Staging: hv: rename Channel.c and .h to channel.c and .h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-sff.c
blobe3877b6843c9ad4d16b469770b9c4595cdd0a086
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
41 #include "libata.h"
43 const struct ata_port_operations ata_sff_port_ops = {
44 .inherits = &ata_base_port_ops,
46 .qc_prep = ata_sff_qc_prep,
47 .qc_issue = ata_sff_qc_issue,
48 .qc_fill_rtf = ata_sff_qc_fill_rtf,
50 .freeze = ata_sff_freeze,
51 .thaw = ata_sff_thaw,
52 .prereset = ata_sff_prereset,
53 .softreset = ata_sff_softreset,
54 .hardreset = sata_sff_hardreset,
55 .postreset = ata_sff_postreset,
56 .drain_fifo = ata_sff_drain_fifo,
57 .error_handler = ata_sff_error_handler,
58 .post_internal_cmd = ata_sff_post_internal_cmd,
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_irq_on = ata_sff_irq_on,
67 .sff_irq_clear = ata_sff_irq_clear,
69 .lost_interrupt = ata_sff_lost_interrupt,
71 .port_start = ata_sff_port_start,
73 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
75 const struct ata_port_operations ata_bmdma_port_ops = {
76 .inherits = &ata_sff_port_ops,
78 .mode_filter = ata_bmdma_mode_filter,
80 .bmdma_setup = ata_bmdma_setup,
81 .bmdma_start = ata_bmdma_start,
82 .bmdma_stop = ata_bmdma_stop,
83 .bmdma_status = ata_bmdma_status,
85 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
87 const struct ata_port_operations ata_bmdma32_port_ops = {
88 .inherits = &ata_bmdma_port_ops,
90 .sff_data_xfer = ata_sff_data_xfer32,
91 .port_start = ata_sff_port_start32,
93 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
95 /**
96 * ata_fill_sg - Fill PCI IDE PRD table
97 * @qc: Metadata associated with taskfile to be transferred
99 * Fill PCI IDE PRD (scatter-gather) table with segments
100 * associated with the current disk command.
102 * LOCKING:
103 * spin_lock_irqsave(host lock)
106 static void ata_fill_sg(struct ata_queued_cmd *qc)
108 struct ata_port *ap = qc->ap;
109 struct scatterlist *sg;
110 unsigned int si, pi;
112 pi = 0;
113 for_each_sg(qc->sg, sg, qc->n_elem, si) {
114 u32 addr, offset;
115 u32 sg_len, len;
117 /* determine if physical DMA addr spans 64K boundary.
118 * Note h/w doesn't support 64-bit, so we unconditionally
119 * truncate dma_addr_t to u32.
121 addr = (u32) sg_dma_address(sg);
122 sg_len = sg_dma_len(sg);
124 while (sg_len) {
125 offset = addr & 0xffff;
126 len = sg_len;
127 if ((offset + sg_len) > 0x10000)
128 len = 0x10000 - offset;
130 ap->prd[pi].addr = cpu_to_le32(addr);
131 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
132 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
134 pi++;
135 sg_len -= len;
136 addr += len;
140 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
144 * ata_fill_sg_dumb - Fill PCI IDE PRD table
145 * @qc: Metadata associated with taskfile to be transferred
147 * Fill PCI IDE PRD (scatter-gather) table with segments
148 * associated with the current disk command. Perform the fill
149 * so that we avoid writing any length 64K records for
150 * controllers that don't follow the spec.
152 * LOCKING:
153 * spin_lock_irqsave(host lock)
156 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
158 struct ata_port *ap = qc->ap;
159 struct scatterlist *sg;
160 unsigned int si, pi;
162 pi = 0;
163 for_each_sg(qc->sg, sg, qc->n_elem, si) {
164 u32 addr, offset;
165 u32 sg_len, len, blen;
167 /* determine if physical DMA addr spans 64K boundary.
168 * Note h/w doesn't support 64-bit, so we unconditionally
169 * truncate dma_addr_t to u32.
171 addr = (u32) sg_dma_address(sg);
172 sg_len = sg_dma_len(sg);
174 while (sg_len) {
175 offset = addr & 0xffff;
176 len = sg_len;
177 if ((offset + sg_len) > 0x10000)
178 len = 0x10000 - offset;
180 blen = len & 0xffff;
181 ap->prd[pi].addr = cpu_to_le32(addr);
182 if (blen == 0) {
183 /* Some PATA chipsets like the CS5530 can't
184 cope with 0x0000 meaning 64K as the spec
185 says */
186 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
187 blen = 0x8000;
188 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
190 ap->prd[pi].flags_len = cpu_to_le32(blen);
191 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
193 pi++;
194 sg_len -= len;
195 addr += len;
199 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
203 * ata_sff_qc_prep - Prepare taskfile for submission
204 * @qc: Metadata associated with taskfile to be prepared
206 * Prepare ATA taskfile for submission.
208 * LOCKING:
209 * spin_lock_irqsave(host lock)
211 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
213 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
214 return;
216 ata_fill_sg(qc);
218 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
221 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
222 * @qc: Metadata associated with taskfile to be prepared
224 * Prepare ATA taskfile for submission.
226 * LOCKING:
227 * spin_lock_irqsave(host lock)
229 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
231 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
232 return;
234 ata_fill_sg_dumb(qc);
236 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
239 * ata_sff_check_status - Read device status reg & clear interrupt
240 * @ap: port where the device is
242 * Reads ATA taskfile status register for currently-selected device
243 * and return its value. This also clears pending interrupts
244 * from this device
246 * LOCKING:
247 * Inherited from caller.
249 u8 ata_sff_check_status(struct ata_port *ap)
251 return ioread8(ap->ioaddr.status_addr);
253 EXPORT_SYMBOL_GPL(ata_sff_check_status);
256 * ata_sff_altstatus - Read device alternate status reg
257 * @ap: port where the device is
259 * Reads ATA taskfile alternate status register for
260 * currently-selected device and return its value.
262 * Note: may NOT be used as the check_altstatus() entry in
263 * ata_port_operations.
265 * LOCKING:
266 * Inherited from caller.
268 static u8 ata_sff_altstatus(struct ata_port *ap)
270 if (ap->ops->sff_check_altstatus)
271 return ap->ops->sff_check_altstatus(ap);
273 return ioread8(ap->ioaddr.altstatus_addr);
277 * ata_sff_irq_status - Check if the device is busy
278 * @ap: port where the device is
280 * Determine if the port is currently busy. Uses altstatus
281 * if available in order to avoid clearing shared IRQ status
282 * when finding an IRQ source. Non ctl capable devices don't
283 * share interrupt lines fortunately for us.
285 * LOCKING:
286 * Inherited from caller.
288 static u8 ata_sff_irq_status(struct ata_port *ap)
290 u8 status;
292 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
293 status = ata_sff_altstatus(ap);
294 /* Not us: We are busy */
295 if (status & ATA_BUSY)
296 return status;
298 /* Clear INTRQ latch */
299 status = ap->ops->sff_check_status(ap);
300 return status;
304 * ata_sff_sync - Flush writes
305 * @ap: Port to wait for.
307 * CAUTION:
308 * If we have an mmio device with no ctl and no altstatus
309 * method this will fail. No such devices are known to exist.
311 * LOCKING:
312 * Inherited from caller.
315 static void ata_sff_sync(struct ata_port *ap)
317 if (ap->ops->sff_check_altstatus)
318 ap->ops->sff_check_altstatus(ap);
319 else if (ap->ioaddr.altstatus_addr)
320 ioread8(ap->ioaddr.altstatus_addr);
324 * ata_sff_pause - Flush writes and wait 400nS
325 * @ap: Port to pause for.
327 * CAUTION:
328 * If we have an mmio device with no ctl and no altstatus
329 * method this will fail. No such devices are known to exist.
331 * LOCKING:
332 * Inherited from caller.
335 void ata_sff_pause(struct ata_port *ap)
337 ata_sff_sync(ap);
338 ndelay(400);
340 EXPORT_SYMBOL_GPL(ata_sff_pause);
343 * ata_sff_dma_pause - Pause before commencing DMA
344 * @ap: Port to pause for.
346 * Perform I/O fencing and ensure sufficient cycle delays occur
347 * for the HDMA1:0 transition
350 void ata_sff_dma_pause(struct ata_port *ap)
352 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
353 /* An altstatus read will cause the needed delay without
354 messing up the IRQ status */
355 ata_sff_altstatus(ap);
356 return;
358 /* There are no DMA controllers without ctl. BUG here to ensure
359 we never violate the HDMA1:0 transition timing and risk
360 corruption. */
361 BUG();
363 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
366 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
367 * @ap: port containing status register to be polled
368 * @tmout_pat: impatience timeout in msecs
369 * @tmout: overall timeout in msecs
371 * Sleep until ATA Status register bit BSY clears,
372 * or a timeout occurs.
374 * LOCKING:
375 * Kernel thread context (may sleep).
377 * RETURNS:
378 * 0 on success, -errno otherwise.
380 int ata_sff_busy_sleep(struct ata_port *ap,
381 unsigned long tmout_pat, unsigned long tmout)
383 unsigned long timer_start, timeout;
384 u8 status;
386 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
387 timer_start = jiffies;
388 timeout = ata_deadline(timer_start, tmout_pat);
389 while (status != 0xff && (status & ATA_BUSY) &&
390 time_before(jiffies, timeout)) {
391 msleep(50);
392 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
395 if (status != 0xff && (status & ATA_BUSY))
396 ata_port_printk(ap, KERN_WARNING,
397 "port is slow to respond, please be patient "
398 "(Status 0x%x)\n", status);
400 timeout = ata_deadline(timer_start, tmout);
401 while (status != 0xff && (status & ATA_BUSY) &&
402 time_before(jiffies, timeout)) {
403 msleep(50);
404 status = ap->ops->sff_check_status(ap);
407 if (status == 0xff)
408 return -ENODEV;
410 if (status & ATA_BUSY) {
411 ata_port_printk(ap, KERN_ERR, "port failed to respond "
412 "(%lu secs, Status 0x%x)\n",
413 DIV_ROUND_UP(tmout, 1000), status);
414 return -EBUSY;
417 return 0;
419 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
421 static int ata_sff_check_ready(struct ata_link *link)
423 u8 status = link->ap->ops->sff_check_status(link->ap);
425 return ata_check_ready(status);
429 * ata_sff_wait_ready - sleep until BSY clears, or timeout
430 * @link: SFF link to wait ready status for
431 * @deadline: deadline jiffies for the operation
433 * Sleep until ATA Status register bit BSY clears, or timeout
434 * occurs.
436 * LOCKING:
437 * Kernel thread context (may sleep).
439 * RETURNS:
440 * 0 on success, -errno otherwise.
