4 * Copyright (C) 2008 - 2009 Paul Mundt
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
16 #include <asm/cacheflush.h>
18 /* Macros for single step instruction identification */
19 #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
20 #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
21 #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
22 (((op) & 0x7f ) << 1))
23 #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
24 #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
25 #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
26 #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
27 (((op) & 0x7ff) << 1))
28 #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
29 #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
30 #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
31 #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
32 (((op) & 0x7ff) << 1))
33 #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
34 #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
35 #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
36 #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
37 #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
38 #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
39 #define OPCODE_RTS(op) ((op) == 0xb)
40 #define OPCODE_RTE(op) ((op) == 0x2b)
42 #define SR_T_BIT_MASK 0x1
43 #define STEP_OPCODE 0xc33d
45 /* Calculate the new address for after a step */
46 static short *get_step_address(struct pt_regs
*linux_regs
)
48 insn_size_t op
= __raw_readw(linux_regs
->pc
);
53 if (linux_regs
->sr
& SR_T_BIT_MASK
)
54 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
56 addr
= linux_regs
->pc
+ 2;
60 else if (OPCODE_BTS(op
)) {
61 if (linux_regs
->sr
& SR_T_BIT_MASK
)
62 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
64 addr
= linux_regs
->pc
+ 4; /* Not in delay slot */
68 else if (OPCODE_BF(op
)) {
69 if (!(linux_regs
->sr
& SR_T_BIT_MASK
))
70 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
72 addr
= linux_regs
->pc
+ 2;
76 else if (OPCODE_BFS(op
)) {
77 if (!(linux_regs
->sr
& SR_T_BIT_MASK
))
78 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
80 addr
= linux_regs
->pc
+ 4; /* Not in delay slot */
84 else if (OPCODE_BRA(op
))
85 addr
= linux_regs
->pc
+ 4 + OPCODE_BRA_DISP(op
);
88 else if (OPCODE_BRAF(op
))
89 addr
= linux_regs
->pc
+ 4
90 + linux_regs
->regs
[OPCODE_BRAF_REG(op
)];
93 else if (OPCODE_BSR(op
))
94 addr
= linux_regs
->pc
+ 4 + OPCODE_BSR_DISP(op
);
97 else if (OPCODE_BSRF(op
))
98 addr
= linux_regs
->pc
+ 4
99 + linux_regs
->regs
[OPCODE_BSRF_REG(op
)];
102 else if (OPCODE_JMP(op
))
103 addr
= linux_regs
->regs
[OPCODE_JMP_REG(op
)];
106 else if (OPCODE_JSR(op
))
107 addr
= linux_regs
->regs
[OPCODE_JSR_REG(op
)];
110 else if (OPCODE_RTS(op
))
111 addr
= linux_regs
->pr
;
114 else if (OPCODE_RTE(op
))
115 addr
= linux_regs
->regs
[15];
119 addr
= linux_regs
->pc
+ instruction_size(op
);
121 flush_icache_range(addr
, addr
+ instruction_size(op
));
122 return (short *)addr
;
126 * Replace the instruction immediately after the current instruction
127 * (i.e. next in the expected flow of control) with a trap instruction,
128 * so that returning will cause only a single instruction to be executed.
129 * Note that this model is slightly broken for instructions with delay
130 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
131 * instruction in the delay slot will be executed.
