1 /*---------------------------------------------------------------------------+
4 | Computation of an approximation of the sin function and the cosine |
5 | function by a polynomial. |
7 | Copyright (C) 1992,1993,1994,1997,1999 |
8 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
9 | E-mail billm@melbpc.org.au |
12 +---------------------------------------------------------------------------*/
14 #include "exception.h"
15 #include "reg_constant.h"
17 #include "fpu_system.h"
18 #include "control_w.h"
24 static const unsigned long long pos_terms_l
[N_COEFF_P
] = {
31 static const unsigned long long neg_terms_l
[N_COEFF_N
] = {
40 static const unsigned long long pos_terms_h
[N_COEFF_PH
] = {
47 static const unsigned long long neg_terms_h
[N_COEFF_NH
] = {
54 /*--- poly_sine() -----------------------------------------------------------+
56 +---------------------------------------------------------------------------*/
57 void poly_sine(FPU_REG
*st0_ptr
)
59 int exponent
, echange
;
60 Xsig accumulator
, argSqrd
, argTo4
;
61 unsigned long fix_up
, adj
;
62 unsigned long long fixed_arg
;
65 exponent
= exponent(st0_ptr
);
67 accumulator
.lsw
= accumulator
.midw
= accumulator
.msw
= 0;
69 /* Split into two ranges, for arguments below and above 1.0 */
70 /* The boundary between upper and lower is approx 0.88309101259 */
72 || ((exponent
== -1) && (st0_ptr
->sigh
<= 0xe21240aa))) {
73 /* The argument is <= 0.88309101259 */
75 argSqrd
.msw
= st0_ptr
->sigh
;
76 argSqrd
.midw
= st0_ptr
->sigl
;
78 mul64_Xsig(&argSqrd
, &significand(st0_ptr
));
79 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
80 argTo4
.msw
= argSqrd
.msw
;
81 argTo4
.midw
= argSqrd
.midw
;
82 argTo4
.lsw
= argSqrd
.lsw
;
83 mul_Xsig_Xsig(&argTo4
, &argTo4
);
85 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_l
,
87 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
88 negate_Xsig(&accumulator
);
90 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_l
,
93 shr_Xsig(&accumulator
, 2); /* Divide by four */
94 accumulator
.msw
|= 0x80000000; /* Add 1.0 */
96 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
97 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
98 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
100 /* Divide by four, FPU_REG compatible, etc */
101 exponent
= 3 * exponent
;
103 /* The minimum exponent difference is 3 */
104 shr_Xsig(&accumulator
, exponent(st0_ptr
) - exponent
);
106 negate_Xsig(&accumulator
);
107 XSIG_LL(accumulator
) += significand(st0_ptr
);
109 echange
= round_Xsig(&accumulator
);
111 setexponentpos(&result
, exponent(st0_ptr
) + echange
);
113 /* The argument is > 0.88309101259 */
114 /* We use sin(st(0)) = cos(pi/2-st(0)) */
116 fixed_arg
= significand(st0_ptr
);
119 /* The argument is >= 1.0 */
121 /* Put the binary point at the left. */
124 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
125 fixed_arg
= 0x921fb54442d18469LL
- fixed_arg
;
126 /* There is a special case which arises due to rounding, to fix here. */
127 if (fixed_arg
== 0xffffffffffffffffLL
)
130 XSIG_LL(argSqrd
) = fixed_arg
;
132 mul64_Xsig(&argSqrd
, &fixed_arg
);
134 XSIG_LL(argTo4
) = XSIG_LL(argSqrd
);
135 argTo4
.lsw
= argSqrd
.lsw
;
136 mul_Xsig_Xsig(&argTo4
, &argTo4
);
138 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_h
,
140 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
141 negate_Xsig(&accumulator
);
143 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_h
,
145 negate_Xsig(&accumulator
);
147 mul64_Xsig(&accumulator
, &fixed_arg
);
148 mul64_Xsig(&accumulator
, &fixed_arg
);
150 shr_Xsig(&accumulator
, 3);
151 negate_Xsig(&accumulator
);
153 add_Xsig_Xsig(&accumulator
, &argSqrd
);
155 shr_Xsig(&accumulator
, 1);
157 accumulator
.lsw
|= 1; /* A zero accumulator here would cause problems */
158 negate_Xsig(&accumulator
);
160 /* The basic computation is complete. Now fix the answer to
161 compensate for the error due to the approximation used for
165 /* This has an exponent of -65 */
167 /* The fix-up needs to be improved for larger args */
168 if (argSqrd
.msw
& 0xffc00000) {
169 /* Get about 32 bit precision in these: */
170 fix_up
-= mul_32_32(0x898cc517, argSqrd
.msw
) / 6;
172 fix_up
= mul_32_32(fix_up
, LL_MSW(fixed_arg
));
174 adj
= accumulator
.lsw
; /* temp save */
175 accumulator
.lsw
-= fix_up
;
176 if (accumulator
.lsw
> adj
)
177 XSIG_LL(accumulator
)--;
179 echange
= round_Xsig(&accumulator
);
181 setexponentpos(&result
, echange
- 1);
184 significand(&result
) = XSIG_LL(accumulator
);
185 setsign(&result
, getsign(st0_ptr
));
186 FPU_copy_to_reg0(&result
, TAG_Valid
);
189 if ((exponent(&result
) >= 0)
190 && (significand(&result
) > 0x8000000000000000LL
)) {
191 EXCEPTION(EX_INTERNAL
