2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
92 static const struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct
*task_of(struct sched_entity
*se
)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se
));
114 return container_of(se
, struct task_struct
, se
);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
143 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
152 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
154 if (se
->cfs_rq
== pse
->cfs_rq
)
160 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity
*se
)
170 for_each_sched_entity(se
)
177 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
179 int se_depth
, pse_depth
;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
188 /* First walk up until both entities are at same depth */
189 se_depth
= depth_se(*se
);
190 pse_depth
= depth_se(*pse
);
192 while (se_depth
> pse_depth
) {
194 *se
= parent_entity(*se
);
197 while (pse_depth
> se_depth
) {
199 *pse
= parent_entity(*pse
);
202 while (!is_same_group(*se
, *pse
)) {
203 *se
= parent_entity(*se
);
204 *pse
= parent_entity(*pse
);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct
*task_of(struct sched_entity
*se
)
212 return container_of(se
, struct task_struct
, se
);
215 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
217 return container_of(cfs_rq
, struct rq
, cfs
);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
227 return &task_rq(p
)->cfs
;
230 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
232 struct task_struct
*p
= task_of(se
);
233 struct rq
*rq
= task_rq(p
);
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
244 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
246 return &cpu_rq(this_cpu
)->cfs
;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
253 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
258 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
264 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
277 s64 delta
= (s64
)(vruntime
- min_vruntime
);
279 min_vruntime
= vruntime
;
284 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
286 s64 delta
= (s64
)(vruntime
- min_vruntime
);
288 min_vruntime
= vruntime
;
293 static inline int entity_before(struct sched_entity
*a
,
294 struct sched_entity
*b
)
296 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
299 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
301 return se
->vruntime
- cfs_rq
->min_vruntime
;
304 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
306 u64 vruntime
= cfs_rq
->min_vruntime
;
309 vruntime
= cfs_rq
->curr
->vruntime
;
311 if (cfs_rq
->rb_leftmost
) {
312 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
317 vruntime
= se
->vruntime
;
319 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
322 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
330 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
331 struct rb_node
*parent
= NULL
;
332 struct sched_entity
*entry
;
333 s64 key
= entity_key(cfs_rq
, se
);
337 * Find the right place in the rbtree:
341 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key
< entity_key(cfs_rq
, entry
)) {
347 link
= &parent
->rb_left
;
349 link
= &parent
->rb_right
;
355 * Maintain a cache of leftmost tree entries (it is frequently
359 cfs_rq
->rb_leftmost
= &se
->run_node
;
361 rb_link_node(&se
->run_node
, parent
, link
);
362 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
365 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
367 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
368 struct rb_node
*next_node
;
370 next_node
= rb_next(&se
->run_node
);
371 cfs_rq
->rb_leftmost
= next_node
;
374 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
377 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
379 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
384 return rb_entry(left
, struct sched_entity
, run_node
);
387 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
389 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
394 return rb_entry(last
, struct sched_entity
, run_node
);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
403 void __user
*buffer
, size_t *lenp
,
406 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
407 int factor
= get_update_sysctl_factor();
412 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
413 sysctl_sched_min_granularity
);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity
);
418 WRT_SYSCTL(sched_latency
);
419 WRT_SYSCTL(sched_wakeup_granularity
);
420 WRT_SYSCTL(sched_shares_ratelimit
);
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
433 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
434 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64
__sched_period(unsigned long nr_running
)
449 u64 period
= sysctl_sched_latency
;
450 unsigned long nr_latency
= sched_nr_latency
;
452 if (unlikely(nr_running
> nr_latency
)) {
453 period
= sysctl_sched_min_granularity
;
454 period
*= nr_running
;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
466 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
468 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
470 for_each_sched_entity(se
) {
471 struct load_weight
*load
;
472 struct load_weight lw
;
474 cfs_rq
= cfs_rq_of(se
);
475 load
= &cfs_rq
->load
;
477 if (unlikely(!se
->on_rq
)) {
480 update_load_add(&lw