442 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
444 return ata_wait_ready(link, deadline, ata_sff_check_ready);
446 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
449 * ata_sff_dev_select - Select device 0/1 on ATA bus
450 * @ap: ATA channel to manipulate
451 * @device: ATA device (numbered from zero) to select
453 * Use the method defined in the ATA specification to
454 * make either device 0, or device 1, active on the
455 * ATA channel. Works with both PIO and MMIO.
457 * May be used as the dev_select() entry in ata_port_operations.
459 * LOCKING:
460 * caller.
462 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
464 u8 tmp;
466 if (device == 0)
467 tmp = ATA_DEVICE_OBS;
468 else
469 tmp = ATA_DEVICE_OBS | ATA_DEV1;
471 iowrite8(tmp, ap->ioaddr.device_addr);
472 ata_sff_pause(ap); /* needed; also flushes, for mmio */
474 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
477 * ata_dev_select - Select device 0/1 on ATA bus
478 * @ap: ATA channel to manipulate
479 * @device: ATA device (numbered from zero) to select
480 * @wait: non-zero to wait for Status register BSY bit to clear
481 * @can_sleep: non-zero if context allows sleeping
483 * Use the method defined in the ATA specification to
484 * make either device 0, or device 1, active on the
485 * ATA channel.
487 * This is a high-level version of ata_sff_dev_select(), which
488 * additionally provides the services of inserting the proper
489 * pauses and status polling, where needed.
491 * LOCKING:
492 * caller.
494 void ata_dev_select(struct ata_port *ap, unsigned int device,
495 unsigned int wait, unsigned int can_sleep)
497 if (ata_msg_probe(ap))
498 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
499 "device %u, wait %u\n", device, wait);
501 if (wait)
502 ata_wait_idle(ap);
504 ap->ops->sff_dev_select(ap, device);
506 if (wait) {
507 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
508 msleep(150);
509 ata_wait_idle(ap);
514 * ata_sff_irq_on - Enable interrupts on a port.
515 * @ap: Port on which interrupts are enabled.
517 * Enable interrupts on a legacy IDE device using MMIO or PIO,
518 * wait for idle, clear any pending interrupts.
520 * LOCKING:
521 * Inherited from caller.
523 u8 ata_sff_irq_on(struct ata_port *ap)
525 struct ata_ioports *ioaddr = &ap->ioaddr;
526 u8 tmp;
528 ap->ctl &= ~ATA_NIEN;
529 ap->last_ctl = ap->ctl;
531 if (ioaddr->ctl_addr)
532 iowrite8(ap->ctl, ioaddr->ctl_addr);
533 tmp = ata_wait_idle(ap);
535 ap->ops->sff_irq_clear(ap);
537 return tmp;
539 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
542 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
543 * @ap: Port associated with this ATA transaction.
545 * Clear interrupt and error flags in DMA status register.
547 * May be used as the irq_clear() entry in ata_port_operations.
549 * LOCKING:
550 * spin_lock_irqsave(host lock)
552 void ata_sff_irq_clear(struct ata_port *ap)
554 void __iomem *mmio = ap->ioaddr.bmdma_addr;
556 if (!mmio)
557 return;
559 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
561 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
564 * ata_sff_tf_load - send taskfile registers to host controller
565 * @ap: Port to which output is sent
566 * @tf: ATA taskfile register set
568 * Outputs ATA taskfile to standard ATA host controller.
570 * LOCKING:
571 * Inherited from caller.
573 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
575 struct ata_ioports *ioaddr = &ap->ioaddr;
576 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
578 if (tf->ctl != ap->last_ctl) {
579 if (ioaddr->ctl_addr)
580 iowrite8(tf->ctl, ioaddr->ctl_addr);
581 ap->last_ctl = tf->ctl;
582 ata_wait_idle(ap);
585 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
586 WARN_ON_ONCE(!ioaddr->ctl_addr);
587 iowrite8(tf->hob_feature, ioaddr->feature_addr);
588 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
589 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
590 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
591 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
592 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
593 tf->hob_feature,
594 tf->hob_nsect,
595 tf->hob_lbal,
596 tf->hob_lbam,
597 tf->hob_lbah);
600 if (is_addr) {
601 iowrite8(tf->feature, ioaddr->feature_addr);
602 iowrite8(tf->nsect, ioaddr->nsect_addr);
603 iowrite8(tf->lbal, ioaddr->lbal_addr);
604 iowrite8(tf->lbam, ioaddr->lbam_addr);
605 iowrite8(tf->lbah, ioaddr->lbah_addr);
606 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
607 tf->feature,
608 tf->nsect,
609 tf->lbal,
610 tf->lbam,
611 tf->lbah);
614 if (tf->flags & ATA_TFLAG_DEVICE) {
615 iowrite8(tf->device, ioaddr->device_addr);
616 VPRINTK("device 0x%X\n", tf->device);
619 ata_wait_idle(ap);
621 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624 * ata_sff_tf_read - input device's ATA taskfile shadow registers
625 * @ap: Port from which input is read
626 * @tf: ATA taskfile register set for storing input
628 * Reads ATA taskfile registers for currently-selected device
629 * into @tf. Assumes the device has a fully SFF compliant task file
630 * layout and behaviour. If you device does not (eg has a different
631 * status method) then you will need to provide a replacement tf_read
633 * LOCKING:
634 * Inherited from caller.
636 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
638 struct ata_ioports *ioaddr = &ap->ioaddr;
640 tf->command = ata_sff_check_status(ap);
641 tf->feature = ioread8(ioaddr->error_addr);
642 tf->nsect = ioread8(ioaddr->nsect_addr);
643 tf->lbal = ioread8(ioaddr->lbal_addr);
644 tf->lbam = ioread8(ioaddr->lbam_addr);
645 tf->lbah = ioread8(ioaddr->lbah_addr);
646 tf->device = ioread8(ioaddr->device_addr);
648 if (tf->flags & ATA_TFLAG_LBA48) {
649 if (likely(ioaddr->ctl_addr)) {
650 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
651 tf->hob_feature = ioread8(ioaddr->error_addr);
652 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
653 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
654 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
655 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
656 iowrite8(tf->ctl, ioaddr->ctl_addr);
657 ap->last_ctl = tf->ctl;
658 } else
659 WARN_ON_ONCE(1);
662 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
665 * ata_sff_exec_command - issue ATA command to host controller
666 * @ap: port to which command is being issued
667 * @tf: ATA taskfile register set
669 * Issues ATA command, with proper synchronization with interrupt
670 * handler / other threads.
672 * LOCKING:
673 * spin_lock_irqsave(host lock)
675 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
677 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
679 iowrite8(tf->command, ap->ioaddr.command_addr);
680 ata_sff_pause(ap);
682 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
685 * ata_tf_to_host - issue ATA taskfile to host controller
686 * @ap: port to which command is being issued
687 * @tf: ATA taskfile register set
689 * Issues ATA taskfile register set to ATA host controller,
690 * with proper synchronization with interrupt handler and
691 * other threads.
693 * LOCKING:
694 * spin_lock_irqsave(host lock)
696 static inline void ata_tf_to_host(struct ata_port *ap,
697 const struct ata_taskfile *tf)
699 ap->ops->sff_tf_load(ap, tf);
700 ap->ops->sff_exec_command(ap, tf);
704 * ata_sff_data_xfer - Transfer data by PIO
705 * @dev: device to target
706 * @buf: data buffer
707 * @buflen: buffer length
708 * @rw: read/write
710 * Transfer data from/to the device data register by PIO.
712 * LOCKING:
713 * Inherited from caller.
715 * RETURNS:
716 * Bytes consumed.
718 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
719 unsigned int buflen, int rw)
721 struct ata_port *ap = dev->link->ap;
722 void __iomem *data_addr = ap->ioaddr.data_addr;
723 unsigned int words = buflen >> 1;
725 /* Transfer multiple of 2 bytes */
726 if (rw == READ)
727 ioread16_rep(data_addr, buf, words);
728 else
729 iowrite16_rep(data_addr, buf, words);
731 /* Transfer trailing byte, if any. */
732 if (unlikely(buflen & 0x01)) {
733 unsigned char pad[2];
735 /* Point buf to the tail of buffer */
736 buf += buflen - 1;
739 * Use io*16_rep() accessors here as well to avoid pointlessly
740 * swapping bytes to and from on the big endian machines...
742 if (rw == READ) {
743 ioread16_rep(data_addr, pad, 1);
744 *buf = pad[0];
745 } else {
746 pad[0] = *buf;
747 iowrite16_rep(data_addr, pad, 1);
749 words++;
752 return words << 1;
754 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
757 * ata_sff_data_xfer32 - Transfer data by PIO
758 * @dev: device to target
759 * @buf: data buffer
760 * @buflen: buffer length
761 * @rw: read/write
763 * Transfer data from/to the device data register by PIO using 32bit
764 * I/O operations.
766 * LOCKING:
767 * Inherited from caller.
769 * RETURNS:
770 * Bytes consumed.
773 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
774 unsigned int buflen, int rw)
776 struct ata_port *ap = dev->link->ap;
777 void __iomem *data_addr = ap->ioaddr.data_addr;
778 unsigned int words = buflen >> 2;
779 int slop = buflen & 3;
781 if (!(ap->pflags & ATA_PFLAG_PIO32))
782 return ata_sff_data_xfer(dev, buf, buflen, rw);
784 /* Transfer multiple of 4 bytes */
785 if (rw == READ)
786 ioread32_rep(data_addr, buf, words);
787 else
788 iowrite32_rep(data_addr, buf, words);
790 /* Transfer trailing bytes, if any */
791 if (unlikely(slop)) {
792 unsigned char pad[4];
794 /* Point buf to the tail of buffer */
795 buf += buflen - slop;
798 * Use io*_rep() accessors here as well to avoid pointlessly
799 * swapping bytes to and from on the big endian machines...
801 if (rw == READ) {
802 if (slop < 3)
803 ioread16_rep(data_addr, pad, 1);
804 else
805 ioread32_rep(data_addr, pad, 1);
806 memcpy(buf, pad, slop);
807 } else {
808 memcpy(pad, buf, slop);
809 if (slop < 3)
810 iowrite16_rep(data_addr, pad, 1);
811 else
812 iowrite32_rep(data_addr, pad, 1);
815 return (buflen + 1) & ~1;
817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
820 * ata_sff_data_xfer_noirq - Transfer data by PIO
821 * @dev: device to target
822 * @buf: data buffer
823 * @buflen: buffer length
824 * @rw: read/write
826 * Transfer data from/to the device data register by PIO. Do the
827 * transfer with interrupts disabled.
829 * LOCKING:
830 * Inherited from caller.
832 * RETURNS:
833 * Bytes consumed.
