lockdep: Update memory usage introduced by BFS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / lguest / lguest.c
blob9ebcd6ef361b565fc331bd09c202866f403fcf99
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <sys/eventfd.h>
20 #include <fcntl.h>
21 #include <stdbool.h>
22 #include <errno.h>
23 #include <ctype.h>
24 #include <sys/socket.h>
25 #include <sys/ioctl.h>
26 #include <sys/time.h>
27 #include <time.h>
28 #include <netinet/in.h>
29 #include <net/if.h>
30 #include <linux/sockios.h>
31 #include <linux/if_tun.h>
32 #include <sys/uio.h>
33 #include <termios.h>
34 #include <getopt.h>
35 #include <zlib.h>
36 #include <assert.h>
37 #include <sched.h>
38 #include <limits.h>
39 #include <stddef.h>
40 #include <signal.h>
41 #include "linux/lguest_launcher.h"
42 #include "linux/virtio_config.h"
43 #include "linux/virtio_net.h"
44 #include "linux/virtio_blk.h"
45 #include "linux/virtio_console.h"
46 #include "linux/virtio_rng.h"
47 #include "linux/virtio_ring.h"
48 #include "asm/bootparam.h"
49 /*L:110 We can ignore the 39 include files we need for this program, but I do
50 * want to draw attention to the use of kernel-style types.
52 * As Linus said, "C is a Spartan language, and so should your naming be." I
53 * like these abbreviations, so we define them here. Note that u64 is always
54 * unsigned long long, which works on all Linux systems: this means that we can
55 * use %llu in printf for any u64. */
56 typedef unsigned long long u64;
57 typedef uint32_t u32;
58 typedef uint16_t u16;
59 typedef uint8_t u8;
60 /*:*/
62 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
72 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
77 /*:*/
79 /* The pointer to the start of guest memory. */
80 static void *guest_base;
81 /* The maximum guest physical address allowed, and maximum possible. */
82 static unsigned long guest_limit, guest_max;
83 /* The /dev/lguest file descriptor. */
84 static int lguest_fd;
86 /* a per-cpu variable indicating whose vcpu is currently running */
87 static unsigned int __thread cpu_id;
89 /* This is our list of devices. */
90 struct device_list
92 /* Counter to assign interrupt numbers. */
93 unsigned int next_irq;
95 /* Counter to print out convenient device numbers. */
96 unsigned int device_num;
98 /* The descriptor page for the devices. */
99 u8 *descpage;
101 /* A single linked list of devices. */
102 struct device *dev;
103 /* And a pointer to the last device for easy append and also for
104 * configuration appending. */
105 struct device *lastdev;
108 /* The list of Guest devices, based on command line arguments. */
109 static struct device_list devices;
111 /* The device structure describes a single device. */
112 struct device
114 /* The linked-list pointer. */
115 struct device *next;
117 /* The device's descriptor, as mapped into the Guest. */
118 struct lguest_device_desc *desc;
120 /* We can't trust desc values once Guest has booted: we use these. */
121 unsigned int feature_len;
122 unsigned int num_vq;
124 /* The name of this device, for --verbose. */
125 const char *name;
127 /* Any queues attached to this device */
128 struct virtqueue *vq;
130 /* Is it operational */
131 bool running;
133 /* Device-specific data. */
134 void *priv;
137 /* The virtqueue structure describes a queue attached to a device. */
138 struct virtqueue
140 struct virtqueue *next;
142 /* Which device owns me. */
143 struct device *dev;
145 /* The configuration for this queue. */
146 struct lguest_vqconfig config;
148 /* The actual ring of buffers. */
149 struct vring vring;
151 /* Last available index we saw. */
152 u16 last_avail_idx;
154 /* How many are used since we sent last irq? */
155 unsigned int pending_used;
157 /* Eventfd where Guest notifications arrive. */
158 int eventfd;
160 /* Function for the thread which is servicing this virtqueue. */
161 void (*service)(struct virtqueue *vq);
162 pid_t thread;
165 /* Remember the arguments to the program so we can "reboot" */
166 static char **main_args;
168 /* The original tty settings to restore on exit. */
169 static struct termios orig_term;
171 /* We have to be careful with barriers: our devices are all run in separate
172 * threads and so we need to make sure that changes visible to the Guest happen
173 * in precise order. */
174 #define wmb() __asm__ __volatile__("" : : : "memory")
175 #define mb() __asm__ __volatile__("" : : : "memory")
177 /* Convert an iovec element to the given type.
179 * This is a fairly ugly trick: we need to know the size of the type and
180 * alignment requirement to check the pointer is kosher. It's also nice to
181 * have the name of the type in case we report failure.
183 * Typing those three things all the time is cumbersome and error prone, so we
184 * have a macro which sets them all up and passes to the real function. */
185 #define convert(iov, type) \
186 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
188 static void *_convert(struct iovec *iov, size_t size, size_t align,
189 const char *name)
191 if (iov->iov_len != size)
192 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
193 if ((unsigned long)iov->iov_base % align != 0)
194 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
195 return iov->iov_base;
198 /* Wrapper for the last available index. Makes it easier to change. */
199 #define lg_last_avail(vq) ((vq)->last_avail_idx)
201 /* The virtio configuration space is defined to be little-endian. x86 is
202 * little-endian too, but it's nice to be explicit so we have these helpers. */
203 #define cpu_to_le16(v16) (v16)
204 #define cpu_to_le32(v32) (v32)
205 #define cpu_to_le64(v64) (v64)
206 #define le16_to_cpu(v16) (v16)
207 #define le32_to_cpu(v32) (v32)
208 #define le64_to_cpu(v64) (v64)
210 /* Is this iovec empty? */
211 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
213 unsigned int i;
215 for (i = 0; i < num_iov; i++)
216 if (iov[i].iov_len)
217 return false;
218 return true;
221 /* Take len bytes from the front of this iovec. */
222 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
224 unsigned int i;
226 for (i = 0; i < num_iov; i++) {
227 unsigned int used;
229 used = iov[i].iov_len < len ? iov[i].iov_len : len;
230 iov[i].iov_base += used;
231 iov[i].iov_len -= used;
232 len -= used;
234 assert(len == 0);
237 /* The device virtqueue descriptors are followed by feature bitmasks. */
238 static u8 *get_feature_bits(struct device *dev)
240 return (u8 *)(dev->desc + 1)
241 + dev->num_vq * sizeof(struct lguest_vqconfig);
244 /*L:100 The Launcher code itself takes us out into userspace, that scary place
245 * where pointers run wild and free! Unfortunately, like most userspace
246 * programs, it's quite boring (which is why everyone likes to hack on the
247 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
248 * will get you through this section. Or, maybe not.
250 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
251 * memory and stores it in "guest_base". In other words, Guest physical ==
252 * Launcher virtual with an offset.
