_cow
->work
.flags
= 0;
951 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
953 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
955 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
958 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
959 wait_event(root
->fs_info
->async_submit_wait
,
960 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
964 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
965 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
966 wait_event(root
->fs_info
->async_submit_wait
,
967 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
971 *nr_written
+= nr_pages
;
978 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
979 u64 bytenr
, u64 num_bytes
)
982 struct btrfs_ordered_sum
*sums
;
985 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
986 bytenr
+ num_bytes
- 1, &list
);
987 if (ret
== 0 && list_empty(&list
))
990 while (!list_empty(&list
)) {
991 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
992 list_del(&sums
->list
);
999 * when nowcow writeback call back. This checks for snapshots or COW copies
1000 * of the extents that exist in the file, and COWs the file as required.
1002 * If no cow copies or snapshots exist, we write directly to the existing
1005 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1006 struct page
*locked_page
,
1007 u64 start
, u64 end
, int *page_started
, int force
,
1008 unsigned long *nr_written
)
1010 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1011 struct btrfs_trans_handle
*trans
;
1012 struct extent_buffer
*leaf
;
1013 struct btrfs_path
*path
;
1014 struct btrfs_file_extent_item
*fi
;
1015 struct btrfs_key found_key
;
1028 path
= btrfs_alloc_path();
1030 trans
= btrfs_join_transaction(root
, 1);
1033 cow_start
= (u64
)-1;
1036 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1039 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1040 leaf
= path
->nodes
[0];
1041 btrfs_item_key_to_cpu(leaf
, &found_key
,
1042 path
->slots
[0] - 1);
1043 if (found_key
.objectid
== inode
->i_ino
&&
1044 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1049 leaf
= path
->nodes
[0];
1050 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1051 ret
= btrfs_next_leaf(root
, path
);
1056 leaf
= path
->nodes
[0];
1062 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1064 if (found_key
.objectid
> inode
->i_ino
||
1065 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1066 found_key
.offset
> end
)
1069 if (found_key
.offset
> cur_offset
) {
1070 extent_end
= found_key
.offset
;
1075 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1076 struct btrfs_file_extent_item
);
1077 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1079 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1080 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1081 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1082 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1083 extent_end
= found_key
.offset
+
1084 btrfs_file_extent_num_bytes(leaf
, fi
);
1085 if (extent_end
<= start
) {
1089 if (disk_bytenr
== 0)
1091 if (btrfs_file_extent_compression(leaf
, fi
) ||
1092 btrfs_file_extent_encryption(leaf
, fi
) ||
1093 btrfs_file_extent_other_encoding(leaf
, fi
))
1095 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1097 if (btrfs_extent_readonly(root
, disk_bytenr
))
1099 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1101 extent_offset
, disk_bytenr
))
1103 disk_bytenr
+= extent_offset
;
1104 disk_bytenr
+= cur_offset
- found_key
.offset
;
1105 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1107 * force cow if csum exists in the range.
1108 * this ensure that csum for a given extent are
1109 * either valid or do not exist.
1111 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1114 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1115 extent_end
= found_key
.offset
+
1116 btrfs_file_extent_inline_len(leaf
, fi
);
1117 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1122 if (extent_end
<= start
) {
1127 if (cow_start
== (u64
)-1)
1128 cow_start
= cur_offset
;
1129 cur_offset
= extent_end
;
1130 if (cur_offset
> end
)
1136 btrfs_release_path(root
, path
);
1137 if (cow_start
!= (u64
)-1) {
1138 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1139 found_key
.offset
- 1, page_started
,
1142 cow_start
= (u64
)-1;
1145 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1146 struct extent_map
*em
;
1147 struct extent_map_tree
*em_tree
;
1148 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1149 em
= alloc_extent_map(GFP_NOFS
);
1150 em
->start
= cur_offset
;
1151 em
->orig_start
= em
->start
;
1152 em
->len
= num_bytes
;
1153 em
->block_len
= num_bytes
;
1154 em
->block_start
= disk_bytenr
;
1155 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1156 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1158 write_lock(&em_tree
->lock
);
1159 ret
= add_extent_mapping(em_tree
, em
);
1160 write_unlock(&em_tree
->lock
);
1161 if (ret
!= -EEXIST
) {
1162 free_extent_map(em
);
1165 btrfs_drop_extent_cache(inode
, em
->start
,
1166 em
->start
+ em
->len
- 1, 0);
1168 type
= BTRFS_ORDERED_PREALLOC
;
1170 type
= BTRFS_ORDERED_NOCOW
;
1173 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1174 num_bytes
, num_bytes
, type
);
1177 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1178 cur_offset
, cur_offset
+ num_bytes
- 1,
1179 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1180 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1181 EXTENT_SET_PRIVATE2
);
1182 cur_offset
= extent_end
;
1183 if (cur_offset
> end
)
1186 btrfs_release_path(root
, path
);
1188 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1189 cow_start
= cur_offset
;
1190 if (cow_start
!= (u64
)-1) {
1191 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1192 page_started
, nr_written
, 1);
1196 ret
= btrfs_end_transaction(trans
, root
);
1198 btrfs_free_path(path
);
1203 * extent_io.c call back to do delayed allocation processing
1205 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1206 u64 start
, u64 end
, int *page_started
,
1207 unsigned long *nr_written
)
1210 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1212 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1213 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1214 page_started
, 1, nr_written
);
1215 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1216 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1217 page_started
, 0, nr_written
);
1218 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1219 !(BTRFS_I(inode
)->force_compress
))
1220 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1221 page_started
, nr_written
, 1);
1223 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1224 page_started
, nr_written
);
1228 static int btrfs_split_extent_hook(struct inode
*inode
,
1229 struct extent_state
*orig
, u64 split
)
1231 if (!(orig
->state
& EXTENT_DELALLOC
))
1234 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1235 BTRFS_I(inode
)->outstanding_extents
++;
1236 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1242 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1243 * extents so we can keep track of new extents that are just merged onto old
1244 * extents, such as when we are doing sequential writes, so we can properly
1245 * account for the metadata space we'll need.
1247 static int btrfs_merge_extent_hook(struct inode
*inode
,
1248 struct extent_state
*new,
1249 struct extent_state
*other
)
1251 /* not delalloc, ignore it */
1252 if (!(other
->state
& EXTENT_DELALLOC
))
1255 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1256 BTRFS_I(inode
)->outstanding_extents
--;
1257 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1263 * extent_io.c set_bit_hook, used to track delayed allocation
1264 * bytes in this file, and to maintain the list of inodes that
1265 * have pending delalloc work to be done.
1267 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1268 unsigned long old
, unsigned long bits
)
1272 * set_bit and clear bit hooks normally require _irqsave/restore
1273 * but in this case, we are only testeing for the DELALLOC
1274 * bit, which is only set or cleared with irqs on
1276 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1279 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1280 BTRFS_I(inode
)->outstanding_extents
++;
1281 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1282 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1284 spin_lock(&root
->fs_info
->delalloc_lock
);
1285 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1286 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1287 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1288 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1289 &root
->fs_info
->delalloc_inodes
);
1291 spin_unlock(&root
->fs_info
->delalloc_lock
);
1297 * extent_io.c clear_bit_hook, see set_bit_hook for why
1299 static int btrfs_clear_bit_hook(struct inode
*inode
,
1300 struct extent_state
*state
, unsigned long bits
)
1303 * set_bit and clear bit hooks normally require _irqsave/restore
1304 * but in this case, we are only testeing for the DELALLOC
1305 * bit, which is only set or cleared with irqs on
1307 if ((state
->state
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1308 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1310 if (bits
& EXTENT_DO_ACCOUNTING
) {
1311 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1312 WARN_ON(!BTRFS_I(inode
)->outstanding_extents
);
1313 BTRFS_I(inode
)->outstanding_extents
--;
1314 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1315 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
1318 spin_lock(&root
->fs_info
->delalloc_lock
);
1319 if (state
->end
- state
->start
+ 1 >
1320 root
->fs_info
->delalloc_bytes
) {
1321 printk(KERN_INFO
"btrfs warning: delalloc account "
1323 (unsigned long long)
1324 state
->end
- state
->start
+ 1,
1325 (unsigned long long)
1326 root
->fs_info
->delalloc_bytes
);
1327 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1328 root
->fs_info
->delalloc_bytes
= 0;
1329 BTRFS_I(inode
)->delalloc_bytes
= 0;
1331 btrfs_delalloc_free_space(root
, inode
,
1334 root
->fs_info
->delalloc_bytes
-= state
->end
-
1336 BTRFS_I(inode
)->delalloc_bytes
-= state
->end
-
1339 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1340 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1341 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1343 spin_unlock(&root
->fs_info
->delalloc_lock
);
1349 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1350 * we don't create bios that span stripes or chunks
1352 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1353 size_t size
, struct bio
*bio
,
1354 unsigned long bio_flags
)
1356 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1357 struct btrfs_mapping_tree
*map_tree
;
1358 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1363 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1366 length
= bio
->bi_size
;
1367 map_tree
= &root
->fs_info
->mapping_tree
;
1368 map_length
= length
;
1369 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1370 &map_length
, NULL
, 0);
1372 if (map_length
< length
+ size
)
1378 * in order to insert checksums into the metadata in large chunks,
1379 * we wait until bio submission time. All the pages in the bio are
1380 * checksummed and sums are attached onto the ordered extent record.
1382 * At IO completion time the cums attached on the ordered extent record
1383 * are inserted into the btree
1385 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1386 struct bio
*bio
, int mirror_num
,
1387 unsigned long bio_flags
)
1389 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1392 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1398 * in order to insert checksums into the metadata in large chunks,
1399 * we wait until bio submission time. All the pages in the bio are
1400 * checksummed and sums are attached onto the ordered extent record.
1402 * At IO completion time the cums attached on the ordered extent record
1403 * are inserted into the btree
1405 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1406 int mirror_num
, unsigned long bio_flags
)
1408 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1409 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1413 * extent_io.c submission hook. This does the right thing for csum calculation
1414 * on write, or reading the csums from the tree before a read
1416 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1417 int mirror_num
, unsigned long bio_flags
)
1419 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1423 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1425 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1428 if (!(rw
& (1 << BIO_RW
))) {
1429 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1430 return btrfs_submit_compressed_read(inode
, bio
,
1431 mirror_num
, bio_flags
);
1432 } else if (!skip_sum
)
1433 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1435 } else if (!skip_sum
) {
1436 /* csum items have already been cloned */
1437 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1439 /* we're doing a write, do the async checksumming */
1440 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1441 inode
, rw
, bio
, mirror_num
,
1442 bio_flags
, __btrfs_submit_bio_start
,
1443 __btrfs_submit_bio_done
);
1447 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1451 * given a list of ordered sums record them in the inode. This happens
1452 * at IO completion time based on sums calculated at bio submission time.
1454 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1455 struct inode
*inode
, u64 file_offset
,
1456 struct list_head
*list
)
1458 struct btrfs_ordered_sum
*sum
;
1460 btrfs_set_trans_block_group(trans
, inode
);
1462 list_for_each_entry(sum
, list
, list
) {
1463 btrfs_csum_file_blocks(trans
,
1464 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1469 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1470 struct extent_state
**cached_state
)
1472 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1474 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1475 cached_state
, GFP_NOFS
);
1478 /* see btrfs_writepage_start_hook for details on why this is required */
1479 struct btrfs_writepage_fixup
{
1481 struct btrfs_work work
;
1484 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1486 struct btrfs_writepage_fixup
*fixup
;
1487 struct btrfs_ordered_extent
*ordered
;
1488 struct extent_state
*cached_state
= NULL
;
1490 struct inode
*inode
;
1494 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1498 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1499 ClearPageChecked(page
);
1503 inode
= page
->mapping
->host
;
1504 page_start
= page_offset(page
);
1505 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1507 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1508 &cached_state
, GFP_NOFS
);
1510 /* already ordered? We're done */
1511 if (PagePrivate2(page
))
1514 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1516 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1517 page_end
, &cached_state
, GFP_NOFS
);
1519 btrfs_start_ordered_extent(inode
, ordered
, 1);
1523 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1524 ClearPageChecked(page
);
1526 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1527 &cached_state
, GFP_NOFS
);
1530 page_cache_release(page
);
1534 * There are a few paths in the higher layers of the kernel that directly
1535 * set the page dirty bit without asking the filesystem if it is a
1536 * good idea. This causes problems because we want to make sure COW
1537 * properly happens and the data=ordered rules are followed.
1539 * In our case any range that doesn't have the ORDERED bit set
1540 * hasn't been properly setup for IO. We kick off an async process
1541 * to fix it up. The async helper will wait for ordered extents, set
1542 * the delalloc bit and make it safe to write the page.
1544 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1546 struct inode
*inode
= page
->mapping
->host
;
1547 struct btrfs_writepage_fixup
*fixup
;
1548 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1550 /* this page is properly in the ordered list */
1551 if (TestClearPagePrivate2(page
))
1554 if (PageChecked(page
))
1557 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1561 SetPageChecked(page
);
1562 page_cache_get(page
);
1563 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1565 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1569 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1570 struct inode
*inode
, u64 file_pos
,
1571 u64 disk_bytenr
, u64 disk_num_bytes
,
1572 u64 num_bytes
, u64 ram_bytes
,
1573 u8 compression
, u8 encryption
,
1574 u16 other_encoding
, int extent_type
)
1576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1577 struct btrfs_file_extent_item
*fi
;
1578 struct btrfs_path
*path
;
1579 struct extent_buffer
*leaf
;
1580 struct btrfs_key ins
;
1584 path
= btrfs_alloc_path();
1587 path
->leave_spinning
= 1;
1590 * we may be replacing one extent in the tree with another.
1591 * The new extent is pinned in the extent map, and we don't want
1592 * to drop it from the cache until it is completely in the btree.