835 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
836 unsigned int buflen, int rw)
838 unsigned long flags;
839 unsigned int consumed;
841 local_irq_save(flags);
842 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
843 local_irq_restore(flags);
845 return consumed;
847 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
850 * ata_pio_sector - Transfer a sector of data.
851 * @qc: Command on going
853 * Transfer qc->sect_size bytes of data from/to the ATA device.
855 * LOCKING:
856 * Inherited from caller.
858 static void ata_pio_sector(struct ata_queued_cmd *qc)
860 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
861 struct ata_port *ap = qc->ap;
862 struct page *page;
863 unsigned int offset;
864 unsigned char *buf;
866 if (qc->curbytes == qc->nbytes - qc->sect_size)
867 ap->hsm_task_state = HSM_ST_LAST;
869 page = sg_page(qc->cursg);
870 offset = qc->cursg->offset + qc->cursg_ofs;
872 /* get the current page and offset */
873 page = nth_page(page, (offset >> PAGE_SHIFT));
874 offset %= PAGE_SIZE;
876 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
878 if (PageHighMem(page)) {
879 unsigned long flags;
881 /* FIXME: use a bounce buffer */
882 local_irq_save(flags);
883 buf = kmap_atomic(page, KM_IRQ0);
885 /* do the actual data transfer */
886 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
887 do_write);
889 kunmap_atomic(buf, KM_IRQ0);
890 local_irq_restore(flags);
891 } else {
892 buf = page_address(page);
893 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
894 do_write);
897 if (!do_write)
898 flush_dcache_page(page);
900 qc->curbytes += qc->sect_size;
901 qc->cursg_ofs += qc->sect_size;
903 if (qc->cursg_ofs == qc->cursg->length) {
904 qc->cursg = sg_next(qc->cursg);
905 qc->cursg_ofs = 0;
910 * ata_pio_sectors - Transfer one or many sectors.
911 * @qc: Command on going
913 * Transfer one or many sectors of data from/to the
914 * ATA device for the DRQ request.
916 * LOCKING:
917 * Inherited from caller.
919 static void ata_pio_sectors(struct ata_queued_cmd *qc)
921 if (is_multi_taskfile(&qc->tf)) {
922 /* READ/WRITE MULTIPLE */
923 unsigned int nsect;
925 WARN_ON_ONCE(qc->dev->multi_count == 0);
927 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
928 qc->dev->multi_count);
929 while (nsect--)
930 ata_pio_sector(qc);
931 } else
932 ata_pio_sector(qc);
934 ata_sff_sync(qc->ap); /* flush */
938 * atapi_send_cdb - Write CDB bytes to hardware
939 * @ap: Port to which ATAPI device is attached.
940 * @qc: Taskfile currently active
942 * When device has indicated its readiness to accept
943 * a CDB, this function is called. Send the CDB.
945 * LOCKING:
946 * caller.
948 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
950 /* send SCSI cdb */
951 DPRINTK("send cdb\n");
952 WARN_ON_ONCE(qc->dev->cdb_len < 12);
954 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
955 ata_sff_sync(ap);
956 /* FIXME: If the CDB is for DMA do we need to do the transition delay
957 or is bmdma_start guaranteed to do it ? */
958 switch (qc->tf.protocol) {
959 case ATAPI_PROT_PIO:
960 ap->hsm_task_state = HSM_ST;
961 break;
962 case ATAPI_PROT_NODATA:
963 ap->hsm_task_state = HSM_ST_LAST;
964 break;
965 case ATAPI_PROT_DMA:
966 ap->hsm_task_state = HSM_ST_LAST;
967 /* initiate bmdma */
968 ap->ops->bmdma_start(qc);
969 break;
974 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
975 * @qc: Command on going
976 * @bytes: number of bytes
978 * Transfer Transfer data from/to the ATAPI device.
980 * LOCKING:
981 * Inherited from caller.
984 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
986 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
987 struct ata_port *ap = qc->ap;
988 struct ata_device *dev = qc->dev;
989 struct ata_eh_info *ehi = &dev->link->eh_info;
990 struct scatterlist *sg;
991 struct page *page;
992 unsigned char *buf;
993 unsigned int offset, count, consumed;
995 next_sg:
996 sg = qc->cursg;
997 if (unlikely(!sg)) {
998 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
999 "buf=%u cur=%u bytes=%u",
1000 qc->nbytes, qc->curbytes, bytes);
1001 return -1;
1004 page = sg_page(sg);
1005 offset = sg->offset + qc->cursg_ofs;
1007 /* get the current page and offset */
1008 page = nth_page(page, (offset >> PAGE_SHIFT));
1009 offset %= PAGE_SIZE;
1011 /* don't overrun current sg */
1012 count = min(sg->length - qc->cursg_ofs, bytes);
1014 /* don't cross page boundaries */
1015 count = min(count, (unsigned int)PAGE_SIZE - offset);
1017 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1019 if (PageHighMem(page)) {
1020 unsigned long flags;
1022 /* FIXME: use bounce buffer */
1023 local_irq_save(flags);
1024 buf = kmap_atomic(page, KM_IRQ0);
1026 /* do the actual data transfer */
1027 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1028 count, rw);
1030 kunmap_atomic(buf, KM_IRQ0);
1031 local_irq_restore(flags);
1032 } else {
1033 buf = page_address(page);
1034 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1035 count, rw);
1038 bytes -= min(bytes, consumed);
1039 qc->curbytes += count;
1040 qc->cursg_ofs += count;
1042 if (qc->cursg_ofs == sg->length) {
1043 qc->cursg = sg_next(qc->cursg);
1044 qc->cursg_ofs = 0;
1048 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1049 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1050 * check correctly as it doesn't know if it is the last request being
1051 * made. Somebody should implement a proper sanity check.
1053 if (bytes)
1054 goto next_sg;
1055 return 0;
1059 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1060 * @qc: Command on going
1062 * Transfer Transfer data from/to the ATAPI device.
1064 * LOCKING:
1065 * Inherited from caller.
1067 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1069 struct ata_port *ap = qc->ap;
1070 struct ata_device *dev = qc->dev;
1071 struct ata_eh_info *ehi = &dev->link->eh_info;
1072 unsigned int ireason, bc_lo, bc_hi, bytes;
1073 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1075 /* Abuse qc->result_tf for temp storage of intermediate TF
1076 * here to save some kernel stack usage.
1077 * For normal completion, qc->result_tf is not relevant. For
1078 * error, qc->result_tf is later overwritten by ata_qc_complete().
1079 * So, the correctness of qc->result_tf is not affected.
1081 ap->ops->sff_tf_read(ap, &qc->result_tf);
1082 ireason = qc->result_tf.nsect;
1083 bc_lo = qc->result_tf.lbam;
1084 bc_hi = qc->result_tf.lbah;
1085 bytes = (bc_hi << 8) | bc_lo;
1087 /* shall be cleared to zero, indicating xfer of data */
1088 if (unlikely(ireason & (1 << 0)))
1089 goto atapi_check;
1091 /* make sure transfer direction matches expected */
1092 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1093 if (unlikely(do_write != i_write))
1094 goto atapi_check;
1096 if (unlikely(!bytes))
1097 goto atapi_check;
1099 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1101 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1102 goto err_out;
1103 ata_sff_sync(ap); /* flush */
1105 return;
1107 atapi_check:
1108 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1109 ireason, bytes);
1110 err_out:
1111 qc->err_mask |= AC_ERR_HSM;
1112 ap->hsm_task_state = HSM_ST_ERR;
1116 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1117 * @ap: the target ata_port
1118 * @qc: qc on going
1120 * RETURNS:
1121 * 1 if ok in workqueue, 0 otherwise.
1123 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1124 struct ata_queued_cmd *qc)
1126 if (qc->tf.flags & ATA_TFLAG_POLLING)
1127 return 1;
1129 if (ap->hsm_task_state == HSM_ST_FIRST) {
1130 if (qc->tf.protocol == ATA_PROT_PIO &&
1131 (qc->tf.flags & ATA_TFLAG_WRITE))
1132 return 1;
1134 if (ata_is_atapi(qc->tf.protocol) &&
1135 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1136 return 1;
1139 return 0;
1143 * ata_hsm_qc_complete - finish a qc running on standard HSM
1144 * @qc: Command to complete
1145 * @in_wq: 1 if called from workqueue, 0 otherwise
1147 * Finish @qc which is running on standard HSM.
1149 * LOCKING:
1150 * If @in_wq is zero, spin_lock_irqsave(host lock).
1151 * Otherwise, none on entry and grabs host lock.
1153 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1155 struct ata_port *ap = qc->ap;
1156 unsigned long flags;
1158 if (ap->ops->error_handler) {
1159 if (in_wq) {
1160 spin_lock_irqsave(ap->lock, flags);
1162 /* EH might have kicked in while host lock is
1163 * released.
1165 qc = ata_qc_from_tag(ap, qc->tag);
1166 if (qc) {
1167 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1168 ap->ops->sff_irq_on(ap);
1169 ata_qc_complete(qc);
1170 } else
1171 ata_port_freeze(ap);
1174 spin_unlock_irqrestore(ap->lock, flags);
1175 } else {
1176 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1177 ata_qc_complete(qc);
1178 else
1179 ata_port_freeze(ap);
1181 } else {
1182 if (in_wq) {
1183 spin_lock_irqsave(ap->lock, flags);
1184 ap->ops->sff_irq_on(ap);
1185 ata_qc_complete(qc);
1186 spin_unlock_irqrestore(ap->lock, flags);
1187 } else
1188 ata_qc_complete(qc);
1193 * ata_sff_hsm_move - move the HSM to the next state.
1194 * @ap: the target ata_port
1195 * @qc: qc on going
1196 * @status: current device status
1197 * @in_wq: 1 if called from workqueue, 0 otherwise
1199 * RETURNS:
1200 * 1 when poll next status needed, 0 otherwise.
1202 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1203 u8 status, int in_wq)
1205 struct ata_eh_info *ehi = &ap->link.eh_info;
1206 unsigned long flags = 0;
1207 int poll_next;
1209 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1211 /* Make sure ata_sff_qc_issue() does not throw things
1212 * like DMA polling into the workqueue. Notice that
1213 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1215 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1217 fsm_start:
1218 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1219 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1221 switch (ap->hsm_task_state) {
1222 case HSM_ST_FIRST:
1223 /* Send first data block or PACKET CDB */
1225 /* If polling, we will stay in the work queue after
1226 * sending the data. Otherwise, interrupt handler
1227 * takes over after sending the data.