254 * This can be tough to get your head around, but usually it just means that we
255 * use these trivial conversion functions when the Guest gives us it's
256 * "physical" addresses: */
257 static void *from_guest_phys(unsigned long addr)
259 return guest_base + addr;
262 static unsigned long to_guest_phys(const void *addr)
264 return (addr - guest_base);
267 /*L:130
268 * Loading the Kernel.
270 * We start with couple of simple helper routines. open_or_die() avoids
271 * error-checking code cluttering the callers: */
272 static int open_or_die(const char *name, int flags)
274 int fd = open(name, flags);
275 if (fd < 0)
276 err(1, "Failed to open %s", name);
277 return fd;
280 /* map_zeroed_pages() takes a number of pages. */
281 static void *map_zeroed_pages(unsigned int num)
283 int fd = open_or_die("/dev/zero", O_RDONLY);
284 void *addr;
286 /* We use a private mapping (ie. if we write to the page, it will be
287 * copied). */
288 addr = mmap(NULL, getpagesize() * num,
289 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
290 if (addr == MAP_FAILED)
291 err(1, "Mmaping %u pages of /dev/zero", num);
292 close(fd);
294 return addr;
297 /* Get some more pages for a device. */
298 static void *get_pages(unsigned int num)
300 void *addr = from_guest_phys(guest_limit);
302 guest_limit += num * getpagesize();
303 if (guest_limit > guest_max)
304 errx(1, "Not enough memory for devices");
305 return addr;
308 /* This routine is used to load the kernel or initrd. It tries mmap, but if
309 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
310 * it falls back to reading the memory in. */
311 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
313 ssize_t r;
315 /* We map writable even though for some segments are marked read-only.
316 * The kernel really wants to be writable: it patches its own
317 * instructions.
319 * MAP_PRIVATE means that the page won't be copied until a write is
320 * done to it. This allows us to share untouched memory between
321 * Guests. */
322 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
323 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
324 return;
326 /* pread does a seek and a read in one shot: saves a few lines. */
327 r = pread(fd, addr, len, offset);
328 if (r != len)
329 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
332 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
333 * the Guest memory. ELF = Embedded Linking Format, which is the format used
334 * by all modern binaries on Linux including the kernel.
336 * The ELF headers give *two* addresses: a physical address, and a virtual
337 * address. We use the physical address; the Guest will map itself to the
338 * virtual address.
340 * We return the starting address. */
341 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
343 Elf32_Phdr phdr[ehdr->e_phnum];
344 unsigned int i;
346 /* Sanity checks on the main ELF header: an x86 executable with a
347 * reasonable number of correctly-sized program headers. */
348 if (ehdr->e_type != ET_EXEC
349 || ehdr->e_machine != EM_386
350 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
351 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
352 errx(1, "Malformed elf header");
354 /* An ELF executable contains an ELF header and a number of "program"
355 * headers which indicate which parts ("segments") of the program to
356 * load where. */
358 /* We read in all the program headers at once: */
359 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
360 err(1, "Seeking to program headers");
361 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
362 err(1, "Reading program headers");
364 /* Try all the headers: there are usually only three. A read-only one,
365 * a read-write one, and a "note" section which we don't load. */
366 for (i = 0; i < ehdr->e_phnum; i++) {
367 /* If this isn't a loadable segment, we ignore it */
368 if (phdr[i].p_type != PT_LOAD)
369 continue;
371 verbose("Section %i: size %i addr %p\n",
372 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
374 /* We map this section of the file at its physical address. */
375 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
376 phdr[i].p_offset, phdr[i].p_filesz);
379 /* The entry point is given in the ELF header. */
380 return ehdr->e_entry;
383 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
384 * supposed to jump into it and it will unpack itself. We used to have to
385 * perform some hairy magic because the unpacking code scared me.
387 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
388 * a small patch to jump over the tricky bits in the Guest, so now we just read
389 * the funky header so we know where in the file to load, and away we go! */
390 static unsigned long load_bzimage(int fd)
392 struct boot_params boot;
393 int r;
394 /* Modern bzImages get loaded at 1M. */
395 void *p = from_guest_phys(0x100000);
397 /* Go back to the start of the file and read the header. It should be
398 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
399 lseek(fd, 0, SEEK_SET);
400 read(fd, &boot, sizeof(boot));
402 /* Inside the setup_hdr, we expect the magic "HdrS" */
403 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
404 errx(1, "This doesn't look like a bzImage to me");
406 /* Skip over the extra sectors of the header. */
407 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
409 /* Now read everything into memory. in nice big chunks. */
410 while ((r = read(fd, p, 65536)) > 0)
411 p += r;
413 /* Finally, code32_start tells us where to enter the kernel. */
414 return boot.hdr.code32_start;
417 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
418 * come wrapped up in the self-decompressing "bzImage" format. With a little
419 * work, we can load those, too. */
420 static unsigned long load_kernel(int fd)
422 Elf32_Ehdr hdr;
424 /* Read in the first few bytes. */
425 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
426 err(1, "Reading kernel");
428 /* If it's an ELF file, it starts with "\177ELF" */
429 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
430 return map_elf(fd, &hdr);
432 /* Otherwise we assume it's a bzImage, and try to load it. */
433 return load_bzimage(fd);
436 /* This is a trivial little helper to align pages. Andi Kleen hated it because
437 * it calls getpagesize() twice: "it's dumb code."
439 * Kernel guys get really het up about optimization, even when it's not
440 * necessary. I leave this code as a reaction against that. */
441 static inline unsigned long page_align(unsigned long addr)
443 /* Add upwards and truncate downwards. */
444 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
447 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
448 * the kernel which the kernel can use to boot from without needing any
449 * drivers. Most distributions now use this as standard: the initrd contains
450 * the code to load the appropriate driver modules for the current machine.
452 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
453 * kernels. He sent me this (and tells me when I break it). */
454 static unsigned long load_initrd(const char *name, unsigned long mem)
456 int ifd;
457 struct stat st;
458 unsigned long len;
460 ifd = open_or_die(name, O_RDONLY);
461 /* fstat() is needed to get the file size. */
462 if (fstat(ifd, &st) < 0)
463 err(1, "fstat() on initrd '%s'", name);
465 /* We map the initrd at the top of memory, but mmap wants it to be
466 * page-aligned, so we round the size up for that. */
467 len = page_align(st.st_size);
468 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
469 /* Once a file is mapped, you can close the file descriptor. It's a
470 * little odd, but quite useful. */
471 close(ifd);
472 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
474 /* We return the initrd size. */
475 return len;
477 /*:*/
479 /* Simple routine to roll all the commandline arguments together with spaces
480 * between them. */
481 static void concat(char *dst, char *args[])
483 unsigned int i, len = 0;
485 for (i = 0; args[i]; i++) {
486 if (i) {
487 strcat(dst+len, " ");
488 len++;
490 strcpy(dst+len, args[i]);
491 len += strlen(args[i]);
493 /* In case it's empty. */
494 dst[len] = '\0';
497 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
498 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
499 * the base of Guest "physical" memory, the top physical page to allow and the
500 * entry point for the Guest. */
501 static void tell_kernel(unsigned long start)
503 unsigned long args[] = { LHREQ_INITIALIZE,
504 (unsigned long)guest_base,
505 guest_limit / getpagesize(), start };
506 verbose("Guest: %p - %p (%#lx)\n",
507 guest_base, guest_base + guest_limit, guest_limit);
508 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
509 if (write(lguest_fd, args, sizeof(args)) < 0)
510 err(1, "Writing to /dev/lguest");
512 /*:*/
515 * Device Handling.