1594 * So, tell btrfs_drop_extents to leave this extent in the cache.
1595 * the caller is expected to unpin it and allow it to be merged
1598 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1602 ins
.objectid
= inode
->i_ino
;
1603 ins
.offset
= file_pos
;
1604 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1605 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1607 leaf
= path
->nodes
[0];
1608 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1609 struct btrfs_file_extent_item
);
1610 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1611 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1612 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1613 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1614 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1615 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1616 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1617 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1618 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1619 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1621 btrfs_unlock_up_safe(path
, 1);
1622 btrfs_set_lock_blocking(leaf
);
1624 btrfs_mark_buffer_dirty(leaf
);
1626 inode_add_bytes(inode
, num_bytes
);
1628 ins
.objectid
= disk_bytenr
;
1629 ins
.offset
= disk_num_bytes
;
1630 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1631 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1632 root
->root_key
.objectid
,
1633 inode
->i_ino
, file_pos
, &ins
);
1635 btrfs_free_path(path
);
1641 * helper function for btrfs_finish_ordered_io, this
1642 * just reads in some of the csum leaves to prime them into ram
1643 * before we start the transaction. It limits the amount of btree
1644 * reads required while inside the transaction.
1646 /* as ordered data IO finishes, this gets called so we can finish
1647 * an ordered extent if the range of bytes in the file it covers are
1650 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1652 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1653 struct btrfs_trans_handle
*trans
;
1654 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1655 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1656 struct extent_state
*cached_state
= NULL
;
1660 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1664 BUG_ON(!ordered_extent
);
1666 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1667 BUG_ON(!list_empty(&ordered_extent
->list
));
1668 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1670 trans
= btrfs_join_transaction(root
, 1);
1671 ret
= btrfs_update_inode(trans
, root
, inode
);
1673 btrfs_end_transaction(trans
, root
);
1678 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1679 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1680 0, &cached_state
, GFP_NOFS
);
1682 trans
= btrfs_join_transaction(root
, 1);
1684 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1686 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1688 ret
= btrfs_mark_extent_written(trans
, inode
,
1689 ordered_extent
->file_offset
,
1690 ordered_extent
->file_offset
+
1691 ordered_extent
->len
);
1694 ret
= insert_reserved_file_extent(trans
, inode
,
1695 ordered_extent
->file_offset
,
1696 ordered_extent
->start
,
1697 ordered_extent
->disk_len
,
1698 ordered_extent
->len
,
1699 ordered_extent
->len
,
1701 BTRFS_FILE_EXTENT_REG
);
1702 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1703 ordered_extent
->file_offset
,
1704 ordered_extent
->len
);
1707 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1708 ordered_extent
->file_offset
+
1709 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1711 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1712 &ordered_extent
->list
);
1714 /* this also removes the ordered extent from the tree */
1715 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1716 ret
= btrfs_update_inode(trans
, root
, inode
);
1718 btrfs_end_transaction(trans
, root
);
1721 btrfs_put_ordered_extent(ordered_extent
);
1722 /* once for the tree */
1723 btrfs_put_ordered_extent(ordered_extent
);
1728 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1729 struct extent_state
*state
, int uptodate
)
1731 ClearPagePrivate2(page
);
1732 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1736 * When IO fails, either with EIO or csum verification fails, we
1737 * try other mirrors that might have a good copy of the data. This
1738 * io_failure_record is used to record state as we go through all the
1739 * mirrors. If another mirror has good data, the page is set up to date
1740 * and things continue. If a good mirror can't be found, the original
1741 * bio end_io callback is called to indicate things have failed.
1743 struct io_failure_record
{
1748 unsigned long bio_flags
;
1752 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1753 struct page
*page
, u64 start
, u64 end
,
1754 struct extent_state
*state
)
1756 struct io_failure_record
*failrec
= NULL
;
1758 struct extent_map
*em
;
1759 struct inode
*inode
= page
->mapping
->host
;
1760 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1761 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1768 ret
= get_state_private(failure_tree
, start
, &private);
1770 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1773 failrec
->start
= start
;
1774 failrec
->len
= end
- start
+ 1;
1775 failrec
->last_mirror
= 0;
1776 failrec
->bio_flags
= 0;
1778 read_lock(&em_tree
->lock
);
1779 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1780 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1781 free_extent_map(em
);
1784 read_unlock(&em_tree
->lock
);
1786 if (!em
|| IS_ERR(em
)) {
1790 logical
= start
- em
->start
;
1791 logical
= em
->block_start
+ logical
;
1792 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1793 logical
= em
->block_start
;
1794 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1796 failrec
->logical
= logical
;
1797 free_extent_map(em
);
1798 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1799 EXTENT_DIRTY
, GFP_NOFS
);
1800 set_state_private(failure_tree
, start
,
1801 (u64
)(unsigned long)failrec
);
1803 failrec
= (struct io_failure_record
*)(unsigned long)private;
1805 num_copies
= btrfs_num_copies(
1806 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1807 failrec
->logical
, failrec
->len
);
1808 failrec
->last_mirror
++;
1810 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1811 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1814 if (state
&& state
->start
!= failrec
->start
)
1816 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1818 if (!state
|| failrec
->last_mirror
> num_copies
) {
1819 set_state_private(failure_tree
, failrec
->start
, 0);
1820 clear_extent_bits(failure_tree
, failrec
->start
,
1821 failrec
->start
+ failrec
->len
- 1,
1822 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1826 bio
= bio_alloc(GFP_NOFS
, 1);
1827 bio
->bi_private
= state
;
1828 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1829 bio
->bi_sector
= failrec
->logical
>> 9;
1830 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1833 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1834 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1839 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1840 failrec
->last_mirror
,
1841 failrec
->bio_flags
);
1846 * each time an IO finishes, we do a fast check in the IO failure tree
1847 * to see if we need to process or clean up an io_failure_record
1849 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1852 u64 private_failure
;
1853 struct io_failure_record
*failure
;
1857 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1858 (u64
)-1, 1, EXTENT_DIRTY
)) {
1859 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1860 start
, &private_failure
);
1862 failure
= (struct io_failure_record
*)(unsigned long)
1864 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1866 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1868 failure
->start
+ failure
->len
- 1,
1869 EXTENT_DIRTY
| EXTENT_LOCKED
,
1878 * when reads are done, we need to check csums to verify the data is correct
1879 * if there's a match, we allow the bio to finish. If not, we go through
1880 * the io_failure_record routines to find good copies
1882 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1883 struct extent_state
*state
)
1885 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1886 struct inode
*inode
= page
->mapping
->host
;
1887 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1889 u64
private = ~(u32
)0;
1891 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1894 if (PageChecked(page
)) {
1895 ClearPageChecked(page
);
1899 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1902 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1903 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1904 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1909 if (state
&& state
->start
== start
) {
1910 private = state
->private;
1913 ret
= get_state_private(io_tree
, start
, &private);
1915 kaddr
= kmap_atomic(page
, KM_USER0
);
1919 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1920 btrfs_csum_final(csum
, (char *)&csum
);
1921 if (csum
!= private)
1924 kunmap_atomic(kaddr
, KM_USER0
);
1926 /* if the io failure tree for this inode is non-empty,
1927 * check to see if we've recovered from a failed IO
1929 btrfs_clean_io_failures(inode
, start
);
1933 if (printk_ratelimit()) {
1934 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1935 "private %llu\n", page
->mapping
->host
->i_ino
,
1936 (unsigned long long)start
, csum
,
1937 (unsigned long long)private);
1939 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1940 flush_dcache_page(page
);
1941 kunmap_atomic(kaddr
, KM_USER0
);
1947 struct delayed_iput
{
1948 struct list_head list
;
1949 struct inode
*inode
;
1952 void btrfs_add_delayed_iput(struct inode
*inode
)
1954 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1955 struct delayed_iput
*delayed
;
1957 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1960 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1961 delayed
->inode
= inode
;
1963 spin_lock(&fs_info
->delayed_iput_lock
);
1964 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
1965 spin_unlock(&fs_info
->delayed_iput_lock
);
1968 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
1971 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1972 struct delayed_iput
*delayed
;
1975 spin_lock(&fs_info
->delayed_iput_lock
);
1976 empty
= list_empty(&fs_info
->delayed_iputs
);
1977 spin_unlock(&fs_info
->delayed_iput_lock
);
1981 down_read(&root
->fs_info
->cleanup_work_sem
);
1982 spin_lock(&fs_info
->delayed_iput_lock
);
1983 list_splice_init(&fs_info
->delayed_iputs
, &list
);
1984 spin_unlock(&fs_info
->delayed_iput_lock
);
1986 while (!list_empty(&list
)) {
1987 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
1988 list_del(&delayed
->list
);
1989 iput(delayed
->inode
);
1992 up_read(&root
->fs_info
->cleanup_work_sem
);
1996 * This creates an orphan entry for the given inode in case something goes
1997 * wrong in the middle of an unlink/truncate.
1999 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2001 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2004 spin_lock(&root
->list_lock
);
2006 /* already on the orphan list, we're good */
2007 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2008 spin_unlock(&root
->list_lock
);
2012 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2014 spin_unlock(&root
->list_lock
);
2017 * insert an orphan item to track this unlinked/truncated file
2019 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2025 * We have done the truncate/delete so we can go ahead and remove the orphan
2026 * item for this particular inode.
2028 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2030 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2033 spin_lock(&root
->list_lock
);
2035 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2036 spin_unlock(&root
->list_lock
);
2040 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2042 spin_unlock(&root
->list_lock
);
2046 spin_unlock(&root
->list_lock
);
2048 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2054 * this cleans up any orphans that may be left on the list from the last use
2057 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2059 struct btrfs_path
*path
;
2060 struct extent_buffer
*leaf
;
2061 struct btrfs_item
*item
;
2062 struct btrfs_key key
, found_key
;
2063 struct btrfs_trans_handle
*trans
;
2064 struct inode
*inode
;
2065 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2067 if (!xchg(&root
->clean_orphans
, 0))
2070 path
= btrfs_alloc_path();
2074 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2075 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2076 key
.offset
= (u64
)-1;
2079 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2081 printk(KERN_ERR
"Error searching slot for orphan: %d"
2087 * if ret == 0 means we found what we were searching for, which
2088 * is weird, but possible, so only screw with path if we didnt
2089 * find the key and see if we have stuff that matches
2092 if (path
->slots
[0] == 0)
2097 /* pull out the item */
2098 leaf
= path
->nodes
[0];
2099 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
2100 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2102 /* make sure the item matches what we want */
2103 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2105 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2108 /* release the path since we're done with it */
2109 btrfs_release_path(root
, path
);
2112 * this is where we are basically btrfs_lookup, without the
2113 * crossing root thing. we store the inode number in the
2114 * offset of the orphan item.
2116 found_key
.objectid
= found_key
.offset
;
2117 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2118 found_key
.offset
= 0;
2119 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2124 * add this inode to the orphan list so btrfs_orphan_del does
2125 * the proper thing when we hit it
2127 spin_lock(&root
->list_lock
);
2128 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2129 spin_unlock(&root
->list_lock
);
2132 * if this is a bad inode, means we actually succeeded in
2133 * removing the inode, but not the orphan record, which means
2134 * we need to manually delete the orphan since iput will just
2135 * do a destroy_inode
2137 if (is_bad_inode(inode
)) {
2138 trans
= btrfs_start_transaction(root
, 1);
2139 btrfs_orphan_del(trans
, inode
);
2140 btrfs_end_transaction(trans
, root
);
2145 /* if we have links, this was a truncate, lets do that */
2146 if (inode
->i_nlink
) {
2148 btrfs_truncate(inode
);
2153 /* this will do delete_inode and everything for us */
2158 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2160 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2162 btrfs_free_path(path
);
2166 * very simple check to peek ahead in the leaf looking for xattrs. If we
2167 * don't find any xattrs, we know there can't be any acls.
2169 * slot is the slot the inode is in, objectid is the objectid of the inode
2171 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2172 int slot
, u64 objectid
)
2174 u32 nritems
= btrfs_header_nritems(leaf
);
2175 struct btrfs_key found_key
;
2179 while (slot
< nritems
) {
2180 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2182 /* we found a different objectid, there must not be acls */
2183 if (found_key
.objectid
!= objectid
)
2186 /* we found an xattr, assume we've got an acl */
2187 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2191 * we found a key greater than an xattr key, there can't
2192 * be any acls later on
2194 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2201 * it goes inode, inode backrefs, xattrs, extents,
2202 * so if there are a ton of hard links to an inode there can
2203 * be a lot of backrefs. Don't waste time searching too hard,
2204 * this is just an optimization
2209 /* we hit the end of the leaf before we found an xattr or
2210 * something larger than an xattr. We have to assume the inode
2217 * read an inode from the btree into the in-memory inode
2219 static void btrfs_read_locked_inode(struct inode
*inode
)
2221 struct btrfs_path
*path
;
2222 struct extent_buffer
*leaf
;
2223 struct btrfs_inode_item
*inode_item
;
2224 struct btrfs_timespec
*tspec
;
2225 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2226 struct btrfs_key location
;
2228 u64 alloc_group_block
;
2232 path
= btrfs_alloc_path();
2234 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2236 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2240 leaf
= path
->nodes
[0];
2241 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2242 struct btrfs_inode_item
);
2244 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2245 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2246 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2247 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2248 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2250 tspec
= btrfs_inode_atime(inode_item
);
2251 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2252 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2254 tspec
= btrfs_inode_mtime(inode_item
);
2255 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2256 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2258 tspec
= btrfs_inode_ctime(inode_item
);
2259 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2260 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2262 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2263 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2264 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2265 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2267 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2269 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2270 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2272 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2275 * try to precache a NULL acl entry for files that don't have
2276 * any xattrs or acls
2278 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2280 cache_no_acl(inode
);
2282 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2283 alloc_group_block
, 0);
2284 btrfs_free_path(path
);
2287 switch (inode
->i_mode
& S_IFMT
) {
2289 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2290 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2291 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2292 inode
->i_fop
= &btrfs_file_operations
;
2293 inode
->i_op
= &btrfs_file_inode_operations
;
2296 inode
->i_fop
= &btrfs_dir_file_operations
;
2297 if (root
== root
->fs_info
->tree_root
)
2298 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2300 inode
->i_op
= &btrfs_dir_inode_operations
;
2303 inode
->i_op
= &btrfs_symlink_inode_operations
;
2304 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2305 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2308 inode
->i_op
= &btrfs_special_inode_operations
;
2309 init_special_inode(inode
, inode
->i_mode
, rdev
);
2313 btrfs_update_iflags(inode
);
2317 btrfs_free_path(path
);
2318 make_bad_inode(inode
);
2322 * given a leaf and an inode, copy the inode fields into the leaf
2324 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2325 struct extent_buffer
*leaf
,
2326 struct btrfs_inode_item
*item
,
2327 struct inode
*inode
)
2329 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2330 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2331 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2332 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2333 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2335 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2336 inode
->i_atime
.tv_sec
);
2337 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2338 inode
->i_atime
.tv_nsec
);
2340 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2341 inode
->i_mtime
.tv_sec
);
2342 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2343 inode
->i_mtime
.tv_nsec
);
2345 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2346 inode
->i_ctime
.tv_sec
);
2347 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2348 inode
->i_ctime
.tv_nsec
);
2350 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2351 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2352 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2353 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2354 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2355 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2356 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2360 * copy everything in the in-memory inode into the btree.