1229 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1231 /* check device status */
1232 if (unlikely((status & ATA_DRQ) == 0)) {
1233 /* handle BSY=0, DRQ=0 as error */
1234 if (likely(status & (ATA_ERR | ATA_DF)))
1235 /* device stops HSM for abort/error */
1236 qc->err_mask |= AC_ERR_DEV;
1237 else {
1238 /* HSM violation. Let EH handle this */
1239 ata_ehi_push_desc(ehi,
1240 "ST_FIRST: !(DRQ|ERR|DF)");
1241 qc->err_mask |= AC_ERR_HSM;
1244 ap->hsm_task_state = HSM_ST_ERR;
1245 goto fsm_start;
1248 /* Device should not ask for data transfer (DRQ=1)
1249 * when it finds something wrong.
1250 * We ignore DRQ here and stop the HSM by
1251 * changing hsm_task_state to HSM_ST_ERR and
1252 * let the EH abort the command or reset the device.
1254 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1255 /* Some ATAPI tape drives forget to clear the ERR bit
1256 * when doing the next command (mostly request sense).
1257 * We ignore ERR here to workaround and proceed sending
1258 * the CDB.
1260 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1261 ata_ehi_push_desc(ehi, "ST_FIRST: "
1262 "DRQ=1 with device error, "
1263 "dev_stat 0x%X", status);
1264 qc->err_mask |= AC_ERR_HSM;
1265 ap->hsm_task_state = HSM_ST_ERR;
1266 goto fsm_start;
1270 /* Send the CDB (atapi) or the first data block (ata pio out).
1271 * During the state transition, interrupt handler shouldn't
1272 * be invoked before the data transfer is complete and
1273 * hsm_task_state is changed. Hence, the following locking.
1275 if (in_wq)
1276 spin_lock_irqsave(ap->lock, flags);
1278 if (qc->tf.protocol == ATA_PROT_PIO) {
1279 /* PIO data out protocol.
1280 * send first data block.
1283 /* ata_pio_sectors() might change the state
1284 * to HSM_ST_LAST. so, the state is changed here
1285 * before ata_pio_sectors().
1287 ap->hsm_task_state = HSM_ST;
1288 ata_pio_sectors(qc);
1289 } else
1290 /* send CDB */
1291 atapi_send_cdb(ap, qc);
1293 if (in_wq)
1294 spin_unlock_irqrestore(ap->lock, flags);
1296 /* if polling, ata_pio_task() handles the rest.
1297 * otherwise, interrupt handler takes over from here.
1299 break;
1301 case HSM_ST:
1302 /* complete command or read/write the data register */
1303 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1304 /* ATAPI PIO protocol */
1305 if ((status & ATA_DRQ) == 0) {
1306 /* No more data to transfer or device error.
1307 * Device error will be tagged in HSM_ST_LAST.
1309 ap->hsm_task_state = HSM_ST_LAST;
1310 goto fsm_start;
1313 /* Device should not ask for data transfer (DRQ=1)
1314 * when it finds something wrong.
1315 * We ignore DRQ here and stop the HSM by
1316 * changing hsm_task_state to HSM_ST_ERR and
1317 * let the EH abort the command or reset the device.
1319 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1320 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1321 "DRQ=1 with device error, "
1322 "dev_stat 0x%X", status);
1323 qc->err_mask |= AC_ERR_HSM;
1324 ap->hsm_task_state = HSM_ST_ERR;
1325 goto fsm_start;
1328 atapi_pio_bytes(qc);
1330 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1331 /* bad ireason reported by device */
1332 goto fsm_start;
1334 } else {
1335 /* ATA PIO protocol */
1336 if (unlikely((status & ATA_DRQ) == 0)) {
1337 /* handle BSY=0, DRQ=0 as error */
1338 if (likely(status & (ATA_ERR | ATA_DF))) {
1339 /* device stops HSM for abort/error */
1340 qc->err_mask |= AC_ERR_DEV;
1342 /* If diagnostic failed and this is
1343 * IDENTIFY, it's likely a phantom
1344 * device. Mark hint.
1346 if (qc->dev->horkage &
1347 ATA_HORKAGE_DIAGNOSTIC)
1348 qc->err_mask |=
1349 AC_ERR_NODEV_HINT;
1350 } else {
1351 /* HSM violation. Let EH handle this.
1352 * Phantom devices also trigger this
1353 * condition. Mark hint.
1355 ata_ehi_push_desc(ehi, "ST-ATA: "
1356 "DRQ=0 without device error, "
1357 "dev_stat 0x%X", status);
1358 qc->err_mask |= AC_ERR_HSM |
1359 AC_ERR_NODEV_HINT;
1362 ap->hsm_task_state = HSM_ST_ERR;
1363 goto fsm_start;
1366 /* For PIO reads, some devices may ask for
1367 * data transfer (DRQ=1) alone with ERR=1.
1368 * We respect DRQ here and transfer one
1369 * block of junk data before changing the
1370 * hsm_task_state to HSM_ST_ERR.
1372 * For PIO writes, ERR=1 DRQ=1 doesn't make
1373 * sense since the data block has been
1374 * transferred to the device.
1376 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1377 /* data might be corrputed */
1378 qc->err_mask |= AC_ERR_DEV;
1380 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1381 ata_pio_sectors(qc);
1382 status = ata_wait_idle(ap);
1385 if (status & (ATA_BUSY | ATA_DRQ)) {
1386 ata_ehi_push_desc(ehi, "ST-ATA: "
1387 "BUSY|DRQ persists on ERR|DF, "
1388 "dev_stat 0x%X", status);
1389 qc->err_mask |= AC_ERR_HSM;
1392 /* There are oddball controllers with
1393 * status register stuck at 0x7f and
1394 * lbal/m/h at zero which makes it
1395 * pass all other presence detection
1396 * mechanisms we have. Set NODEV_HINT
1397 * for it. Kernel bz#7241.
1399 if (status == 0x7f)
1400 qc->err_mask |= AC_ERR_NODEV_HINT;
1402 /* ata_pio_sectors() might change the
1403 * state to HSM_ST_LAST. so, the state
1404 * is changed after ata_pio_sectors().
1406 ap->hsm_task_state = HSM_ST_ERR;
1407 goto fsm_start;
1410 ata_pio_sectors(qc);
1412 if (ap->hsm_task_state == HSM_ST_LAST &&
1413 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1414 /* all data read */
1415 status = ata_wait_idle(ap);
1416 goto fsm_start;
1420 poll_next = 1;
1421 break;
1423 case HSM_ST_LAST:
1424 if (unlikely(!ata_ok(status))) {
1425 qc->err_mask |= __ac_err_mask(status);
1426 ap->hsm_task_state = HSM_ST_ERR;
1427 goto fsm_start;
1430 /* no more data to transfer */
1431 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1432 ap->print_id, qc->dev->devno, status);
1434 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1436 ap->hsm_task_state = HSM_ST_IDLE;
1438 /* complete taskfile transaction */
1439 ata_hsm_qc_complete(qc, in_wq);
1441 poll_next = 0;
1442 break;
1444 case HSM_ST_ERR:
1445 ap->hsm_task_state = HSM_ST_IDLE;
1447 /* complete taskfile transaction */
1448 ata_hsm_qc_complete(qc, in_wq);
1450 poll_next = 0;
1451 break;
1452 default:
1453 poll_next = 0;
1454 BUG();
1457 return poll_next;
1459 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1461 void ata_pio_task(struct work_struct *work)
1463 struct ata_port *ap =
1464 container_of(work, struct ata_port, port_task.work);
1465 struct ata_queued_cmd *qc = ap->port_task_data;
1466 u8 status;
1467 int poll_next;
1469 fsm_start:
1470 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1473 * This is purely heuristic. This is a fast path.
1474 * Sometimes when we enter, BSY will be cleared in
1475 * a chk-status or two. If not, the drive is probably seeking
1476 * or something. Snooze for a couple msecs, then
1477 * chk-status again. If still busy, queue delayed work.
1479 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1480 if (status & ATA_BUSY) {
1481 msleep(2);
1482 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1483 if (status & ATA_BUSY) {
1484 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1485 return;
1489 /* move the HSM */
1490 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1492 /* another command or interrupt handler
1493 * may be running at this point.
1495 if (poll_next)
1496 goto fsm_start;
1500 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1501 * @qc: command to issue to device
1503 * Using various libata functions and hooks, this function
1504 * starts an ATA command. ATA commands are grouped into
1505 * classes called "protocols", and issuing each type of protocol
1506 * is slightly different.
1508 * May be used as the qc_issue() entry in ata_port_operations.
1510 * LOCKING:
1511 * spin_lock_irqsave(host lock)
1513 * RETURNS:
1514 * Zero on success, AC_ERR_* mask on failure
1516 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1518 struct ata_port *ap = qc->ap;
1520 /* Use polling pio if the LLD doesn't handle
1521 * interrupt driven pio and atapi CDB interrupt.
1523 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1524 switch (qc->tf.protocol) {
1525 case ATA_PROT_PIO:
1526 case ATA_PROT_NODATA:
1527 case ATAPI_PROT_PIO:
1528 case ATAPI_PROT_NODATA:
1529 qc->tf.flags |= ATA_TFLAG_POLLING;
1530 break;
1531 case ATAPI_PROT_DMA:
1532 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1533 /* see ata_dma_blacklisted() */
1534 BUG();
1535 break;
1536 default:
1537 break;
1541 /* select the device */
1542 ata_dev_select(ap, qc->dev->devno, 1, 0);
1544 /* start the command */
1545 switch (qc->tf.protocol) {
1546 case ATA_PROT_NODATA:
1547 if (qc->tf.flags & ATA_TFLAG_POLLING)
1548 ata_qc_set_polling(qc);
1550 ata_tf_to_host(ap, &qc->tf);
1551 ap->hsm_task_state = HSM_ST_LAST;
1553 if (qc->tf.flags & ATA_TFLAG_POLLING)
1554 ata_pio_queue_task(ap, qc, 0);
1556 break;
1558 case ATA_PROT_DMA:
1559 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1561 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1562 ap->ops->bmdma_setup(qc); /* set up bmdma */
1563 ap->ops->bmdma_start(qc); /* initiate bmdma */
1564 ap->hsm_task_state = HSM_ST_LAST;
1565 break;
1567 case ATA_PROT_PIO:
1568 if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 ata_qc_set_polling(qc);
1571 ata_tf_to_host(ap, &qc->tf);
1573 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1574 /* PIO data out protocol */
1575 ap->hsm_task_state = HSM_ST_FIRST;
1576 ata_pio_queue_task(ap, qc, 0);
1578 /* always send first data block using
1579 * the ata_pio_task() codepath.
1581 } else {
1582 /* PIO data in protocol */
1583 ap->hsm_task_state = HSM_ST;
1585 if (qc->tf.flags & ATA_TFLAG_POLLING)
1586 ata_pio_queue_task(ap, qc, 0);
1588 /* if polling, ata_pio_task() handles the rest.
1589 * otherwise, interrupt handler takes over from here.