, se
->load
.weight
);
483 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
489 * We calculate the vruntime slice of a to be inserted task
493 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
495 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
503 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
504 unsigned long delta_exec
)
506 unsigned long delta_exec_weighted
;
508 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
510 curr
->sum_exec_runtime
+= delta_exec
;
511 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
512 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
513 curr
->vruntime
+= delta_exec_weighted
;
514 update_min_vruntime(cfs_rq
);
517 static void update_curr(struct cfs_rq
*cfs_rq
)
519 struct sched_entity
*curr
= cfs_rq
->curr
;
520 u64 now
= rq_of(cfs_rq
)->clock
;
521 unsigned long delta_exec
;
527 * Get the amount of time the current task was running
528 * since the last time we changed load (this cannot
529 * overflow on 32 bits):
531 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
535 __update_curr(cfs_rq
, curr
, delta_exec
);
536 curr
->exec_start
= now
;
538 if (entity_is_task(curr
)) {
539 struct task_struct
*curtask
= task_of(curr
);
541 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
542 cpuacct_charge(curtask
, delta_exec
);
543 account_group_exec_runtime(curtask
, delta_exec
);
548 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
550 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
554 * Task is being enqueued - update stats:
556 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
559 * Are we enqueueing a waiting task? (for current tasks
560 * a dequeue/enqueue event is a NOP)
562 if (se
!= cfs_rq
->curr
)
563 update_stats_wait_start(cfs_rq
, se
);
567 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
569 schedstat_set(se
->wait_max
, max(se
->wait_max
,
570 rq_of(cfs_rq
)->clock
- se
->wait_start
));
571 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
572 schedstat_set(se
->wait_sum
, se
->wait_sum
+
573 rq_of(cfs_rq
)->clock
- se
->wait_start
);
574 #ifdef CONFIG_SCHEDSTATS
575 if (entity_is_task(se
)) {
576 trace_sched_stat_wait(task_of(se
),
577 rq_of(cfs_rq
)->clock
- se
->wait_start
);
580 schedstat_set(se
->wait_start
, 0);
584 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
587 * Mark the end of the wait period if dequeueing a
590 if (se
!= cfs_rq
->curr
)
591 update_stats_wait_end(cfs_rq
, se
);
595 * We are picking a new current task - update its stats:
598 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
601 * We are starting a new run period:
603 se
->exec_start
= rq_of(cfs_rq
)->clock
;
606 /**************************************************
607 * Scheduling class queueing methods:
610 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
614 cfs_rq
->task_weight
+= weight
;
618 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
624 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
626 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
627 if (!parent_entity(se
))
628 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
629 if (entity_is_task(se
)) {
630 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
631 list_add(&se
->group_node
, &cfs_rq
->tasks
);
633 cfs_rq
->nr_running
++;
638 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
640 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
641 if (!parent_entity(se
))
642 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
643 if (entity_is_task(se
)) {
644 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
645 list_del_init(&se
->group_node
);
647 cfs_rq
->nr_running
--;
651 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
653 #ifdef CONFIG_SCHEDSTATS
654 struct task_struct
*tsk
= NULL
;
656 if (entity_is_task(se
))
659 if (se
->sleep_start
) {
660 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
665 if (unlikely(delta
> se
->sleep_max
))
666 se
->sleep_max
= delta
;
669 se
->sum_sleep_runtime
+= delta
;
672 account_scheduler_latency(tsk
, delta
>> 10, 1);
673 trace_sched_stat_sleep(tsk
, delta
);
676 if (se
->block_start
) {
677 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
682 if (unlikely(delta
> se
->block_max
))
683 se
->block_max
= delta
;
686 se
->sum_sleep_runtime
+= delta
;
689 if (tsk
->in_iowait
) {
690 se
->iowait_sum
+= delta
;
692 trace_sched_stat_iowait(tsk
, delta
);
696 * Blocking time is in units of nanosecs, so shift by
697 * 20 to get a milliseconds-range estimation of the
698 * amount of time that the task spent sleeping:
700 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
701 profile_hits(SLEEP_PROFILING
,
702 (void *)get_wchan(tsk
),
705 account_scheduler_latency(tsk
, delta
>> 10, 0);
711 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
713 #ifdef CONFIG_SCHED_DEBUG
714 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
719 if (d
> 3*sysctl_sched_latency
)
720 schedstat_inc(cfs_rq
, nr_spread_over
);
725 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
727 u64 vruntime
= cfs_rq
->min_vruntime
;
730 * The 'current' period is already promised to the current tasks,
731 * however the extra weight of the new task will slow them down a
732 * little, place the new task so that it fits in the slot that
733 * stays open at the end.