2362 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2363 struct btrfs_root
*root
, struct inode
*inode
)
2365 struct btrfs_inode_item
*inode_item
;
2366 struct btrfs_path
*path
;
2367 struct extent_buffer
*leaf
;
2370 path
= btrfs_alloc_path();
2372 path
->leave_spinning
= 1;
2373 ret
= btrfs_lookup_inode(trans
, root
, path
,
2374 &BTRFS_I(inode
)->location
, 1);
2381 btrfs_unlock_up_safe(path
, 1);
2382 leaf
= path
->nodes
[0];
2383 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2384 struct btrfs_inode_item
);
2386 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2387 btrfs_mark_buffer_dirty(leaf
);
2388 btrfs_set_inode_last_trans(trans
, inode
);
2391 btrfs_free_path(path
);
2397 * unlink helper that gets used here in inode.c and in the tree logging
2398 * recovery code. It remove a link in a directory with a given name, and
2399 * also drops the back refs in the inode to the directory
2401 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2402 struct btrfs_root
*root
,
2403 struct inode
*dir
, struct inode
*inode
,
2404 const char *name
, int name_len
)
2406 struct btrfs_path
*path
;
2408 struct extent_buffer
*leaf
;
2409 struct btrfs_dir_item
*di
;
2410 struct btrfs_key key
;
2413 path
= btrfs_alloc_path();
2419 path
->leave_spinning
= 1;
2420 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2421 name
, name_len
, -1);
2430 leaf
= path
->nodes
[0];
2431 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2432 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2435 btrfs_release_path(root
, path
);
2437 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2439 dir
->i_ino
, &index
);
2441 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2442 "inode %lu parent %lu\n", name_len
, name
,
2443 inode
->i_ino
, dir
->i_ino
);
2447 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2448 index
, name
, name_len
, -1);
2457 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2458 btrfs_release_path(root
, path
);
2460 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2462 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2464 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2468 btrfs_free_path(path
);
2472 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2473 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2474 btrfs_update_inode(trans
, root
, dir
);
2475 btrfs_drop_nlink(inode
);
2476 ret
= btrfs_update_inode(trans
, root
, inode
);
2481 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2483 struct btrfs_root
*root
;
2484 struct btrfs_trans_handle
*trans
;
2485 struct inode
*inode
= dentry
->d_inode
;
2487 unsigned long nr
= 0;
2489 root
= BTRFS_I(dir
)->root
;
2492 * 5 items for unlink inode
2495 ret
= btrfs_reserve_metadata_space(root
, 6);
2499 trans
= btrfs_start_transaction(root
, 1);
2500 if (IS_ERR(trans
)) {
2501 btrfs_unreserve_metadata_space(root
, 6);
2502 return PTR_ERR(trans
);
2505 btrfs_set_trans_block_group(trans
, dir
);
2507 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2509 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2510 dentry
->d_name
.name
, dentry
->d_name
.len
);
2512 if (inode
->i_nlink
== 0)
2513 ret
= btrfs_orphan_add(trans
, inode
);
2515 nr
= trans
->blocks_used
;
2517 btrfs_end_transaction_throttle(trans
, root
);
2518 btrfs_unreserve_metadata_space(root
, 6);
2519 btrfs_btree_balance_dirty(root
, nr
);
2523 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2524 struct btrfs_root
*root
,
2525 struct inode
*dir
, u64 objectid
,
2526 const char *name
, int name_len
)
2528 struct btrfs_path
*path
;
2529 struct extent_buffer
*leaf
;
2530 struct btrfs_dir_item
*di
;
2531 struct btrfs_key key
;
2535 path
= btrfs_alloc_path();
2539 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2540 name
, name_len
, -1);
2541 BUG_ON(!di
|| IS_ERR(di
));
2543 leaf
= path
->nodes
[0];
2544 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2545 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2546 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2548 btrfs_release_path(root
, path
);
2550 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2551 objectid
, root
->root_key
.objectid
,
2552 dir
->i_ino
, &index
, name
, name_len
);
2554 BUG_ON(ret
!= -ENOENT
);
2555 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2557 BUG_ON(!di
|| IS_ERR(di
));
2559 leaf
= path
->nodes
[0];
2560 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2561 btrfs_release_path(root
, path
);
2565 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2566 index
, name
, name_len
, -1);
2567 BUG_ON(!di
|| IS_ERR(di
));
2569 leaf
= path
->nodes
[0];
2570 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2571 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2572 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2574 btrfs_release_path(root
, path
);
2576 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2577 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2578 ret
= btrfs_update_inode(trans
, root
, dir
);
2580 dir
->i_sb
->s_dirt
= 1;
2582 btrfs_free_path(path
);
2586 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2588 struct inode
*inode
= dentry
->d_inode
;
2591 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2592 struct btrfs_trans_handle
*trans
;
2593 unsigned long nr
= 0;
2595 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2596 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
2599 ret
= btrfs_reserve_metadata_space(root
, 5);
2603 trans
= btrfs_start_transaction(root
, 1);
2604 if (IS_ERR(trans
)) {
2605 btrfs_unreserve_metadata_space(root
, 5);
2606 return PTR_ERR(trans
);
2609 btrfs_set_trans_block_group(trans
, dir
);
2611 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2612 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2613 BTRFS_I(inode
)->location
.objectid
,
2614 dentry
->d_name
.name
,
2615 dentry
->d_name
.len
);
2619 err
= btrfs_orphan_add(trans
, inode
);
2623 /* now the directory is empty */
2624 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2625 dentry
->d_name
.name
, dentry
->d_name
.len
);
2627 btrfs_i_size_write(inode
, 0);
2629 nr
= trans
->blocks_used
;
2630 ret
= btrfs_end_transaction_throttle(trans
, root
);
2631 btrfs_unreserve_metadata_space(root
, 5);
2632 btrfs_btree_balance_dirty(root
, nr
);
2641 * when truncating bytes in a file, it is possible to avoid reading
2642 * the leaves that contain only checksum items. This can be the
2643 * majority of the IO required to delete a large file, but it must
2644 * be done carefully.
2646 * The keys in the level just above the leaves are checked to make sure
2647 * the lowest key in a given leaf is a csum key, and starts at an offset
2648 * after the new size.
2650 * Then the key for the next leaf is checked to make sure it also has
2651 * a checksum item for the same file. If it does, we know our target leaf
2652 * contains only checksum items, and it can be safely freed without reading
2655 * This is just an optimization targeted at large files. It may do
2656 * nothing. It will return 0 unless things went badly.
2658 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2659 struct btrfs_root
*root
,
2660 struct btrfs_path
*path
,
2661 struct inode
*inode
, u64 new_size
)
2663 struct btrfs_key key
;
2666 struct btrfs_key found_key
;
2667 struct btrfs_key other_key
;
2668 struct btrfs_leaf_ref
*ref
;
2672 path
->lowest_level
= 1;
2673 key
.objectid
= inode
->i_ino
;
2674 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2675 key
.offset
= new_size
;
2677 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2681 if (path
->nodes
[1] == NULL
) {
2686 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2687 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2692 if (path
->slots
[1] >= nritems
)
2695 /* did we find a key greater than anything we want to delete? */
2696 if (found_key
.objectid
> inode
->i_ino
||
2697 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2700 /* we check the next key in the node to make sure the leave contains
2701 * only checksum items. This comparison doesn't work if our
2702 * leaf is the last one in the node
2704 if (path
->slots
[1] + 1 >= nritems
) {
2706 /* search forward from the last key in the node, this
2707 * will bring us into the next node in the tree
2709 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2711 /* unlikely, but we inc below, so check to be safe */
2712 if (found_key
.offset
== (u64
)-1)
2715 /* search_forward needs a path with locks held, do the
2716 * search again for the original key. It is possible
2717 * this will race with a balance and return a path that
2718 * we could modify, but this drop is just an optimization
2719 * and is allowed to miss some leaves.
2721 btrfs_release_path(root
, path
);
2724 /* setup a max key for search_forward */
2725 other_key
.offset
= (u64
)-1;
2726 other_key
.type
= key
.type
;
2727 other_key
.objectid
= key
.objectid
;
2729 path
->keep_locks
= 1;
2730 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2732 path
->keep_locks
= 0;
2733 if (ret
|| found_key
.objectid
!= key
.objectid
||
2734 found_key
.type
!= key
.type
) {
2739 key
.offset
= found_key
.offset
;
2740 btrfs_release_path(root
, path
);
2745 /* we know there's one more slot after us in the tree,
2746 * read that key so we can verify it is also a checksum item
2748 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2750 if (found_key
.objectid
< inode
->i_ino
)
2753 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2757 * if the key for the next leaf isn't a csum key from this objectid,
2758 * we can't be sure there aren't good items inside this leaf.
2761 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2764 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2765 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2767 * it is safe to delete this leaf, it contains only
2768 * csum items from this inode at an offset >= new_size
2770 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2773 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2774 ref
= btrfs_alloc_leaf_ref(root
, 0);
2776 ref
->root_gen
= root
->root_key
.offset
;
2777 ref
->bytenr
= leaf_start
;
2779 ref
->generation
= leaf_gen
;
2782 btrfs_sort_leaf_ref(ref
);
2784 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2786 btrfs_free_leaf_ref(root
, ref
);
2792 btrfs_release_path(root
, path
);
2794 if (other_key
.objectid
== inode
->i_ino
&&
2795 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2796 key
.offset
= other_key
.offset
;
2802 /* fixup any changes we've made to the path */
2803 path
->lowest_level
= 0;
2804 path
->keep_locks
= 0;
2805 btrfs_release_path(root
, path
);
2812 * this can truncate away extent items, csum items and directory items.
2813 * It starts at a high offset and removes keys until it can't find
2814 * any higher than new_size
2816 * csum items that cross the new i_size are truncated to the new size
2819 * min_type is the minimum key type to truncate down to. If set to 0, this
2820 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2822 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2823 struct btrfs_root
*root
,
2824 struct inode
*inode
,
2825 u64 new_size
, u32 min_type
)
2827 struct btrfs_path
*path
;
2828 struct extent_buffer
*leaf
;
2829 struct btrfs_file_extent_item
*fi
;
2830 struct btrfs_key key
;
2831 struct btrfs_key found_key
;
2832 u64 extent_start
= 0;
2833 u64 extent_num_bytes
= 0;
2834 u64 extent_offset
= 0;
2836 u64 mask
= root
->sectorsize
- 1;
2837 u32 found_type
= (u8
)-1;
2840 int pending_del_nr
= 0;
2841 int pending_del_slot
= 0;
2842 int extent_type
= -1;
2847 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
2850 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2852 path
= btrfs_alloc_path();
2856 key
.objectid
= inode
->i_ino
;
2857 key
.offset
= (u64
)-1;
2861 path
->leave_spinning
= 1;
2862 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2869 /* there are no items in the tree for us to truncate, we're
2872 if (path
->slots
[0] == 0)
2879 leaf
= path
->nodes
[0];
2880 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2881 found_type
= btrfs_key_type(&found_key
);
2884 if (found_key
.objectid
!= inode
->i_ino
)
2887 if (found_type
< min_type
)
2890 item_end
= found_key
.offset
;
2891 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2892 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2893 struct btrfs_file_extent_item
);
2894 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2895 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2896 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2897 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2899 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2901 btrfs_file_extent_num_bytes(leaf
, fi
);
2902 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2903 item_end
+= btrfs_file_extent_inline_len(leaf
,
2908 if (found_type
> min_type
) {
2911 if (item_end
< new_size
)
2913 if (found_key
.offset
>= new_size
)
2919 /* FIXME, shrink the extent if the ref count is only 1 */
2920 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2923 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2925 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2926 if (!del_item
&& !encoding
) {
2927 u64 orig_num_bytes
=
2928 btrfs_file_extent_num_bytes(leaf
, fi
);
2929 extent_num_bytes
= new_size
-
2930 found_key
.offset
+ root
->sectorsize
- 1;
2931 extent_num_bytes
= extent_num_bytes
&
2932 ~((u64
)root
->sectorsize
- 1);
2933 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2935 num_dec
= (orig_num_bytes
-
2937 if (root
->ref_cows
&& extent_start
!= 0)
2938 inode_sub_bytes(inode
, num_dec
);
2939 btrfs_mark_buffer_dirty(leaf
);
2942 btrfs_file_extent_disk_num_bytes(leaf
,
2944 extent_offset
= found_key
.offset
-
2945 btrfs_file_extent_offset(leaf
, fi
);
2947 /* FIXME blocksize != 4096 */
2948 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2949 if (extent_start
!= 0) {
2952 inode_sub_bytes(inode
, num_dec
);
2955 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2957 * we can't truncate inline items that have had
2961 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2962 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2963 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2964 u32 size
= new_size
- found_key
.offset
;
2966 if (root
->ref_cows
) {
2967 inode_sub_bytes(inode
, item_end
+ 1 -
2971 btrfs_file_extent_calc_inline_size(size
);
2972 ret
= btrfs_truncate_item(trans
, root
, path
,
2975 } else if (root
->ref_cows
) {
2976 inode_sub_bytes(inode
, item_end
+ 1 -
2982 if (!pending_del_nr
) {
2983 /* no pending yet, add ourselves */
2984 pending_del_slot
= path
->slots
[0];
2986 } else if (pending_del_nr
&&
2987 path
->slots
[0] + 1 == pending_del_slot
) {
2988 /* hop on the pending chunk */
2990 pending_del_slot
= path
->slots
[0];
2997 if (found_extent
&& root
->ref_cows
) {
2998 btrfs_set_path_blocking(path
);
2999 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3000 extent_num_bytes
, 0,
3001 btrfs_header_owner(leaf
),
3002 inode
->i_ino
, extent_offset
);
3006 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3009 if (path
->slots
[0] == 0 ||
3010 path
->slots
[0] != pending_del_slot
) {
3011 if (root
->ref_cows
) {
3015 if (pending_del_nr
) {
3016 ret
= btrfs_del_items(trans
, root
, path
,
3022 btrfs_release_path(root
, path
);
3029 if (pending_del_nr
) {
3030 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3033 btrfs_free_path(path
);
3038 * taken from block_truncate_page, but does cow as it zeros out
3039 * any bytes left in the last page in the file.