1593 break;
1595 case ATAPI_PROT_PIO:
1596 case ATAPI_PROT_NODATA:
1597 if (qc->tf.flags & ATA_TFLAG_POLLING)
1598 ata_qc_set_polling(qc);
1600 ata_tf_to_host(ap, &qc->tf);
1602 ap->hsm_task_state = HSM_ST_FIRST;
1604 /* send cdb by polling if no cdb interrupt */
1605 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1606 (qc->tf.flags & ATA_TFLAG_POLLING))
1607 ata_pio_queue_task(ap, qc, 0);
1608 break;
1610 case ATAPI_PROT_DMA:
1611 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1613 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1614 ap->ops->bmdma_setup(qc); /* set up bmdma */
1615 ap->hsm_task_state = HSM_ST_FIRST;
1617 /* send cdb by polling if no cdb interrupt */
1618 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1619 ata_pio_queue_task(ap, qc, 0);
1620 break;
1622 default:
1623 WARN_ON_ONCE(1);
1624 return AC_ERR_SYSTEM;
1627 return 0;
1629 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1632 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1633 * @qc: qc to fill result TF for
1635 * @qc is finished and result TF needs to be filled. Fill it
1636 * using ->sff_tf_read.
1638 * LOCKING:
1639 * spin_lock_irqsave(host lock)
1641 * RETURNS:
1642 * true indicating that result TF is successfully filled.
1644 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1646 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1647 return true;
1649 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1652 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1653 * @ap: Port on which interrupt arrived (possibly...)
1654 * @qc: Taskfile currently active in engine
1656 * Handle host interrupt for given queued command. Currently,
1657 * only DMA interrupts are handled. All other commands are
1658 * handled via polling with interrupts disabled (nIEN bit).
1660 * LOCKING:
1661 * spin_lock_irqsave(host lock)
1663 * RETURNS:
1664 * One if interrupt was handled, zero if not (shared irq).
1666 unsigned int ata_sff_host_intr(struct ata_port *ap,
1667 struct ata_queued_cmd *qc)
1669 struct ata_eh_info *ehi = &ap->link.eh_info;
1670 u8 status, host_stat = 0;
1671 bool bmdma_stopped = false;
1673 VPRINTK("ata%u: protocol %d task_state %d\n",
1674 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1676 /* Check whether we are expecting interrupt in this state */
1677 switch (ap->hsm_task_state) {
1678 case HSM_ST_FIRST:
1679 /* Some pre-ATAPI-4 devices assert INTRQ
1680 * at this state when ready to receive CDB.
1683 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1684 * The flag was turned on only for atapi devices. No
1685 * need to check ata_is_atapi(qc->tf.protocol) again.
1687 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1688 goto idle_irq;
1689 break;
1690 case HSM_ST_LAST:
1691 if (qc->tf.protocol == ATA_PROT_DMA ||
1692 qc->tf.protocol == ATAPI_PROT_DMA) {
1693 /* check status of DMA engine */
1694 host_stat = ap->ops->bmdma_status(ap);
1695 VPRINTK("ata%u: host_stat 0x%X\n",
1696 ap->print_id, host_stat);
1698 /* if it's not our irq... */
1699 if (!(host_stat & ATA_DMA_INTR))
1700 goto idle_irq;
1702 /* before we do anything else, clear DMA-Start bit */
1703 ap->ops->bmdma_stop(qc);
1704 bmdma_stopped = true;
1706 if (unlikely(host_stat & ATA_DMA_ERR)) {
1707 /* error when transfering data to/from memory */
1708 qc->err_mask |= AC_ERR_HOST_BUS;
1709 ap->hsm_task_state = HSM_ST_ERR;
1712 break;
1713 case HSM_ST:
1714 break;
1715 default:
1716 goto idle_irq;
1720 /* check main status, clearing INTRQ if needed */
1721 status = ata_sff_irq_status(ap);
1722 if (status & ATA_BUSY) {
1723 if (bmdma_stopped) {
1724 /* BMDMA engine is already stopped, we're screwed */
1725 qc->err_mask |= AC_ERR_HSM;
1726 ap->hsm_task_state = HSM_ST_ERR;
1727 } else
1728 goto idle_irq;
1731 /* ack bmdma irq events */
1732 ap->ops->sff_irq_clear(ap);
1734 ata_sff_hsm_move(ap, qc, status, 0);
1736 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1737 qc->tf.protocol == ATAPI_PROT_DMA))
1738 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1740 return 1; /* irq handled */
1742 idle_irq:
1743 ap->stats.idle_irq++;
1745 #ifdef ATA_IRQ_TRAP
1746 if ((ap->stats.idle_irq % 1000) == 0) {
1747 ap->ops->sff_check_status(ap);
1748 ap->ops->sff_irq_clear(ap);
1749 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1750 return 1;
1752 #endif
1753 return 0; /* irq not handled */
1755 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1758 * ata_sff_interrupt - Default ATA host interrupt handler
1759 * @irq: irq line (unused)
1760 * @dev_instance: pointer to our ata_host information structure
1762 * Default interrupt handler for PCI IDE devices. Calls
1763 * ata_sff_host_intr() for each port that is not disabled.
1765 * LOCKING:
1766 * Obtains host lock during operation.
1768 * RETURNS:
1769 * IRQ_NONE or IRQ_HANDLED.
1771 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1773 struct ata_host *host = dev_instance;
1774 bool retried = false;
1775 unsigned int i;
1776 unsigned int handled, idle, polling;
1777 unsigned long flags;
1779 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1780 spin_lock_irqsave(&host->lock, flags);
1782 retry:
1783 handled = idle = polling = 0;
1784 for (i = 0; i < host->n_ports; i++) {
1785 struct ata_port *ap = host->ports[i];
1786 struct ata_queued_cmd *qc;
1788 if (unlikely(ap->flags & ATA_FLAG_DISABLED))
1789 continue;
1791 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1792 if (qc) {
1793 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1794 handled |= ata_sff_host_intr(ap, qc);
1795 else
1796 polling |= 1 << i;
1797 } else
1798 idle |= 1 << i;
1802 * If no port was expecting IRQ but the controller is actually
1803 * asserting IRQ line, nobody cared will ensue. Check IRQ
1804 * pending status if available and clear spurious IRQ.
1806 if (!handled && !retried) {
1807 bool retry = false;
1809 for (i = 0; i < host->n_ports; i++) {
1810 struct ata_port *ap = host->ports[i];
1812 if (polling & (1 << i))
1813 continue;
1815 if (!ap->ops->sff_irq_check ||
1816 !ap->ops->sff_irq_check(ap))
1817 continue;
1819 if (idle & (1 << i)) {
1820 ap->ops->sff_check_status(ap);
1821 ap->ops->sff_irq_clear(ap);
1822 } else {
1823 /* clear INTRQ and check if BUSY cleared */
1824 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1825 retry |= true;
1827 * With command in flight, we can't do
1828 * sff_irq_clear() w/o racing with completion.
1833 if (retry) {
1834 retried = true;
1835 goto retry;
1839 spin_unlock_irqrestore(&host->lock, flags);
1841 return IRQ_RETVAL(handled);
1843 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1846 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1847 * @ap: port that appears to have timed out
1849 * Called from the libata error handlers when the core code suspects
1850 * an interrupt has been lost. If it has complete anything we can and
1851 * then return. Interface must support altstatus for this faster
1852 * recovery to occur.
1854 * Locking:
1855 * Caller holds host lock
1858 void ata_sff_lost_interrupt(struct ata_port *ap)
1860 u8 status;
1861 struct ata_queued_cmd *qc;
1863 /* Only one outstanding command per SFF channel */
1864 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1865 /* Check we have a live one.. */
1866 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE))
1867 return;
1868 /* We cannot lose an interrupt on a polled command */
1869 if (qc->tf.flags & ATA_TFLAG_POLLING)
1870 return;
1871 /* See if the controller thinks it is still busy - if so the command
1872 isn't a lost IRQ but is still in progress */
1873 status = ata_sff_altstatus(ap);
1874 if (status & ATA_BUSY)
1875 return;
1877 /* There was a command running, we are no longer busy and we have
1878 no interrupt. */
1879 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1880 status);
1881 /* Run the host interrupt logic as if the interrupt had not been
1882 lost */
1883 ata_sff_host_intr(ap, qc);
1885 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1888 * ata_sff_freeze - Freeze SFF controller port
1889 * @ap: port to freeze
1891 * Freeze BMDMA controller port.
1893 * LOCKING:
1894 * Inherited from caller.
1896 void ata_sff_freeze(struct ata_port *ap)
1898 struct ata_ioports *ioaddr = &ap->ioaddr;
1900 ap->ctl |= ATA_NIEN;
1901 ap->last_ctl = ap->ctl;
1903 if (ioaddr->ctl_addr)
1904 iowrite8(ap->ctl, ioaddr->ctl_addr);
1906 /* Under certain circumstances, some controllers raise IRQ on
1907 * ATA_NIEN manipulation. Also, many controllers fail to mask
1908 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1910 ap->ops->sff_check_status(ap);
1912 ap->ops->sff_irq_clear(ap);
1914 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1917 * ata_sff_thaw - Thaw SFF controller port
1918 * @ap: port to thaw
1920 * Thaw SFF controller port.
1922 * LOCKING:
1923 * Inherited from caller.
1925 void ata_sff_thaw(struct ata_port *ap)
1927 /* clear & re-enable interrupts */
1928 ap->ops->sff_check_status(ap);
1929 ap->ops->sff_irq_clear(ap);
1930 ap->ops->sff_irq_on(ap);
1932 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1935 * ata_sff_prereset - prepare SFF link for reset
1936 * @link: SFF link to be reset
1937 * @deadline: deadline jiffies for the operation
1939 * SFF link @link is about to be reset. Initialize it. It first
1940 * calls ata_std_prereset() and wait for !BSY if the port is
1941 * being softreset.
1943 * LOCKING:
1944 * Kernel thread context (may sleep)
1946 * RETURNS:
1947 * 0 on success, -errno otherwise.
1949 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1951 struct ata_eh_context *ehc = &link->eh_context;
1952 int rc;
1954 rc = ata_std_prereset(link, deadline);
1955 if (rc)
1956 return rc;
1958 /* if we're about to do hardreset, nothing more to do */
1959 if (ehc->i.action & ATA_EH_HARDRESET)
1960 return 0;
1962 /* wait for !BSY if we don't know that no device is attached */
1963 if (!ata_link_offline(link)) {
1964 rc = ata_sff_wait_ready(link, deadline);
1965 if (rc && rc != -ENODEV) {
1966 ata_link_printk(link, KERN_WARNING, "device not ready "
1967 "(errno=%d), forcing hardreset\n", rc);
1968 ehc->i.action |= ATA_EH_HARDRESET;
1972 return 0;
1974 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1977 * ata_devchk - PATA device presence detection
1978 * @ap: ATA channel to examine
1979 * @device: Device to examine (starting at zero)
1981 * This technique was originally described in
1982 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1983 * later found its way into the ATA/ATAPI spec.