517 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
518 * We need to make sure it's not trying to reach into the Launcher itself, so
519 * we have a convenient routine which checks it and exits with an error message
520 * if something funny is going on:
522 static void *_check_pointer(unsigned long addr, unsigned int size,
523 unsigned int line)
525 /* We have to separately check addr and addr+size, because size could
526 * be huge and addr + size might wrap around. */
527 if (addr >= guest_limit || addr + size >= guest_limit)
528 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
529 /* We return a pointer for the caller's convenience, now we know it's
530 * safe to use. */
531 return from_guest_phys(addr);
533 /* A macro which transparently hands the line number to the real function. */
534 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
536 /* Each buffer in the virtqueues is actually a chain of descriptors. This
537 * function returns the next descriptor in the chain, or vq->vring.num if we're
538 * at the end. */
539 static unsigned next_desc(struct vring_desc *desc,
540 unsigned int i, unsigned int max)
542 unsigned int next;
544 /* If this descriptor says it doesn't chain, we're done. */
545 if (!(desc[i].flags & VRING_DESC_F_NEXT))
546 return max;
548 /* Check they're not leading us off end of descriptors. */
549 next = desc[i].next;
550 /* Make sure compiler knows to grab that: we don't want it changing! */
551 wmb();
553 if (next >= max)
554 errx(1, "Desc next is %u", next);
556 return next;
559 /* This actually sends the interrupt for this virtqueue */
560 static void trigger_irq(struct virtqueue *vq)
562 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
564 /* Don't inform them if nothing used. */
565 if (!vq->pending_used)
566 return;
567 vq->pending_used = 0;
569 /* If they don't want an interrupt, don't send one, unless empty. */
570 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
571 && lg_last_avail(vq) != vq->vring.avail->idx)
572 return;
574 /* Send the Guest an interrupt tell them we used something up. */
575 if (write(lguest_fd, buf, sizeof(buf)) != 0)
576 err(1, "Triggering irq %i", vq->config.irq);
579 /* This looks in the virtqueue and for the first available buffer, and converts
580 * it to an iovec for convenient access. Since descriptors consist of some
581 * number of output then some number of input descriptors, it's actually two
582 * iovecs, but we pack them into one and note how many of each there were.
584 * This function returns the descriptor number found. */
585 static unsigned wait_for_vq_desc(struct virtqueue *vq,
586 struct iovec iov[],
587 unsigned int *out_num, unsigned int *in_num)
589 unsigned int i, head, max;
590 struct vring_desc *desc;
591 u16 last_avail = lg_last_avail(vq);
593 while (last_avail == vq->vring.avail->idx) {
594 u64 event;
596 /* OK, tell Guest about progress up to now. */
597 trigger_irq(vq);
599 /* OK, now we need to know about added descriptors. */
600 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
602 /* They could have slipped one in as we were doing that: make
603 * sure it's written, then check again. */
604 mb();
605 if (last_avail != vq->vring.avail->idx) {
606 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
607 break;
610 /* Nothing new? Wait for eventfd to tell us they refilled. */
611 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
612 errx(1, "Event read failed?");
614 /* We don't need to be notified again. */
615 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
618 /* Check it isn't doing very strange things with descriptor numbers. */
619 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
620 errx(1, "Guest moved used index from %u to %u",
621 last_avail, vq->vring.avail->idx);
623 /* Grab the next descriptor number they're advertising, and increment
624 * the index we've seen. */
625 head = vq->vring.avail->ring[last_avail % vq->vring.num];
626 lg_last_avail(vq)++;
628 /* If their number is silly, that's a fatal mistake. */
629 if (head >= vq->vring.num)
630 errx(1, "Guest says index %u is available", head);
632 /* When we start there are none of either input nor output. */
633 *out_num = *in_num = 0;
635 max = vq->vring.num;
636 desc = vq->vring.desc;
637 i = head;
639 /* If this is an indirect entry, then this buffer contains a descriptor
640 * table which we handle as if it's any normal descriptor chain. */
641 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
642 if (desc[i].len % sizeof(struct vring_desc))
643 errx(1, "Invalid size for indirect buffer table");
645 max = desc[i].len / sizeof(struct vring_desc);
646 desc = check_pointer(desc[i].addr, desc[i].len);
647 i = 0;
650 do {
651 /* Grab the first descriptor, and check it's OK. */
652 iov[*out_num + *in_num].iov_len = desc[i].len;
653 iov[*out_num + *in_num].iov_base
654 = check_pointer(desc[i].addr, desc[i].len);
655 /* If this is an input descriptor, increment that count. */
656 if (desc[i].flags & VRING_DESC_F_WRITE)
657 (*in_num)++;
658 else {
659 /* If it's an output descriptor, they're all supposed
660 * to come before any input descriptors. */
661 if (*in_num)
662 errx(1, "Descriptor has out after in");
663 (*out_num)++;
666 /* If we've got too many, that implies a descriptor loop. */
667 if (*out_num + *in_num > max)
668 errx(1, "Looped descriptor");
669 } while ((i = next_desc(desc, i, max)) != max);
671 return head;
674 /* After we've used one of their buffers, we tell them about it. We'll then
675 * want to send them an interrupt, using trigger_irq(). */
676 static void add_used(struct virtqueue *vq, unsigned int head, int len)
678 struct vring_used_elem *used;
680 /* The virtqueue contains a ring of used buffers. Get a pointer to the
681 * next entry in that used ring. */
682 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
683 used->id = head;
684 used->len = len;
685 /* Make sure buffer is written before we update index. */
686 wmb();
687 vq->vring.used->idx++;
688 vq->pending_used++;
691 /* And here's the combo meal deal. Supersize me! */
692 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
694 add_used(vq, head, len);
695 trigger_irq(vq);
699 * The Console
701 * We associate some data with the console for our exit hack. */
702 struct console_abort
704 /* How many times have they hit ^C? */
705 int count;
706 /* When did they start? */
707 struct timeval start;
710 /* This is the routine which handles console input (ie. stdin). */
711 static void console_input(struct virtqueue *vq)
713 int len;
714 unsigned int head, in_num, out_num;
715 struct console_abort *abort = vq->dev->priv;
716 struct iovec iov[vq->vring.num];
718 /* Make sure there's a descriptor waiting. */
719 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
720 if (out_num)
721 errx(1, "Output buffers in console in queue?");
723 /* Read it in. */
724 len = readv(STDIN_FILENO, iov, in_num);
725 if (len <= 0) {
726 /* Ran out of input? */
727 warnx("Failed to get console input, ignoring console.");
728 /* For simplicity, dying threads kill the whole Launcher. So
729 * just nap here. */
730 for (;;)
731 pause();
734 add_used_and_trigger(vq, head, len);
736 /* Three ^C within one second? Exit.