3041 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3043 struct inode
*inode
= mapping
->host
;
3044 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3045 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3046 struct btrfs_ordered_extent
*ordered
;
3047 struct extent_state
*cached_state
= NULL
;
3049 u32 blocksize
= root
->sectorsize
;
3050 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3051 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3057 if ((offset
& (blocksize
- 1)) == 0)
3059 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
3063 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
3069 page
= grab_cache_page(mapping
, index
);
3071 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3072 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3076 page_start
= page_offset(page
);
3077 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3079 if (!PageUptodate(page
)) {
3080 ret
= btrfs_readpage(NULL
, page
);
3082 if (page
->mapping
!= mapping
) {
3084 page_cache_release(page
);
3087 if (!PageUptodate(page
)) {
3092 wait_on_page_writeback(page
);
3094 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3096 set_page_extent_mapped(page
);
3098 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3100 unlock_extent_cached(io_tree
, page_start
, page_end
,
3101 &cached_state
, GFP_NOFS
);
3103 page_cache_release(page
);
3104 btrfs_start_ordered_extent(inode
, ordered
, 1);
3105 btrfs_put_ordered_extent(ordered
);
3109 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3110 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3111 0, 0, &cached_state
, GFP_NOFS
);
3113 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3116 unlock_extent_cached(io_tree
, page_start
, page_end
,
3117 &cached_state
, GFP_NOFS
);
3122 if (offset
!= PAGE_CACHE_SIZE
) {
3124 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3125 flush_dcache_page(page
);
3128 ClearPageChecked(page
);
3129 set_page_dirty(page
);
3130 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3135 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3136 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3138 page_cache_release(page
);
3143 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3145 struct btrfs_trans_handle
*trans
;
3146 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3147 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3148 struct extent_map
*em
;
3149 struct extent_state
*cached_state
= NULL
;
3150 u64 mask
= root
->sectorsize
- 1;
3151 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3152 u64 block_end
= (size
+ mask
) & ~mask
;
3158 if (size
<= hole_start
)
3162 struct btrfs_ordered_extent
*ordered
;
3163 btrfs_wait_ordered_range(inode
, hole_start
,
3164 block_end
- hole_start
);
3165 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3166 &cached_state
, GFP_NOFS
);
3167 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3170 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3171 &cached_state
, GFP_NOFS
);
3172 btrfs_put_ordered_extent(ordered
);
3175 cur_offset
= hole_start
;
3177 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3178 block_end
- cur_offset
, 0);
3179 BUG_ON(IS_ERR(em
) || !em
);
3180 last_byte
= min(extent_map_end(em
), block_end
);
3181 last_byte
= (last_byte
+ mask
) & ~mask
;
3182 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3184 hole_size
= last_byte
- cur_offset
;
3186 err
= btrfs_reserve_metadata_space(root
, 2);
3190 trans
= btrfs_start_transaction(root
, 1);
3191 btrfs_set_trans_block_group(trans
, inode
);
3193 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3194 cur_offset
+ hole_size
,
3198 err
= btrfs_insert_file_extent(trans
, root
,
3199 inode
->i_ino
, cur_offset
, 0,
3200 0, hole_size
, 0, hole_size
,
3204 btrfs_drop_extent_cache(inode
, hole_start
,
3207 btrfs_end_transaction(trans
, root
);
3208 btrfs_unreserve_metadata_space(root
, 2);
3210 free_extent_map(em
);
3211 cur_offset
= last_byte
;
3212 if (cur_offset
>= block_end
)
3216 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3221 static int btrfs_setattr_size(struct inode
*inode
, struct iattr
*attr
)
3223 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3224 struct btrfs_trans_handle
*trans
;
3228 if (attr
->ia_size
== inode
->i_size
)
3231 if (attr
->ia_size
> inode
->i_size
) {
3232 unsigned long limit
;
3233 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
3234 if (attr
->ia_size
> inode
->i_sb
->s_maxbytes
)
3236 if (limit
!= RLIM_INFINITY
&& attr
->ia_size
> limit
) {
3237 send_sig(SIGXFSZ
, current
, 0);
3242 ret
= btrfs_reserve_metadata_space(root
, 1);
3246 trans
= btrfs_start_transaction(root
, 1);
3247 btrfs_set_trans_block_group(trans
, inode
);
3249 ret
= btrfs_orphan_add(trans
, inode
);
3252 nr
= trans
->blocks_used
;
3253 btrfs_end_transaction(trans
, root
);
3254 btrfs_unreserve_metadata_space(root
, 1);
3255 btrfs_btree_balance_dirty(root
, nr
);
3257 if (attr
->ia_size
> inode
->i_size
) {
3258 ret
= btrfs_cont_expand(inode
, attr
->ia_size
);
3260 btrfs_truncate(inode
);
3264 i_size_write(inode
, attr
->ia_size
);
3265 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
3267 trans
= btrfs_start_transaction(root
, 1);
3268 btrfs_set_trans_block_group(trans
, inode
);
3270 ret
= btrfs_update_inode(trans
, root
, inode
);
3272 if (inode
->i_nlink
> 0) {
3273 ret
= btrfs_orphan_del(trans
, inode
);
3276 nr
= trans
->blocks_used
;
3277 btrfs_end_transaction(trans
, root
);
3278 btrfs_btree_balance_dirty(root
, nr
);
3283 * We're truncating a file that used to have good data down to
3284 * zero. Make sure it gets into the ordered flush list so that
3285 * any new writes get down to disk quickly.
3287 if (attr
->ia_size
== 0)
3288 BTRFS_I(inode
)->ordered_data_close
= 1;
3290 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3291 ret
= vmtruncate(inode
, attr
->ia_size
);
3297 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3299 struct inode
*inode
= dentry
->d_inode
;
3302 err
= inode_change_ok(inode
, attr
);
3306 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3307 err
= btrfs_setattr_size(inode
, attr
);
3311 attr
->ia_valid
&= ~ATTR_SIZE
;
3314 err
= inode_setattr(inode
, attr
);
3316 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
3317 err
= btrfs_acl_chmod(inode
);
3321 void btrfs_delete_inode(struct inode
*inode
)
3323 struct btrfs_trans_handle
*trans
;
3324 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3328 truncate_inode_pages(&inode
->i_data
, 0);
3329 if (is_bad_inode(inode
)) {
3330 btrfs_orphan_del(NULL
, inode
);
3333 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3335 if (root
->fs_info
->log_root_recovering
) {
3336 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3340 if (inode
->i_nlink
> 0) {
3341 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3345 btrfs_i_size_write(inode
, 0);
3348 trans
= btrfs_start_transaction(root
, 1);
3349 btrfs_set_trans_block_group(trans
, inode
);
3350 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3355 nr
= trans
->blocks_used
;
3356 btrfs_end_transaction(trans
, root
);
3358 btrfs_btree_balance_dirty(root
, nr
);
3362 ret
= btrfs_orphan_del(trans
, inode
);
3366 nr
= trans
->blocks_used
;
3367 btrfs_end_transaction(trans
, root
);
3368 btrfs_btree_balance_dirty(root
, nr
);
3375 * this returns the key found in the dir entry in the location pointer.
3376 * If no dir entries were found, location->objectid is 0.
3378 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3379 struct btrfs_key
*location
)
3381 const char *name
= dentry
->d_name
.name
;
3382 int namelen
= dentry
->d_name
.len
;
3383 struct btrfs_dir_item
*di
;
3384 struct btrfs_path
*path
;
3385 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3388 path
= btrfs_alloc_path();
3391 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3396 if (!di
|| IS_ERR(di
))
3399 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3401 btrfs_free_path(path
);
3404 location
->objectid
= 0;
3409 * when we hit a tree root in a directory, the btrfs part of the inode
3410 * needs to be changed to reflect the root directory of the tree root. This
3411 * is kind of like crossing a mount point.
3413 static int fixup_tree_root_location(struct btrfs_root
*root
,
3415 struct dentry
*dentry
,
3416 struct btrfs_key
*location
,
3417 struct btrfs_root
**sub_root
)
3419 struct btrfs_path
*path
;
3420 struct btrfs_root
*new_root
;
3421 struct btrfs_root_ref
*ref
;
3422 struct extent_buffer
*leaf
;
3426 path
= btrfs_alloc_path();
3433 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3434 BTRFS_I(dir
)->root
->root_key
.objectid
,
3435 location
->objectid
);
3442 leaf
= path
->nodes
[0];
3443 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3444 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3445 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3448 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3449 (unsigned long)(ref
+ 1),
3450 dentry
->d_name
.len
);
3454 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3456 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3457 if (IS_ERR(new_root
)) {
3458 err
= PTR_ERR(new_root
);
3462 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3467 *sub_root
= new_root
;
3468 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3469 location
->type
= BTRFS_INODE_ITEM_KEY
;
3470 location
->offset
= 0;
3473 btrfs_free_path(path
);
3477 static void inode_tree_add(struct inode
*inode
)
3479 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3480 struct btrfs_inode
*entry
;
3482 struct rb_node
*parent
;
3484 p
= &root
->inode_tree
.rb_node
;
3487 if (hlist_unhashed(&inode
->i_hash
))
3490 spin_lock(&root
->inode_lock
);
3493 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3495 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3496 p
= &parent
->rb_left
;
3497 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3498 p
= &parent
->rb_right
;
3500 WARN_ON(!(entry
->vfs_inode
.i_state
&
3501 (I_WILL_FREE
| I_FREEING
| I_CLEAR
)));
3502 rb_erase(parent
, &root
->inode_tree
);
3503 RB_CLEAR_NODE(parent
);
3504 spin_unlock(&root
->inode_lock
);
3508 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3509 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3510 spin_unlock(&root
->inode_lock
);
3513 static void inode_tree_del(struct inode
*inode
)
3515 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3518 spin_lock(&root
->inode_lock
);
3519 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3520 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3521 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3522 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3524 spin_unlock(&root
->inode_lock
);
3526 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
3527 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3528 spin_lock(&root
->inode_lock
);
3529 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3530 spin_unlock(&root
->inode_lock
);
3532 btrfs_add_dead_root(root
);
3536 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3538 struct rb_node
*node
;
3539 struct rb_node
*prev
;
3540 struct btrfs_inode
*entry
;
3541 struct inode
*inode
;
3544 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3546 spin_lock(&root
->inode_lock
);
3548 node
= root
->inode_tree
.rb_node
;
3552 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3554 if (objectid
< entry
->vfs_inode
.i_ino
)
3555 node
= node
->rb_left
;
3556 else if (objectid
> entry
->vfs_inode
.i_ino
)
3557 node
= node
->rb_right
;
3563 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3564 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3568 prev
= rb_next(prev
);
3572 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3573 objectid
= entry
->vfs_inode
.i_ino
+ 1;
3574 inode
= igrab(&entry
->vfs_inode
);
3576 spin_unlock(&root
->inode_lock
);
3577 if (atomic_read(&inode
->i_count
) > 1)
3578 d_prune_aliases(inode
);
3580 * btrfs_drop_inode will remove it from
3581 * the inode cache when its usage count
3586 spin_lock(&root
->inode_lock
);
3590 if (cond_resched_lock(&root
->inode_lock
))
3593 node
= rb_next(node
);
3595 spin_unlock(&root
->inode_lock
);
3599 static noinline
void init_btrfs_i(struct inode
*inode
)
3601 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3606 bi
->last_sub_trans
= 0;
3607 bi
->logged_trans
= 0;
3608 bi
->delalloc_bytes
= 0;
3609 bi
->reserved_bytes
= 0;
3610 bi
->disk_i_size
= 0;
3612 bi
->index_cnt
= (u64
)-1;
3613 bi
->last_unlink_trans
= 0;
3614 bi
->ordered_data_close
= 0;
3615 bi
->force_compress
= 0;
3616 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3617 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3618 inode
->i_mapping
, GFP_NOFS
);
3619 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3620 inode
->i_mapping
, GFP_NOFS
);
3621 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3622 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3623 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3624 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3625 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3628 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3630 struct btrfs_iget_args
*args
= p
;
3631 inode
->i_ino
= args
->ino
;
3632 init_btrfs_i(inode
);
3633 BTRFS_I(inode
)->root
= args
->root
;
3634 btrfs_set_inode_space_info(args
->root
, inode
);
3638 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3640 struct btrfs_iget_args
*args
= opaque
;
3641 return args
->ino
== inode
->i_ino
&&
3642 args
->root
== BTRFS_I(inode
)->root
;
3645 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3647 struct btrfs_root
*root
)
3649 struct inode
*inode
;
3650 struct btrfs_iget_args args
;
3651 args
.ino
= objectid
;
3654 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3655 btrfs_init_locked_inode
,
3660 /* Get an inode object given its location and corresponding root.