1985 * Write a pattern to the ATA shadow registers,
1986 * and if a device is present, it will respond by
1987 * correctly storing and echoing back the
1988 * ATA shadow register contents.
1990 * LOCKING:
1991 * caller.
1993 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1995 struct ata_ioports *ioaddr = &ap->ioaddr;
1996 u8 nsect, lbal;
1998 ap->ops->sff_dev_select(ap, device);
2000 iowrite8(0x55, ioaddr->nsect_addr);
2001 iowrite8(0xaa, ioaddr->lbal_addr);
2003 iowrite8(0xaa, ioaddr->nsect_addr);
2004 iowrite8(0x55, ioaddr->lbal_addr);
2006 iowrite8(0x55, ioaddr->nsect_addr);
2007 iowrite8(0xaa, ioaddr->lbal_addr);
2009 nsect = ioread8(ioaddr->nsect_addr);
2010 lbal = ioread8(ioaddr->lbal_addr);
2012 if ((nsect == 0x55) && (lbal == 0xaa))
2013 return 1; /* we found a device */
2015 return 0; /* nothing found */
2019 * ata_sff_dev_classify - Parse returned ATA device signature
2020 * @dev: ATA device to classify (starting at zero)
2021 * @present: device seems present
2022 * @r_err: Value of error register on completion
2024 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2025 * an ATA/ATAPI-defined set of values is placed in the ATA
2026 * shadow registers, indicating the results of device detection
2027 * and diagnostics.
2029 * Select the ATA device, and read the values from the ATA shadow
2030 * registers. Then parse according to the Error register value,
2031 * and the spec-defined values examined by ata_dev_classify().
2033 * LOCKING:
2034 * caller.
2036 * RETURNS:
2037 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
2039 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
2040 u8 *r_err)
2042 struct ata_port *ap = dev->link->ap;
2043 struct ata_taskfile tf;
2044 unsigned int class;
2045 u8 err;
2047 ap->ops->sff_dev_select(ap, dev->devno);
2049 memset(&tf, 0, sizeof(tf));
2051 ap->ops->sff_tf_read(ap, &tf);
2052 err = tf.feature;
2053 if (r_err)
2054 *r_err = err;
2056 /* see if device passed diags: continue and warn later */
2057 if (err == 0)
2058 /* diagnostic fail : do nothing _YET_ */
2059 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2060 else if (err == 1)
2061 /* do nothing */ ;
2062 else if ((dev->devno == 0) && (err == 0x81))
2063 /* do nothing */ ;
2064 else
2065 return ATA_DEV_NONE;
2067 /* determine if device is ATA or ATAPI */
2068 class = ata_dev_classify(&tf);
2070 if (class == ATA_DEV_UNKNOWN) {
2071 /* If the device failed diagnostic, it's likely to
2072 * have reported incorrect device signature too.
2073 * Assume ATA device if the device seems present but
2074 * device signature is invalid with diagnostic
2075 * failure.
2077 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2078 class = ATA_DEV_ATA;
2079 else
2080 class = ATA_DEV_NONE;
2081 } else if ((class == ATA_DEV_ATA) &&
2082 (ap->ops->sff_check_status(ap) == 0))
2083 class = ATA_DEV_NONE;
2085 return class;
2087 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2090 * ata_sff_wait_after_reset - wait for devices to become ready after reset
2091 * @link: SFF link which is just reset
2092 * @devmask: mask of present devices
2093 * @deadline: deadline jiffies for the operation
2095 * Wait devices attached to SFF @link to become ready after
2096 * reset. It contains preceding 150ms wait to avoid accessing TF
2097 * status register too early.
2099 * LOCKING:
2100 * Kernel thread context (may sleep).
2102 * RETURNS:
2103 * 0 on success, -ENODEV if some or all of devices in @devmask
2104 * don't seem to exist. -errno on other errors.
2106 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2107 unsigned long deadline)
2109 struct ata_port *ap = link->ap;
2110 struct ata_ioports *ioaddr = &ap->ioaddr;
2111 unsigned int dev0 = devmask & (1 << 0);
2112 unsigned int dev1 = devmask & (1 << 1);
2113 int rc, ret = 0;
2115 msleep(ATA_WAIT_AFTER_RESET);
2117 /* always check readiness of the master device */
2118 rc = ata_sff_wait_ready(link, deadline);
2119 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2120 * and TF status is 0xff, bail out on it too.
2122 if (rc)
2123 return rc;
2125 /* if device 1 was found in ata_devchk, wait for register
2126 * access briefly, then wait for BSY to clear.
2128 if (dev1) {
2129 int i;
2131 ap->ops->sff_dev_select(ap, 1);
2133 /* Wait for register access. Some ATAPI devices fail
2134 * to set nsect/lbal after reset, so don't waste too
2135 * much time on it. We're gonna wait for !BSY anyway.
2137 for (i = 0; i < 2; i++) {
2138 u8 nsect, lbal;
2140 nsect = ioread8(ioaddr->nsect_addr);
2141 lbal = ioread8(ioaddr->lbal_addr);
2142 if ((nsect == 1) && (lbal == 1))
2143 break;
2144 msleep(50); /* give drive a breather */
2147 rc = ata_sff_wait_ready(link, deadline);
2148 if (rc) {
2149 if (rc != -ENODEV)
2150 return rc;
2151 ret = rc;
2155 /* is all this really necessary? */
2156 ap->ops->sff_dev_select(ap, 0);
2157 if (dev1)
2158 ap->ops->sff_dev_select(ap, 1);
2159 if (dev0)
2160 ap->ops->sff_dev_select(ap, 0);
2162 return ret;
2164 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2166 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2167 unsigned long deadline)
2169 struct ata_ioports *ioaddr = &ap->ioaddr;
2171 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2173 /* software reset. causes dev0 to be selected */
2174 iowrite8(ap->ctl, ioaddr->ctl_addr);
2175 udelay(20); /* FIXME: flush */
2176 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2177 udelay(20); /* FIXME: flush */
2178 iowrite8(ap->ctl, ioaddr->ctl_addr);
2179 ap->last_ctl = ap->ctl;
2181 /* wait the port to become ready */
2182 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2186 * ata_sff_softreset - reset host port via ATA SRST
2187 * @link: ATA link to reset
2188 * @classes: resulting classes of attached devices
2189 * @deadline: deadline jiffies for the operation
2191 * Reset host port using ATA SRST.
2193 * LOCKING:
2194 * Kernel thread context (may sleep)
2196 * RETURNS:
2197 * 0 on success, -errno otherwise.
2199 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2200 unsigned long deadline)
2202 struct ata_port *ap = link->ap;
2203 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2204 unsigned int devmask = 0;
2205 int rc;
2206 u8 err;
2208 DPRINTK("ENTER\n");
2210 /* determine if device 0/1 are present */
2211 if (ata_devchk(ap, 0))
2212 devmask |= (1 << 0);
2213 if (slave_possible && ata_devchk(ap, 1))
2214 devmask |= (1 << 1);
2216 /* select device 0 again */
2217 ap->ops->sff_dev_select(ap, 0);
2219 /* issue bus reset */
2220 DPRINTK("about to softreset, devmask=%x\n", devmask);
2221 rc = ata_bus_softreset(ap, devmask, deadline);
2222 /* if link is occupied, -ENODEV too is an error */
2223 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2224 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2225 return rc;
2228 /* determine by signature whether we have ATA or ATAPI devices */
2229 classes[0] = ata_sff_dev_classify(&link->device[0],
2230 devmask & (1 << 0), &err);
2231 if (slave_possible && err != 0x81)
2232 classes[1] = ata_sff_dev_classify(&link->device[1],
2233 devmask & (1 << 1), &err);
2235 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2236 return 0;
2238 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2241 * sata_sff_hardreset - reset host port via SATA phy reset
2242 * @link: link to reset
2243 * @class: resulting class of attached device
2244 * @deadline: deadline jiffies for the operation
2246 * SATA phy-reset host port using DET bits of SControl register,
2247 * wait for !BSY and classify the attached device.
2249 * LOCKING:
2250 * Kernel thread context (may sleep)
2252 * RETURNS:
2253 * 0 on success, -errno otherwise.
2255 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2256 unsigned long deadline)
2258 struct ata_eh_context *ehc = &link->eh_context;
2259 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2260 bool online;
2261 int rc;
2263 rc = sata_link_hardreset(link, timing, deadline, &online,
2264 ata_sff_check_ready);
2265 if (online)
2266 *class = ata_sff_dev_classify(link->device, 1, NULL);
2268 DPRINTK("EXIT, class=%u\n", *class);
2269 return rc;
2271 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2274 * ata_sff_postreset - SFF postreset callback
2275 * @link: the target SFF ata_link
2276 * @classes: classes of attached devices
2278 * This function is invoked after a successful reset. It first
2279 * calls ata_std_postreset() and performs SFF specific postreset
2280 * processing.
2282 * LOCKING:
2283 * Kernel thread context (may sleep)
2285 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2287 struct ata_port *ap = link->ap;
2289 ata_std_postreset(link, classes);
2291 /* is double-select really necessary? */
2292 if (classes[0] != ATA_DEV_NONE)
2293 ap->ops->sff_dev_select(ap, 1);
2294 if (classes[1] != ATA_DEV_NONE)
2295 ap->ops->sff_dev_select(ap, 0);
2297 /* bail out if no device is present */
2298 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2299 DPRINTK("EXIT, no device\n");
2300 return;
2303 /* set up device control */
2304 if (ap->ioaddr.ctl_addr) {
2305 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2306 ap->last_ctl = ap->ctl;
2309 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2312 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2313 * @qc: command
2315 * Drain the FIFO and device of any stuck data following a command
2316 * failing to complete. In some cases this is necessary before a
2317 * reset will recover the device.
2321 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2323 int count;
2324 struct ata_port *ap;
2326 /* We only need to flush incoming data when a command was running */
2327 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2328 return;
2330 ap = qc->ap;
2331 /* Drain up to 64K of data before we give up this recovery method */
2332 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2333 && count < 65536; count += 2)
2334 ioread16(ap->ioaddr.data_addr);
2336 /* Can become DEBUG later */
2337 if (count)
2338 ata_port_printk(ap, KERN_DEBUG,
2339 "drained %d bytes to clear DRQ.\n", count);
2342 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2345 * ata_sff_error_handler - Stock error handler for BMDMA controller
2346 * @ap: port to handle error for
2348 * Stock error handler for SFF controller. It can handle both
2349 * PATA and SATA controllers. Many controllers should be able to
2350 * use this EH as-is or with some added handling before and
2351 * after.