735 if (initial
&& sched_feat(START_DEBIT
))
736 vruntime
+= sched_vslice(cfs_rq
, se
);
738 /* sleeps up to a single latency don't count. */
739 if (!initial
&& sched_feat(FAIR_SLEEPERS
)) {
740 unsigned long thresh
= sysctl_sched_latency
;
743 * Convert the sleeper threshold into virtual time.
744 * SCHED_IDLE is a special sub-class. We care about
745 * fairness only relative to other SCHED_IDLE tasks,
746 * all of which have the same weight.
748 if (sched_feat(NORMALIZED_SLEEPER
) && (!entity_is_task(se
) ||
749 task_of(se
)->policy
!= SCHED_IDLE
))
750 thresh
= calc_delta_fair(thresh
, se
);
753 * Halve their sleep time's effect, to allow
754 * for a gentler effect of sleepers:
756 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
762 /* ensure we never gain time by being placed backwards. */
763 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
765 se
->vruntime
= vruntime
;
769 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
772 * Update run-time statistics of the 'current'.
775 account_entity_enqueue(cfs_rq
, se
);
778 place_entity(cfs_rq
, se
, 0);
779 enqueue_sleeper(cfs_rq
, se
);
782 update_stats_enqueue(cfs_rq
, se
);
783 check_spread(cfs_rq
, se
);
784 if (se
!= cfs_rq
->curr
)
785 __enqueue_entity(cfs_rq
, se
);
788 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
790 if (!se
|| cfs_rq
->last
== se
)
793 if (!se
|| cfs_rq
->next
== se
)
797 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
799 for_each_sched_entity(se
)
800 __clear_buddies(cfs_rq_of(se
), se
);
804 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
807 * Update run-time statistics of the 'current'.
811 update_stats_dequeue(cfs_rq
, se
);
813 #ifdef CONFIG_SCHEDSTATS
814 if (entity_is_task(se
)) {
815 struct task_struct
*tsk
= task_of(se
);
817 if (tsk
->state
& TASK_INTERRUPTIBLE
)
818 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
819 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
820 se
->block_start
= rq_of(cfs_rq
)->clock
;
825 clear_buddies(cfs_rq
, se
);
827 if (se
!= cfs_rq
->curr
)
828 __dequeue_entity(cfs_rq
, se
);
829 account_entity_dequeue(cfs_rq
, se
);
830 update_min_vruntime(cfs_rq
);
834 * Preempt the current task with a newly woken task if needed:
837 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
839 unsigned long ideal_runtime
, delta_exec
;
841 ideal_runtime
= sched_slice(cfs_rq
, curr
);
842 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
843 if (delta_exec
> ideal_runtime
) {
844 resched_task(rq_of(cfs_rq
)->curr
);
846 * The current task ran long enough, ensure it doesn't get
847 * re-elected due to buddy favours.
849 clear_buddies(cfs_rq
, curr
);
854 * Ensure that a task that missed wakeup preemption by a
855 * narrow margin doesn't have to wait for a full slice.
856 * This also mitigates buddy induced latencies under load.
858 if (!sched_feat(WAKEUP_PREEMPT
))
861 if (delta_exec
< sysctl_sched_min_granularity
)
864 if (cfs_rq
->nr_running
> 1) {
865 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
866 s64 delta
= curr
->vruntime
- se
->vruntime
;
868 if (delta
> ideal_runtime
)
869 resched_task(rq_of(cfs_rq
)->curr
);
874 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
876 /* 'current' is not kept within the tree. */
879 * Any task has to be enqueued before it get to execute on
880 * a CPU. So account for the time it spent waiting on the
883 update_stats_wait_end(cfs_rq
, se
);
884 __dequeue_entity(cfs_rq
, se
);
887 update_stats_curr_start(cfs_rq
, se
);
889 #ifdef CONFIG_SCHEDSTATS
891 * Track our maximum slice length, if the CPU's load is at
892 * least twice that of our own weight (i.e. dont track it
893 * when there are only lesser-weight tasks around):
895 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
896 se
->slice_max
= max(se
->slice_max
,
897 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
900 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
904 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
906 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
908 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
909 struct sched_entity
*left
= se
;
911 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
915 * Prefer last buddy, try to return the CPU to a preempted task.