134 static unsigned long stepped_address
;
135 static insn_size_t stepped_opcode
;
137 static void do_single_step(struct pt_regs
*linux_regs
)
139 /* Determine where the target instruction will send us to */
140 unsigned short *addr
= get_step_address(linux_regs
);
142 stepped_address
= (int)addr
;
145 stepped_opcode
= __raw_readw((long)addr
);
148 /* Flush and return */
149 flush_icache_range((long)addr
, (long)addr
+
150 instruction_size(stepped_opcode
));
153 /* Undo a single step */
154 static void undo_single_step(struct pt_regs
*linux_regs
)
156 /* If we have stepped, put back the old instruction */
157 /* Use stepped_address in case we stopped elsewhere */
158 if (stepped_opcode
!= 0) {
159 __raw_writew(stepped_opcode
, stepped_address
);
160 flush_icache_range(stepped_address
, stepped_address
+ 2);
166 void pt_regs_to_gdb_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
170 for (i
= 0; i
< 16; i
++)
171 gdb_regs
[GDB_R0
+ i
] = regs
->regs
[i
];
173 gdb_regs
[GDB_PC
] = regs
->pc
;
174 gdb_regs
[GDB_PR
] = regs
->pr
;
175 gdb_regs
[GDB_SR
] = regs
->sr
;
176 gdb_regs
[GDB_GBR
] = regs
->gbr
;
177 gdb_regs
[GDB_MACH
] = regs
->mach
;
178 gdb_regs
[GDB_MACL
] = regs
->macl
;
180 __asm__
__volatile__ ("stc vbr, %0" : "=r" (gdb_regs
[GDB_VBR
]));
183 void gdb_regs_to_pt_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
187 for (i
= 0; i
< 16; i
++)
188 regs
->regs
[GDB_R0
+ i
] = gdb_regs
[GDB_R0
+ i
];
190 regs
->pc
= gdb_regs
[GDB_PC
];
191 regs
->pr
= gdb_regs
[GDB_PR
];
192 regs
->sr
= gdb_regs
[GDB_SR
];
193 regs
->gbr
= gdb_regs
[GDB_GBR
];
194 regs
->mach
= gdb_regs
[GDB_MACH
];
195 regs
->macl
= gdb_regs
[GDB_MACL
];
198 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs
, struct task_struct
*p
)
200 gdb_regs
[GDB_R15
] = p
->thread
.sp
;
201 gdb_regs
[GDB_PC
] = p
->thread
.pc
;
204 int kgdb_arch_handle_exception(int e_vector
, int signo
, int err_code
,
205 char *remcomInBuffer
, char *remcomOutBuffer
,
206 struct pt_regs
*linux_regs
)
211 /* Undo any stepping we may have done */
212 undo_single_step(linux_regs
);
214 switch (remcomInBuffer
[0]) {
217 /* try to read optional parameter, pc unchanged if no parm */
218 ptr
= &remcomInBuffer
[1];
219 if (kgdb_hex2long(&ptr
, &addr
))
220 linux_regs
->pc
= addr
;
223 atomic_set(&kgdb_cpu_doing_single_step
, -1);
225 if (remcomInBuffer
[0] == 's') {
226 do_single_step(linux_regs
);
227 kgdb_single_step
= 1;
229 atomic_set(&kgdb_cpu_doing_single_step
,
230 raw_smp_processor_id());
236 /* this means that we do not want to exit from the handler: */
240 unsigned long kgdb_arch_pc(int exception
, struct pt_regs
*regs
)
243 return instruction_pointer(regs
) - 2;
244 return instruction_pointer(regs
);
247 void kgdb_arch_set_pc(struct pt_regs
*regs
, unsigned long ip
)
253 * The primary entry points for the kgdb debug trap table entries.
255 BUILD_TRAP_HANDLER(singlestep
)
260 local_irq_save(flags
);
261 regs
->pc
-= instruction_size(__raw_readw(regs
->pc
- 4));
262 kgdb_handle_exception(0, SIGTRAP
, 0, regs
);
263 local_irq_restore(flags
);
266 static int __kgdb_notify(struct die_args
*args
, unsigned long cmd
)
273 * This means a user thread is single stepping
274 * a system call which should be ignored
276 if (test_thread_flag(TIF_SINGLESTEP
))
279 ret
= kgdb_handle_exception(args
->trapnr
& 0xff, args
->signr
,
280 args
->err
, args
->regs
);
291 kgdb_notify(struct notifier_block
*self
, unsigned long cmd
, void *ptr
)
296 local_irq_save(flags
);
297 ret
= __kgdb_notify(ptr
, cmd
);
298 local_irq_restore(flags
);
303 static struct notifier_block kgdb_notifier
= {
304 .notifier_call
= kgdb_notify
,
307 * Lowest-prio notifier priority, we want to be notified last:
309 .priority
= -INT_MAX
,
312 int kgdb_arch_init(void)
314 return register_die_notifier(&kgdb_notifier
);
317 void kgdb_arch_exit(void)
319 unregister_die_notifier(&kgdb_notifier
);
322 struct kgdb_arch arch_kgdb_ops
= {
323 /* Breakpoint instruction: trapa #0x3c */
324 #ifdef CONFIG_CPU_LITTLE_ENDIAN
325 .gdb_bpt_instr
= { 0x3c, 0xc3 },
327 .gdb_bpt_instr
= { 0xc3, 0x3c },