2353 * LOCKING:
2354 * Kernel thread context (may sleep)
2356 void ata_sff_error_handler(struct ata_port *ap)
2358 ata_reset_fn_t softreset = ap->ops->softreset;
2359 ata_reset_fn_t hardreset = ap->ops->hardreset;
2360 struct ata_queued_cmd *qc;
2361 unsigned long flags;
2362 int thaw = 0;
2364 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2365 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2366 qc = NULL;
2368 /* reset PIO HSM and stop DMA engine */
2369 spin_lock_irqsave(ap->lock, flags);
2371 ap->hsm_task_state = HSM_ST_IDLE;
2373 if (ap->ioaddr.bmdma_addr &&
2374 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2375 qc->tf.protocol == ATAPI_PROT_DMA)) {
2376 u8 host_stat;
2378 host_stat = ap->ops->bmdma_status(ap);
2380 /* BMDMA controllers indicate host bus error by
2381 * setting DMA_ERR bit and timing out. As it wasn't
2382 * really a timeout event, adjust error mask and
2383 * cancel frozen state.
2385 if (qc->err_mask == AC_ERR_TIMEOUT
2386 && (host_stat & ATA_DMA_ERR)) {
2387 qc->err_mask = AC_ERR_HOST_BUS;
2388 thaw = 1;
2391 ap->ops->bmdma_stop(qc);
2394 ata_sff_sync(ap); /* FIXME: We don't need this */
2395 ap->ops->sff_check_status(ap);
2396 ap->ops->sff_irq_clear(ap);
2397 /* We *MUST* do FIFO draining before we issue a reset as several
2398 * devices helpfully clear their internal state and will lock solid
2399 * if we touch the data port post reset. Pass qc in case anyone wants
2400 * to do different PIO/DMA recovery or has per command fixups
2402 if (ap->ops->drain_fifo)
2403 ap->ops->drain_fifo(qc);
2405 spin_unlock_irqrestore(ap->lock, flags);
2407 if (thaw)
2408 ata_eh_thaw_port(ap);
2410 /* PIO and DMA engines have been stopped, perform recovery */
2412 /* Ignore ata_sff_softreset if ctl isn't accessible and
2413 * built-in hardresets if SCR access isn't available.
2415 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2416 softreset = NULL;
2417 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2418 hardreset = NULL;
2420 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2421 ap->ops->postreset);
2423 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2426 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2427 * @qc: internal command to clean up
2429 * LOCKING:
2430 * Kernel thread context (may sleep)
2432 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2434 struct ata_port *ap = qc->ap;
2435 unsigned long flags;
2437 spin_lock_irqsave(ap->lock, flags);
2439 ap->hsm_task_state = HSM_ST_IDLE;
2441 if (ap->ioaddr.bmdma_addr)
2442 ap->ops->bmdma_stop(qc);
2444 spin_unlock_irqrestore(ap->lock, flags);
2446 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2449 * ata_sff_port_start - Set port up for dma.
2450 * @ap: Port to initialize
2452 * Called just after data structures for each port are
2453 * initialized. Allocates space for PRD table if the device
2454 * is DMA capable SFF.
2456 * May be used as the port_start() entry in ata_port_operations.
2458 * LOCKING:
2459 * Inherited from caller.
2461 int ata_sff_port_start(struct ata_port *ap)
2463 if (ap->ioaddr.bmdma_addr)
2464 return ata_port_start(ap);
2465 return 0;
2467 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2470 * ata_sff_port_start32 - Set port up for dma.
2471 * @ap: Port to initialize
2473 * Called just after data structures for each port are
2474 * initialized. Allocates space for PRD table if the device
2475 * is DMA capable SFF.
2477 * May be used as the port_start() entry in ata_port_operations for
2478 * devices that are capable of 32bit PIO.
2480 * LOCKING:
2481 * Inherited from caller.
2483 int ata_sff_port_start32(struct ata_port *ap)
2485 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2486 if (ap->ioaddr.bmdma_addr)
2487 return ata_port_start(ap);
2488 return 0;
2490 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2493 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2494 * @ioaddr: IO address structure to be initialized
2496 * Utility function which initializes data_addr, error_addr,
2497 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2498 * device_addr, status_addr, and command_addr to standard offsets
2499 * relative to cmd_addr.
2501 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2503 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2505 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2506 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2507 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2508 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2509 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2510 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2511 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2512 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2513 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2514 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2516 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2518 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2519 unsigned long xfer_mask)
2521 /* Filter out DMA modes if the device has been configured by
2522 the BIOS as PIO only */
2524 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2525 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2526 return xfer_mask;
2528 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2531 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2532 * @qc: Info associated with this ATA transaction.
2534 * LOCKING:
2535 * spin_lock_irqsave(host lock)
2537 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2539 struct ata_port *ap = qc->ap;
2540 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2541 u8 dmactl;
2543 /* load PRD table addr. */
2544 mb(); /* make sure PRD table writes are visible to controller */
2545 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2547 /* specify data direction, triple-check start bit is clear */
2548 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2549 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2550 if (!rw)
2551 dmactl |= ATA_DMA_WR;
2552 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2554 /* issue r/w command */
2555 ap->ops->sff_exec_command(ap, &qc->tf);
2557 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2560 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2561 * @qc: Info associated with this ATA transaction.
2563 * LOCKING:
2564 * spin_lock_irqsave(host lock)
2566 void ata_bmdma_start(struct ata_queued_cmd *qc)
2568 struct ata_port *ap = qc->ap;
2569 u8 dmactl;
2571 /* start host DMA transaction */
2572 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2573 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2575 /* Strictly, one may wish to issue an ioread8() here, to
2576 * flush the mmio write. However, control also passes
2577 * to the hardware at this point, and it will interrupt
2578 * us when we are to resume control. So, in effect,
2579 * we don't care when the mmio write flushes.
2580 * Further, a read of the DMA status register _immediately_
2581 * following the write may not be what certain flaky hardware
2582 * is expected, so I think it is best to not add a readb()
2583 * without first all the MMIO ATA cards/mobos.
2584 * Or maybe I'm just being paranoid.
2586 * FIXME: The posting of this write means I/O starts are
2587 * unneccessarily delayed for MMIO
2590 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2593 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2594 * @qc: Command we are ending DMA for
2596 * Clears the ATA_DMA_START flag in the dma control register
2598 * May be used as the bmdma_stop() entry in ata_port_operations.
2600 * LOCKING:
2601 * spin_lock_irqsave(host lock)
2603 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2605 struct ata_port *ap = qc->ap;
2606 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2608 /* clear start/stop bit */
2609 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2610 mmio + ATA_DMA_CMD);
2612 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2613 ata_sff_dma_pause(ap);
2615 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2618 * ata_bmdma_status - Read PCI IDE BMDMA status
2619 * @ap: Port associated with this ATA transaction.
2621 * Read and return BMDMA status register.
2623 * May be used as the bmdma_status() entry in ata_port_operations.
2625 * LOCKING:
2626 * spin_lock_irqsave(host lock)
2628 u8 ata_bmdma_status(struct ata_port *ap)
2630 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2632 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2635 * ata_bus_reset - reset host port and associated ATA channel
2636 * @ap: port to reset
2638 * This is typically the first time we actually start issuing
2639 * commands to the ATA channel. We wait for BSY to clear, then
2640 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2641 * result. Determine what devices, if any, are on the channel
2642 * by looking at the device 0/1 error register. Look at the signature
2643 * stored in each device's taskfile registers, to determine if
2644 * the device is ATA or ATAPI.
2646 * LOCKING:
2647 * PCI/etc. bus probe sem.
2648 * Obtains host lock.
2650 * SIDE EFFECTS:
2651 * Sets ATA_FLAG_DISABLED if bus reset fails.
2653 * DEPRECATED:
2654 * This function is only for drivers which still use old EH and
2655 * will be removed soon.
2657 void ata_bus_reset(struct ata_port *ap)
2659 struct ata_device *device = ap->link.device;
2660 struct ata_ioports *ioaddr = &ap->ioaddr;
2661 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2662 u8 err;
2663 unsigned int dev0, dev1 = 0, devmask = 0;
2664 int rc;
2666 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2668 /* determine if device 0/1 are present */
2669 if (ap->flags & ATA_FLAG_SATA_RESET)
2670 dev0 = 1;
2671 else {
2672 dev0 = ata_devchk(ap, 0);
2673 if (slave_possible)
2674 dev1 = ata_devchk(ap, 1);
2677 if (dev0)
2678 devmask |= (1 << 0);
2679 if (dev1)
2680 devmask |= (1 << 1);
2682 /* select device 0 again */
2683 ap->ops->sff_dev_select(ap, 0);
2685 /* issue bus reset */
2686 if (ap->flags & ATA_FLAG_SRST) {
2687 rc = ata_bus_softreset(ap, devmask,
2688 ata_deadline(jiffies, 40000));
2689 if (rc && rc != -ENODEV)
2690 goto err_out;
2694 * determine by signature whether we have ATA or ATAPI devices
2696 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2697 if ((slave_possible) && (err != 0x81))
2698 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2700 /* is double-select really necessary? */
2701 if (device[1].class != ATA_DEV_NONE)
2702 ap->ops->sff_dev_select(ap, 1);
2703 if (device[0].class != ATA_DEV_NONE)
2704 ap->ops->sff_dev_select(ap, 0);
2706 /* if no devices were detected, disable this port */
2707 if ((device[0].class == ATA_DEV_NONE) &&
2708 (device[1].class == ATA_DEV_NONE))
2709 goto err_out;
2711 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2712 /* set up device control for ATA_FLAG_SATA_RESET */
2713 iowrite8(ap->ctl, ioaddr->ctl_addr);
2714 ap->last_ctl = ap->ctl;
2717 DPRINTK("EXIT\n");
2718 return;
2720 err_out:
2721 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2722 ata_port_disable(ap);
2724 DPRINTK("EXIT\n");
2726 EXPORT_SYMBOL_GPL(ata_bus_reset);
2728 #ifdef CONFIG_PCI
2731 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2732 * @pdev: PCI device
2734 * Some PCI ATA devices report simplex mode but in fact can be told to
2735 * enter non simplex mode. This implements the necessary logic to
2736 * perform the task on such devices. Calling it on other devices will
2737 * have -undefined- behaviour.
2739 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2741 unsigned long bmdma = pci_resource_start(pdev, 4);
2742 u8 simplex;
2744 if (bmdma == 0)
2745 return -ENOENT;
2747 simplex = inb(bmdma + 0x02);
2748 outb(simplex & 0x60, bmdma + 0x02);
2749 simplex = inb(bmdma + 0x02);
2750 if (simplex & 0x80)
2751 return -EOPNOTSUPP;
2752 return 0;
2754 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2757 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2758 * @host: target ATA host
2760 * Acquire PCI BMDMA resources and initialize @host accordingly.