738 * This is such a hack, but works surprisingly well. Each ^C has to
739 * be in a buffer by itself, so they can't be too fast. But we check
740 * that we get three within about a second, so they can't be too
741 * slow. */
742 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
743 abort->count = 0;
744 return;
747 abort->count++;
748 if (abort->count == 1)
749 gettimeofday(&abort->start, NULL);
750 else if (abort->count == 3) {
751 struct timeval now;
752 gettimeofday(&now, NULL);
753 /* Kill all Launcher processes with SIGINT, like normal ^C */
754 if (now.tv_sec <= abort->start.tv_sec+1)
755 kill(0, SIGINT);
756 abort->count = 0;
760 /* This is the routine which handles console output (ie. stdout). */
761 static void console_output(struct virtqueue *vq)
763 unsigned int head, out, in;
764 struct iovec iov[vq->vring.num];
766 head = wait_for_vq_desc(vq, iov, &out, &in);
767 if (in)
768 errx(1, "Input buffers in console output queue?");
769 while (!iov_empty(iov, out)) {
770 int len = writev(STDOUT_FILENO, iov, out);
771 if (len <= 0)
772 err(1, "Write to stdout gave %i", len);
773 iov_consume(iov, out, len);
775 add_used(vq, head, 0);
779 * The Network
781 * Handling output for network is also simple: we get all the output buffers
782 * and write them to /dev/net/tun.
784 struct net_info {
785 int tunfd;
788 static void net_output(struct virtqueue *vq)
790 struct net_info *net_info = vq->dev->priv;
791 unsigned int head, out, in;
792 struct iovec iov[vq->vring.num];
794 head = wait_for_vq_desc(vq, iov, &out, &in);
795 if (in)
796 errx(1, "Input buffers in net output queue?");
797 if (writev(net_info->tunfd, iov, out) < 0)
798 errx(1, "Write to tun failed?");
799 add_used(vq, head, 0);
802 /* Will reading from this file descriptor block? */
803 static bool will_block(int fd)
805 fd_set fdset;
806 struct timeval zero = { 0, 0 };
807 FD_ZERO(&fdset);
808 FD_SET(fd, &fdset);
809 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
812 /* This is where we handle packets coming in from the tun device to our
813 * Guest. */
814 static void net_input(struct virtqueue *vq)
816 int len;
817 unsigned int head, out, in;
818 struct iovec iov[vq->vring.num];
819 struct net_info *net_info = vq->dev->priv;
821 head = wait_for_vq_desc(vq, iov, &out, &in);
822 if (out)
823 errx(1, "Output buffers in net input queue?");
825 /* Deliver interrupt now, since we're about to sleep. */
826 if (vq->pending_used && will_block(net_info->tunfd))
827 trigger_irq(vq);
829 len = readv(net_info->tunfd, iov, in);
830 if (len <= 0)
831 err(1, "Failed to read from tun.");
832 add_used(vq, head, len);
835 /* This is the helper to create threads. */
836 static int do_thread(void *_vq)
838 struct virtqueue *vq = _vq;
840 for (;;)
841 vq->service(vq);
842 return 0;
845 /* When a child dies, we kill our entire process group with SIGTERM. This
846 * also has the side effect that the shell restores the console for us! */
847 static void kill_launcher(int signal)
849 kill(0, SIGTERM);
852 static void reset_device(struct device *dev)
854 struct virtqueue *vq;
856 verbose("Resetting device %s\n", dev->name);
858 /* Clear any features they've acked. */
859 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
861 /* We're going to be explicitly killing threads, so ignore them. */
862 signal(SIGCHLD, SIG_IGN);
864 /* Zero out the virtqueues, get rid of their threads */
865 for (vq = dev->vq; vq; vq = vq->next) {
866 if (vq->thread != (pid_t)-1) {
867 kill(vq->thread, SIGTERM);
868 waitpid(vq->thread, NULL, 0);
869 vq->thread = (pid_t)-1;
871 memset(vq->vring.desc, 0,
872 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
873 lg_last_avail(vq) = 0;
875 dev->running = false;
877 /* Now we care if threads die. */
878 signal(SIGCHLD, (void *)kill_launcher);
881 static void create_thread(struct virtqueue *vq)
883 /* Create stack for thread and run it. Since stack grows
884 * upwards, we point the stack pointer to the end of this
885 * region. */
886 char *stack = malloc(32768);
887 unsigned long args[] = { LHREQ_EVENTFD,
888 vq->config.pfn*getpagesize(), 0 };
890 /* Create a zero-initialized eventfd. */
891 vq->eventfd = eventfd(0, 0);
892 if (vq->eventfd < 0)
893 err(1, "Creating eventfd");
894 args[2] = vq->eventfd;
896 /* Attach an eventfd to this virtqueue: it will go off
897 * when the Guest does an LHCALL_NOTIFY for this vq. */
898 if (write(lguest_fd, &args, sizeof(args)) != 0)
899 err(1, "Attaching eventfd");
901 /* CLONE_VM: because it has to access the Guest memory, and
902 * SIGCHLD so we get a signal if it dies. */
903 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
904 if (vq->thread == (pid_t)-1)
905 err(1, "Creating clone");
906 /* We close our local copy, now the child has it. */
907 close(vq->eventfd);
910 static void start_device(struct device *dev)
912 unsigned int i;
913 struct virtqueue *vq;
915 verbose("Device %s OK: offered", dev->name);
916 for (i = 0; i < dev->feature_len; i++)
917 verbose(" %02x", get_feature_bits(dev)[i]);
918 verbose(", accepted");
919 for (i = 0; i < dev->feature_len; i++)
920 verbose(" %02x", get_feature_bits(dev)
921 [dev->feature_len+i]);
923 for (vq = dev->vq; vq; vq = vq->next) {
924 if (vq->service)
925 create_thread(vq);
927 dev->running = true;
930 static void cleanup_devices(void)
932 struct device *dev;
934 for (dev = devices.dev; dev; dev = dev->next)
935 reset_device(dev);
937 /* If we saved off the original terminal settings, restore them now. */
938 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
939 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
942 /* When the Guest tells us they updated the status field, we handle it. */
943 static void update_device_status(struct device *dev)
945 /* A zero status is a reset, otherwise it's a set of flags. */
946 if (dev->desc->status == 0)
947 reset_device(dev);
948 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
949 warnx("Device %s configuration FAILED", dev->name);
950 if (dev->running)
951 reset_device(dev);
952 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
953 if (!dev->running)
954 start_device(dev);
958 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
959 static void handle_output(unsigned long addr)
961 struct device *i;
963 /* Check each device. */
964 for (i = devices.dev; i; i = i->next) {
965 struct virtqueue *vq;
967 /* Notifications to device descriptors update device status. */
968 if (from_guest_phys(addr) == i->desc) {
969 update_device_status(i);
970 return;
973 /* Devices *can* be used before status is set to DRIVER_OK. */
974 for (vq = i->vq; vq; vq = vq->next) {
975 if (addr != vq->config.pfn*getpagesize())
976 continue;
977 if (i->running)
978 errx(1, "Notification on running %s", i->name);
979 start_device(i);
980 return;
984 /* Early console write is done using notify on a nul-terminated string
985 * in Guest memory. */
986 if (addr >= guest_limit)
987 errx(1, "Bad NOTIFY %#lx", addr);
989 write(STDOUT_FILENO, from_guest_phys(addr),
990 strnlen(from_guest_phys(addr), guest_limit - addr));
993 /*L:190
994 * Device Setup
996 * All devices need a descriptor so the Guest knows it exists, and a "struct
997 * device" so the Launcher can keep track of it. We have common helper
998 * routines to allocate and manage them.