| 0x150);
193 #endif /* PARANOID */
197 /*--- poly_cos() ------------------------------------------------------------+
199 +---------------------------------------------------------------------------*/
200 void poly_cos(FPU_REG
*st0_ptr
)
203 long int exponent
, exp2
, echange
;
204 Xsig accumulator
, argSqrd
, fix_up
, argTo4
;
205 unsigned long long fixed_arg
;
208 if ((exponent(st0_ptr
) > 0)
209 || ((exponent(st0_ptr
) == 0)
210 && (significand(st0_ptr
) > 0xc90fdaa22168c234LL
))) {
211 EXCEPTION(EX_Invalid
);
212 FPU_copy_to_reg0(&CONST_QNaN
, TAG_Special
);
215 #endif /* PARANOID */
217 exponent
= exponent(st0_ptr
);
219 accumulator
.lsw
= accumulator
.midw
= accumulator
.msw
= 0;
222 || ((exponent
== -1) && (st0_ptr
->sigh
<= 0xb00d6f54))) {
223 /* arg is < 0.687705 */
225 argSqrd
.msw
= st0_ptr
->sigh
;
226 argSqrd
.midw
= st0_ptr
->sigl
;
228 mul64_Xsig(&argSqrd
, &significand(st0_ptr
));
231 /* shift the argument right by the required places */
232 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
235 argTo4
.msw
= argSqrd
.msw
;
236 argTo4
.midw
= argSqrd
.midw
;
237 argTo4
.lsw
= argSqrd
.lsw
;
238 mul_Xsig_Xsig(&argTo4
, &argTo4
);
240 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_h
,
242 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
243 negate_Xsig(&accumulator
);
245 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_h
,
247 negate_Xsig(&accumulator
);
249 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
250 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
251 shr_Xsig(&accumulator
, -2 * (1 + exponent
));
253 shr_Xsig(&accumulator
, 3);
254 negate_Xsig(&accumulator
);
256 add_Xsig_Xsig(&accumulator
, &argSqrd
);
258 shr_Xsig(&accumulator
, 1);
260 /* It doesn't matter if accumulator is all zero here, the
261 following code will work ok */
262 negate_Xsig(&accumulator
);
264 if (accumulator
.lsw
& 0x80000000)
265 XSIG_LL(accumulator
)++;
266 if (accumulator
.msw
== 0) {
267 /* The result is 1.0 */
268 FPU_copy_to_reg0(&CONST_1
, TAG_Valid
);
271 significand(&result
) = XSIG_LL(accumulator
);
273 /* will be a valid positive nr with expon = -1 */
274 setexponentpos(&result
, -1);
277 fixed_arg
= significand(st0_ptr
);
280 /* The argument is >= 1.0 */
282 /* Put the binary point at the left. */
285 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
286 fixed_arg
= 0x921fb54442d18469LL
- fixed_arg
;
287 /* There is a special case which arises due to rounding, to fix here. */
288 if (fixed_arg
== 0xffffffffffffffffLL
)
294 /* A shift is needed here only for a narrow range of arguments,
295 i.e. for fixed_arg approx 2^-32, but we pick up more... */
296 if (!(LL_MSW(fixed_arg
) & 0xffff0000)) {
302 XSIG_LL(argSqrd
) = fixed_arg
;
304 mul64_Xsig(&argSqrd
, &fixed_arg
);
307 /* shift the argument right by the required places */
308 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
311 argTo4
.msw
= argSqrd
.msw
;
312 argTo4
.midw
= argSqrd
.midw
;
313 argTo4
.lsw
= argSqrd
.lsw
;
314 mul_Xsig_Xsig(&argTo4
, &argTo4
);
316 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_l
,
318 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
319 negate_Xsig(&accumulator
);
321 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_l
,
324 shr_Xsig(&accumulator
, 2); /* Divide by four */
325 accumulator
.msw
|= 0x80000000; /* Add 1.0 */
327 mul64_Xsig(&accumulator
, &fixed_arg
);
328 mul64_Xsig(&accumulator
, &fixed_arg
);
329 mul64_Xsig(&accumulator
, &fixed_arg
);
331 /* Divide by four, FPU_REG compatible, etc */
332 exponent
= 3 * exponent
;
334 /* The minimum exponent difference is 3 */
335 shr_Xsig(&accumulator
, exp2
- exponent
);
337 negate_Xsig(&accumulator
);
338 XSIG_LL(accumulator
) += fixed_arg
;
340 /* The basic computation is complete. Now fix the answer to
341 compensate for the error due to the approximation used for
345 /* This has an exponent of -65 */
346 XSIG_LL(fix_up
) = 0x898cc51701b839a2ll
;
349 /* The fix-up needs to be improved for larger args */
350 if (argSqrd
.msw
& 0xffc00000) {
351 /* Get about 32 bit precision in these: */
352 fix_up
.msw
-= mul_32_32(0x898cc517, argSqrd
.msw
) / 2;
353 fix_up
.msw
+= mul_32_32(0x898cc517, argTo4
.msw
) / 24;
356 exp2
+= norm_Xsig(&accumulator
);
357 shr_Xsig(&accumulator
, 1); /* Prevent overflow */
359 shr_Xsig(&fix_up
, 65 + exp2
);
361 add_Xsig_Xsig(&accumulator
, &fix_up
);
363 echange
= round_Xsig(&accumulator
);
365 setexponentpos(&result
, exp2
+ echange
);
366 significand(&result
) = XSIG_LL(accumulator
);
369 FPU_copy_to_reg0(&result
, TAG_Valid
);
372 if ((exponent(&result
) >= 0)
373 && (significand(&result
) > 0x8000000000000000LL
)) {
374 EXCEPTION(EX_INTERNAL
| 0x151);
376 #endif /* PARANOID */