3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
129 #define FORCED_DEBUG 1
133 #define FORCED_DEBUG 0
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170 /* Legal flag mask for kmem_cache_create(). */
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
188 * Bufctl's are used for linking objs within a slab
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t
;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
213 static unsigned long offslab_limit
;
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct list_head list
;
224 unsigned long colouroff
;
225 void *s_mem
; /* including colour offset */
226 unsigned int inuse
; /* num of objs active in slab */
228 unsigned short nodeid
;
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
248 struct rcu_head head
;
249 struct kmem_cache
*cachep
;
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
268 unsigned int batchcount
;
269 unsigned int touched
;
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
275 * [0] is for gcc 2.95. It should really be [].
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init
{
285 struct array_cache cache
;
286 void *entries
[BOOT_CPUCACHE_ENTRIES
];
290 * The slab lists for all objects.
293 struct list_head slabs_partial
; /* partial list first, better asm code */
294 struct list_head slabs_full
;
295 struct list_head slabs_free
;
296 unsigned long free_objects
;
297 unsigned int free_limit
;
298 unsigned int colour_next
; /* Per-node cache coloring */
299 spinlock_t list_lock
;
300 struct array_cache
*shared
; /* shared per node */
301 struct array_cache
**alien
; /* on other nodes */
302 unsigned long next_reap
; /* updated without locking */
303 int free_touched
; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
311 #define CACHE_CACHE 0
313 #define SIZE_L3 (1 + MAX_NUMNODES)
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 static __always_inline
int index_of(const size_t size
)
321 extern void __bad_size(void);
323 if (__builtin_constant_p(size
)) {
331 #include "linux/kmalloc_sizes.h"
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
342 static void kmem_list3_init(struct kmem_list3
*parent
)
344 INIT_LIST_HEAD(&parent
->slabs_full
);
345 INIT_LIST_HEAD(&parent
->slabs_partial
);
346 INIT_LIST_HEAD(&parent
->slabs_free
);
347 parent
->shared
= NULL
;
348 parent
->alien
= NULL
;
349 parent
->colour_next
= 0;
350 spin_lock_init(&parent
->list_lock
);
351 parent
->free_objects
= 0;
352 parent
->free_touched
= 0;
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache
*array
[NR_CPUS
];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount
;
382 unsigned int buffer_size
;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
386 unsigned int flags
; /* constant flags */
387 unsigned int num
; /* # of objs per slab */
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder
;
393 /* force GFP flags, e.g. GFP_DMA */
396 size_t colour
; /* cache colouring range */
397 unsigned int colour_off
; /* colour offset */
398 struct kmem_cache
*slabp_cache
;
399 unsigned int slab_size
;
400 unsigned int dflags
; /* dynamic flags */
402 /* constructor func */
403 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
405 /* de-constructor func */
406 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
408 /* 5) cache creation/removal */
410 struct list_head next
;
414 unsigned long num_active
;
415 unsigned long num_allocations
;
416 unsigned long high_mark
;
418 unsigned long reaped
;
419 unsigned long errors
;
420 unsigned long max_freeable
;
421 unsigned long node_allocs
;
422 unsigned long node_frees
;
423 unsigned long node_overflow
;
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
441 #define CFLGS_OFF_SLAB (0x80000000UL)
442 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
444 #define BATCHREFILL_LIMIT 16
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
449 * OTOH the cpuarrays can contain lots of objects,
450 * which could lock up otherwise freeable slabs.
452 #define REAPTIMEOUT_CPUC (2*HZ)
453 #define REAPTIMEOUT_LIST3 (4*HZ)
456 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
457 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459 #define STATS_INC_GROWN(x) ((x)->grown++)
460 #define STATS_INC_REAPED(x) ((x)->reaped++)
461 #define STATS_SET_HIGH(x) \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
466 #define STATS_INC_ERR(x) ((x)->errors++)
467 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
468 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
469 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
470 #define STATS_SET_FREEABLE(x, i) \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
475 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
480 #define STATS_INC_ACTIVE(x) do { } while (0)
481 #define STATS_DEC_ACTIVE(x) do { } while (0)
482 #define STATS_INC_ALLOCED(x) do { } while (0)
483 #define STATS_INC_GROWN(x) do { } while (0)
484 #define STATS_INC_REAPED(x) do { } while (0)
485 #define STATS_SET_HIGH(x) do { } while (0)
486 #define STATS_INC_ERR(x) do { } while (0)
487 #define STATS_INC_NODEALLOCS(x) do { } while (0)
488 #define STATS_INC_NODEFREES(x) do { } while (0)
489 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
490 #define STATS_SET_FREEABLE(x, i) do { } while (0)
491 #define STATS_INC_ALLOCHIT(x) do { } while (0)
492 #define STATS_INC_ALLOCMISS(x) do { } while (0)
493 #define STATS_INC_FREEHIT(x) do { } while (0)
494 #define STATS_INC_FREEMISS(x) do { } while (0)
499 * Magic nums for obj red zoning.
500 * Placed in the first word before and the first word after an obj.
502 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
505 /* ...and for poisoning */
506 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507 #define POISON_FREE 0x6b /* for use-after-free poisoning */
508 #define POISON_END 0xa5 /* end-byte of poisoning */
511 * memory layout of objects:
513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
523 static int obj_offset(struct kmem_cache
*cachep
)
525 return cachep
->obj_offset
;
528 static int obj_size(struct kmem_cache
*cachep
)
530 return cachep
->obj_size
;
533 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
535 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
536 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
539 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
541 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
542 if (cachep
->flags
& SLAB_STORE_USER
)
543 return (unsigned long *)(objp
+ cachep
->buffer_size
-
545 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
548 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
550 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
551 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
556 #define obj_offset(x) 0
557 #define obj_size(cachep) (cachep->buffer_size)
558 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
568 #if defined(CONFIG_LARGE_ALLOCS)
569 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
570 #define MAX_GFP_ORDER 13 /* up to 32Mb */
571 #elif defined(CONFIG_MMU)
572 #define MAX_OBJ_ORDER 5 /* 32 pages */
573 #define MAX_GFP_ORDER 5 /* 32 pages */
575 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
576 #define MAX_GFP_ORDER 8 /* up to 1Mb */
580 * Do not go above this order unless 0 objects fit into the slab.
582 #define BREAK_GFP_ORDER_HI 1
583 #define BREAK_GFP_ORDER_LO 0
584 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
591 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
593 page
->lru
.next
= (struct list_head
*)cache
;
596 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
598 if (unlikely(PageCompound(page
)))
599 page
= (struct page
*)page_private(page
);
600 return (struct kmem_cache
*)page
->lru
.next
;
603 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
605 page
->lru
.prev
= (struct list_head
*)slab
;
608 static inline struct slab
*page_get_slab(struct page
*page
)
610 if (unlikely(PageCompound(page
)))
611 page
= (struct page
*)page_private(page
);
612 return (struct slab
*)page
->lru
.prev
;
615 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
617 struct page
*page
= virt_to_page(obj
);
618 return page_get_cache(page
);
621 static inline struct slab
*virt_to_slab(const void *obj
)
623 struct page
*page
= virt_to_page(obj
);
624 return page_get_slab(page
);
627 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
630 return slab
->s_mem
+ cache
->buffer_size
* idx
;
633 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
634 struct slab
*slab
, void *obj
)
636 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
642 struct cache_sizes malloc_sizes
[] = {
643 #define CACHE(x) { .cs_size = (x) },
644 #include <linux/kmalloc_sizes.h>
648 EXPORT_SYMBOL(malloc_sizes
);
650 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
656 static struct cache_names __initdata cache_names
[] = {
657 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658 #include <linux/kmalloc_sizes.h>
663 static struct arraycache_init initarray_cache __initdata
=
664 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
665 static struct arraycache_init initarray_generic
=
666 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
668 /* internal cache of cache description objs */
669 static struct kmem_cache cache_cache
= {
671 .limit
= BOOT_CPUCACHE_ENTRIES
,
673 .buffer_size
= sizeof(struct kmem_cache
),
674 .name
= "kmem_cache",
676 .obj_size
= sizeof(struct kmem_cache
),
680 /* Guard access to the cache-chain. */
681 static DEFINE_MUTEX(cache_chain_mutex
);
682 static struct list_head cache_chain
;
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
690 atomic_t slab_reclaim_pages
;
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
703 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
705 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
707 static void enable_cpucache(struct kmem_cache
*cachep
);
708 static void cache_reap(void *unused
);
709 static int __node_shrink(struct kmem_cache
*cachep
, int node
);
711 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
713 return cachep
->array
[smp_processor_id()];
716 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
719 struct cache_sizes
*csizep
= malloc_sizes
;
722 /* This happens if someone tries to call
723 * kmem_cache_create(), or __kmalloc(), before
724 * the generic caches are initialized.
726 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
728 while (size
> csizep
->cs_size
)
732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
736 if (unlikely(gfpflags
& GFP_DMA
))
737 return csizep
->cs_dmacachep
;
738 return csizep
->cs_cachep
;
741 struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
743 return __find_general_cachep(size
, gfpflags
);
745 EXPORT_SYMBOL(kmem_find_general_cachep
);
747 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
749 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
753 * Calculate the number of objects and left-over bytes for a given buffer size.
755 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
756 size_t align
, int flags
, size_t *left_over
,
761 size_t slab_size
= PAGE_SIZE
<< gfporder
;
764 * The slab management structure can be either off the slab or
765 * on it. For the latter case, the memory allocated for a
769 * - One kmem_bufctl_t for each object
770 * - Padding to respect alignment of @align
771 * - @buffer_size bytes for each object
773 * If the slab management structure is off the slab, then the
774 * alignment will already be calculated into the size. Because
775 * the slabs are all pages aligned, the objects will be at the
776 * correct alignment when allocated.
778 if (flags
& CFLGS_OFF_SLAB
) {
780 nr_objs
= slab_size
/ buffer_size
;
782 if (nr_objs
> SLAB_LIMIT
)
783 nr_objs
= SLAB_LIMIT
;
786 * Ignore padding for the initial guess. The padding
787 * is at most @align-1 bytes, and @buffer_size is at
788 * least @align. In the worst case, this result will
789 * be one greater than the number of objects that fit
790 * into the memory allocation when taking the padding
793 nr_objs
= (slab_size
- sizeof(struct slab
)) /
794 (buffer_size
+ sizeof(kmem_bufctl_t
));
797 * This calculated number will be either the right
798 * amount, or one greater than what we want.
800 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
804 if (nr_objs
> SLAB_LIMIT
)
805 nr_objs
= SLAB_LIMIT
;
807 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
810 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
813 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
815 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
818 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
819 function
, cachep
->name
, msg
);
825 * Special reaping functions for NUMA systems called from cache_reap().
826 * These take care of doing round robin flushing of alien caches (containing
827 * objects freed on different nodes from which they were allocated) and the
828 * flushing of remote pcps by calling drain_node_pages.