1001 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1002 * number of virtqueue descriptors, then two sets of feature bits, then an
1003 * array of configuration bytes. This routine returns the configuration
1004 * pointer. */
1005 static u8 *device_config(const struct device *dev)
1007 return (void *)(dev->desc + 1)
1008 + dev->num_vq * sizeof(struct lguest_vqconfig)
1009 + dev->feature_len * 2;
1012 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1013 * table page just above the Guest's normal memory. It returns a pointer to
1014 * that descriptor. */
1015 static struct lguest_device_desc *new_dev_desc(u16 type)
1017 struct lguest_device_desc d = { .type = type };
1018 void *p;
1020 /* Figure out where the next device config is, based on the last one. */
1021 if (devices.lastdev)
1022 p = device_config(devices.lastdev)
1023 + devices.lastdev->desc->config_len;
1024 else
1025 p = devices.descpage;
1027 /* We only have one page for all the descriptors. */
1028 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1029 errx(1, "Too many devices");
1031 /* p might not be aligned, so we memcpy in. */
1032 return memcpy(p, &d, sizeof(d));
1035 /* Each device descriptor is followed by the description of its virtqueues. We
1036 * specify how many descriptors the virtqueue is to have. */
1037 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1038 void (*service)(struct virtqueue *))
1040 unsigned int pages;
1041 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1042 void *p;
1044 /* First we need some memory for this virtqueue. */
1045 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1046 / getpagesize();
1047 p = get_pages(pages);
1049 /* Initialize the virtqueue */
1050 vq->next = NULL;
1051 vq->last_avail_idx = 0;
1052 vq->dev = dev;
1053 vq->service = service;
1054 vq->thread = (pid_t)-1;
1056 /* Initialize the configuration. */
1057 vq->config.num = num_descs;
1058 vq->config.irq = devices.next_irq++;
1059 vq->config.pfn = to_guest_phys(p) / getpagesize();
1061 /* Initialize the vring. */
1062 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1064 /* Append virtqueue to this device's descriptor. We use
1065 * device_config() to get the end of the device's current virtqueues;
1066 * we check that we haven't added any config or feature information
1067 * yet, otherwise we'd be overwriting them. */
1068 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1069 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1070 dev->num_vq++;
1071 dev->desc->num_vq++;
1073 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1075 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1076 * second. */
1077 for (i = &dev->vq; *i; i = &(*i)->next);
1078 *i = vq;
1081 /* The first half of the feature bitmask is for us to advertise features. The
1082 * second half is for the Guest to accept features. */
1083 static void add_feature(struct device *dev, unsigned bit)
1085 u8 *features = get_feature_bits(dev);
1087 /* We can't extend the feature bits once we've added config bytes */
1088 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1089 assert(dev->desc->config_len == 0);
1090 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1093 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1096 /* This routine sets the configuration fields for an existing device's
1097 * descriptor. It only works for the last device, but that's OK because that's
1098 * how we use it. */
1099 static void set_config(struct device *dev, unsigned len, const void *conf)
1101 /* Check we haven't overflowed our single page. */
1102 if (device_config(dev) + len > devices.descpage + getpagesize())
1103 errx(1, "Too many devices");
1105 /* Copy in the config information, and store the length. */
1106 memcpy(device_config(dev), conf, len);
1107 dev->desc->config_len = len;
1110 /* This routine does all the creation and setup of a new device, including
1111 * calling new_dev_desc() to allocate the descriptor and device memory.
1113 * See what I mean about userspace being boring? */
1114 static struct device *new_device(const char *name, u16 type)
1116 struct device *dev = malloc(sizeof(*dev));
1118 /* Now we populate the fields one at a time. */
1119 dev->desc = new_dev_desc(type);
1120 dev->name = name;
1121 dev->vq = NULL;
1122 dev->feature_len = 0;
1123 dev->num_vq = 0;
1124 dev->running = false;
1126 /* Append to device list. Prepending to a single-linked list is
1127 * easier, but the user expects the devices to be arranged on the bus
1128 * in command-line order. The first network device on the command line
1129 * is eth0, the first block device /dev/vda, etc. */
1130 if (devices.lastdev)
1131 devices.lastdev->next = dev;
1132 else
1133 devices.dev = dev;
1134 devices.lastdev = dev;
1136 return dev;
1139 /* Our first setup routine is the console. It's a fairly simple device, but
1140 * UNIX tty handling makes it uglier than it could be. */
1141 static void setup_console(void)
1143 struct device *dev;
1145 /* If we can save the initial standard input settings... */
1146 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1147 struct termios term = orig_term;
1148 /* Then we turn off echo, line buffering and ^C etc. We want a
1149 * raw input stream to the Guest. */
1150 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1151 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1154 dev = new_device("console", VIRTIO_ID_CONSOLE);
1156 /* We store the console state in dev->priv, and initialize it. */
1157 dev->priv = malloc(sizeof(struct console_abort));
1158 ((struct console_abort *)dev->priv)->count = 0;
1160 /* The console needs two virtqueues: the input then the output. When
1161 * they put something the input queue, we make sure we're listening to
1162 * stdin. When they put something in the output queue, we write it to
1163 * stdout. */
1164 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1165 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1167 verbose("device %u: console\n", ++devices.device_num);
1169 /*:*/
1171 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1172 * --sharenet=<name> option which opens or creates a named pipe. This can be
1173 * used to send packets to another guest in a 1:1 manner.