3661 * Returns in *is_new if the inode was read from disk
3663 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3664 struct btrfs_root
*root
, int *new)
3666 struct inode
*inode
;
3668 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3670 return ERR_PTR(-ENOMEM
);
3672 if (inode
->i_state
& I_NEW
) {
3673 BTRFS_I(inode
)->root
= root
;
3674 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3675 btrfs_read_locked_inode(inode
);
3677 inode_tree_add(inode
);
3678 unlock_new_inode(inode
);
3686 static struct inode
*new_simple_dir(struct super_block
*s
,
3687 struct btrfs_key
*key
,
3688 struct btrfs_root
*root
)
3690 struct inode
*inode
= new_inode(s
);
3693 return ERR_PTR(-ENOMEM
);
3695 init_btrfs_i(inode
);
3697 BTRFS_I(inode
)->root
= root
;
3698 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3699 BTRFS_I(inode
)->dummy_inode
= 1;
3701 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3702 inode
->i_op
= &simple_dir_inode_operations
;
3703 inode
->i_fop
= &simple_dir_operations
;
3704 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3705 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3710 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3712 struct inode
*inode
;
3713 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3714 struct btrfs_root
*sub_root
= root
;
3715 struct btrfs_key location
;
3719 dentry
->d_op
= &btrfs_dentry_operations
;
3721 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3722 return ERR_PTR(-ENAMETOOLONG
);
3724 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3727 return ERR_PTR(ret
);
3729 if (location
.objectid
== 0)
3732 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3733 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
3737 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3739 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3740 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3741 &location
, &sub_root
);
3744 inode
= ERR_PTR(ret
);
3746 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3748 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
3750 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3752 if (root
!= sub_root
) {
3753 down_read(&root
->fs_info
->cleanup_work_sem
);
3754 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
3755 btrfs_orphan_cleanup(sub_root
);
3756 up_read(&root
->fs_info
->cleanup_work_sem
);
3762 static int btrfs_dentry_delete(struct dentry
*dentry
)
3764 struct btrfs_root
*root
;
3766 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3767 dentry
= dentry
->d_parent
;
3769 if (dentry
->d_inode
) {
3770 root
= BTRFS_I(dentry
->d_inode
)->root
;
3771 if (btrfs_root_refs(&root
->root_item
) == 0)
3777 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3778 struct nameidata
*nd
)
3780 struct inode
*inode
;
3782 inode
= btrfs_lookup_dentry(dir
, dentry
);
3784 return ERR_CAST(inode
);
3786 return d_splice_alias(inode
, dentry
);
3789 static unsigned char btrfs_filetype_table
[] = {
3790 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3793 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3796 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3797 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3798 struct btrfs_item
*item
;
3799 struct btrfs_dir_item
*di
;
3800 struct btrfs_key key
;
3801 struct btrfs_key found_key
;
3802 struct btrfs_path
*path
;
3805 struct extent_buffer
*leaf
;
3808 unsigned char d_type
;
3813 int key_type
= BTRFS_DIR_INDEX_KEY
;
3818 /* FIXME, use a real flag for deciding about the key type */
3819 if (root
->fs_info
->tree_root
== root
)
3820 key_type
= BTRFS_DIR_ITEM_KEY
;
3822 /* special case for "." */
3823 if (filp
->f_pos
== 0) {
3824 over
= filldir(dirent
, ".", 1,
3831 /* special case for .., just use the back ref */
3832 if (filp
->f_pos
== 1) {
3833 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3834 over
= filldir(dirent
, "..", 2,
3840 path
= btrfs_alloc_path();
3843 btrfs_set_key_type(&key
, key_type
);
3844 key
.offset
= filp
->f_pos
;
3845 key
.objectid
= inode
->i_ino
;
3847 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3853 leaf
= path
->nodes
[0];
3854 nritems
= btrfs_header_nritems(leaf
);
3855 slot
= path
->slots
[0];
3856 if (advance
|| slot
>= nritems
) {
3857 if (slot
>= nritems
- 1) {
3858 ret
= btrfs_next_leaf(root
, path
);
3861 leaf
= path
->nodes
[0];
3862 nritems
= btrfs_header_nritems(leaf
);
3863 slot
= path
->slots
[0];
3871 item
= btrfs_item_nr(leaf
, slot
);
3872 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3874 if (found_key
.objectid
!= key
.objectid
)
3876 if (btrfs_key_type(&found_key
) != key_type
)
3878 if (found_key
.offset
< filp
->f_pos
)
3881 filp
->f_pos
= found_key
.offset
;
3883 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3885 di_total
= btrfs_item_size(leaf
, item
);
3887 while (di_cur
< di_total
) {
3888 struct btrfs_key location
;
3890 name_len
= btrfs_dir_name_len(leaf
, di
);
3891 if (name_len
<= sizeof(tmp_name
)) {
3892 name_ptr
= tmp_name
;
3894 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3900 read_extent_buffer(leaf
, name_ptr
,
3901 (unsigned long)(di
+ 1), name_len
);
3903 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3904 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3906 /* is this a reference to our own snapshot? If so
3909 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3910 location
.objectid
== root
->root_key
.objectid
) {
3914 over
= filldir(dirent
, name_ptr
, name_len
,
3915 found_key
.offset
, location
.objectid
,
3919 if (name_ptr
!= tmp_name
)
3924 di_len
= btrfs_dir_name_len(leaf
, di
) +
3925 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3927 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3931 /* Reached end of directory/root. Bump pos past the last item. */
3932 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3934 * 32-bit glibc will use getdents64, but then strtol -
3935 * so the last number we can serve is this.
3937 filp
->f_pos
= 0x7fffffff;
3943 btrfs_free_path(path
);
3947 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3949 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3950 struct btrfs_trans_handle
*trans
;
3953 if (root
->fs_info
->btree_inode
== inode
)
3956 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
3957 trans
= btrfs_join_transaction(root
, 1);
3958 btrfs_set_trans_block_group(trans
, inode
);
3959 ret
= btrfs_commit_transaction(trans
, root
);
3965 * This is somewhat expensive, updating the tree every time the
3966 * inode changes. But, it is most likely to find the inode in cache.
3967 * FIXME, needs more benchmarking...there are no reasons other than performance
3968 * to keep or drop this code.
3970 void btrfs_dirty_inode(struct inode
*inode
)
3972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3973 struct btrfs_trans_handle
*trans
;
3975 trans
= btrfs_join_transaction(root
, 1);
3976 btrfs_set_trans_block_group(trans
, inode
);
3977 btrfs_update_inode(trans
, root
, inode
);
3978 btrfs_end_transaction(trans
, root
);
3982 * find the highest existing sequence number in a directory
3983 * and then set the in-memory index_cnt variable to reflect
3984 * free sequence numbers
3986 static int btrfs_set_inode_index_count(struct inode
*inode
)
3988 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3989 struct btrfs_key key
, found_key
;
3990 struct btrfs_path
*path
;
3991 struct extent_buffer
*leaf
;
3994 key
.objectid
= inode
->i_ino
;
3995 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3996 key
.offset
= (u64
)-1;
3998 path
= btrfs_alloc_path();
4002 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4005 /* FIXME: we should be able to handle this */
4011 * MAGIC NUMBER EXPLANATION:
4012 * since we search a directory based on f_pos we have to start at 2
4013 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4014 * else has to start at 2
4016 if (path
->slots
[0] == 0) {
4017 BTRFS_I(inode
)->index_cnt
= 2;
4023 leaf
= path
->nodes
[0];
4024 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4026 if (found_key
.objectid
!= inode
->i_ino
||
4027 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4028 BTRFS_I(inode
)->index_cnt
= 2;
4032 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4034 btrfs_free_path(path
);
4039 * helper to find a free sequence number in a given directory. This current
4040 * code is very simple, later versions will do smarter things in the btree
4042 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4046 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4047 ret
= btrfs_set_inode_index_count(dir
);
4052 *index
= BTRFS_I(dir
)->index_cnt
;
4053 BTRFS_I(dir
)->index_cnt
++;
4058 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4059 struct btrfs_root
*root
,
4061 const char *name
, int name_len
,
4062 u64 ref_objectid
, u64 objectid
,
4063 u64 alloc_hint
, int mode
, u64
*index
)
4065 struct inode
*inode
;
4066 struct btrfs_inode_item
*inode_item
;
4067 struct btrfs_key
*location
;
4068 struct btrfs_path
*path
;
4069 struct btrfs_inode_ref
*ref
;
4070 struct btrfs_key key
[2];
4076 path
= btrfs_alloc_path();
4079 inode
= new_inode(root
->fs_info
->sb
);
4081 return ERR_PTR(-ENOMEM
);
4084 ret
= btrfs_set_inode_index(dir
, index
);
4087 return ERR_PTR(ret
);
4091 * index_cnt is ignored for everything but a dir,
4092 * btrfs_get_inode_index_count has an explanation for the magic
4095 init_btrfs_i(inode
);
4096 BTRFS_I(inode
)->index_cnt
= 2;
4097 BTRFS_I(inode
)->root
= root
;
4098 BTRFS_I(inode
)->generation
= trans
->transid
;
4099 btrfs_set_inode_space_info(root
, inode
);
4105 BTRFS_I(inode
)->block_group
=
4106 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4108 key
[0].objectid
= objectid
;
4109 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4112 key
[1].objectid
= objectid
;
4113 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4114 key
[1].offset
= ref_objectid
;
4116 sizes
[0] = sizeof(struct btrfs_inode_item
);
4117 sizes
[1] = name_len
+ sizeof(*ref
);
4119 path
->leave_spinning
= 1;
4120 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4124 inode
->i_uid
= current_fsuid();
4126 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
4127 inode
->i_gid
= dir
->i_gid
;
4131 inode
->i_gid
= current_fsgid();
4133 inode
->i_mode
= mode
;
4134 inode
->i_ino
= objectid
;
4135 inode_set_bytes(inode
, 0);
4136 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4137 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4138 struct btrfs_inode_item
);
4139 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4141 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4142 struct btrfs_inode_ref
);
4143 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4144 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4145 ptr
= (unsigned long)(ref
+ 1);
4146 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4148 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4149 btrfs_free_path(path
);
4151 location
= &BTRFS_I(inode
)->location
;
4152 location
->objectid
= objectid
;
4153 location
->offset
= 0;
4154 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4156 btrfs_inherit_iflags(inode
, dir
);
4158 if ((mode
& S_IFREG
)) {
4159 if (btrfs_test_opt(root
, NODATASUM
))
4160 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4161 if (btrfs_test_opt(root
, NODATACOW
))
4162 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4165 insert_inode_hash(inode
);
4166 inode_tree_add(inode
);
4170 BTRFS_I(dir
)->index_cnt
--;
4171 btrfs_free_path(path
);
4173 return ERR_PTR(ret
);
4176 static inline u8
btrfs_inode_type(struct inode
*inode
)
4178 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4182 * utility function to add 'inode' into 'parent_inode' with
4183 * a give name and a given sequence number.
4184 * if 'add_backref' is true, also insert a backref from the
4185 * inode to the parent directory.