830 static DEFINE_PER_CPU(unsigned long, reap_node
);
832 static void init_reap_node(int cpu
)
836 node
= next_node(cpu_to_node(cpu
), node_online_map
);
837 if (node
== MAX_NUMNODES
)
838 node
= first_node(node_online_map
);
840 __get_cpu_var(reap_node
) = node
;
843 static void next_reap_node(void)
845 int node
= __get_cpu_var(reap_node
);
848 * Also drain per cpu pages on remote zones
850 if (node
!= numa_node_id())
851 drain_node_pages(node
);
853 node
= next_node(node
, node_online_map
);
854 if (unlikely(node
>= MAX_NUMNODES
))
855 node
= first_node(node_online_map
);
856 __get_cpu_var(reap_node
) = node
;
860 #define init_reap_node(cpu) do { } while (0)
861 #define next_reap_node(void) do { } while (0)
865 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
866 * via the workqueue/eventd.
867 * Add the CPU number into the expiration time to minimize the possibility of
868 * the CPUs getting into lockstep and contending for the global cache chain
871 static void __devinit
start_cpu_timer(int cpu
)
873 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
876 * When this gets called from do_initcalls via cpucache_init(),
877 * init_workqueues() has already run, so keventd will be setup
880 if (keventd_up() && reap_work
->func
== NULL
) {
882 INIT_WORK(reap_work
, cache_reap
, NULL
);
883 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
887 static struct array_cache
*alloc_arraycache(int node
, int entries
,
890 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
891 struct array_cache
*nc
= NULL
;
893 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
897 nc
->batchcount
= batchcount
;
899 spin_lock_init(&nc
->lock
);
905 * Transfer objects in one arraycache to another.
906 * Locking must be handled by the caller.
908 * Return the number of entries transferred.
910 static int transfer_objects(struct array_cache
*to
,
911 struct array_cache
*from
, unsigned int max
)
913 /* Figure out how many entries to transfer */
914 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
919 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
929 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
930 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
932 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
934 struct array_cache
**ac_ptr
;
935 int memsize
= sizeof(void *) * MAX_NUMNODES
;
940 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
943 if (i
== node
|| !node_online(i
)) {
947 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
949 for (i
--; i
<= 0; i
--)
959 static void free_alien_cache(struct array_cache
**ac_ptr
)
970 static void __drain_alien_cache(struct kmem_cache
*cachep
,
971 struct array_cache
*ac
, int node
)
973 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
976 spin_lock(&rl3
->list_lock
);
978 * Stuff objects into the remote nodes shared array first.
979 * That way we could avoid the overhead of putting the objects
980 * into the free lists and getting them back later.
982 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
984 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
986 spin_unlock(&rl3
->list_lock
);
991 * Called from cache_reap() to regularly drain alien caches round robin.
993 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
995 int node
= __get_cpu_var(reap_node
);
998 struct array_cache
*ac
= l3
->alien
[node
];
1000 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1001 __drain_alien_cache(cachep
, ac
, node
);
1002 spin_unlock_irq(&ac
->lock
);
1007 static void drain_alien_cache(struct kmem_cache
*cachep
,
1008 struct array_cache
**alien
)
1011 struct array_cache
*ac
;
1012 unsigned long flags
;
1014 for_each_online_node(i
) {
1017 spin_lock_irqsave(&ac
->lock
, flags
);
1018 __drain_alien_cache(cachep
, ac
, i
);
1019 spin_unlock_irqrestore(&ac
->lock
, flags
);
1025 #define drain_alien_cache(cachep, alien) do { } while (0)
1026 #define reap_alien(cachep, l3) do { } while (0)
1028 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1030 return (struct array_cache
**) 0x01020304ul
;
1033 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1039 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
1040 unsigned long action
, void *hcpu
)
1042 long cpu
= (long)hcpu
;
1043 struct kmem_cache
*cachep
;
1044 struct kmem_list3
*l3
= NULL
;
1045 int node
= cpu_to_node(cpu
);
1046 int memsize
= sizeof(struct kmem_list3
);
1049 case CPU_UP_PREPARE
:
1050 mutex_lock(&cache_chain_mutex
);
1052 * We need to do this right in the beginning since
1053 * alloc_arraycache's are going to use this list.
1054 * kmalloc_node allows us to add the slab to the right
1055 * kmem_list3 and not this cpu's kmem_list3
1058 list_for_each_entry(cachep
, &cache_chain
, next
) {
1060 * Set up the size64 kmemlist for cpu before we can
1061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1064 if (!cachep
->nodelists
[node
]) {
1065 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1068 kmem_list3_init(l3
);
1069 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1070 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1073 * The l3s don't come and go as CPUs come and
1074 * go. cache_chain_mutex is sufficient
1077 cachep
->nodelists
[node
] = l3
;
1080 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1081 cachep
->nodelists
[node
]->free_limit
=
1082 (1 + nr_cpus_node(node
)) *
1083 cachep
->batchcount
+ cachep
->num
;
1084 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1088 * Now we can go ahead with allocating the shared arrays and
1091 list_for_each_entry(cachep
, &cache_chain
, next
) {
1092 struct array_cache
*nc
;
1093 struct array_cache
*shared
;
1094 struct array_cache
**alien
;
1096 nc
= alloc_arraycache(node
, cachep
->limit
,
1097 cachep
->batchcount
);
1100 shared
= alloc_arraycache(node
,
1101 cachep
->shared
* cachep
->batchcount
,
1106 alien
= alloc_alien_cache(node
, cachep
->limit
);
1109 cachep
->array
[cpu
] = nc
;
1110 l3
= cachep
->nodelists
[node
];
1113 spin_lock_irq(&l3
->list_lock
);
1116 * We are serialised from CPU_DEAD or
1117 * CPU_UP_CANCELLED by the cpucontrol lock
1119 l3
->shared
= shared
;
1128 spin_unlock_irq(&l3
->list_lock
);
1130 free_alien_cache(alien
);
1132 mutex_unlock(&cache_chain_mutex
);
1135 start_cpu_timer(cpu
);
1137 #ifdef CONFIG_HOTPLUG_CPU
1140 * Even if all the cpus of a node are down, we don't free the
1141 * kmem_list3 of any cache. This to avoid a race between
1142 * cpu_down, and a kmalloc allocation from another cpu for
1143 * memory from the node of the cpu going down. The list3
1144 * structure is usually allocated from kmem_cache_create() and
1145 * gets destroyed at kmem_cache_destroy().
1148 case CPU_UP_CANCELED
:
1149 mutex_lock(&cache_chain_mutex
);
1150 list_for_each_entry(cachep
, &cache_chain
, next
) {
1151 struct array_cache
*nc
;
1152 struct array_cache
*shared
;
1153 struct array_cache
**alien
;
1156 mask
= node_to_cpumask(node
);
1157 /* cpu is dead; no one can alloc from it. */
1158 nc
= cachep
->array
[cpu
];
1159 cachep
->array
[cpu
] = NULL
;
1160 l3
= cachep
->nodelists
[node
];
1163 goto free_array_cache
;
1165 spin_lock_irq(&l3
->list_lock
);
1167 /* Free limit for this kmem_list3 */
1168 l3
->free_limit
-= cachep
->batchcount
;
1170 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1172 if (!cpus_empty(mask
)) {
1173 spin_unlock_irq(&l3
->list_lock
);
1174 goto free_array_cache
;
1177 shared
= l3
->shared
;
1179 free_block(cachep
, l3
->shared
->entry
,
1180 l3
->shared
->avail
, node
);
1187 spin_unlock_irq(&l3
->list_lock
);
1191 drain_alien_cache(cachep
, alien
);
1192 free_alien_cache(alien
);
1198 * In the previous loop, all the objects were freed to
1199 * the respective cache's slabs, now we can go ahead and
1200 * shrink each nodelist to its limit.
1202 list_for_each_entry(cachep
, &cache_chain
, next
) {
1203 l3
= cachep
->nodelists
[node
];
1206 spin_lock_irq(&l3
->list_lock
);
1207 /* free slabs belonging to this node */
1208 __node_shrink(cachep
, node
);
1209 spin_unlock_irq(&l3
->list_lock
);
1211 mutex_unlock(&cache_chain_mutex
);
1217 mutex_unlock(&cache_chain_mutex
);
1221 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
1224 * swap the static kmem_list3 with kmalloced memory
1226 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1229 struct kmem_list3
*ptr
;
1231 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1232 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1235 local_irq_disable();
1236 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1237 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1238 cachep
->nodelists
[nodeid
] = ptr
;
1243 * Initialisation. Called after the page allocator have been initialised and
1244 * before smp_init().
1246 void __init
kmem_cache_init(void)
1249 struct cache_sizes
*sizes
;
1250 struct cache_names
*names
;
1254 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1255 kmem_list3_init(&initkmem_list3
[i
]);
1256 if (i
< MAX_NUMNODES
)
1257 cache_cache
.nodelists
[i
] = NULL
;
1261 * Fragmentation resistance on low memory - only use bigger
1262 * page orders on machines with more than 32MB of memory.
1264 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1265 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1267 /* Bootstrap is tricky, because several objects are allocated
1268 * from caches that do not exist yet:
1269 * 1) initialize the cache_cache cache: it contains the struct
1270 * kmem_cache structures of all caches, except cache_cache itself:
1271 * cache_cache is statically allocated.
1272 * Initially an __init data area is used for the head array and the
1273 * kmem_list3 structures, it's replaced with a kmalloc allocated
1274 * array at the end of the bootstrap.
1275 * 2) Create the first kmalloc cache.
1276 * The struct kmem_cache for the new cache is allocated normally.
1277 * An __init data area is used for the head array.
1278 * 3) Create the remaining kmalloc caches, with minimally sized
1280 * 4) Replace the __init data head arrays for cache_cache and the first
1281 * kmalloc cache with kmalloc allocated arrays.
1282 * 5) Replace the __init data for kmem_list3 for cache_cache and
1283 * the other cache's with kmalloc allocated memory.
1284 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1287 /* 1) create the cache_cache */
1288 INIT_LIST_HEAD(&cache_chain
);
1289 list_add(&cache_cache
.next
, &cache_chain
);
1290 cache_cache
.colour_off
= cache_line_size();
1291 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1292 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1294 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1297 for (order
= 0; order
< MAX_ORDER
; order
++) {
1298 cache_estimate(order
, cache_cache
.buffer_size
,
1299 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1300 if (cache_cache
.num
)
1303 BUG_ON(!cache_cache
.num
);
1304 cache_cache
.gfporder
= order
;
1305 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1306 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1307 sizeof(struct slab
), cache_line_size());
1309 /* 2+3) create the kmalloc caches */
1310 sizes
= malloc_sizes
;
1311 names
= cache_names
;
1314 * Initialize the caches that provide memory for the array cache and the
1315 * kmem_list3 structures first. Without this, further allocations will
1319 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1320 sizes
[INDEX_AC
].cs_size
,
1321 ARCH_KMALLOC_MINALIGN
,
1322 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1325 if (INDEX_AC
!= INDEX_L3
) {
1326 sizes
[INDEX_L3
].cs_cachep
=
1327 kmem_cache_create(names
[INDEX_L3
].name
,
1328 sizes
[INDEX_L3
].cs_size
,
1329 ARCH_KMALLOC_MINALIGN
,
1330 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1334 while (sizes
->cs_size
!= ULONG_MAX
) {
1336 * For performance, all the general caches are L1 aligned.