2762 * LOCKING:
2763 * Inherited from calling layer (may sleep).
2765 * RETURNS:
2766 * 0 on success, -errno otherwise.
2768 int ata_pci_bmdma_init(struct ata_host *host)
2770 struct device *gdev = host->dev;
2771 struct pci_dev *pdev = to_pci_dev(gdev);
2772 int i, rc;
2774 /* No BAR4 allocation: No DMA */
2775 if (pci_resource_start(pdev, 4) == 0)
2776 return 0;
2778 /* TODO: If we get no DMA mask we should fall back to PIO */
2779 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2780 if (rc)
2781 return rc;
2782 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2783 if (rc)
2784 return rc;
2786 /* request and iomap DMA region */
2787 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2788 if (rc) {
2789 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2790 return -ENOMEM;
2792 host->iomap = pcim_iomap_table(pdev);
2794 for (i = 0; i < 2; i++) {
2795 struct ata_port *ap = host->ports[i];
2796 void __iomem *bmdma = host->iomap[4] + 8 * i;
2798 if (ata_port_is_dummy(ap))
2799 continue;
2801 ap->ioaddr.bmdma_addr = bmdma;
2802 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2803 (ioread8(bmdma + 2) & 0x80))
2804 host->flags |= ATA_HOST_SIMPLEX;
2806 ata_port_desc(ap, "bmdma 0x%llx",
2807 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2810 return 0;
2812 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2814 static int ata_resources_present(struct pci_dev *pdev, int port)
2816 int i;
2818 /* Check the PCI resources for this channel are enabled */
2819 port = port * 2;
2820 for (i = 0; i < 2; i++) {
2821 if (pci_resource_start(pdev, port + i) == 0 ||
2822 pci_resource_len(pdev, port + i) == 0)
2823 return 0;
2825 return 1;
2829 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2830 * @host: target ATA host
2832 * Acquire native PCI ATA resources for @host and initialize the
2833 * first two ports of @host accordingly. Ports marked dummy are
2834 * skipped and allocation failure makes the port dummy.
2836 * Note that native PCI resources are valid even for legacy hosts
2837 * as we fix up pdev resources array early in boot, so this
2838 * function can be used for both native and legacy SFF hosts.
2840 * LOCKING:
2841 * Inherited from calling layer (may sleep).
2843 * RETURNS:
2844 * 0 if at least one port is initialized, -ENODEV if no port is
2845 * available.
2847 int ata_pci_sff_init_host(struct ata_host *host)
2849 struct device *gdev = host->dev;
2850 struct pci_dev *pdev = to_pci_dev(gdev);
2851 unsigned int mask = 0;
2852 int i, rc;
2854 /* request, iomap BARs and init port addresses accordingly */
2855 for (i = 0; i < 2; i++) {
2856 struct ata_port *ap = host->ports[i];
2857 int base = i * 2;
2858 void __iomem * const *iomap;
2860 if (ata_port_is_dummy(ap))
2861 continue;
2863 /* Discard disabled ports. Some controllers show
2864 * their unused channels this way. Disabled ports are
2865 * made dummy.
2867 if (!ata_resources_present(pdev, i)) {
2868 ap->ops = &ata_dummy_port_ops;
2869 continue;
2872 rc = pcim_iomap_regions(pdev, 0x3 << base,
2873 dev_driver_string(gdev));
2874 if (rc) {
2875 dev_printk(KERN_WARNING, gdev,
2876 "failed to request/iomap BARs for port %d "
2877 "(errno=%d)\n", i, rc);
2878 if (rc == -EBUSY)
2879 pcim_pin_device(pdev);
2880 ap->ops = &ata_dummy_port_ops;
2881 continue;
2883 host->iomap = iomap = pcim_iomap_table(pdev);
2885 ap->ioaddr.cmd_addr = iomap[base];
2886 ap->ioaddr.altstatus_addr =
2887 ap->ioaddr.ctl_addr = (void __iomem *)
2888 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2889 ata_sff_std_ports(&ap->ioaddr);
2891 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2892 (unsigned long long)pci_resource_start(pdev, base),
2893 (unsigned long long)pci_resource_start(pdev, base + 1));
2895 mask |= 1 << i;
2898 if (!mask) {
2899 dev_printk(KERN_ERR, gdev, "no available native port\n");
2900 return -ENODEV;
2903 return 0;
2905 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2908 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2909 * @pdev: target PCI device
2910 * @ppi: array of port_info, must be enough for two ports
2911 * @r_host: out argument for the initialized ATA host
2913 * Helper to allocate ATA host for @pdev, acquire all native PCI
2914 * resources and initialize it accordingly in one go.
2916 * LOCKING:
2917 * Inherited from calling layer (may sleep).
2919 * RETURNS:
2920 * 0 on success, -errno otherwise.
2922 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2923 const struct ata_port_info * const *ppi,
2924 struct ata_host **r_host)
2926 struct ata_host *host;
2927 int rc;
2929 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2930 return -ENOMEM;
2932 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2933 if (!host) {
2934 dev_printk(KERN_ERR, &pdev->dev,
2935 "failed to allocate ATA host\n");
2936 rc = -ENOMEM;
2937 goto err_out;
2940 rc = ata_pci_sff_init_host(host);
2941 if (rc)
2942 goto err_out;
2944 /* init DMA related stuff */
2945 rc = ata_pci_bmdma_init(host);
2946 if (rc)
2947 goto err_bmdma;
2949 devres_remove_group(&pdev->dev, NULL);
2950 *r_host = host;
2951 return 0;
2953 err_bmdma:
2954 /* This is necessary because PCI and iomap resources are
2955 * merged and releasing the top group won't release the
2956 * acquired resources if some of those have been acquired
2957 * before entering this function.
2959 pcim_iounmap_regions(pdev, 0xf);
2960 err_out:
2961 devres_release_group(&pdev->dev, NULL);
2962 return rc;
2964 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2967 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2968 * @host: target SFF ATA host
2969 * @irq_handler: irq_handler used when requesting IRQ(s)
2970 * @sht: scsi_host_template to use when registering the host
2972 * This is the counterpart of ata_host_activate() for SFF ATA
2973 * hosts. This separate helper is necessary because SFF hosts
2974 * use two separate interrupts in legacy mode.
2976 * LOCKING:
2977 * Inherited from calling layer (may sleep).
2979 * RETURNS:
2980 * 0 on success, -errno otherwise.
2982 int ata_pci_sff_activate_host(struct ata_host *host,
2983 irq_handler_t irq_handler,
2984 struct scsi_host_template *sht)
2986 struct device *dev = host->dev;
2987 struct pci_dev *pdev = to_pci_dev(dev);
2988 const char *drv_name = dev_driver_string(host->dev);
2989 int legacy_mode = 0, rc;
2991 rc = ata_host_start(host);
2992 if (rc)
2993 return rc;
2995 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2996 u8 tmp8, mask;
2998 /* TODO: What if one channel is in native mode ... */
2999 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
3000 mask = (1 << 2) | (1 << 0);
3001 if ((tmp8 & mask) != mask)
3002 legacy_mode = 1;
3003 #if defined(CONFIG_NO_ATA_LEGACY)
3004 /* Some platforms with PCI limits cannot address compat
3005 port space. In that case we punt if their firmware has
3006 left a device in compatibility mode */
3007 if (legacy_mode) {
3008 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
3009 return -EOPNOTSUPP;
3011 #endif
3014 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3015 return -ENOMEM;
3017 if (!legacy_mode && pdev->irq) {
3018 rc = devm_request_irq(dev, pdev->irq, irq_handler,
3019 IRQF_SHARED, drv_name, host);
3020 if (rc)
3021 goto out;
3023 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
3024 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
3025 } else if (legacy_mode) {
3026 if (!ata_port_is_dummy(host->ports[0])) {
3027 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
3028 irq_handler, IRQF_SHARED,
3029 drv_name, host);
3030 if (rc)
3031 goto out;
3033 ata_port_desc(host->ports[0], "irq %d",
3034 ATA_PRIMARY_IRQ(pdev));
3037 if (!ata_port_is_dummy(host->ports[1])) {
3038 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
3039 irq_handler, IRQF_SHARED,
3040 drv_name, host);
3041 if (rc)
3042 goto out;
3044 ata_port_desc(host->ports[1], "irq %d",
3045 ATA_SECONDARY_IRQ(pdev));
3049 rc = ata_host_register(host, sht);
3050 out:
3051 if (rc == 0)
3052 devres_remove_group(dev, NULL);
3053 else
3054 devres_release_group(dev, NULL);
3056 return rc;
3058 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
3061 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
3062 * @pdev: Controller to be initialized
3063 * @ppi: array of port_info, must be enough for two ports
3064 * @sht: scsi_host_template to use when registering the host
3065 * @host_priv: host private_data
3066 * @hflag: host flags
3068 * This is a helper function which can be called from a driver's
3069 * xxx_init_one() probe function if the hardware uses traditional
3070 * IDE taskfile registers.
3072 * This function calls pci_enable_device(), reserves its register
3073 * regions, sets the dma mask, enables bus master mode, and calls
3074 * ata_device_add()
3076 * ASSUMPTION:
3077 * Nobody makes a single channel controller that appears solely as
3078 * the secondary legacy port on PCI.
3080 * LOCKING:
3081 * Inherited from PCI layer (may sleep).
3083 * RETURNS:
3084 * Zero on success, negative on errno-based value on error.
3086 int ata_pci_sff_init_one(struct pci_dev *pdev,
3087 const struct ata_port_info * const *ppi,
3088 struct scsi_host_template *sht, void *host_priv, int hflag)
3090 struct device *dev = &pdev->dev;
3091 const struct ata_port_info *pi = NULL;
3092 struct ata_host *host = NULL;
3093 int i, rc;
3095 DPRINTK("ENTER\n");
3097 /* look up the first valid port_info */
3098 for (i = 0; i < 2 && ppi[i]; i++) {
3099 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3100 pi = ppi[i];
3101 break;
3105 if (!pi) {
3106 dev_printk(KERN_ERR, &pdev->dev,
3107 "no valid port_info specified\n");
3108 return -EINVAL;
3111 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3112 return -ENOMEM;
3114 rc = pcim_enable_device(pdev);
3115 if (rc)
3116 goto out;
3118 /* prepare and activate SFF host */
3119 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3120 if (rc)
3121 goto out;
3122 host->private_data = host_priv;
3123 host->flags |= hflag;
3125 pci_set_master(pdev);
3126 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3127 out:
3128 if (rc == 0)
3129 devres_remove_group(&pdev->dev, NULL);
3130 else
3131 devres_release_group(&pdev->dev, NULL);
3133 return rc;
3135 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3137 #endif /* CONFIG_PCI */