4187 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4188 struct inode
*parent_inode
, struct inode
*inode
,
4189 const char *name
, int name_len
, int add_backref
, u64 index
)
4192 struct btrfs_key key
;
4193 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4195 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4196 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4198 key
.objectid
= inode
->i_ino
;
4199 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4203 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4204 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4205 key
.objectid
, root
->root_key
.objectid
,
4206 parent_inode
->i_ino
,
4207 index
, name
, name_len
);
4208 } else if (add_backref
) {
4209 ret
= btrfs_insert_inode_ref(trans
, root
,
4210 name
, name_len
, inode
->i_ino
,
4211 parent_inode
->i_ino
, index
);
4215 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4216 parent_inode
->i_ino
, &key
,
4217 btrfs_inode_type(inode
), index
);
4220 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4222 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4223 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4228 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4229 struct dentry
*dentry
, struct inode
*inode
,
4230 int backref
, u64 index
)
4232 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4233 inode
, dentry
->d_name
.name
,
4234 dentry
->d_name
.len
, backref
, index
);
4236 d_instantiate(dentry
, inode
);
4244 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4245 int mode
, dev_t rdev
)
4247 struct btrfs_trans_handle
*trans
;
4248 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4249 struct inode
*inode
= NULL
;
4253 unsigned long nr
= 0;
4256 if (!new_valid_dev(rdev
))
4260 * 2 for inode item and ref
4262 * 1 for xattr if selinux is on
4264 err
= btrfs_reserve_metadata_space(root
, 5);
4268 trans
= btrfs_start_transaction(root
, 1);
4271 btrfs_set_trans_block_group(trans
, dir
);
4273 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4279 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4281 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4282 BTRFS_I(dir
)->block_group
, mode
, &index
);
4283 err
= PTR_ERR(inode
);
4287 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4293 btrfs_set_trans_block_group(trans
, inode
);
4294 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4298 inode
->i_op
= &btrfs_special_inode_operations
;
4299 init_special_inode(inode
, inode
->i_mode
, rdev
);
4300 btrfs_update_inode(trans
, root
, inode
);
4302 btrfs_update_inode_block_group(trans
, inode
);
4303 btrfs_update_inode_block_group(trans
, dir
);
4305 nr
= trans
->blocks_used
;
4306 btrfs_end_transaction_throttle(trans
, root
);
4308 btrfs_unreserve_metadata_space(root
, 5);
4310 inode_dec_link_count(inode
);
4313 btrfs_btree_balance_dirty(root
, nr
);
4317 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4318 int mode
, struct nameidata
*nd
)
4320 struct btrfs_trans_handle
*trans
;
4321 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4322 struct inode
*inode
= NULL
;
4325 unsigned long nr
= 0;
4330 * 2 for inode item and ref
4332 * 1 for xattr if selinux is on
4334 err
= btrfs_reserve_metadata_space(root
, 5);
4338 trans
= btrfs_start_transaction(root
, 1);
4341 btrfs_set_trans_block_group(trans
, dir
);
4343 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4349 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4351 dentry
->d_parent
->d_inode
->i_ino
,
4352 objectid
, BTRFS_I(dir
)->block_group
, mode
,
4354 err
= PTR_ERR(inode
);
4358 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4364 btrfs_set_trans_block_group(trans
, inode
);
4365 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4369 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4370 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4371 inode
->i_fop
= &btrfs_file_operations
;
4372 inode
->i_op
= &btrfs_file_inode_operations
;
4373 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4375 btrfs_update_inode_block_group(trans
, inode
);
4376 btrfs_update_inode_block_group(trans
, dir
);
4378 nr
= trans
->blocks_used
;
4379 btrfs_end_transaction_throttle(trans
, root
);
4381 btrfs_unreserve_metadata_space(root
, 5);
4383 inode_dec_link_count(inode
);
4386 btrfs_btree_balance_dirty(root
, nr
);
4390 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4391 struct dentry
*dentry
)
4393 struct btrfs_trans_handle
*trans
;
4394 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4395 struct inode
*inode
= old_dentry
->d_inode
;
4397 unsigned long nr
= 0;
4401 if (inode
->i_nlink
== 0)
4404 /* do not allow sys_link's with other subvols of the same device */
4405 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4409 * 1 item for inode ref
4410 * 2 items for dir items
4412 err
= btrfs_reserve_metadata_space(root
, 3);
4416 btrfs_inc_nlink(inode
);
4418 err
= btrfs_set_inode_index(dir
, &index
);
4422 trans
= btrfs_start_transaction(root
, 1);
4424 btrfs_set_trans_block_group(trans
, dir
);
4425 atomic_inc(&inode
->i_count
);
4427 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
4432 btrfs_update_inode_block_group(trans
, dir
);
4433 err
= btrfs_update_inode(trans
, root
, inode
);
4435 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
4438 nr
= trans
->blocks_used
;
4439 btrfs_end_transaction_throttle(trans
, root
);
4441 btrfs_unreserve_metadata_space(root
, 3);
4443 inode_dec_link_count(inode
);
4446 btrfs_btree_balance_dirty(root
, nr
);
4450 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4452 struct inode
*inode
= NULL
;
4453 struct btrfs_trans_handle
*trans
;
4454 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4456 int drop_on_err
= 0;
4459 unsigned long nr
= 1;
4462 * 2 items for inode and ref
4463 * 2 items for dir items
4464 * 1 for xattr if selinux is on
4466 err
= btrfs_reserve_metadata_space(root
, 5);
4470 trans
= btrfs_start_transaction(root
, 1);
4475 btrfs_set_trans_block_group(trans
, dir
);
4477 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4483 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4485 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4486 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4488 if (IS_ERR(inode
)) {
4489 err
= PTR_ERR(inode
);
4495 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4499 inode
->i_op
= &btrfs_dir_inode_operations
;
4500 inode
->i_fop
= &btrfs_dir_file_operations
;
4501 btrfs_set_trans_block_group(trans
, inode
);
4503 btrfs_i_size_write(inode
, 0);
4504 err
= btrfs_update_inode(trans
, root
, inode
);
4508 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4509 inode
, dentry
->d_name
.name
,
4510 dentry
->d_name
.len
, 0, index
);
4514 d_instantiate(dentry
, inode
);
4516 btrfs_update_inode_block_group(trans
, inode
);
4517 btrfs_update_inode_block_group(trans
, dir
);
4520 nr
= trans
->blocks_used
;
4521 btrfs_end_transaction_throttle(trans
, root
);
4524 btrfs_unreserve_metadata_space(root
, 5);
4527 btrfs_btree_balance_dirty(root
, nr
);
4531 /* helper for btfs_get_extent. Given an existing extent in the tree,
4532 * and an extent that you want to insert, deal with overlap and insert
4533 * the new extent into the tree.
4535 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4536 struct extent_map
*existing
,
4537 struct extent_map
*em
,
4538 u64 map_start
, u64 map_len
)
4542 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4543 start_diff
= map_start
- em
->start
;
4544 em
->start
= map_start
;
4546 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4547 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4548 em
->block_start
+= start_diff
;
4549 em
->block_len
-= start_diff
;
4551 return add_extent_mapping(em_tree
, em
);
4554 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4555 struct inode
*inode
, struct page
*page
,
4556 size_t pg_offset
, u64 extent_offset
,
4557 struct btrfs_file_extent_item
*item
)
4560 struct extent_buffer
*leaf
= path
->nodes
[0];
4563 unsigned long inline_size
;
4566 WARN_ON(pg_offset
!= 0);
4567 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4568 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4569 btrfs_item_nr(leaf
, path
->slots
[0]));
4570 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4571 ptr
= btrfs_file_extent_inline_start(item
);
4573 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4575 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4576 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4577 inline_size
, max_size
);
4579 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4580 unsigned long copy_size
= min_t(u64
,
4581 PAGE_CACHE_SIZE
- pg_offset
,
4582 max_size
- extent_offset
);
4583 memset(kaddr
+ pg_offset
, 0, copy_size
);
4584 kunmap_atomic(kaddr
, KM_USER0
);
4591 * a bit scary, this does extent mapping from logical file offset to the disk.
4592 * the ugly parts come from merging extents from the disk with the in-ram
4593 * representation. This gets more complex because of the data=ordered code,
4594 * where the in-ram extents might be locked pending data=ordered completion.
4596 * This also copies inline extents directly into the page.
4599 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4600 size_t pg_offset
, u64 start
, u64 len
,
4606 u64 extent_start
= 0;
4608 u64 objectid
= inode
->i_ino
;
4610 struct btrfs_path
*path
= NULL
;
4611 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4612 struct btrfs_file_extent_item
*item
;
4613 struct extent_buffer
*leaf
;
4614 struct btrfs_key found_key
;
4615 struct extent_map
*em
= NULL
;
4616 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4617 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4618 struct btrfs_trans_handle
*trans
= NULL
;
4622 read_lock(&em_tree
->lock
);
4623 em
= lookup_extent_mapping(em_tree
, start
, len
);
4625 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4626 read_unlock(&em_tree
->lock
);
4629 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4630 free_extent_map(em
);
4631 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4632 free_extent_map(em
);
4636 em
= alloc_extent_map(GFP_NOFS
);
4641 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4642 em
->start
= EXTENT_MAP_HOLE
;
4643 em
->orig_start
= EXTENT_MAP_HOLE
;
4645 em
->block_len
= (u64
)-1;
4648 path
= btrfs_alloc_path();
4652 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4653 objectid
, start
, trans
!= NULL
);
4660 if (path
->slots
[0] == 0)
4665 leaf
= path
->nodes
[0];
4666 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4667 struct btrfs_file_extent_item
);
4668 /* are we inside the extent that was found? */
4669 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4670 found_type
= btrfs_key_type(&found_key
);
4671 if (found_key
.objectid
!= objectid
||
4672 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4676 found_type
= btrfs_file_extent_type(leaf
, item
);
4677 extent_start
= found_key
.offset
;
4678 compressed
= btrfs_file_extent_compression(leaf
, item
);
4679 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4680 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4681 extent_end
= extent_start
+
4682 btrfs_file_extent_num_bytes(leaf
, item
);
4683 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4685 size
= btrfs_file_extent_inline_len(leaf
, item
);
4686 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4687 ~((u64
)root
->sectorsize
- 1);
4690 if (start
>= extent_end
) {
4692 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4693 ret
= btrfs_next_leaf(root
, path
);
4700 leaf
= path
->nodes
[0];
4702 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4703 if (found_key
.objectid
!= objectid
||
4704 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4706 if (start
+ len
<= found_key
.offset
)
4709 em
->len
= found_key
.offset
- start
;
4713 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4714 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4715 em
->start
= extent_start
;
4716 em
->len
= extent_end
- extent_start
;
4717 em
->orig_start
= extent_start
-
4718 btrfs_file_extent_offset(leaf
, item
);
4719 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4721 em
->block_start
= EXTENT_MAP_HOLE
;
4725 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4726 em
->block_start
= bytenr
;
4727 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4730 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4731 em
->block_start
= bytenr
;
4732 em
->block_len
= em
->len
;
4733 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4734 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4737 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4741 size_t extent_offset
;
4744 em
->block_start
= EXTENT_MAP_INLINE
;
4745 if (!page
|| create
) {
4746 em
->start
= extent_start
;
4747 em
->len
= extent_end
- extent_start
;
4751 size
= btrfs_file_extent_inline_len(leaf
, item
);
4752 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4753 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4754 size
- extent_offset
);
4755 em
->start
= extent_start
+ extent_offset
;
4756 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4757 ~((u64
)root
->sectorsize
- 1);
4758 em
->orig_start
= EXTENT_MAP_INLINE
;
4760 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4761 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4762 if (create
== 0 && !PageUptodate(page
)) {
4763 if (btrfs_file_extent_compression(leaf
, item
) ==
4764 BTRFS_COMPRESS_ZLIB
) {
4765 ret
= uncompress_inline(path
, inode
, page
,
4767 extent_offset
, item
);
4771 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4773 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
4774 memset(map
+ pg_offset
+ copy_size
, 0,
4775 PAGE_CACHE_SIZE
- pg_offset
-
4780 flush_dcache_page(page
);
4781 } else if (create
&& PageUptodate(page
)) {
4784 free_extent_map(em
);
4786 btrfs_release_path(root
, path
);
4787 trans
= btrfs_join_transaction(root
, 1);
4791 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4794 btrfs_mark_buffer_dirty(leaf
);
4796 set_extent_uptodate(io_tree
, em
->start
,
4797 extent_map_end(em
) - 1, GFP_NOFS
);
4800 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4807 em
->block_start
= EXTENT_MAP_HOLE
;
4808 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4810 btrfs_release_path(root
, path
);
4811 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4812 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4813 "[%llu %llu]\n", (unsigned long long)em
->start
,
4814 (unsigned long long)em
->len
,
4815 (unsigned long long)start
,
4816 (unsigned long long)len
);
4822 write_lock(&em_tree
->lock
);
4823 ret
= add_extent_mapping(em_tree
, em
);
4824 /* it is possible that someone inserted the extent into the tree
4825 * while we had the lock dropped. It is also possible that
4826 * an overlapping map exists in the tree
4828 if (ret
== -EEXIST
) {
4829 struct extent_map
*existing
;
4833 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4834 if (existing
&& (existing
->start
> start
||
4835 existing
->start
+ existing
->len
<= start
)) {
4836 free_extent_map(existing
);
4840 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4843 err
= merge_extent_mapping(em_tree
, existing
,
4846 free_extent_map(existing
);
4848 free_extent_map(em
);
4853 free_extent_map(em
);
4857 free_extent_map(em
);
4862 write_unlock(&em_tree
->lock
);
4865 btrfs_free_path(path
);
4867 ret
= btrfs_end_transaction(trans
, root
);
4872 free_extent_map(em
);
4873 return ERR_PTR(err
);
4878 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4879 const struct iovec
*iov
, loff_t offset
,
4880 unsigned long nr_segs
)
4885 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4886 __u64 start
, __u64 len
)
4888 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4891 int btrfs_readpage(struct file
*file
, struct page
*page
)
4893 struct extent_io_tree
*tree
;
4894 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4895 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4898 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4900 struct extent_io_tree
*tree
;
4903 if (current
->flags
& PF_MEMALLOC
) {
4904 redirty_page_for_writepage(wbc
, page
);
4908 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4909 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4912 int btrfs_writepages(struct address_space
*mapping
,
4913 struct writeback_control
*wbc
)
4915 struct extent_io_tree
*tree
;
4917 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4918 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4922 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4923 struct list_head
*pages
, unsigned nr_pages
)
4925 struct extent_io_tree
*tree
;
4926 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4927 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4930 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4932 struct extent_io_tree
*tree
;
4933 struct extent_map_tree
*map
;
4936 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4937 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4938 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4940 ClearPagePrivate(page
);
4941 set_page_private(page
, 0);
4942 page_cache_release(page
);
4947 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4949 if (PageWriteback(page
) || PageDirty(page
))
4951 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4954 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4956 struct extent_io_tree
*tree
;
4957 struct btrfs_ordered_extent
*ordered
;
4958 struct extent_state
*cached_state
= NULL
;
4959 u64 page_start
= page_offset(page
);
4960 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4964 * we have the page locked, so new writeback can't start,
4965 * and the dirty bit won't be cleared while we are here.