1337 * This should be particularly beneficial on SMP boxes, as it
1338 * eliminates "false sharing".
1339 * Note for systems short on memory removing the alignment will
1340 * allow tighter packing of the smaller caches.
1342 if (!sizes
->cs_cachep
) {
1343 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1345 ARCH_KMALLOC_MINALIGN
,
1346 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1350 /* Inc off-slab bufctl limit until the ceiling is hit. */
1351 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
1352 offslab_limit
= sizes
->cs_size
- sizeof(struct slab
);
1353 offslab_limit
/= sizeof(kmem_bufctl_t
);
1356 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1358 ARCH_KMALLOC_MINALIGN
,
1359 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1365 /* 4) Replace the bootstrap head arrays */
1369 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1371 local_irq_disable();
1372 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1373 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1374 sizeof(struct arraycache_init
));
1375 cache_cache
.array
[smp_processor_id()] = ptr
;
1378 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1380 local_irq_disable();
1381 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1382 != &initarray_generic
.cache
);
1383 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1384 sizeof(struct arraycache_init
));
1385 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1389 /* 5) Replace the bootstrap kmem_list3's */
1392 /* Replace the static kmem_list3 structures for the boot cpu */
1393 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1396 for_each_online_node(node
) {
1397 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1398 &initkmem_list3
[SIZE_AC
+ node
], node
);
1400 if (INDEX_AC
!= INDEX_L3
) {
1401 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1402 &initkmem_list3
[SIZE_L3
+ node
],
1408 /* 6) resize the head arrays to their final sizes */
1410 struct kmem_cache
*cachep
;
1411 mutex_lock(&cache_chain_mutex
);
1412 list_for_each_entry(cachep
, &cache_chain
, next
)
1413 enable_cpucache(cachep
);
1414 mutex_unlock(&cache_chain_mutex
);
1418 g_cpucache_up
= FULL
;
1421 * Register a cpu startup notifier callback that initializes
1422 * cpu_cache_get for all new cpus
1424 register_cpu_notifier(&cpucache_notifier
);
1427 * The reap timers are started later, with a module init call: That part
1428 * of the kernel is not yet operational.
1432 static int __init
cpucache_init(void)
1437 * Register the timers that return unneeded pages to the page allocator
1439 for_each_online_cpu(cpu
)
1440 start_cpu_timer(cpu
);
1443 __initcall(cpucache_init
);
1446 * Interface to system's page allocator. No need to hold the cache-lock.
1448 * If we requested dmaable memory, we will get it. Even if we
1449 * did not request dmaable memory, we might get it, but that
1450 * would be relatively rare and ignorable.
1452 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1458 flags
|= cachep
->gfpflags
;
1460 /* nommu uses slab's for process anonymous memory allocations, so
1461 * requires __GFP_COMP to properly refcount higher order allocations"
1463 page
= alloc_pages_node(nodeid
, (flags
| __GFP_COMP
), cachep
->gfporder
);
1465 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1469 addr
= page_address(page
);
1471 i
= (1 << cachep
->gfporder
);
1472 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1473 atomic_add(i
, &slab_reclaim_pages
);
1474 add_page_state(nr_slab
, i
);
1476 __SetPageSlab(page
);
1483 * Interface to system's page release.
1485 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1487 unsigned long i
= (1 << cachep
->gfporder
);
1488 struct page
*page
= virt_to_page(addr
);
1489 const unsigned long nr_freed
= i
;
1492 BUG_ON(!PageSlab(page
));
1493 __ClearPageSlab(page
);
1496 sub_page_state(nr_slab
, nr_freed
);
1497 if (current
->reclaim_state
)
1498 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1499 free_pages((unsigned long)addr
, cachep
->gfporder
);
1500 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1501 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1504 static void kmem_rcu_free(struct rcu_head
*head
)
1506 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1507 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1509 kmem_freepages(cachep
, slab_rcu
->addr
);
1510 if (OFF_SLAB(cachep
))
1511 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1518 unsigned long caller
)
1520 int size
= obj_size(cachep
);
1522 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1524 if (size
< 5 * sizeof(unsigned long))
1527 *addr
++ = 0x12345678;
1529 *addr
++ = smp_processor_id();
1530 size
-= 3 * sizeof(unsigned long);
1532 unsigned long *sptr
= &caller
;
1533 unsigned long svalue
;
1535 while (!kstack_end(sptr
)) {
1537 if (kernel_text_address(svalue
)) {
1539 size
-= sizeof(unsigned long);
1540 if (size
<= sizeof(unsigned long))
1546 *addr
++ = 0x87654321;
1550 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1552 int size
= obj_size(cachep
);
1553 addr
= &((char *)addr
)[obj_offset(cachep
)];
1555 memset(addr
, val
, size
);
1556 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1559 static void dump_line(char *data
, int offset
, int limit
)
1562 printk(KERN_ERR
"%03x:", offset
);
1563 for (i
= 0; i
< limit
; i
++)
1564 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1571 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1576 if (cachep
->flags
& SLAB_RED_ZONE
) {
1577 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1578 *dbg_redzone1(cachep
, objp
),
1579 *dbg_redzone2(cachep
, objp
));
1582 if (cachep
->flags
& SLAB_STORE_USER
) {
1583 printk(KERN_ERR
"Last user: [<%p>]",
1584 *dbg_userword(cachep
, objp
));
1585 print_symbol("(%s)",
1586 (unsigned long)*dbg_userword(cachep
, objp
));
1589 realobj
= (char *)objp
+ obj_offset(cachep
);
1590 size
= obj_size(cachep
);
1591 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1594 if (i
+ limit
> size
)
1596 dump_line(realobj
, i
, limit
);
1600 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1606 realobj
= (char *)objp
+ obj_offset(cachep
);
1607 size
= obj_size(cachep
);
1609 for (i
= 0; i
< size
; i
++) {
1610 char exp
= POISON_FREE
;
1613 if (realobj
[i
] != exp
) {
1619 "Slab corruption: start=%p, len=%d\n",
1621 print_objinfo(cachep
, objp
, 0);
1623 /* Hexdump the affected line */
1626 if (i
+ limit
> size
)
1628 dump_line(realobj
, i
, limit
);
1631 /* Limit to 5 lines */
1637 /* Print some data about the neighboring objects, if they
1640 struct slab
*slabp
= virt_to_slab(objp
);
1643 objnr
= obj_to_index(cachep
, slabp
, objp
);
1645 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1646 realobj
= (char *)objp
+ obj_offset(cachep
);
1647 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1649 print_objinfo(cachep
, objp
, 2);
1651 if (objnr
+ 1 < cachep
->num
) {
1652 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1653 realobj
= (char *)objp
+ obj_offset(cachep
);
1654 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1656 print_objinfo(cachep
, objp
, 2);
1664 * slab_destroy_objs - destroy a slab and its objects
1665 * @cachep: cache pointer being destroyed
1666 * @slabp: slab pointer being destroyed
1668 * Call the registered destructor for each object in a slab that is being
1671 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1674 for (i
= 0; i
< cachep
->num
; i
++) {
1675 void *objp
= index_to_obj(cachep
, slabp
, i
);
1677 if (cachep
->flags
& SLAB_POISON
) {
1678 #ifdef CONFIG_DEBUG_PAGEALLOC
1679 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1681 kernel_map_pages(virt_to_page(objp
),
1682 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1684 check_poison_obj(cachep
, objp
);
1686 check_poison_obj(cachep
, objp
);
1689 if (cachep
->flags
& SLAB_RED_ZONE
) {
1690 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1691 slab_error(cachep
, "start of a freed object "
1693 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1694 slab_error(cachep
, "end of a freed object "
1697 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1698 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1702 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1706 for (i
= 0; i
< cachep
->num
; i
++) {
1707 void *objp
= index_to_obj(cachep
, slabp
, i
);
1708 (cachep
->dtor
) (objp
, cachep
, 0);
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @slabp: slab pointer being destroyed
1719 * Destroy all the objs in a slab, and release the mem back to the system.
1720 * Before calling the slab must have been unlinked from the cache. The
1721 * cache-lock is not held/needed.
1723 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1725 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1727 slab_destroy_objs(cachep
, slabp
);
1728 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1729 struct slab_rcu
*slab_rcu
;
1731 slab_rcu
= (struct slab_rcu
*)slabp
;
1732 slab_rcu
->cachep
= cachep
;
1733 slab_rcu
->addr
= addr
;
1734 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1736 kmem_freepages(cachep
, addr
);
1737 if (OFF_SLAB(cachep
))
1738 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1743 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1744 * size of kmem_list3.
1746 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1750 for_each_online_node(node
) {
1751 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1752 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1754 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1759 * calculate_slab_order - calculate size (page order) of slabs
1760 * @cachep: pointer to the cache that is being created
1761 * @size: size of objects to be created in this cache.
1762 * @align: required alignment for the objects.
1763 * @flags: slab allocation flags
1765 * Also calculates the number of objects per slab.
1767 * This could be made much more intelligent. For now, try to avoid using
1768 * high order pages for slabs. When the gfp() functions are more friendly
1769 * towards high-order requests, this should be changed.
1771 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1772 size_t size
, size_t align
, unsigned long flags
)
1774 size_t left_over
= 0;
1777 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1781 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1785 /* More than offslab_limit objects will cause problems */
1786 if ((flags
& CFLGS_OFF_SLAB
) && num
> offslab_limit
)
1789 /* Found something acceptable - save it away */
1791 cachep
->gfporder
= gfporder
;
1792 left_over
= remainder
;
1795 * A VFS-reclaimable slab tends to have most allocations
1796 * as GFP_NOFS and we really don't want to have to be allocating
1797 * higher-order pages when we are unable to shrink dcache.
1799 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1803 * Large number of objects is good, but very large slabs are
1804 * currently bad for the gfp()s.
1806 if (gfporder
>= slab_break_gfp_order
)
1810 * Acceptable internal fragmentation?
1812 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1818 static void setup_cpu_cache(struct kmem_cache
*cachep
)
1820 if (g_cpucache_up
== FULL
) {
1821 enable_cpucache(cachep
);
1824 if (g_cpucache_up
== NONE
) {
1826 * Note: the first kmem_cache_create must create the cache
1827 * that's used by kmalloc(24), otherwise the creation of
1828 * further caches will BUG().