1175 * More sopisticated is to use one of the tools developed for project like UML
1176 * to do networking.
1178 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1179 * completely generic ("here's my vring, attach to your vring") and would work
1180 * for any traffic. Of course, namespace and permissions issues need to be
1181 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1182 * multiple inter-guest channels behind one interface, although it would
1183 * require some manner of hotplugging new virtio channels.
1185 * Finally, we could implement a virtio network switch in the kernel. :*/
1187 static u32 str2ip(const char *ipaddr)
1189 unsigned int b[4];
1191 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1192 errx(1, "Failed to parse IP address '%s'", ipaddr);
1193 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1196 static void str2mac(const char *macaddr, unsigned char mac[6])
1198 unsigned int m[6];
1199 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1200 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1201 errx(1, "Failed to parse mac address '%s'", macaddr);
1202 mac[0] = m[0];
1203 mac[1] = m[1];
1204 mac[2] = m[2];
1205 mac[3] = m[3];
1206 mac[4] = m[4];
1207 mac[5] = m[5];
1210 /* This code is "adapted" from libbridge: it attaches the Host end of the
1211 * network device to the bridge device specified by the command line.
1213 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1214 * dislike bridging), and I just try not to break it. */
1215 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1217 int ifidx;
1218 struct ifreq ifr;
1220 if (!*br_name)
1221 errx(1, "must specify bridge name");
1223 ifidx = if_nametoindex(if_name);
1224 if (!ifidx)
1225 errx(1, "interface %s does not exist!", if_name);
1227 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1228 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1229 ifr.ifr_ifindex = ifidx;
1230 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1231 err(1, "can't add %s to bridge %s", if_name, br_name);
1234 /* This sets up the Host end of the network device with an IP address, brings
1235 * it up so packets will flow, the copies the MAC address into the hwaddr
1236 * pointer. */
1237 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1239 struct ifreq ifr;
1240 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1242 memset(&ifr, 0, sizeof(ifr));
1243 strcpy(ifr.ifr_name, tapif);
1245 /* Don't read these incantations. Just cut & paste them like I did! */
1246 sin->sin_family = AF_INET;
1247 sin->sin_addr.s_addr = htonl(ipaddr);
1248 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1249 err(1, "Setting %s interface address", tapif);
1250 ifr.ifr_flags = IFF_UP;
1251 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1252 err(1, "Bringing interface %s up", tapif);
1255 static int get_tun_device(char tapif[IFNAMSIZ])
1257 struct ifreq ifr;
1258 int netfd;
1260 /* Start with this zeroed. Messy but sure. */
1261 memset(&ifr, 0, sizeof(ifr));
1263 /* We open the /dev/net/tun device and tell it we want a tap device. A
1264 * tap device is like a tun device, only somehow different. To tell
1265 * the truth, I completely blundered my way through this code, but it
1266 * works now! */
1267 netfd = open_or_die("/dev/net/tun", O_RDWR);
1268 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1269 strcpy(ifr.ifr_name, "tap%d");
1270 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1271 err(1, "configuring /dev/net/tun");
1273 if (ioctl(netfd, TUNSETOFFLOAD,
1274 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1275 err(1, "Could not set features for tun device");
1277 /* We don't need checksums calculated for packets coming in this
1278 * device: trust us! */
1279 ioctl(netfd, TUNSETNOCSUM, 1);
1281 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1282 return netfd;
1285 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1286 * routing, but the principle is the same: it uses the "tun" device to inject
1287 * packets into the Host as if they came in from a normal network card. We
1288 * just shunt packets between the Guest and the tun device. */
1289 static void setup_tun_net(char *arg)
1291 struct device *dev;
1292 struct net_info *net_info = malloc(sizeof(*net_info));
1293 int ipfd;
1294 u32 ip = INADDR_ANY;
1295 bool bridging = false;
1296 char tapif[IFNAMSIZ], *p;
1297 struct virtio_net_config conf;
1299 net_info->tunfd = get_tun_device(tapif);
1301 /* First we create a new network device. */
1302 dev = new_device("net", VIRTIO_ID_NET);
1303 dev->priv = net_info;
1305 /* Network devices need a receive and a send queue, just like
1306 * console. */
1307 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1308 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1310 /* We need a socket to perform the magic network ioctls to bring up the
1311 * tap interface, connect to the bridge etc. Any socket will do! */
1312 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1313 if (ipfd < 0)
1314 err(1, "opening IP socket");
1316 /* If the command line was --tunnet=bridge:<name> do bridging. */
1317 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1318 arg += strlen(BRIDGE_PFX);
1319 bridging = true;
1322 /* A mac address may follow the bridge name or IP address */
1323 p = strchr(arg, ':');
1324 if (p) {
1325 str2mac(p+1, conf.mac);
1326 add_feature(dev, VIRTIO_NET_F_MAC);
1327 *p = '\0';
1330 /* arg is now either an IP address or a bridge name */
1331 if (bridging)
1332 add_to_bridge(ipfd, tapif, arg);
1333 else
1334 ip = str2ip(arg);
1336 /* Set up the tun device. */
1337 configure_device(ipfd, tapif, ip);
1339 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1340 /* Expect Guest to handle everything except UFO */
1341 add_feature(dev, VIRTIO_NET_F_CSUM);
1342 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1343 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1344 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1345 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1346 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1347 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1348 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1349 /* We handle indirect ring entries */
1350 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1351 set_config(dev, sizeof(conf), &conf);
1353 /* We don't need the socket any more; setup is done. */
1354 close(ipfd);
1356 devices.device_num++;
1358 if (bridging)
1359 verbose("device %u: tun %s attached to bridge: %s\n",
1360 devices.device_num, tapif, arg);
1361 else
1362 verbose("device %u: tun %s: %s\n",
1363 devices.device_num, tapif, arg);
1366 /* Our block (disk) device should be really simple: the Guest asks for a block
1367 * number and we read or write that position in the file. Unfortunately, that
1368 * was amazingly slow: the Guest waits until the read is finished before
1369 * running anything else, even if it could have been doing useful work.
1371 * We could use async I/O, except it's reputed to suck so hard that characters
1372 * actually go missing from your code when you try to use it.