917 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
920 clear_buddies(cfs_rq
, se
);
925 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
928 * If still on the runqueue then deactivate_task()
929 * was not called and update_curr() has to be done:
934 check_spread(cfs_rq
, prev
);
936 update_stats_wait_start(cfs_rq
, prev
);
937 /* Put 'current' back into the tree. */
938 __enqueue_entity(cfs_rq
, prev
);
944 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
947 * Update run-time statistics of the 'current'.
951 #ifdef CONFIG_SCHED_HRTICK
953 * queued ticks are scheduled to match the slice, so don't bother
954 * validating it and just reschedule.
957 resched_task(rq_of(cfs_rq
)->curr
);
961 * don't let the period tick interfere with the hrtick preemption
963 if (!sched_feat(DOUBLE_TICK
) &&
964 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
968 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
969 check_preempt_tick(cfs_rq
, curr
);
972 /**************************************************
973 * CFS operations on tasks:
976 #ifdef CONFIG_SCHED_HRTICK
977 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
979 struct sched_entity
*se
= &p
->se
;
980 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
982 WARN_ON(task_rq(p
) != rq
);
984 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
985 u64 slice
= sched_slice(cfs_rq
, se
);
986 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
987 s64 delta
= slice
- ran
;
996 * Don't schedule slices shorter than 10000ns, that just
997 * doesn't make sense. Rely on vruntime for fairness.
1000 delta
= max_t(s64
, 10000LL, delta
);
1002 hrtick_start(rq
, delta
);
1007 * called from enqueue/dequeue and updates the hrtick when the
1008 * current task is from our class and nr_running is low enough
1011 static void hrtick_update(struct rq
*rq
)
1013 struct task_struct
*curr
= rq
->curr
;
1015 if (curr
->sched_class
!= &fair_sched_class
)
1018 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1019 hrtick_start_fair(rq
, curr
);
1021 #else /* !CONFIG_SCHED_HRTICK */
1023 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1027 static inline void hrtick_update(struct rq
*rq
)
1033 * The enqueue_task method is called before nr_running is
1034 * increased. Here we update the fair scheduling stats and
1035 * then put the task into the rbtree:
1037 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1039 struct cfs_rq
*cfs_rq
;
1040 struct sched_entity
*se
= &p
->se
;
1042 for_each_sched_entity(se
) {
1045 cfs_rq
= cfs_rq_of(se
);
1046 enqueue_entity(cfs_rq
, se
, wakeup
);
1054 * The dequeue_task method is called before nr_running is
1055 * decreased. We remove the task from the rbtree and
1056 * update the fair scheduling stats:
1058 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1060 struct cfs_rq
*cfs_rq
;
1061 struct sched_entity
*se
= &p
->se
;
1063 for_each_sched_entity(se
) {
1064 cfs_rq
= cfs_rq_of(se
);
1065 dequeue_entity(cfs_rq
, se
, sleep
);
1066 /* Don't dequeue parent if it has other entities besides us */
1067 if (cfs_rq
->load
.weight
)
1076 * sched_yield() support is very simple - we dequeue and enqueue.
1078 * If compat_yield is turned on then we requeue to the end of the tree.
1080 static void yield_task_fair(struct rq
*rq
)
1082 struct task_struct
*curr
= rq
->curr
;
1083 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1084 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1087 * Are we the only task in the tree?
1089 if (unlikely(cfs_rq
->nr_running
== 1))
1092 clear_buddies(cfs_rq
, se
);
1094 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1095 update_rq_clock(rq
);
1097 * Update run-time statistics of the 'current'.
1099 update_curr(cfs_rq
);
1104 * Find the rightmost entry in the rbtree:
1106 rightmost
= __pick_last_entity(cfs_rq
);
1108 * Already in the rightmost position?