1830 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1833 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1834 * the first cache, then we need to set up all its list3s,
1835 * otherwise the creation of further caches will BUG().
1837 set_up_list3s(cachep
, SIZE_AC
);
1838 if (INDEX_AC
== INDEX_L3
)
1839 g_cpucache_up
= PARTIAL_L3
;
1841 g_cpucache_up
= PARTIAL_AC
;
1843 cachep
->array
[smp_processor_id()] =
1844 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1846 if (g_cpucache_up
== PARTIAL_AC
) {
1847 set_up_list3s(cachep
, SIZE_L3
);
1848 g_cpucache_up
= PARTIAL_L3
;
1851 for_each_online_node(node
) {
1852 cachep
->nodelists
[node
] =
1853 kmalloc_node(sizeof(struct kmem_list3
),
1855 BUG_ON(!cachep
->nodelists
[node
]);
1856 kmem_list3_init(cachep
->nodelists
[node
]);
1860 cachep
->nodelists
[numa_node_id()]->next_reap
=
1861 jiffies
+ REAPTIMEOUT_LIST3
+
1862 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1864 cpu_cache_get(cachep
)->avail
= 0;
1865 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1866 cpu_cache_get(cachep
)->batchcount
= 1;
1867 cpu_cache_get(cachep
)->touched
= 0;
1868 cachep
->batchcount
= 1;
1869 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1873 * kmem_cache_create - Create a cache.
1874 * @name: A string which is used in /proc/slabinfo to identify this cache.
1875 * @size: The size of objects to be created in this cache.
1876 * @align: The required alignment for the objects.
1877 * @flags: SLAB flags
1878 * @ctor: A constructor for the objects.
1879 * @dtor: A destructor for the objects.
1881 * Returns a ptr to the cache on success, NULL on failure.
1882 * Cannot be called within a int, but can be interrupted.
1883 * The @ctor is run when new pages are allocated by the cache
1884 * and the @dtor is run before the pages are handed back.
1886 * @name must be valid until the cache is destroyed. This implies that
1887 * the module calling this has to destroy the cache before getting unloaded.
1891 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1892 * to catch references to uninitialised memory.
1894 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1895 * for buffer overruns.
1897 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1898 * cacheline. This can be beneficial if you're counting cycles as closely
1902 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1903 unsigned long flags
,
1904 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
1905 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
1907 size_t left_over
, slab_size
, ralign
;
1908 struct kmem_cache
*cachep
= NULL
;
1909 struct list_head
*p
;
1912 * Sanity checks... these are all serious usage bugs.
1914 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
1915 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
1916 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
1922 * Prevent CPUs from coming and going.
1923 * lock_cpu_hotplug() nests outside cache_chain_mutex
1927 mutex_lock(&cache_chain_mutex
);
1929 list_for_each(p
, &cache_chain
) {
1930 struct kmem_cache
*pc
= list_entry(p
, struct kmem_cache
, next
);
1931 mm_segment_t old_fs
= get_fs();
1936 * This happens when the module gets unloaded and doesn't
1937 * destroy its slab cache and no-one else reuses the vmalloc
1938 * area of the module. Print a warning.
1941 res
= __get_user(tmp
, pc
->name
);
1944 printk("SLAB: cache with size %d has lost its name\n",
1949 if (!strcmp(pc
->name
, name
)) {
1950 printk("kmem_cache_create: duplicate cache %s\n", name
);
1957 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1958 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1959 /* No constructor, but inital state check requested */
1960 printk(KERN_ERR
"%s: No con, but init state check "
1961 "requested - %s\n", __FUNCTION__
, name
);
1962 flags
&= ~SLAB_DEBUG_INITIAL
;
1966 * Enable redzoning and last user accounting, except for caches with
1967 * large objects, if the increased size would increase the object size
1968 * above the next power of two: caches with object sizes just above a
1969 * power of two have a significant amount of internal fragmentation.
1971 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
1972 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
1973 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1974 flags
|= SLAB_POISON
;
1976 if (flags
& SLAB_DESTROY_BY_RCU
)
1977 BUG_ON(flags
& SLAB_POISON
);
1979 if (flags
& SLAB_DESTROY_BY_RCU
)
1983 * Always checks flags, a caller might be expecting debug support which
1986 BUG_ON(flags
& ~CREATE_MASK
);
1989 * Check that size is in terms of words. This is needed to avoid
1990 * unaligned accesses for some archs when redzoning is used, and makes
1991 * sure any on-slab bufctl's are also correctly aligned.
1993 if (size
& (BYTES_PER_WORD
- 1)) {
1994 size
+= (BYTES_PER_WORD
- 1);
1995 size
&= ~(BYTES_PER_WORD
- 1);
1998 /* calculate the final buffer alignment: */
2000 /* 1) arch recommendation: can be overridden for debug */
2001 if (flags
& SLAB_HWCACHE_ALIGN
) {
2003 * Default alignment: as specified by the arch code. Except if
2004 * an object is really small, then squeeze multiple objects into
2007 ralign
= cache_line_size();
2008 while (size
<= ralign
/ 2)
2011 ralign
= BYTES_PER_WORD
;
2013 /* 2) arch mandated alignment: disables debug if necessary */
2014 if (ralign
< ARCH_SLAB_MINALIGN
) {
2015 ralign
= ARCH_SLAB_MINALIGN
;
2016 if (ralign
> BYTES_PER_WORD
)
2017 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2019 /* 3) caller mandated alignment: disables debug if necessary */
2020 if (ralign
< align
) {
2022 if (ralign
> BYTES_PER_WORD
)
2023 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2026 * 4) Store it. Note that the debug code below can reduce
2027 * the alignment to BYTES_PER_WORD.
2031 /* Get cache's description obj. */
2032 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2037 cachep
->obj_size
= size
;
2039 if (flags
& SLAB_RED_ZONE
) {
2040 /* redzoning only works with word aligned caches */
2041 align
= BYTES_PER_WORD
;
2043 /* add space for red zone words */
2044 cachep
->obj_offset
+= BYTES_PER_WORD
;
2045 size
+= 2 * BYTES_PER_WORD
;
2047 if (flags
& SLAB_STORE_USER
) {
2048 /* user store requires word alignment and
2049 * one word storage behind the end of the real
2052 align
= BYTES_PER_WORD
;
2053 size
+= BYTES_PER_WORD
;
2055 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2056 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2057 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2058 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2064 /* Determine if the slab management is 'on' or 'off' slab. */
2065 if (size
>= (PAGE_SIZE
>> 3))
2067 * Size is large, assume best to place the slab management obj
2068 * off-slab (should allow better packing of objs).
2070 flags
|= CFLGS_OFF_SLAB
;
2072 size
= ALIGN(size
, align
);
2074 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2077 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2078 kmem_cache_free(&cache_cache
, cachep
);
2082 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2083 + sizeof(struct slab
), align
);
2086 * If the slab has been placed off-slab, and we have enough space then
2087 * move it on-slab. This is at the expense of any extra colouring.
2089 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2090 flags
&= ~CFLGS_OFF_SLAB
;
2091 left_over
-= slab_size
;
2094 if (flags
& CFLGS_OFF_SLAB
) {
2095 /* really off slab. No need for manual alignment */
2097 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2100 cachep
->colour_off
= cache_line_size();
2101 /* Offset must be a multiple of the alignment. */
2102 if (cachep
->colour_off
< align
)
2103 cachep
->colour_off
= align
;
2104 cachep
->colour
= left_over
/ cachep
->colour_off
;
2105 cachep
->slab_size
= slab_size
;
2106 cachep
->flags
= flags
;
2107 cachep
->gfpflags
= 0;
2108 if (flags
& SLAB_CACHE_DMA
)
2109 cachep
->gfpflags
|= GFP_DMA
;
2110 cachep
->buffer_size
= size
;
2112 if (flags
& CFLGS_OFF_SLAB
)
2113 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2114 cachep
->ctor
= ctor
;
2115 cachep
->dtor
= dtor
;
2116 cachep
->name
= name
;
2119 setup_cpu_cache(cachep
);
2121 /* cache setup completed, link it into the list */
2122 list_add(&cachep
->next
, &cache_chain
);
2124 if (!cachep
&& (flags
& SLAB_PANIC
))
2125 panic("kmem_cache_create(): failed to create slab `%s'\n",
2127 mutex_unlock(&cache_chain_mutex
);
2128 unlock_cpu_hotplug();
2131 EXPORT_SYMBOL(kmem_cache_create
);
2134 static void check_irq_off(void)
2136 BUG_ON(!irqs_disabled());
2139 static void check_irq_on(void)
2141 BUG_ON(irqs_disabled());
2144 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2148 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2152 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2156 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2161 #define check_irq_off() do { } while(0)
2162 #define check_irq_on() do { } while(0)
2163 #define check_spinlock_acquired(x) do { } while(0)
2164 #define check_spinlock_acquired_node(x, y) do { } while(0)
2167 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2168 struct array_cache
*ac
,
2169 int force
, int node
);
2171 static void do_drain(void *arg
)
2173 struct kmem_cache
*cachep
= arg
;
2174 struct array_cache
*ac
;
2175 int node
= numa_node_id();
2178 ac
= cpu_cache_get(cachep
);
2179 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2180 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2181 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2185 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2187 struct kmem_list3
*l3
;
2190 on_each_cpu(do_drain
, cachep
, 1, 1);
2192 for_each_online_node(node
) {
2193 l3
= cachep
->nodelists
[node
];
2195 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2197 drain_alien_cache(cachep
, l3
->alien
);
2202 static int __node_shrink(struct kmem_cache
*cachep
, int node
)
2205 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
2209 struct list_head
*p
;
2211 p
= l3
->slabs_free
.prev
;
2212 if (p
== &l3
->slabs_free
)
2215 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
2217 BUG_ON(slabp
->inuse
);
2219 list_del(&slabp
->list
);
2221 l3
->free_objects
-= cachep
->num
;
2222 spin_unlock_irq(&l3
->list_lock
);
2223 slab_destroy(cachep
, slabp
);
2224 spin_lock_irq(&l3
->list_lock
);
2226 ret
= !list_empty(&l3
->slabs_full
) || !list_empty(&l3
->slabs_partial
);
2230 static int __cache_shrink(struct kmem_cache
*cachep
)
2233 struct kmem_list3
*l3
;
2235 drain_cpu_caches(cachep
);
2238 for_each_online_node(i
) {
2239 l3
= cachep
->nodelists
[i
];
2241 spin_lock_irq(&l3
->list_lock
);
2242 ret
+= __node_shrink(cachep
, i
);
2243 spin_unlock_irq(&l3
->list_lock
);
2246 return (ret
? 1 : 0);
2250 * kmem_cache_shrink - Shrink a cache.