1374 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1376 /* This hangs off device->priv. */
1377 struct vblk_info
1379 /* The size of the file. */
1380 off64_t len;
1382 /* The file descriptor for the file. */
1383 int fd;
1385 /* IO thread listens on this file descriptor [0]. */
1386 int workpipe[2];
1388 /* IO thread writes to this file descriptor to mark it done, then
1389 * Launcher triggers interrupt to Guest. */
1390 int done_fd;
1393 /*L:210
1394 * The Disk
1396 * Remember that the block device is handled by a separate I/O thread. We head
1397 * straight into the core of that thread here:
1399 static void blk_request(struct virtqueue *vq)
1401 struct vblk_info *vblk = vq->dev->priv;
1402 unsigned int head, out_num, in_num, wlen;
1403 int ret;
1404 u8 *in;
1405 struct virtio_blk_outhdr *out;
1406 struct iovec iov[vq->vring.num];
1407 off64_t off;
1409 /* Get the next request. */
1410 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1412 /* Every block request should contain at least one output buffer
1413 * (detailing the location on disk and the type of request) and one
1414 * input buffer (to hold the result). */
1415 if (out_num == 0 || in_num == 0)
1416 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1417 head, out_num, in_num);
1419 out = convert(&iov[0], struct virtio_blk_outhdr);
1420 in = convert(&iov[out_num+in_num-1], u8);
1421 off = out->sector * 512;
1423 /* The block device implements "barriers", where the Guest indicates
1424 * that it wants all previous writes to occur before this write. We
1425 * don't have a way of asking our kernel to do a barrier, so we just
1426 * synchronize all the data in the file. Pretty poor, no? */
1427 if (out->type & VIRTIO_BLK_T_BARRIER)
1428 fdatasync(vblk->fd);
1430 /* In general the virtio block driver is allowed to try SCSI commands.
1431 * It'd be nice if we supported eject, for example, but we don't. */
1432 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1433 fprintf(stderr, "Scsi commands unsupported\n");
1434 *in = VIRTIO_BLK_S_UNSUPP;
1435 wlen = sizeof(*in);
1436 } else if (out->type & VIRTIO_BLK_T_OUT) {
1437 /* Write */
1439 /* Move to the right location in the block file. This can fail
1440 * if they try to write past end. */
1441 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1442 err(1, "Bad seek to sector %llu", out->sector);
1444 ret = writev(vblk->fd, iov+1, out_num-1);
1445 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1447 /* Grr... Now we know how long the descriptor they sent was, we
1448 * make sure they didn't try to write over the end of the block
1449 * file (possibly extending it). */
1450 if (ret > 0 && off + ret > vblk->len) {
1451 /* Trim it back to the correct length */
1452 ftruncate64(vblk->fd, vblk->len);
1453 /* Die, bad Guest, die. */
1454 errx(1, "Write past end %llu+%u", off, ret);
1456 wlen = sizeof(*in);
1457 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1458 } else {
1459 /* Read */
1461 /* Move to the right location in the block file. This can fail
1462 * if they try to read past end. */
1463 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1464 err(1, "Bad seek to sector %llu", out->sector);
1466 ret = readv(vblk->fd, iov+1, in_num-1);
1467 verbose("READ from sector %llu: %i\n", out->sector, ret);
1468 if (ret >= 0) {
1469 wlen = sizeof(*in) + ret;
1470 *in = VIRTIO_BLK_S_OK;
1471 } else {
1472 wlen = sizeof(*in);
1473 *in = VIRTIO_BLK_S_IOERR;
1477 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1478 * barrier. But Christoph Hellwig points out that we need a sync
1479 * *afterwards* as well: "Barriers specify no reordering to the front
1480 * or the back." And Jens Axboe confirmed it, so here we are: */
1481 if (out->type & VIRTIO_BLK_T_BARRIER)
1482 fdatasync(vblk->fd);
1484 add_used(vq, head, wlen);
1487 /*L:198 This actually sets up a virtual block device. */
1488 static void setup_block_file(const char *filename)
1490 struct device *dev;
1491 struct vblk_info *vblk;
1492 struct virtio_blk_config conf;
1494 /* The device responds to return from I/O thread. */
1495 dev = new_device("block", VIRTIO_ID_BLOCK);
1497 /* The device has one virtqueue, where the Guest places requests. */
1498 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1500 /* Allocate the room for our own bookkeeping */
1501 vblk = dev->priv = malloc(sizeof(*vblk));
1503 /* First we open the file and store the length. */
1504 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1505 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1507 /* We support barriers. */
1508 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1510 /* Tell Guest how many sectors this device has. */
1511 conf.capacity = cpu_to_le64(vblk->len / 512);
1513 /* Tell Guest not to put in too many descriptors at once: two are used
1514 * for the in and out elements. */
1515 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1516 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1518 set_config(dev, sizeof(conf), &conf);
1520 verbose("device %u: virtblock %llu sectors\n",
1521 ++devices.device_num, le64_to_cpu(conf.capacity));
1524 struct rng_info {
1525 int rfd;
1528 /* Our random number generator device reads from /dev/random into the Guest's
1529 * input buffers. The usual case is that the Guest doesn't want random numbers
1530 * and so has no buffers although /dev/random is still readable, whereas
1531 * console is the reverse.
1533 * The same logic applies, however. */
1534 static void rng_input(struct virtqueue *vq)
1536 int len;
1537 unsigned int head, in_num, out_num, totlen = 0;
1538 struct rng_info *rng_info = vq->dev->priv;
1539 struct iovec iov[vq->vring.num];
1541 /* First we need a buffer from the Guests's virtqueue. */
1542 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1543 if (out_num)
1544 errx(1, "Output buffers in rng?");
1546 /* This is why we convert to iovecs: the readv() call uses them, and so
1547 * it reads straight into the Guest's buffer. We loop to make sure we
1548 * fill it. */
1549 while (!iov_empty(iov, in_num)) {
1550 len = readv(rng_info->rfd, iov, in_num);
1551 if (len <= 0)
1552 err(1, "Read from /dev/random gave %i", len);
1553 iov_consume(iov, in_num, len);
1554 totlen += len;
1557 /* Tell the Guest about the new input. */
1558 add_used(vq, head, totlen);
1561 /* And this creates a "hardware" random number device for the Guest. */
1562 static void setup_rng(void)
1564 struct device *dev;
1565 struct rng_info *rng_info = malloc(sizeof(*rng_info));
1567 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1569 /* The device responds to return from I/O thread. */
1570 dev = new_device("rng", VIRTIO_ID_RNG);
1571 dev->priv = rng_info;
1573 /* The device has one virtqueue, where the Guest places inbufs. */
1574 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1576 verbose("device %u: rng\n", devices.device_num++);
1578 /* That's the end of device setup. */
1580 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1581 static void __attribute__((noreturn)) restart_guest(void)
1583 unsigned int i;
1585 /* Since we don't track all open fds, we simply close everything beyond
1586 * stderr. */
1587 for (i = 3; i < FD_SETSIZE; i++)
1588 close(i);
1590 /* Reset all the devices (kills all threads). */
1591 cleanup_devices();
1593 execv(main_args[0], main_args);
1594 err(1, "Could not exec %s", main_args[0]);
1597 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1598 * its input and output, and finally, lays it to rest. */
1599 static void __attribute__((noreturn)) run_guest(void)
1601 for (;;) {
1602 unsigned long notify_addr;
1603 int readval;
1605 /* We read from the /dev/lguest device to run the Guest. */
1606 readval = pread(lguest_fd, &notify_addr,
1607 sizeof(notify_addr), cpu_id);
1609 /* One unsigned long means the Guest did HCALL_NOTIFY */
1610 if (readval == sizeof(notify_addr)) {
1611 verbose("Notify on address %#lx\n", notify_addr);
1612 handle_output(notify_addr);
1613 /* ENOENT means the Guest died. Reading tells us why. */
1614 } else if (errno == ENOENT) {
1615 char reason[1024] = { 0 };
1616 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1617 errx(1, "%s", reason);
1618 /* ERESTART means that we need to reboot the guest */
1619 } else if (errno == ERESTART) {
1620 restart_guest();
1621 /* Anything else means a bug or incompatible change. */
1622 } else
1623 err(1, "Running guest failed");
1626 /*L:240
1627 * This is the end of the Launcher. The good news: we are over halfway
1628 * through! The bad news: the most fiendish part of the code still lies ahead
1629 * of us.