1110 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1114 * Minimally necessary key value to be last in the tree:
1115 * Upon rescheduling, sched_class::put_prev_task() will place
1116 * 'current' within the tree based on its new key value.
1118 se
->vruntime
= rightmost
->vruntime
+ 1;
1123 #ifdef CONFIG_FAIR_GROUP_SCHED
1125 * effective_load() calculates the load change as seen from the root_task_group
1127 * Adding load to a group doesn't make a group heavier, but can cause movement
1128 * of group shares between cpus. Assuming the shares were perfectly aligned one
1129 * can calculate the shift in shares.
1131 * The problem is that perfectly aligning the shares is rather expensive, hence
1132 * we try to avoid doing that too often - see update_shares(), which ratelimits
1135 * We compensate this by not only taking the current delta into account, but
1136 * also considering the delta between when the shares were last adjusted and
1139 * We still saw a performance dip, some tracing learned us that between
1140 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1141 * significantly. Therefore try to bias the error in direction of failing
1142 * the affine wakeup.
1145 static long effective_load(struct task_group
*tg
, int cpu
,
1148 struct sched_entity
*se
= tg
->se
[cpu
];
1154 * By not taking the decrease of shares on the other cpu into
1155 * account our error leans towards reducing the affine wakeups.
1157 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1160 for_each_sched_entity(se
) {
1161 long S
, rw
, s
, a
, b
;
1165 * Instead of using this increment, also add the difference
1166 * between when the shares were last updated and now.
1168 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1172 S
= se
->my_q
->tg
->shares
;
1173 s
= se
->my_q
->shares
;
1174 rw
= se
->my_q
->rq_weight
;
1185 * Assume the group is already running and will
1186 * thus already be accounted for in the weight.
1188 * That is, moving shares between CPUs, does not
1189 * alter the group weight.
1199 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1200 unsigned long wl
, unsigned long wg
)
1207 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1209 struct task_struct
*curr
= current
;
1210 unsigned long this_load
, load
;
1211 int idx
, this_cpu
, prev_cpu
;
1212 unsigned long tl_per_task
;
1213 unsigned int imbalance
;
1214 struct task_group
*tg
;
1215 unsigned long weight
;
1219 this_cpu
= smp_processor_id();
1220 prev_cpu
= task_cpu(p
);
1221 load
= source_load(prev_cpu
, idx
);
1222 this_load
= target_load(this_cpu
, idx
);
1225 if (sched_feat(SYNC_LESS
) &&
1226 (curr
->se
.avg_overlap
> sysctl_sched_migration_cost
||
1227 p
->se
.avg_overlap
> sysctl_sched_migration_cost
))
1230 if (sched_feat(SYNC_MORE
) &&
1231 (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1232 p
->se
.avg_overlap
< sysctl_sched_migration_cost
))
1237 * If sync wakeup then subtract the (maximum possible)
1238 * effect of the currently running task from the load
1239 * of the current CPU:
1242 tg
= task_group(current
);
1243 weight
= current
->se
.load
.weight
;
1245 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1246 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1250 weight
= p
->se
.load
.weight
;
1252 imbalance
= 100 + (sd
->imbalance_pct
- 100) / 2;
1255 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 * due to the sync cause above having dropped this_load to 0, we'll
1257 * always have an imbalance, but there's really nothing you can do
1258 * about that, so that's good too.
1260 * Otherwise check if either cpus are near enough in load to allow this
1261 * task to be woken on this_cpu.
1263 balanced
= !this_load
||
1264 100*(this_load
+ effective_load(tg
, this_cpu
, weight
, weight
)) <=
1265 imbalance
*(load
+ effective_load(tg
, prev_cpu
, 0, weight
));
1268 * If the currently running task will sleep within
1269 * a reasonable amount of time then attract this newly
1272 if (sync
&& balanced
)
1275 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1276 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1279 (this_load
<= load
&&
1280 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1282 * This domain has SD_WAKE_AFFINE and
1283 * p is cache cold in this domain, and
1284 * there is no bad imbalance.