2251 * @cachep: The cache to shrink.
2253 * Releases as many slabs as possible for a cache.
2254 * To help debugging, a zero exit status indicates all slabs were released.
2256 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2258 BUG_ON(!cachep
|| in_interrupt());
2260 return __cache_shrink(cachep
);
2262 EXPORT_SYMBOL(kmem_cache_shrink
);
2265 * kmem_cache_destroy - delete a cache
2266 * @cachep: the cache to destroy
2268 * Remove a struct kmem_cache object from the slab cache.
2269 * Returns 0 on success.
2271 * It is expected this function will be called by a module when it is
2272 * unloaded. This will remove the cache completely, and avoid a duplicate
2273 * cache being allocated each time a module is loaded and unloaded, if the
2274 * module doesn't have persistent in-kernel storage across loads and unloads.
2276 * The cache must be empty before calling this function.
2278 * The caller must guarantee that noone will allocate memory from the cache
2279 * during the kmem_cache_destroy().
2281 int kmem_cache_destroy(struct kmem_cache
*cachep
)
2284 struct kmem_list3
*l3
;
2286 BUG_ON(!cachep
|| in_interrupt());
2288 /* Don't let CPUs to come and go */
2291 /* Find the cache in the chain of caches. */
2292 mutex_lock(&cache_chain_mutex
);
2294 * the chain is never empty, cache_cache is never destroyed
2296 list_del(&cachep
->next
);
2297 mutex_unlock(&cache_chain_mutex
);
2299 if (__cache_shrink(cachep
)) {
2300 slab_error(cachep
, "Can't free all objects");
2301 mutex_lock(&cache_chain_mutex
);
2302 list_add(&cachep
->next
, &cache_chain
);
2303 mutex_unlock(&cache_chain_mutex
);
2304 unlock_cpu_hotplug();
2308 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2311 for_each_online_cpu(i
)
2312 kfree(cachep
->array
[i
]);
2314 /* NUMA: free the list3 structures */
2315 for_each_online_node(i
) {
2316 l3
= cachep
->nodelists
[i
];
2319 free_alien_cache(l3
->alien
);
2323 kmem_cache_free(&cache_cache
, cachep
);
2324 unlock_cpu_hotplug();
2327 EXPORT_SYMBOL(kmem_cache_destroy
);
2329 /* Get the memory for a slab management obj. */
2330 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2331 int colour_off
, gfp_t local_flags
,
2336 if (OFF_SLAB(cachep
)) {
2337 /* Slab management obj is off-slab. */
2338 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2339 local_flags
, nodeid
);
2343 slabp
= objp
+ colour_off
;
2344 colour_off
+= cachep
->slab_size
;
2347 slabp
->colouroff
= colour_off
;
2348 slabp
->s_mem
= objp
+ colour_off
;
2349 slabp
->nodeid
= nodeid
;
2353 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2355 return (kmem_bufctl_t
*) (slabp
+ 1);
2358 static void cache_init_objs(struct kmem_cache
*cachep
,
2359 struct slab
*slabp
, unsigned long ctor_flags
)
2363 for (i
= 0; i
< cachep
->num
; i
++) {
2364 void *objp
= index_to_obj(cachep
, slabp
, i
);
2366 /* need to poison the objs? */
2367 if (cachep
->flags
& SLAB_POISON
)
2368 poison_obj(cachep
, objp
, POISON_FREE
);
2369 if (cachep
->flags
& SLAB_STORE_USER
)
2370 *dbg_userword(cachep
, objp
) = NULL
;
2372 if (cachep
->flags
& SLAB_RED_ZONE
) {
2373 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2374 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2377 * Constructors are not allowed to allocate memory from the same
2378 * cache which they are a constructor for. Otherwise, deadlock.
2379 * They must also be threaded.
2381 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2382 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2385 if (cachep
->flags
& SLAB_RED_ZONE
) {
2386 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2387 slab_error(cachep
, "constructor overwrote the"
2388 " end of an object");
2389 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2390 slab_error(cachep
, "constructor overwrote the"
2391 " start of an object");
2393 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2394 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2395 kernel_map_pages(virt_to_page(objp
),
2396 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2399 cachep
->ctor(objp
, cachep
, ctor_flags
);
2401 slab_bufctl(slabp
)[i
] = i
+ 1;
2403 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2407 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2409 if (flags
& SLAB_DMA
)
2410 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2412 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2415 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2418 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2422 next
= slab_bufctl(slabp
)[slabp
->free
];
2424 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2425 WARN_ON(slabp
->nodeid
!= nodeid
);
2432 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2433 void *objp
, int nodeid
)
2435 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2438 /* Verify that the slab belongs to the intended node */
2439 WARN_ON(slabp
->nodeid
!= nodeid
);
2441 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2442 printk(KERN_ERR
"slab: double free detected in cache "
2443 "'%s', objp %p\n", cachep
->name
, objp
);
2447 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2448 slabp
->free
= objnr
;
2452 static void set_slab_attr(struct kmem_cache
*cachep
, struct slab
*slabp
,
2458 /* Nasty!!!!!! I hope this is OK. */
2459 page
= virt_to_page(objp
);
2462 if (likely(!PageCompound(page
)))
2463 i
<<= cachep
->gfporder
;
2465 page_set_cache(page
, cachep
);
2466 page_set_slab(page
, slabp
);
2472 * Grow (by 1) the number of slabs within a cache. This is called by
2473 * kmem_cache_alloc() when there are no active objs left in a cache.
2475 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2481 unsigned long ctor_flags
;
2482 struct kmem_list3
*l3
;
2485 * Be lazy and only check for valid flags here, keeping it out of the
2486 * critical path in kmem_cache_alloc().
2488 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2489 if (flags
& SLAB_NO_GROW
)
2492 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2493 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2494 if (!(local_flags
& __GFP_WAIT
))
2496 * Not allowed to sleep. Need to tell a constructor about
2497 * this - it might need to know...
2499 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2501 /* Take the l3 list lock to change the colour_next on this node */
2503 l3
= cachep
->nodelists
[nodeid
];
2504 spin_lock(&l3
->list_lock
);
2506 /* Get colour for the slab, and cal the next value. */
2507 offset
= l3
->colour_next
;
2509 if (l3
->colour_next
>= cachep
->colour
)
2510 l3
->colour_next
= 0;
2511 spin_unlock(&l3
->list_lock
);
2513 offset
*= cachep
->colour_off
;
2515 if (local_flags
& __GFP_WAIT
)
2519 * The test for missing atomic flag is performed here, rather than
2520 * the more obvious place, simply to reduce the critical path length
2521 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2522 * will eventually be caught here (where it matters).
2524 kmem_flagcheck(cachep
, flags
);
2527 * Get mem for the objs. Attempt to allocate a physical page from
2530 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2534 /* Get slab management. */
2535 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2539 slabp
->nodeid
= nodeid
;
2540 set_slab_attr(cachep
, slabp
, objp
);
2542 cache_init_objs(cachep
, slabp
, ctor_flags
);
2544 if (local_flags
& __GFP_WAIT
)
2545 local_irq_disable();
2547 spin_lock(&l3
->list_lock
);
2549 /* Make slab active. */
2550 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2551 STATS_INC_GROWN(cachep
);
2552 l3
->free_objects
+= cachep
->num
;
2553 spin_unlock(&l3
->list_lock
);
2556 kmem_freepages(cachep
, objp
);
2558 if (local_flags
& __GFP_WAIT
)
2559 local_irq_disable();
2566 * Perform extra freeing checks:
2567 * - detect bad pointers.
2568 * - POISON/RED_ZONE checking
2569 * - destructor calls, for caches with POISON+dtor
2571 static void kfree_debugcheck(const void *objp
)
2575 if (!virt_addr_valid(objp
)) {
2576 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2577 (unsigned long)objp
);
2580 page
= virt_to_page(objp
);
2581 if (!PageSlab(page
)) {
2582 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2583 (unsigned long)objp
);
2588 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2595 objp
-= obj_offset(cachep
);
2596 kfree_debugcheck(objp
);
2597 page
= virt_to_page(objp
);
2599 if (page_get_cache(page
) != cachep
) {
2600 printk(KERN_ERR
"mismatch in kmem_cache_free: expected "
2601 "cache %p, got %p\n",
2602 page_get_cache(page
), cachep
);
2603 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
2604 printk(KERN_ERR
"%p is %s.\n", page_get_cache(page
),
2605 page_get_cache(page
)->name
);
2608 slabp
= page_get_slab(page
);
2610 if (cachep
->flags
& SLAB_RED_ZONE
) {
2611 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
||
2612 *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
2613 slab_error(cachep
, "double free, or memory outside"
2614 " object was overwritten");
2615 printk(KERN_ERR
"%p: redzone 1:0x%lx, "
2616 "redzone 2:0x%lx.\n",
2617 objp
, *dbg_redzone1(cachep
, objp
),
2618 *dbg_redzone2(cachep
, objp
));
2620 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2621 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2623 if (cachep
->flags
& SLAB_STORE_USER
)
2624 *dbg_userword(cachep
, objp
) = caller
;
2626 objnr
= obj_to_index(cachep
, slabp
, objp
);
2628 BUG_ON(objnr
>= cachep
->num
);
2629 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2631 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2633 * Need to call the slab's constructor so the caller can
2634 * perform a verify of its state (debugging). Called without
2635 * the cache-lock held.