1631 * Are you ready? Take a deep breath and join me in the core of the Host, in
1632 * "make Host".
1635 static struct option opts[] = {
1636 { "verbose", 0, NULL, 'v' },
1637 { "tunnet", 1, NULL, 't' },
1638 { "block", 1, NULL, 'b' },
1639 { "rng", 0, NULL, 'r' },
1640 { "initrd", 1, NULL, 'i' },
1641 { NULL },
1643 static void usage(void)
1645 errx(1, "Usage: lguest [--verbose] "
1646 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1647 "|--block=<filename>|--initrd=<filename>]...\n"
1648 "<mem-in-mb> vmlinux [args...]");
1651 /*L:105 The main routine is where the real work begins: */
1652 int main(int argc, char *argv[])
1654 /* Memory, top-level pagetable, code startpoint and size of the
1655 * (optional) initrd. */
1656 unsigned long mem = 0, start, initrd_size = 0;
1657 /* Two temporaries. */
1658 int i, c;
1659 /* The boot information for the Guest. */
1660 struct boot_params *boot;
1661 /* If they specify an initrd file to load. */
1662 const char *initrd_name = NULL;
1664 /* Save the args: we "reboot" by execing ourselves again. */
1665 main_args = argv;
1667 /* First we initialize the device list. We keep a pointer to the last
1668 * device, and the next interrupt number to use for devices (1:
1669 * remember that 0 is used by the timer). */
1670 devices.lastdev = NULL;
1671 devices.next_irq = 1;
1673 cpu_id = 0;
1674 /* We need to know how much memory so we can set up the device
1675 * descriptor and memory pages for the devices as we parse the command
1676 * line. So we quickly look through the arguments to find the amount
1677 * of memory now. */
1678 for (i = 1; i < argc; i++) {
1679 if (argv[i][0] != '-') {
1680 mem = atoi(argv[i]) * 1024 * 1024;
1681 /* We start by mapping anonymous pages over all of
1682 * guest-physical memory range. This fills it with 0,
1683 * and ensures that the Guest won't be killed when it
1684 * tries to access it. */
1685 guest_base = map_zeroed_pages(mem / getpagesize()
1686 + DEVICE_PAGES);
1687 guest_limit = mem;
1688 guest_max = mem + DEVICE_PAGES*getpagesize();
1689 devices.descpage = get_pages(1);
1690 break;
1694 /* The options are fairly straight-forward */
1695 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1696 switch (c) {
1697 case 'v':
1698 verbose = true;
1699 break;
1700 case 't':
1701 setup_tun_net(optarg);
1702 break;
1703 case 'b':
1704 setup_block_file(optarg);
1705 break;
1706 case 'r':
1707 setup_rng();
1708 break;
1709 case 'i':
1710 initrd_name = optarg;
1711 break;
1712 default:
1713 warnx("Unknown argument %s", argv[optind]);
1714 usage();
1717 /* After the other arguments we expect memory and kernel image name,
1718 * followed by command line arguments for the kernel. */
1719 if (optind + 2 > argc)
1720 usage();
1722 verbose("Guest base is at %p\n", guest_base);
1724 /* We always have a console device */
1725 setup_console();
1727 /* Now we load the kernel */
1728 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1730 /* Boot information is stashed at physical address 0 */
1731 boot = from_guest_phys(0);
1733 /* Map the initrd image if requested (at top of physical memory) */
1734 if (initrd_name) {
1735 initrd_size = load_initrd(initrd_name, mem);
1736 /* These are the location in the Linux boot header where the
1737 * start and size of the initrd are expected to be found. */
1738 boot->hdr.ramdisk_image = mem - initrd_size;
1739 boot->hdr.ramdisk_size = initrd_size;
1740 /* The bootloader type 0xFF means "unknown"; that's OK. */
1741 boot->hdr.type_of_loader = 0xFF;
1744 /* The Linux boot header contains an "E820" memory map: ours is a
1745 * simple, single region. */
1746 boot->e820_entries = 1;
1747 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1748 /* The boot header contains a command line pointer: we put the command
1749 * line after the boot header. */
1750 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1751 /* We use a simple helper to copy the arguments separated by spaces. */
1752 concat((char *)(boot + 1), argv+optind+2);
1754 /* Boot protocol version: 2.07 supports the fields for lguest. */
1755 boot->hdr.version = 0x207;
1757 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1758 boot->hdr.hardware_subarch = 1;
1760 /* Tell the entry path not to try to reload segment registers. */
1761 boot->hdr.loadflags |= KEEP_SEGMENTS;
1763 /* We tell the kernel to initialize the Guest: this returns the open
1764 * /dev/lguest file descriptor. */
1765 tell_kernel(start);
1767 /* Ensure that we terminate if a child dies. */
1768 signal(SIGCHLD, kill_launcher);
1770 /* If we exit via err(), this kills all the threads, restores tty. */
1771 atexit(cleanup_devices);
1773 /* Finally, run the Guest. This doesn't return. */
1774 run_guest();
1776 /*:*/
1778 /*M:999
1779 * Mastery is done: you now know everything I do.
1781 * But surely you have seen code, features and bugs in your wanderings which
1782 * you now yearn to attack? That is the real game, and I look forward to you
1783 * patching and forking lguest into the Your-Name-Here-visor.
1785 * Farewell, and good coding!
1786 * Rusty Russell.