1286 schedstat_inc(sd
, ttwu_move_affine
);
1287 schedstat_inc(p
, se
.nr_wakeups_affine
);
1295 * find_idlest_group finds and returns the least busy CPU group within the
1298 static struct sched_group
*
1299 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1300 int this_cpu
, int load_idx
)
1302 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1303 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1304 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1307 unsigned long load
, avg_load
;
1311 /* Skip over this group if it has no CPUs allowed */
1312 if (!cpumask_intersects(sched_group_cpus(group
),
1316 local_group
= cpumask_test_cpu(this_cpu
,
1317 sched_group_cpus(group
));
1319 /* Tally up the load of all CPUs in the group */
1322 for_each_cpu(i
, sched_group_cpus(group
)) {
1323 /* Bias balancing toward cpus of our domain */
1325 load
= source_load(i
, load_idx
);
1327 load
= target_load(i
, load_idx
);
1332 /* Adjust by relative CPU power of the group */
1333 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1336 this_load
= avg_load
;
1338 } else if (avg_load
< min_load
) {
1339 min_load
= avg_load
;
1342 } while (group
= group
->next
, group
!= sd
->groups
);
1344 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1350 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1353 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1355 unsigned long load
, min_load
= ULONG_MAX
;
1359 /* Traverse only the allowed CPUs */
1360 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1361 load
= weighted_cpuload(i
);
1363 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1373 * Try and locate an idle CPU in the sched_domain.
1376 select_idle_sibling(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
1378 int cpu
= smp_processor_id();
1379 int prev_cpu
= task_cpu(p
);
1383 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1384 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1385 * always a better target than the current cpu.
1387 if (target
== cpu
&& !cpu_rq(prev_cpu
)->cfs
.nr_running
)
1391 * Otherwise, iterate the domain and find an elegible idle cpu.
1393 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1394 if (!cpu_rq(i
)->cfs
.nr_running
) {
1404 * sched_balance_self: balance the current task (running on cpu) in domains
1405 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1408 * Balance, ie. select the least loaded group.
1410 * Returns the target CPU number, or the same CPU if no balancing is needed.
1412 * preempt must be disabled.
1414 static int select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
1416 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1417 int cpu
= smp_processor_id();
1418 int prev_cpu
= task_cpu(p
);
1420 int want_affine
= 0;
1422 int sync
= wake_flags
& WF_SYNC
;
1424 if (sd_flag
& SD_BALANCE_WAKE
) {
1425 if (sched_feat(AFFINE_WAKEUPS
) &&
1426 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1431 for_each_domain(cpu
, tmp
) {
1433 * If power savings logic is enabled for a domain, see if we
1434 * are not overloaded, if so, don't balance wider.
1436 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1437 unsigned long power
= 0;
1438 unsigned long nr_running
= 0;
1439 unsigned long capacity
;
1442 for_each_cpu(i
, sched_domain_span(tmp
)) {
1443 power
+= power_of(i
);
1444 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1447 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1449 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1452 if (nr_running
< capacity
)
1457 * While iterating the domains looking for a spanning
1458 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1459 * in cache sharing domains along the way.
1465 * If both cpu and prev_cpu are part of this domain,
1466 * cpu is a valid SD_WAKE_AFFINE target.
1468 if (cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
)))
1472 * If there's an idle sibling in this domain, make that
1473 * the wake_affine target instead of the current cpu.
1475 if (tmp
->flags
& SD_PREFER_SIBLING
)
1476 target
= select_idle_sibling(p
, tmp
, target
);
1479 if (tmp
->flags
& SD_WAKE_AFFINE
) {
1487 if (!want_sd
&& !want_affine
)
1490 if (!(tmp
->flags
& sd_flag
))
1497 if (sched_feat(LB_SHARES_UPDATE
)) {
1499 * Pick the largest domain to update shares over
1502 if (affine_sd
&& (!tmp
||
1503 cpumask_weight(sched_domain_span(affine_sd
)) >
1504 cpumask_weight(sched_domain_span(sd
))))
1511 if (affine_sd
&& wake_affine(affine_sd
, p
, sync
))
1515 int load_idx
= sd
->forkexec_idx
;
1516 struct sched_group
*group
;
1519 if (!(sd
->flags
& sd_flag
)) {
1524 if (sd_flag
& SD_BALANCE_WAKE
)
1525 load_idx
= sd
->wake_idx
;
1527 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1533 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1534 if (new_cpu
== -1 || new_cpu
== cpu
) {
1535 /* Now try balancing at a lower domain level of cpu */
1540 /* Now try balancing at a lower domain level of new_cpu */
1542 weight
= cpumask_weight(sched_domain_span(sd
));
1544 for_each_domain(cpu
, tmp
) {
1545 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
1547 if (tmp
->flags
& sd_flag
)
1550 /* while loop will break here if sd == NULL */
1555 #endif /* CONFIG_SMP */
1558 * Adaptive granularity
1560 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1561 * with the limit of wakeup_gran -- when it never does a wakeup.