2637 cachep
->ctor(objp
+ obj_offset(cachep
),
2638 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2640 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2641 /* we want to cache poison the object,
2642 * call the destruction callback
2644 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2646 #ifdef CONFIG_DEBUG_SLAB_LEAK
2647 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2649 if (cachep
->flags
& SLAB_POISON
) {
2650 #ifdef CONFIG_DEBUG_PAGEALLOC
2651 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2652 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2653 kernel_map_pages(virt_to_page(objp
),
2654 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2656 poison_obj(cachep
, objp
, POISON_FREE
);
2659 poison_obj(cachep
, objp
, POISON_FREE
);
2665 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2670 /* Check slab's freelist to see if this obj is there. */
2671 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2673 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2676 if (entries
!= cachep
->num
- slabp
->inuse
) {
2678 printk(KERN_ERR
"slab: Internal list corruption detected in "
2679 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2680 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2682 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2685 printk("\n%03x:", i
);
2686 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2693 #define kfree_debugcheck(x) do { } while(0)
2694 #define cache_free_debugcheck(x,objp,z) (objp)
2695 #define check_slabp(x,y) do { } while(0)
2698 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2701 struct kmem_list3
*l3
;
2702 struct array_cache
*ac
;
2705 ac
= cpu_cache_get(cachep
);
2707 batchcount
= ac
->batchcount
;
2708 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2710 * If there was little recent activity on this cache, then
2711 * perform only a partial refill. Otherwise we could generate
2714 batchcount
= BATCHREFILL_LIMIT
;
2716 l3
= cachep
->nodelists
[numa_node_id()];
2718 BUG_ON(ac
->avail
> 0 || !l3
);
2719 spin_lock(&l3
->list_lock
);
2721 /* See if we can refill from the shared array */
2722 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2725 while (batchcount
> 0) {
2726 struct list_head
*entry
;
2728 /* Get slab alloc is to come from. */
2729 entry
= l3
->slabs_partial
.next
;
2730 if (entry
== &l3
->slabs_partial
) {
2731 l3
->free_touched
= 1;
2732 entry
= l3
->slabs_free
.next
;
2733 if (entry
== &l3
->slabs_free
)
2737 slabp
= list_entry(entry
, struct slab
, list
);
2738 check_slabp(cachep
, slabp
);
2739 check_spinlock_acquired(cachep
);
2740 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2741 STATS_INC_ALLOCED(cachep
);
2742 STATS_INC_ACTIVE(cachep
);
2743 STATS_SET_HIGH(cachep
);
2745 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2748 check_slabp(cachep
, slabp
);
2750 /* move slabp to correct slabp list: */
2751 list_del(&slabp
->list
);
2752 if (slabp
->free
== BUFCTL_END
)
2753 list_add(&slabp
->list
, &l3
->slabs_full
);
2755 list_add(&slabp
->list
, &l3
->slabs_partial
);
2759 l3
->free_objects
-= ac
->avail
;
2761 spin_unlock(&l3
->list_lock
);
2763 if (unlikely(!ac
->avail
)) {
2765 x
= cache_grow(cachep
, flags
, numa_node_id());
2767 /* cache_grow can reenable interrupts, then ac could change. */
2768 ac
= cpu_cache_get(cachep
);
2769 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2772 if (!ac
->avail
) /* objects refilled by interrupt? */
2776 return ac
->entry
[--ac
->avail
];
2779 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2782 might_sleep_if(flags
& __GFP_WAIT
);
2784 kmem_flagcheck(cachep
, flags
);
2789 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2790 gfp_t flags
, void *objp
, void *caller
)
2794 if (cachep
->flags
& SLAB_POISON
) {
2795 #ifdef CONFIG_DEBUG_PAGEALLOC
2796 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2797 kernel_map_pages(virt_to_page(objp
),
2798 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2800 check_poison_obj(cachep
, objp
);
2802 check_poison_obj(cachep
, objp
);
2804 poison_obj(cachep
, objp
, POISON_INUSE
);
2806 if (cachep
->flags
& SLAB_STORE_USER
)
2807 *dbg_userword(cachep
, objp
) = caller
;
2809 if (cachep
->flags
& SLAB_RED_ZONE
) {
2810 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2811 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2812 slab_error(cachep
, "double free, or memory outside"
2813 " object was overwritten");
2815 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2816 objp
, *dbg_redzone1(cachep
, objp
),
2817 *dbg_redzone2(cachep
, objp
));
2819 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2820 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2822 #ifdef CONFIG_DEBUG_SLAB_LEAK
2827 slabp
= page_get_slab(virt_to_page(objp
));
2828 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
2829 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
2832 objp
+= obj_offset(cachep
);
2833 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2834 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2836 if (!(flags
& __GFP_WAIT
))
2837 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2839 cachep
->ctor(objp
, cachep
, ctor_flags
);
2844 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2847 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2850 struct array_cache
*ac
;
2853 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
2854 objp
= alternate_node_alloc(cachep
, flags
);
2861 ac
= cpu_cache_get(cachep
);
2862 if (likely(ac
->avail
)) {
2863 STATS_INC_ALLOCHIT(cachep
);
2865 objp
= ac
->entry
[--ac
->avail
];
2867 STATS_INC_ALLOCMISS(cachep
);
2868 objp
= cache_alloc_refill(cachep
, flags
);
2873 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
2874 gfp_t flags
, void *caller
)
2876 unsigned long save_flags
;
2879 cache_alloc_debugcheck_before(cachep
, flags
);
2881 local_irq_save(save_flags
);
2882 objp
= ____cache_alloc(cachep
, flags
);
2883 local_irq_restore(save_flags
);
2884 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2892 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2894 * If we are in_interrupt, then process context, including cpusets and
2895 * mempolicy, may not apply and should not be used for allocation policy.
2897 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2899 int nid_alloc
, nid_here
;
2903 nid_alloc
= nid_here
= numa_node_id();
2904 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
2905 nid_alloc
= cpuset_mem_spread_node();
2906 else if (current
->mempolicy
)
2907 nid_alloc
= slab_node(current
->mempolicy
);
2908 if (nid_alloc
!= nid_here
)
2909 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
2914 * A interface to enable slab creation on nodeid
2916 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
2919 struct list_head
*entry
;
2921 struct kmem_list3
*l3
;
2925 l3
= cachep
->nodelists
[nodeid
];
2930 spin_lock(&l3
->list_lock
);
2931 entry
= l3
->slabs_partial
.next
;
2932 if (entry
== &l3
->slabs_partial
) {
2933 l3
->free_touched
= 1;
2934 entry
= l3
->slabs_free
.next
;
2935 if (entry
== &l3
->slabs_free
)
2939 slabp
= list_entry(entry
, struct slab
, list
);
2940 check_spinlock_acquired_node(cachep
, nodeid
);
2941 check_slabp(cachep
, slabp
);
2943 STATS_INC_NODEALLOCS(cachep
);
2944 STATS_INC_ACTIVE(cachep
);
2945 STATS_SET_HIGH(cachep
);
2947 BUG_ON(slabp
->inuse
== cachep
->num
);
2949 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
2950 check_slabp(cachep
, slabp
);
2952 /* move slabp to correct slabp list: */
2953 list_del(&slabp
->list
);
2955 if (slabp
->free
== BUFCTL_END
)
2956 list_add(&slabp
->list
, &l3
->slabs_full
);
2958 list_add(&slabp
->list
, &l3
->slabs_partial
);
2960 spin_unlock(&l3
->list_lock
);
2964 spin_unlock(&l3
->list_lock
);
2965 x
= cache_grow(cachep
, flags
, nodeid
);
2977 * Caller needs to acquire correct kmem_list's list_lock
2979 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
2983 struct kmem_list3
*l3
;
2985 for (i
= 0; i
< nr_objects
; i
++) {
2986 void *objp
= objpp
[i
];
2989 slabp
= virt_to_slab(objp
);
2990 l3
= cachep
->nodelists
[node
];
2991 list_del(&slabp
->list
);
2992 check_spinlock_acquired_node(cachep
, node
);
2993 check_slabp(cachep
, slabp
);
2994 slab_put_obj(cachep
, slabp
, objp
, node
);
2995 STATS_DEC_ACTIVE(cachep
);
2997 check_slabp(cachep
, slabp
);
2999 /* fixup slab chains */
3000 if (slabp
->inuse
== 0) {
3001 if (l3
->free_objects
> l3
->free_limit
) {
3002 l3
->free_objects
-= cachep
->num
;
3003 slab_destroy(cachep
, slabp
);
3005 list_add(&slabp
->list
, &l3
->slabs_free
);
3008 /* Unconditionally move a slab to the end of the
3009 * partial list on free - maximum time for the
3010 * other objects to be freed, too.
3012 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3017 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3020 struct kmem_list3
*l3
;
3021 int node
= numa_node_id();
3023 batchcount
= ac
->batchcount
;
3025 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3028 l3
= cachep
->nodelists
[node
];
3029 spin_lock(&l3
->list_lock
);
3031 struct array_cache
*shared_array
= l3
->shared
;
3032 int max
= shared_array
->limit
- shared_array
->avail
;
3034 if (batchcount
> max
)
3036 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3037 ac
->entry
, sizeof(void *) * batchcount
);
3038 shared_array
->avail
+= batchcount
;
3043 free_block(cachep
, ac
->entry
, batchcount
, node
);
3048 struct list_head
*p
;
3050 p
= l3
->slabs_free
.next
;
3051 while (p
!= &(l3
->slabs_free
)) {
3054 slabp
= list_entry(p
, struct slab
, list
);
3055 BUG_ON(slabp
->inuse
);
3060 STATS_SET_FREEABLE(cachep
, i
);
3063 spin_unlock(&l3
->list_lock
);
3064 ac
->avail
-= batchcount
;
3065 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3069 * Release an obj back to its cache. If the obj has a constructed state, it must
3070 * be in this state _before_ it is released. Called with disabled ints.
3072 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3074 struct array_cache
*ac
= cpu_cache_get(cachep
);
3077 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3079 /* Make sure we are not freeing a object from another
3080 * node to the array cache on this cpu.
3085 slabp
= virt_to_slab(objp
);
3086 if (unlikely(slabp
->nodeid
!= numa_node_id())) {
3087 struct array_cache
*alien
= NULL
;
3088 int nodeid
= slabp
->nodeid
;
3089 struct kmem_list3
*l3
;
3091 l3
= cachep
->nodelists
[numa_node_id()];
3092 STATS_INC_NODEFREES(cachep
);
3093 if (l3
->alien
&& l3
->alien
[nodeid
]) {
3094 alien
= l3
->alien
[nodeid
];
3095 spin_lock(&alien
->lock
);
3096 if (unlikely(alien
->avail
== alien
->limit
)) {
3097 STATS_INC_ACOVERFLOW(cachep
);
3098 __drain_alien_cache(cachep
,
3101 alien
->entry
[alien
->avail
++] = objp
;
3102 spin_unlock(&alien
->lock
);
3104 spin_lock(&(cachep
->nodelists
[nodeid
])->
3106 free_block(cachep
, &objp
, 1, nodeid
);
3107 spin_unlock(&(cachep
->nodelists
[nodeid
])->
3114 if (likely(ac
->avail
< ac
->limit
)) {
3115 STATS_INC_FREEHIT(cachep
);
3116 ac
->entry
[ac
->avail
++] = objp
;
3119 STATS_INC_FREEMISS(cachep
);
3120 cache_flusharray(cachep
, ac
);
3121 ac
->entry
[ac
->avail
++] = objp
;
3126 * kmem_cache_alloc - Allocate an object
3127 * @cachep: The cache to allocate from.
3128 * @flags: See kmalloc().
3130 * Allocate an object from this cache. The flags are only relevant
3131 * if the cache has no available objects.
3133 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3135 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3137 EXPORT_SYMBOL(kmem_cache_alloc
);
3140 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3141 * @cache: The cache to allocate from.
3142 * @flags: See kmalloc().
3144 * Allocate an object from this cache and set the allocated memory to zero.
3145 * The flags are only relevant if the cache has no available objects.