4967 * Wait for IO on this page so that we can safely clear
4968 * the PagePrivate2 bit and do ordered accounting
4970 wait_on_page_writeback(page
);
4972 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4974 btrfs_releasepage(page
, GFP_NOFS
);
4977 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
4979 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4983 * IO on this page will never be started, so we need
4984 * to account for any ordered extents now
4986 clear_extent_bit(tree
, page_start
, page_end
,
4987 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4988 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
4989 &cached_state
, GFP_NOFS
);
4991 * whoever cleared the private bit is responsible
4992 * for the finish_ordered_io
4994 if (TestClearPagePrivate2(page
)) {
4995 btrfs_finish_ordered_io(page
->mapping
->host
,
4996 page_start
, page_end
);
4998 btrfs_put_ordered_extent(ordered
);
4999 cached_state
= NULL
;
5000 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
5003 clear_extent_bit(tree
, page_start
, page_end
,
5004 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
5005 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
5006 __btrfs_releasepage(page
, GFP_NOFS
);
5008 ClearPageChecked(page
);
5009 if (PagePrivate(page
)) {
5010 ClearPagePrivate(page
);
5011 set_page_private(page
, 0);
5012 page_cache_release(page
);
5017 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5018 * called from a page fault handler when a page is first dirtied. Hence we must
5019 * be careful to check for EOF conditions here. We set the page up correctly
5020 * for a written page which means we get ENOSPC checking when writing into
5021 * holes and correct delalloc and unwritten extent mapping on filesystems that
5022 * support these features.
5024 * We are not allowed to take the i_mutex here so we have to play games to
5025 * protect against truncate races as the page could now be beyond EOF. Because
5026 * vmtruncate() writes the inode size before removing pages, once we have the
5027 * page lock we can determine safely if the page is beyond EOF. If it is not
5028 * beyond EOF, then the page is guaranteed safe against truncation until we
5031 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5033 struct page
*page
= vmf
->page
;
5034 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
5035 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5036 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5037 struct btrfs_ordered_extent
*ordered
;
5038 struct extent_state
*cached_state
= NULL
;
5040 unsigned long zero_start
;
5046 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
5050 else /* -ENOSPC, -EIO, etc */
5051 ret
= VM_FAULT_SIGBUS
;
5055 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
5057 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
5058 ret
= VM_FAULT_SIGBUS
;
5062 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
5065 size
= i_size_read(inode
);
5066 page_start
= page_offset(page
);
5067 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
5069 if ((page
->mapping
!= inode
->i_mapping
) ||
5070 (page_start
>= size
)) {
5071 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
5072 /* page got truncated out from underneath us */
5075 wait_on_page_writeback(page
);
5077 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
5079 set_page_extent_mapped(page
);
5082 * we can't set the delalloc bits if there are pending ordered
5083 * extents. Drop our locks and wait for them to finish
5085 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5087 unlock_extent_cached(io_tree
, page_start
, page_end
,
5088 &cached_state
, GFP_NOFS
);
5090 btrfs_start_ordered_extent(inode
, ordered
, 1);
5091 btrfs_put_ordered_extent(ordered
);
5096 * XXX - page_mkwrite gets called every time the page is dirtied, even
5097 * if it was already dirty, so for space accounting reasons we need to
5098 * clear any delalloc bits for the range we are fixing to save. There
5099 * is probably a better way to do this, but for now keep consistent with
5100 * prepare_pages in the normal write path.
5102 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
5103 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
5104 0, 0, &cached_state
, GFP_NOFS
);
5106 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
5109 unlock_extent_cached(io_tree
, page_start
, page_end
,
5110 &cached_state
, GFP_NOFS
);
5111 ret
= VM_FAULT_SIGBUS
;
5112 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
5117 /* page is wholly or partially inside EOF */
5118 if (page_start
+ PAGE_CACHE_SIZE
> size
)
5119 zero_start
= size
& ~PAGE_CACHE_MASK
;
5121 zero_start
= PAGE_CACHE_SIZE
;
5123 if (zero_start
!= PAGE_CACHE_SIZE
) {
5125 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
5126 flush_dcache_page(page
);
5129 ClearPageChecked(page
);
5130 set_page_dirty(page
);
5131 SetPageUptodate(page
);
5133 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
5134 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
5136 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
5139 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
5141 return VM_FAULT_LOCKED
;
5147 static void btrfs_truncate(struct inode
*inode
)
5149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5151 struct btrfs_trans_handle
*trans
;
5153 u64 mask
= root
->sectorsize
- 1;
5155 if (!S_ISREG(inode
->i_mode
)) {
5160 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
5164 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
5165 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
5167 trans
= btrfs_start_transaction(root
, 1);
5168 btrfs_set_trans_block_group(trans
, inode
);
5171 * setattr is responsible for setting the ordered_data_close flag,
5172 * but that is only tested during the last file release. That
5173 * could happen well after the next commit, leaving a great big
5174 * window where new writes may get lost if someone chooses to write
5175 * to this file after truncating to zero
5177 * The inode doesn't have any dirty data here, and so if we commit
5178 * this is a noop. If someone immediately starts writing to the inode
5179 * it is very likely we'll catch some of their writes in this
5180 * transaction, and the commit will find this file on the ordered
5181 * data list with good things to send down.
5183 * This is a best effort solution, there is still a window where
5184 * using truncate to replace the contents of the file will
5185 * end up with a zero length file after a crash.
5187 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
5188 btrfs_add_ordered_operation(trans
, root
, inode
);
5191 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
5193 BTRFS_EXTENT_DATA_KEY
);
5197 ret
= btrfs_update_inode(trans
, root
, inode
);
5200 nr
= trans
->blocks_used
;
5201 btrfs_end_transaction(trans
, root
);
5202 btrfs_btree_balance_dirty(root
, nr
);
5204 trans
= btrfs_start_transaction(root
, 1);
5205 btrfs_set_trans_block_group(trans
, inode
);
5208 if (ret
== 0 && inode
->i_nlink
> 0) {
5209 ret
= btrfs_orphan_del(trans
, inode
);
5213 ret
= btrfs_update_inode(trans
, root
, inode
);
5216 nr
= trans
->blocks_used
;
5217 ret
= btrfs_end_transaction_throttle(trans
, root
);
5219 btrfs_btree_balance_dirty(root
, nr
);
5223 * create a new subvolume directory/inode (helper for the ioctl).
5225 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
5226 struct btrfs_root
*new_root
,
5227 u64 new_dirid
, u64 alloc_hint
)
5229 struct inode
*inode
;
5233 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
5234 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
5236 return PTR_ERR(inode
);
5237 inode
->i_op
= &btrfs_dir_inode_operations
;
5238 inode
->i_fop
= &btrfs_dir_file_operations
;
5241 btrfs_i_size_write(inode
, 0);
5243 err
= btrfs_update_inode(trans
, new_root
, inode
);
5250 /* helper function for file defrag and space balancing. This
5251 * forces readahead on a given range of bytes in an inode
5253 unsigned long btrfs_force_ra(struct address_space
*mapping
,
5254 struct file_ra_state
*ra
, struct file
*file
,
5255 pgoff_t offset
, pgoff_t last_index
)
5257 pgoff_t req_size
= last_index
- offset
+ 1;
5259 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
5260 return offset
+ req_size
;
5263 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
5265 struct btrfs_inode
*ei
;
5267 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
5271 ei
->last_sub_trans
= 0;
5272 ei
->logged_trans
= 0;
5273 ei
->outstanding_extents
= 0;
5274 ei
->reserved_extents
= 0;
5276 spin_lock_init(&ei
->accounting_lock
);
5277 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
5278 INIT_LIST_HEAD(&ei
->i_orphan
);
5279 INIT_LIST_HEAD(&ei
->ordered_operations
);
5280 return &ei
->vfs_inode
;
5283 void btrfs_destroy_inode(struct inode
*inode
)
5285 struct btrfs_ordered_extent
*ordered
;
5286 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5288 WARN_ON(!list_empty(&inode
->i_dentry
));
5289 WARN_ON(inode
->i_data
.nrpages
);
5292 * This can happen where we create an inode, but somebody else also
5293 * created the same inode and we need to destroy the one we already
5300 * Make sure we're properly removed from the ordered operation
5304 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
5305 spin_lock(&root
->fs_info
->ordered_extent_lock
);
5306 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
5307 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
5310 spin_lock(&root
->list_lock
);
5311 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
5312 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
5314 list_del_init(&BTRFS_I(inode
)->i_orphan
);
5316 spin_unlock(&root
->list_lock
);
5319 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
5323 printk(KERN_ERR
"btrfs found ordered "
5324 "extent %llu %llu on inode cleanup\n",
5325 (unsigned long long)ordered
->file_offset
,
5326 (unsigned long long)ordered
->len
);
5327 btrfs_remove_ordered_extent(inode
, ordered
);
5328 btrfs_put_ordered_extent(ordered
);
5329 btrfs_put_ordered_extent(ordered
);
5332 inode_tree_del(inode
);
5333 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
5335 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5338 void btrfs_drop_inode(struct inode
*inode
)
5340 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5341 if (inode
->i_nlink
> 0 && btrfs_root_refs(&root
->root_item
) == 0)
5342 generic_delete_inode(inode
);
5344 generic_drop_inode(inode
);
5347 static void init_once(void *foo
)
5349 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
5351 inode_init_once(&ei
->vfs_inode
);
5354 void btrfs_destroy_cachep(void)
5356 if (btrfs_inode_cachep
)
5357 kmem_cache_destroy(btrfs_inode_cachep
);
5358 if (btrfs_trans_handle_cachep
)
5359 kmem_cache_destroy(btrfs_trans_handle_cachep
);
5360 if (btrfs_transaction_cachep
)
5361 kmem_cache_destroy(btrfs_transaction_cachep
);
5362 if (btrfs_path_cachep
)
5363 kmem_cache_destroy(btrfs_path_cachep
);
5366 int btrfs_init_cachep(void)
5368 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
5369 sizeof(struct btrfs_inode
), 0,
5370 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
5371 if (!btrfs_inode_cachep
)
5374 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
5375 sizeof(struct btrfs_trans_handle
), 0,
5376 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5377 if (!btrfs_trans_handle_cachep
)
5380 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
5381 sizeof(struct btrfs_transaction
), 0,
5382 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5383 if (!btrfs_transaction_cachep
)
5386 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
5387 sizeof(struct btrfs_path
), 0,
5388 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5389 if (!btrfs_path_cachep
)
5394 btrfs_destroy_cachep();
5398 static int btrfs_getattr(struct vfsmount
*mnt
,
5399 struct dentry
*dentry
, struct kstat
*stat
)
5401 struct inode
*inode
= dentry
->d_inode
;
5402 generic_fillattr(inode
, stat
);
5403 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
5404 stat
->blksize
= PAGE_CACHE_SIZE
;
5405 stat
->blocks
= (inode_get_bytes(inode
) +
5406 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
5410 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
5411 struct inode
*new_dir
, struct dentry
*new_dentry
)
5413 struct btrfs_trans_handle
*trans
;
5414 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
5415 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
5416 struct inode
*new_inode
= new_dentry
->d_inode
;
5417 struct inode
*old_inode
= old_dentry
->d_inode
;
5418 struct timespec ctime
= CURRENT_TIME
;
5423 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5426 /* we only allow rename subvolume link between subvolumes */
5427 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
5430 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
5431 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
5434 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
5435 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
5439 * We want to reserve the absolute worst case amount of items. So if
5440 * both inodes are subvols and we need to unlink them then that would
5441 * require 4 item modifications, but if they are both normal inodes it
5442 * would require 5 item modifications, so we'll assume their normal
5443 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5444 * should cover the worst case number of items we'll modify.
5446 ret
= btrfs_reserve_metadata_space(root
, 11);
5451 * we're using rename to replace one file with another.
5452 * and the replacement file is large. Start IO on it now so
5453 * we don't add too much work to the end of the transaction
5455 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
5456 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
5457 filemap_flush(old_inode
->i_mapping
);
5459 /* close the racy window with snapshot create/destroy ioctl */
5460 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5461 down_read(&root
->fs_info
->subvol_sem
);
5463 trans
= btrfs_start_transaction(root
, 1);
5464 btrfs_set_trans_block_group(trans
, new_dir
);
5467 btrfs_record_root_in_trans(trans
, dest
);
5469 ret
= btrfs_set_inode_index(new_dir
, &index
);
5473 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5474 /* force full log commit if subvolume involved. */
5475 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
5477 ret
= btrfs_insert_inode_ref(trans
, dest
,
5478 new_dentry
->d_name
.name
,
5479 new_dentry
->d_name
.len
,
5481 new_dir
->i_ino
, index
);
5485 * this is an ugly little race, but the rename is required
5486 * to make sure that if we crash, the inode is either at the
5487 * old name or the new one. pinning the log transaction lets
5488 * us make sure we don't allow a log commit to come in after
5489 * we unlink the name but before we add the new name back in.
5491 btrfs_pin_log_trans(root
);
5494 * make sure the inode gets flushed if it is replacing
5497 if (new_inode
&& new_inode
->i_size
&&
5498 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
5499 btrfs_add_ordered_operation(trans
, root
, old_inode
);
5502 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
5503 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
5504 old_inode
->i_ctime
= ctime
;
5506 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
5507 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
5509 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5510 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
5511 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
5512 old_dentry
->d_name
.name
,
5513 old_dentry
->d_name
.len
);
5515 btrfs_inc_nlink(old_dentry
->d_inode
);
5516 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
5517 old_dentry
->d_inode
,
5518 old_dentry
->d_name
.name
,
5519 old_dentry
->d_name
.len
);
5524 new_inode
->i_ctime
= CURRENT_TIME
;
5525 if (unlikely(new_inode
->i_ino
==
5526 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
5527 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
5528 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
5530 new_dentry
->d_name
.name
,
5531 new_dentry
->d_name
.len
);
5532 BUG_ON(new_inode
->i_nlink
== 0);
5534 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
5535 new_dentry
->d_inode
,
5536 new_dentry
->d_name
.name
,
5537 new_dentry
->d_name
.len
);
5540 if (new_inode
->i_nlink
== 0) {
5541 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
5546 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
5547 new_dentry
->d_name
.name
,
5548 new_dentry
->d_name
.len
, 0, index
);
5551 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5552 btrfs_log_new_name(trans
, old_inode
, old_dir
,
5553 new_dentry
->d_parent
);
5554 btrfs_end_log_trans(root
);
5557 btrfs_end_transaction_throttle(trans
, root
);
5559 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5560 up_read(&root
->fs_info
->subvol_sem
);
5562 btrfs_unreserve_metadata_space(root
, 11);
5567 * some fairly slow code that needs optimization. This walks the list
5568 * of all the inodes with pending delalloc and forces them to disk.