3147 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3149 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3151 memset(ret
, 0, obj_size(cache
));
3154 EXPORT_SYMBOL(kmem_cache_zalloc
);
3157 * kmem_ptr_validate - check if an untrusted pointer might
3159 * @cachep: the cache we're checking against
3160 * @ptr: pointer to validate
3162 * This verifies that the untrusted pointer looks sane:
3163 * it is _not_ a guarantee that the pointer is actually
3164 * part of the slab cache in question, but it at least
3165 * validates that the pointer can be dereferenced and
3166 * looks half-way sane.
3168 * Currently only used for dentry validation.
3170 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3172 unsigned long addr
= (unsigned long)ptr
;
3173 unsigned long min_addr
= PAGE_OFFSET
;
3174 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3175 unsigned long size
= cachep
->buffer_size
;
3178 if (unlikely(addr
< min_addr
))
3180 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3182 if (unlikely(addr
& align_mask
))
3184 if (unlikely(!kern_addr_valid(addr
)))
3186 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3188 page
= virt_to_page(ptr
);
3189 if (unlikely(!PageSlab(page
)))
3191 if (unlikely(page_get_cache(page
) != cachep
))
3200 * kmem_cache_alloc_node - Allocate an object on the specified node
3201 * @cachep: The cache to allocate from.
3202 * @flags: See kmalloc().
3203 * @nodeid: node number of the target node.
3205 * Identical to kmem_cache_alloc, except that this function is slow
3206 * and can sleep. And it will allocate memory on the given node, which
3207 * can improve the performance for cpu bound structures.
3208 * New and improved: it will now make sure that the object gets
3209 * put on the correct node list so that there is no false sharing.
3211 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3213 unsigned long save_flags
;
3216 cache_alloc_debugcheck_before(cachep
, flags
);
3217 local_irq_save(save_flags
);
3219 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3220 !cachep
->nodelists
[nodeid
])
3221 ptr
= ____cache_alloc(cachep
, flags
);
3223 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3224 local_irq_restore(save_flags
);
3226 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3227 __builtin_return_address(0));
3231 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3233 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
3235 struct kmem_cache
*cachep
;
3237 cachep
= kmem_find_general_cachep(size
, flags
);
3238 if (unlikely(cachep
== NULL
))
3240 return kmem_cache_alloc_node(cachep
, flags
, node
);
3242 EXPORT_SYMBOL(kmalloc_node
);
3246 * kmalloc - allocate memory
3247 * @size: how many bytes of memory are required.
3248 * @flags: the type of memory to allocate.
3249 * @caller: function caller for debug tracking of the caller
3251 * kmalloc is the normal method of allocating memory
3254 * The @flags argument may be one of:
3256 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3258 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3260 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3262 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3263 * must be suitable for DMA. This can mean different things on different
3264 * platforms. For example, on i386, it means that the memory must come
3265 * from the first 16MB.
3267 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3270 struct kmem_cache
*cachep
;
3272 /* If you want to save a few bytes .text space: replace
3274 * Then kmalloc uses the uninlined functions instead of the inline
3277 cachep
= __find_general_cachep(size
, flags
);
3278 if (unlikely(cachep
== NULL
))
3280 return __cache_alloc(cachep
, flags
, caller
);
3284 void *__kmalloc(size_t size
, gfp_t flags
)
3286 #ifndef CONFIG_DEBUG_SLAB
3287 return __do_kmalloc(size
, flags
, NULL
);
3289 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3292 EXPORT_SYMBOL(__kmalloc
);
3294 #ifdef CONFIG_DEBUG_SLAB
3295 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3297 return __do_kmalloc(size
, flags
, caller
);
3299 EXPORT_SYMBOL(__kmalloc_track_caller
);
3304 * __alloc_percpu - allocate one copy of the object for every present
3305 * cpu in the system, zeroing them.
3306 * Objects should be dereferenced using the per_cpu_ptr macro only.
3308 * @size: how many bytes of memory are required.
3310 void *__alloc_percpu(size_t size
)
3313 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3319 * Cannot use for_each_online_cpu since a cpu may come online
3320 * and we have no way of figuring out how to fix the array
3321 * that we have allocated then....
3323 for_each_possible_cpu(i
) {
3324 int node
= cpu_to_node(i
);
3326 if (node_online(node
))
3327 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3329 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3331 if (!pdata
->ptrs
[i
])
3333 memset(pdata
->ptrs
[i
], 0, size
);
3336 /* Catch derefs w/o wrappers */
3337 return (void *)(~(unsigned long)pdata
);
3341 if (!cpu_possible(i
))
3343 kfree(pdata
->ptrs
[i
]);
3348 EXPORT_SYMBOL(__alloc_percpu
);
3352 * kmem_cache_free - Deallocate an object
3353 * @cachep: The cache the allocation was from.
3354 * @objp: The previously allocated object.
3356 * Free an object which was previously allocated from this
3359 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3361 unsigned long flags
;
3363 local_irq_save(flags
);
3364 __cache_free(cachep
, objp
);
3365 local_irq_restore(flags
);
3367 EXPORT_SYMBOL(kmem_cache_free
);
3370 * kfree - free previously allocated memory
3371 * @objp: pointer returned by kmalloc.
3373 * If @objp is NULL, no operation is performed.
3375 * Don't free memory not originally allocated by kmalloc()
3376 * or you will run into trouble.
3378 void kfree(const void *objp
)
3380 struct kmem_cache
*c
;
3381 unsigned long flags
;
3383 if (unlikely(!objp
))
3385 local_irq_save(flags
);
3386 kfree_debugcheck(objp
);
3387 c
= virt_to_cache(objp
);
3388 mutex_debug_check_no_locks_freed(objp
, obj_size(c
));
3389 __cache_free(c
, (void *)objp
);
3390 local_irq_restore(flags
);
3392 EXPORT_SYMBOL(kfree
);
3396 * free_percpu - free previously allocated percpu memory
3397 * @objp: pointer returned by alloc_percpu.
3399 * Don't free memory not originally allocated by alloc_percpu()
3400 * The complemented objp is to check for that.
3402 void free_percpu(const void *objp
)
3405 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3408 * We allocate for all cpus so we cannot use for online cpu here.
3410 for_each_possible_cpu(i
)
3414 EXPORT_SYMBOL(free_percpu
);
3417 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3419 return obj_size(cachep
);
3421 EXPORT_SYMBOL(kmem_cache_size
);
3423 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3425 return cachep
->name
;
3427 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3430 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3432 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3435 struct kmem_list3
*l3
;
3436 struct array_cache
*new_shared
;
3437 struct array_cache
**new_alien
;
3439 for_each_online_node(node
) {
3441 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3445 new_shared
= alloc_arraycache(node
,
3446 cachep
->shared
*cachep
->batchcount
,
3449 free_alien_cache(new_alien
);
3453 l3
= cachep
->nodelists
[node
];
3455 struct array_cache
*shared
= l3
->shared
;
3457 spin_lock_irq(&l3
->list_lock
);
3460 free_block(cachep
, shared
->entry
,
3461 shared
->avail
, node
);
3463 l3
->shared
= new_shared
;
3465 l3
->alien
= new_alien
;
3468 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3469 cachep
->batchcount
+ cachep
->num
;
3470 spin_unlock_irq(&l3
->list_lock
);
3472 free_alien_cache(new_alien
);
3475 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3477 free_alien_cache(new_alien
);
3482 kmem_list3_init(l3
);
3483 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3484 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3485 l3
->shared
= new_shared
;
3486 l3
->alien
= new_alien
;
3487 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3488 cachep
->batchcount
+ cachep
->num
;
3489 cachep
->nodelists
[node
] = l3
;
3494 if (!cachep
->next
.next
) {
3495 /* Cache is not active yet. Roll back what we did */
3498 if (cachep
->nodelists
[node
]) {
3499 l3
= cachep
->nodelists
[node
];
3502 free_alien_cache(l3
->alien
);
3504 cachep
->nodelists
[node
] = NULL
;
3512 struct ccupdate_struct
{
3513 struct kmem_cache
*cachep
;
3514 struct array_cache
*new[NR_CPUS
];
3517 static void do_ccupdate_local(void *info
)
3519 struct ccupdate_struct
*new = info
;
3520 struct array_cache
*old
;
3523 old
= cpu_cache_get(new->cachep
);
3525 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3526 new->new[smp_processor_id()] = old
;
3529 /* Always called with the cache_chain_mutex held */
3530 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3531 int batchcount
, int shared
)
3533 struct ccupdate_struct
new;
3536 memset(&new.new, 0, sizeof(new.new));
3537 for_each_online_cpu(i
) {
3538 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3541 for (i
--; i
>= 0; i
--)
3546 new.cachep
= cachep
;
3548 on_each_cpu(do_ccupdate_local
, (void *)&new, 1, 1);
3551 cachep
->batchcount
= batchcount
;
3552 cachep
->limit
= limit
;
3553 cachep
->shared
= shared
;
3555 for_each_online_cpu(i
) {
3556 struct array_cache
*ccold
= new.new[i
];
3559 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3560 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3561 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3565 err
= alloc_kmemlist(cachep
);
3567 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3568 cachep
->name
, -err
);
3574 /* Called with cache_chain_mutex held always */
3575 static void enable_cpucache(struct kmem_cache
*cachep
)
3581 * The head array serves three purposes:
3582 * - create a LIFO ordering, i.e. return objects that are cache-warm
3583 * - reduce the number of spinlock operations.
3584 * - reduce the number of linked list operations on the slab and
3585 * bufctl chains: array operations are cheaper.
3586 * The numbers are guessed, we should auto-tune as described by
3589 if (cachep
->buffer_size
> 131072)
3591 else if (cachep
->buffer_size
> PAGE_SIZE
)
3593 else if (cachep
->buffer_size
> 1024)
3595 else if (cachep
->buffer_size
> 256)
3601 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3602 * allocation behaviour: Most allocs on one cpu, most free operations
3603 * on another cpu. For these cases, an efficient object passing between
3604 * cpus is necessary. This is provided by a shared array. The array
3605 * replaces Bonwick's magazine layer.
3606 * On uniprocessor, it's functionally equivalent (but less efficient)
3607 * to a larger limit. Thus disabled by default.
3611 if (cachep
->buffer_size
<= PAGE_SIZE
)
3617 * With debugging enabled, large batchcount lead to excessively long
3618 * periods with disabled local interrupts. Limit the batchcount
3623 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3625 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3626 cachep
->name
, -err
);
3630 * Drain an array if it contains any elements taking the l3 lock only if
3631 * necessary. Note that the l3 listlock also protects the array_cache
3632 * if drain_array() is used on the shared array.
3634 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3635 struct array_cache
*ac
, int force
, int node
)
3639 if (!ac
|| !ac
->avail
)
3641 if (ac
->touched
&& !force
) {
3644 spin_lock_irq(&l3
->list_lock
);
3646 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3647 if (tofree
> ac
->avail
)
3648 tofree
= (ac
->avail
+ 1) / 2;
3649 free_block(cachep
, ac
->entry
, tofree
, node
);
3650 ac
->avail
-= tofree
;
3651 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3652 sizeof(void *) * ac
->avail
);
3654 spin_unlock_irq(&l3
->list_lock
);
3659 * cache_reap - Reclaim memory from caches.
3660 * @unused: unused parameter
3662 * Called from workqueue/eventd every few seconds.
3664 * - clear the per-cpu caches for this CPU.
3665 * - return freeable pages to the main free memory pool.
3667 * If we cannot acquire the cache chain mutex then just give up - we'll try
3668 * again on the next iteration.
3670 static void cache_reap(void *unused
)
3672 struct list_head
*walk
;
3673 struct kmem_list3
*l3
;
3674 int node
= numa_node_id();
3676 if (!mutex_trylock(&cache_chain_mutex
)) {
3677 /* Give up. Setup the next iteration. */
3678 schedule_delayed_work(&__get_cpu_var(reap_work
),
3683 list_for_each(walk
, &cache_chain
) {
3684 struct kmem_cache
*searchp
;
3685 struct list_head
*p
;
3689 searchp
= list_entry(walk
, struct kmem_cache
, next
);
3693 * We only take the l3 lock if absolutely necessary and we
3694 * have established with reasonable certainty that
3695 * we can do some work if the lock was obtained.
3697 l3
= searchp
->nodelists
[node
];
3699 reap_alien(searchp
, l3
);
3701 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3704 * These are racy checks but it does not matter
3705 * if we skip one check or scan twice.
3707 if (time_after(l3
->next_reap
, jiffies
))
3710 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3712 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3714 if (l3
->free_touched
) {
3715 l3
->free_touched
= 0;
3719 tofree
= (l3
->free_limit
+ 5 * searchp
->num
- 1) /
3723 * Do not lock if there are no free blocks.
3725 if (list_empty(&l3
->slabs_free
))
3728 spin_lock_irq(&l3
->list_lock
);
3729 p
= l3
->slabs_free
.next
;
3730 if (p
== &(l3
->slabs_free
)) {
3731 spin_unlock_irq(&l3
->list_lock
);
3735 slabp
= list_entry(p
, struct slab
, list
);
3736 BUG_ON(slabp
->inuse
);
3737 list_del(&slabp
->list
);
3738 STATS_INC_REAPED(searchp
);
3741 * Safe to drop the lock. The slab is no longer linked
3742 * to the cache. searchp cannot disappear, we hold
3745 l3
->free_objects
-= searchp
->num
;
3746 spin_unlock_irq(&l3
->list_lock
);
3747 slab_destroy(searchp
, slabp
);
3748 } while (--tofree
> 0);
3753 mutex_unlock(&cache_chain_mutex
);
3755 /* Set up the next iteration */
3756 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3759 #ifdef CONFIG_PROC_FS
3761 static void print_slabinfo_header(struct seq_file
*m
)
3764 * Output format version, so at least we can change it
3765 * without _too_ many complaints.
3768 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3770 seq_puts(m
, "slabinfo - version: 2.1\n");
3772 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3773 "<objperslab> <pagesperslab>");
3774 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3775 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3777 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3778 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3779 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3784 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3787 struct list_head
*p
;
3789 mutex_lock(&cache_chain_mutex
);
3791 print_slabinfo_header(m
);
3792 p
= cache_chain
.next
;
3795 if (p
== &cache_chain
)
3798 return list_entry(p
, struct kmem_cache
, next
);
3801 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3803 struct kmem_cache
*cachep
= p
;
3805 return cachep
->next
.next
== &cache_chain
?
3806 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3809 static void s_stop(struct seq_file
*m
, void *p
)
3811 mutex_unlock(&cache_chain_mutex
);
3814 static int s_show(struct seq_file
*m
, void *p
)
3816 struct kmem_cache
*cachep
= p
;
3817 struct list_head
*q
;
3819 unsigned long active_objs
;
3820 unsigned long num_objs
;
3821 unsigned long active_slabs
= 0;
3822 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3826 struct kmem_list3
*l3
;
3830 for_each_online_node(node
) {
3831 l3
= cachep
->nodelists
[node
];
3836 spin_lock_irq(&l3
->list_lock
);
3838 list_for_each(q
, &l3
->slabs_full
) {
3839 slabp
= list_entry(q
, struct slab
, list
);
3840 if (slabp
->inuse
!= cachep
->num
&& !error
)
3841 error
= "slabs_full accounting error";
3842 active_objs
+= cachep
->num
;
3845 list_for_each(q
, &l3
->slabs_partial
) {
3846 slabp
= list_entry(q
, struct slab
, list
);
3847 if (slabp
->inuse
== cachep
->num
&& !error
)
3848 error
= "slabs_partial inuse accounting error";
3849 if (!slabp
->inuse
&& !error
)
3850 error
= "slabs_partial/inuse accounting error";
3851 active_objs
+= slabp
->inuse
;
3854 list_for_each(q
, &l3
->slabs_free
) {
3855 slabp
= list_entry(q
, struct slab
, list
);
3856 if (slabp
->inuse
&& !error
)
3857 error
= "slabs_free/inuse accounting error";
3860 free_objects
+= l3
->free_objects
;
3862 shared_avail
+= l3
->shared
->avail
;
3864 spin_unlock_irq(&l3
->list_lock
);
3866 num_slabs
+= active_slabs
;
3867 num_objs
= num_slabs
* cachep
->num
;
3868 if (num_objs
- active_objs
!= free_objects
&& !error
)
3869 error
= "free_objects accounting error";
3871 name
= cachep
->name
;
3873 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3875 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3876 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3877 cachep
->num
, (1 << cachep
->gfporder
));
3878 seq_printf(m
, " : tunables %4u %4u %4u",
3879 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3880 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3881 active_slabs
, num_slabs
, shared_avail
);
3884 unsigned long high
= cachep
->high_mark
;
3885 unsigned long allocs
= cachep
->num_allocations
;
3886 unsigned long grown
= cachep
->grown
;
3887 unsigned long reaped
= cachep
->reaped
;
3888 unsigned long errors
= cachep
->errors
;
3889 unsigned long max_freeable
= cachep
->max_freeable
;
3890 unsigned long node_allocs
= cachep
->node_allocs
;
3891 unsigned long node_frees
= cachep
->node_frees
;
3892 unsigned long overflows
= cachep
->node_overflow
;
3894 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3895 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3896 reaped
, errors
, max_freeable
, node_allocs
,
3897 node_frees
, overflows
);
3901 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3902 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3903 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3904 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3906 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3907 allochit
, allocmiss
, freehit
, freemiss
);
3915 * slabinfo_op - iterator that generates /proc/slabinfo
3924 * num-pages-per-slab
3925 * + further values on SMP and with statistics enabled
3928 struct seq_operations slabinfo_op
= {
3935 #define MAX_SLABINFO_WRITE 128
3937 * slabinfo_write - Tuning for the slab allocator
3939 * @buffer: user buffer
3940 * @count: data length
3943 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3944 size_t count
, loff_t
*ppos
)
3946 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3947 int limit
, batchcount
, shared
, res
;
3948 struct list_head
*p
;
3950 if (count
> MAX_SLABINFO_WRITE
)
3952 if (copy_from_user(&kbuf
, buffer
, count
))
3954 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3956 tmp
= strchr(kbuf
, ' ');
3961 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3964 /* Find the cache in the chain of caches. */
3965 mutex_lock(&cache_chain_mutex
);
3967 list_for_each(p
, &cache_chain
) {
3968 struct kmem_cache
*cachep
;
3970 cachep
= list_entry(p
, struct kmem_cache
, next
);
3971 if (!strcmp(cachep
->name
, kbuf
)) {
3972 if (limit
< 1 || batchcount
< 1 ||
3973 batchcount
> limit
|| shared
< 0) {
3976 res
= do_tune_cpucache(cachep
, limit
,
3977 batchcount
, shared
);
3982 mutex_unlock(&cache_chain_mutex
);
3988 #ifdef CONFIG_DEBUG_SLAB_LEAK
3990 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
3993 struct list_head
*p
;
3995 mutex_lock(&cache_chain_mutex
);
3996 p
= cache_chain
.next
;
3999 if (p
== &cache_chain
)
4002 return list_entry(p
, struct kmem_cache
, next
);
4005 static inline int add_caller(unsigned long *n
, unsigned long v
)
4015 unsigned long *q
= p
+ 2 * i
;
4029 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4035 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4041 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4042 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4044 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4049 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4051 #ifdef CONFIG_KALLSYMS
4054 unsigned long offset
, size
;
4055 char namebuf
[KSYM_NAME_LEN
+1];
4057 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4060 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4062 seq_printf(m
, " [%s]", modname
);
4066 seq_printf(m
, "%p", (void *)address
);
4069 static int leaks_show(struct seq_file
*m
, void *p
)
4071 struct kmem_cache
*cachep
= p
;
4072 struct list_head
*q
;
4074 struct kmem_list3
*l3
;
4076 unsigned long *n
= m
->private;
4080 if (!(cachep
->flags
& SLAB_STORE_USER
))
4082 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4085 /* OK, we can do it */
4089 for_each_online_node(node
) {
4090 l3
= cachep
->nodelists
[node
];
4095 spin_lock_irq(&l3
->list_lock
);
4097 list_for_each(q
, &l3
->slabs_full
) {
4098 slabp
= list_entry(q
, struct slab
, list
);
4099 handle_slab(n
, cachep
, slabp
);
4101 list_for_each(q
, &l3
->slabs_partial
) {
4102 slabp
= list_entry(q
, struct slab
, list
);
4103 handle_slab(n
, cachep
, slabp
);
4105 spin_unlock_irq(&l3
->list_lock
);
4107 name
= cachep
->name
;
4109 /* Increase the buffer size */
4110 mutex_unlock(&cache_chain_mutex
);
4111 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4113 /* Too bad, we are really out */
4115 mutex_lock(&cache_chain_mutex
);
4118 *(unsigned long *)m
->private = n
[0] * 2;
4120 mutex_lock(&cache_chain_mutex
);
4121 /* Now make sure this entry will be retried */
4125 for (i
= 0; i
< n
[1]; i
++) {
4126 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4127 show_symbol(m
, n
[2*i
+2]);
4133 struct seq_operations slabstats_op
= {
4134 .start
= leaks_start
,
4143 * ksize - get the actual amount of memory allocated for a given object
4144 * @objp: Pointer to the object
4146 * kmalloc may internally round up allocations and return more memory
4147 * than requested. ksize() can be used to determine the actual amount of
4148 * memory allocated. The caller may use this additional memory, even though
4149 * a smaller amount of memory was initially specified with the kmalloc call.
4150 * The caller must guarantee that objp points to a valid object previously
4151 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4152 * must not be freed during the duration of the call.
4154 unsigned int ksize(const void *objp
)
4156 if (unlikely(objp
== NULL
))
4159 return obj_size(virt_to_cache(objp
));