5570 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
5572 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
5573 struct btrfs_inode
*binode
;
5574 struct inode
*inode
;
5576 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
5579 spin_lock(&root
->fs_info
->delalloc_lock
);
5580 while (!list_empty(head
)) {
5581 binode
= list_entry(head
->next
, struct btrfs_inode
,
5583 inode
= igrab(&binode
->vfs_inode
);
5585 list_del_init(&binode
->delalloc_inodes
);
5586 spin_unlock(&root
->fs_info
->delalloc_lock
);
5588 filemap_flush(inode
->i_mapping
);
5590 btrfs_add_delayed_iput(inode
);
5595 spin_lock(&root
->fs_info
->delalloc_lock
);
5597 spin_unlock(&root
->fs_info
->delalloc_lock
);
5599 /* the filemap_flush will queue IO into the worker threads, but
5600 * we have to make sure the IO is actually started and that
5601 * ordered extents get created before we return
5603 atomic_inc(&root
->fs_info
->async_submit_draining
);
5604 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
5605 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
5606 wait_event(root
->fs_info
->async_submit_wait
,
5607 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
5608 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
5610 atomic_dec(&root
->fs_info
->async_submit_draining
);
5614 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
5615 const char *symname
)
5617 struct btrfs_trans_handle
*trans
;
5618 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5619 struct btrfs_path
*path
;
5620 struct btrfs_key key
;
5621 struct inode
*inode
= NULL
;
5629 struct btrfs_file_extent_item
*ei
;
5630 struct extent_buffer
*leaf
;
5631 unsigned long nr
= 0;
5633 name_len
= strlen(symname
) + 1;
5634 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
5635 return -ENAMETOOLONG
;
5638 * 2 items for inode item and ref
5639 * 2 items for dir items
5640 * 1 item for xattr if selinux is on
5642 err
= btrfs_reserve_metadata_space(root
, 5);
5646 trans
= btrfs_start_transaction(root
, 1);
5649 btrfs_set_trans_block_group(trans
, dir
);
5651 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
5657 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5659 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
5660 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
5662 err
= PTR_ERR(inode
);
5666 err
= btrfs_init_inode_security(trans
, inode
, dir
);
5672 btrfs_set_trans_block_group(trans
, inode
);
5673 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
5677 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5678 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5679 inode
->i_fop
= &btrfs_file_operations
;
5680 inode
->i_op
= &btrfs_file_inode_operations
;
5681 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5683 btrfs_update_inode_block_group(trans
, inode
);
5684 btrfs_update_inode_block_group(trans
, dir
);
5688 path
= btrfs_alloc_path();
5690 key
.objectid
= inode
->i_ino
;
5692 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
5693 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
5694 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
5700 leaf
= path
->nodes
[0];
5701 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
5702 struct btrfs_file_extent_item
);
5703 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
5704 btrfs_set_file_extent_type(leaf
, ei
,
5705 BTRFS_FILE_EXTENT_INLINE
);
5706 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
5707 btrfs_set_file_extent_compression(leaf
, ei
, 0);
5708 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
5709 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5711 ptr
= btrfs_file_extent_inline_start(ei
);
5712 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5713 btrfs_mark_buffer_dirty(leaf
);
5714 btrfs_free_path(path
);
5716 inode
->i_op
= &btrfs_symlink_inode_operations
;
5717 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5718 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5719 inode_set_bytes(inode
, name_len
);
5720 btrfs_i_size_write(inode
, name_len
- 1);
5721 err
= btrfs_update_inode(trans
, root
, inode
);
5726 nr
= trans
->blocks_used
;
5727 btrfs_end_transaction_throttle(trans
, root
);
5729 btrfs_unreserve_metadata_space(root
, 5);
5731 inode_dec_link_count(inode
);
5734 btrfs_btree_balance_dirty(root
, nr
);
5738 static int prealloc_file_range(struct inode
*inode
, u64 start
, u64 end
,
5739 u64 alloc_hint
, int mode
, loff_t actual_len
)
5741 struct btrfs_trans_handle
*trans
;
5742 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5743 struct btrfs_key ins
;
5744 u64 cur_offset
= start
;
5745 u64 num_bytes
= end
- start
;
5749 while (num_bytes
> 0) {
5750 trans
= btrfs_start_transaction(root
, 1);
5752 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
,
5753 root
->sectorsize
, 0, alloc_hint
,
5760 ret
= btrfs_reserve_metadata_space(root
, 3);
5762 btrfs_free_reserved_extent(root
, ins
.objectid
,
5767 ret
= insert_reserved_file_extent(trans
, inode
,
5768 cur_offset
, ins
.objectid
,
5769 ins
.offset
, ins
.offset
,
5770 ins
.offset
, 0, 0, 0,
5771 BTRFS_FILE_EXTENT_PREALLOC
);
5773 btrfs_drop_extent_cache(inode
, cur_offset
,
5774 cur_offset
+ ins
.offset
-1, 0);
5776 num_bytes
-= ins
.offset
;
5777 cur_offset
+= ins
.offset
;
5778 alloc_hint
= ins
.objectid
+ ins
.offset
;
5780 inode
->i_ctime
= CURRENT_TIME
;
5781 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
5782 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5783 (actual_len
> inode
->i_size
) &&
5784 (cur_offset
> inode
->i_size
)) {
5786 if (cur_offset
> actual_len
)
5787 i_size
= actual_len
;
5789 i_size
= cur_offset
;
5790 i_size_write(inode
, i_size
);
5791 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
5794 ret
= btrfs_update_inode(trans
, root
, inode
);
5797 btrfs_end_transaction(trans
, root
);
5798 btrfs_unreserve_metadata_space(root
, 3);
5803 btrfs_end_transaction(trans
, root
);
5808 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5809 loff_t offset
, loff_t len
)
5811 struct extent_state
*cached_state
= NULL
;
5818 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5819 struct extent_map
*em
;
5822 alloc_start
= offset
& ~mask
;
5823 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5826 * wait for ordered IO before we have any locks. We'll loop again
5827 * below with the locks held.
5829 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5831 mutex_lock(&inode
->i_mutex
);
5832 if (alloc_start
> inode
->i_size
) {
5833 ret
= btrfs_cont_expand(inode
, alloc_start
);
5838 ret
= btrfs_check_data_free_space(BTRFS_I(inode
)->root
, inode
,
5839 alloc_end
- alloc_start
);
5843 locked_end
= alloc_end
- 1;
5845 struct btrfs_ordered_extent
*ordered
;
5847 /* the extent lock is ordered inside the running
5850 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
5851 locked_end
, 0, &cached_state
, GFP_NOFS
);
5852 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5855 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5856 ordered
->file_offset
< alloc_end
) {
5857 btrfs_put_ordered_extent(ordered
);
5858 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
5859 alloc_start
, locked_end
,
5860 &cached_state
, GFP_NOFS
);
5862 * we can't wait on the range with the transaction
5863 * running or with the extent lock held
5865 btrfs_wait_ordered_range(inode
, alloc_start
,
5866 alloc_end
- alloc_start
);
5869 btrfs_put_ordered_extent(ordered
);
5874 cur_offset
= alloc_start
;
5876 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5877 alloc_end
- cur_offset
, 0);
5878 BUG_ON(IS_ERR(em
) || !em
);
5879 last_byte
= min(extent_map_end(em
), alloc_end
);
5880 last_byte
= (last_byte
+ mask
) & ~mask
;
5881 if (em
->block_start
== EXTENT_MAP_HOLE
||
5882 (cur_offset
>= inode
->i_size
&&
5883 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5884 ret
= prealloc_file_range(inode
,
5885 cur_offset
, last_byte
,
5886 alloc_hint
, mode
, offset
+len
);
5888 free_extent_map(em
);
5892 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5893 alloc_hint
= em
->block_start
;
5894 free_extent_map(em
);
5896 cur_offset
= last_byte
;
5897 if (cur_offset
>= alloc_end
) {
5902 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5903 &cached_state
, GFP_NOFS
);
5905 btrfs_free_reserved_data_space(BTRFS_I(inode
)->root
, inode
,
5906 alloc_end
- alloc_start
);
5908 mutex_unlock(&inode
->i_mutex
);
5912 static int btrfs_set_page_dirty(struct page
*page
)
5914 return __set_page_dirty_nobuffers(page
);
5917 static int btrfs_permission(struct inode
*inode
, int mask
)
5919 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
5921 return generic_permission(inode
, mask
, btrfs_check_acl
);
5924 static const struct inode_operations btrfs_dir_inode_operations
= {
5925 .getattr
= btrfs_getattr
,
5926 .lookup
= btrfs_lookup
,
5927 .create
= btrfs_create
,
5928 .unlink
= btrfs_unlink
,
5930 .mkdir
= btrfs_mkdir
,
5931 .rmdir
= btrfs_rmdir
,
5932 .rename
= btrfs_rename
,
5933 .symlink
= btrfs_symlink
,
5934 .setattr
= btrfs_setattr
,
5935 .mknod
= btrfs_mknod
,
5936 .setxattr
= btrfs_setxattr
,
5937 .getxattr
= btrfs_getxattr
,
5938 .listxattr
= btrfs_listxattr
,
5939 .removexattr
= btrfs_removexattr
,
5940 .permission
= btrfs_permission
,
5942 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
5943 .lookup
= btrfs_lookup
,
5944 .permission
= btrfs_permission
,
5947 static const struct file_operations btrfs_dir_file_operations
= {
5948 .llseek
= generic_file_llseek
,
5949 .read
= generic_read_dir
,
5950 .readdir
= btrfs_real_readdir
,
5951 .unlocked_ioctl
= btrfs_ioctl
,
5952 #ifdef CONFIG_COMPAT
5953 .compat_ioctl
= btrfs_ioctl
,
5955 .release
= btrfs_release_file
,
5956 .fsync
= btrfs_sync_file
,
5959 static struct extent_io_ops btrfs_extent_io_ops
= {
5960 .fill_delalloc
= run_delalloc_range
,
5961 .submit_bio_hook
= btrfs_submit_bio_hook
,
5962 .merge_bio_hook
= btrfs_merge_bio_hook
,
5963 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5964 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5965 .writepage_start_hook
= btrfs_writepage_start_hook
,
5966 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5967 .set_bit_hook
= btrfs_set_bit_hook
,
5968 .clear_bit_hook
= btrfs_clear_bit_hook
,
5969 .merge_extent_hook
= btrfs_merge_extent_hook
,
5970 .split_extent_hook
= btrfs_split_extent_hook
,
5974 * btrfs doesn't support the bmap operation because swapfiles
5975 * use bmap to make a mapping of extents in the file. They assume
5976 * these extents won't change over the life of the file and they
5977 * use the bmap result to do IO directly to the drive.
5979 * the btrfs bmap call would return logical addresses that aren't
5980 * suitable for IO and they also will change frequently as COW
5981 * operations happen. So, swapfile + btrfs == corruption.
5983 * For now we're avoiding this by dropping bmap.
5985 static const struct address_space_operations btrfs_aops
= {
5986 .readpage
= btrfs_readpage
,
5987 .writepage
= btrfs_writepage
,
5988 .writepages
= btrfs_writepages
,
5989 .readpages
= btrfs_readpages
,
5990 .sync_page
= block_sync_page
,
5991 .direct_IO
= btrfs_direct_IO
,
5992 .invalidatepage
= btrfs_invalidatepage
,
5993 .releasepage
= btrfs_releasepage
,
5994 .set_page_dirty
= btrfs_set_page_dirty
,
5995 .error_remove_page
= generic_error_remove_page
,
5998 static const struct address_space_operations btrfs_symlink_aops
= {
5999 .readpage
= btrfs_readpage
,
6000 .writepage
= btrfs_writepage
,
6001 .invalidatepage
= btrfs_invalidatepage
,
6002 .releasepage
= btrfs_releasepage
,
6005 static const struct inode_operations btrfs_file_inode_operations
= {
6006 .truncate
= btrfs_truncate
,
6007 .getattr
= btrfs_getattr
,
6008 .setattr
= btrfs_setattr
,
6009 .setxattr
= btrfs_setxattr
,
6010 .getxattr
= btrfs_getxattr
,
6011 .listxattr
= btrfs_listxattr
,
6012 .removexattr
= btrfs_removexattr
,
6013 .permission
= btrfs_permission
,
6014 .fallocate
= btrfs_fallocate
,
6015 .fiemap
= btrfs_fiemap
,
6017 static const struct inode_operations btrfs_special_inode_operations
= {
6018 .getattr
= btrfs_getattr
,
6019 .setattr
= btrfs_setattr
,
6020 .permission
= btrfs_permission
,
6021 .setxattr
= btrfs_setxattr
,
6022 .getxattr
= btrfs_getxattr
,
6023 .listxattr
= btrfs_listxattr
,
6024 .removexattr
= btrfs_removexattr
,
6026 static const struct inode_operations btrfs_symlink_inode_operations
= {
6027 .readlink
= generic_readlink
,
6028 .follow_link
= page_follow_link_light
,
6029 .put_link
= page_put_link
,
6030 .permission
= btrfs_permission
,
6031 .setxattr
= btrfs_setxattr
,
6032 .getxattr
= btrfs_getxattr
,
6033 .listxattr
= btrfs_listxattr
,
6034 .removexattr
= btrfs_removexattr
,
6037 const struct dentry_operations btrfs_dentry_operations
= {
6038 .d_delete
= btrfs_dentry_delete
,