1563 * So the smaller avg_wakeup is the faster we want this task to preempt,
1564 * but we don't want to treat the preemptee unfairly and therefore allow it
1565 * to run for at least the amount of time we'd like to run.
1567 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1569 * NOTE: we use *nr_running to scale with load, this nicely matches the
1570 * degrading latency on load.
1572 static unsigned long
1573 adaptive_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1575 u64 this_run
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1576 u64 expected_wakeup
= 2*se
->avg_wakeup
* cfs_rq_of(se
)->nr_running
;
1579 if (this_run
< expected_wakeup
)
1580 gran
= expected_wakeup
- this_run
;
1582 return min_t(s64
, gran
, sysctl_sched_wakeup_granularity
);
1585 static unsigned long
1586 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1588 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1590 if (cfs_rq_of(curr
)->curr
&& sched_feat(ADAPTIVE_GRAN
))
1591 gran
= adaptive_gran(curr
, se
);
1594 * Since its curr running now, convert the gran from real-time
1595 * to virtual-time in his units.
1597 if (sched_feat(ASYM_GRAN
)) {
1599 * By using 'se' instead of 'curr' we penalize light tasks, so
1600 * they get preempted easier. That is, if 'se' < 'curr' then
1601 * the resulting gran will be larger, therefore penalizing the
1602 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1603 * be smaller, again penalizing the lighter task.
1605 * This is especially important for buddies when the leftmost
1606 * task is higher priority than the buddy.
1608 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1609 gran
= calc_delta_fair(gran
, se
);
1611 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
))
1612 gran
= calc_delta_fair(gran
, curr
);
1619 * Should 'se' preempt 'curr'.
1633 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1635 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1640 gran
= wakeup_gran(curr
, se
);
1647 static void set_last_buddy(struct sched_entity
*se
)
1649 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1650 for_each_sched_entity(se
)
1651 cfs_rq_of(se
)->last
= se
;
1655 static void set_next_buddy(struct sched_entity
*se
)
1657 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1658 for_each_sched_entity(se
)
1659 cfs_rq_of(se
)->next
= se
;
1664 * Preempt the current task with a newly woken task if needed:
1666 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1668 struct task_struct
*curr
= rq
->curr
;
1669 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1670 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1671 int sync
= wake_flags
& WF_SYNC
;
1672 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1674 if (unlikely(rt_prio(p
->prio
)))
1677 if (unlikely(p
->sched_class
!= &fair_sched_class
))
1680 if (unlikely(se
== pse
))
1683 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1684 set_next_buddy(pse
);
1687 * We can come here with TIF_NEED_RESCHED already set from new task
1690 if (test_tsk_need_resched(curr
))
1694 * Batch and idle tasks do not preempt (their preemption is driven by
1697 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1700 /* Idle tasks are by definition preempted by everybody. */
1701 if (unlikely(curr
->policy
== SCHED_IDLE
))
1704 if (sched_feat(WAKEUP_SYNC
) && sync
)
1707 if (sched_feat(WAKEUP_OVERLAP
) &&
1708 se
->avg_overlap
< sysctl_sched_migration_cost
&&
1709 pse
->avg_overlap
< sysctl_sched_migration_cost
)
1712 if (!sched_feat(WAKEUP_PREEMPT
))
1715 update_curr(cfs_rq
);
1716 find_matching_se(&se
, &pse
);
1718 if (wakeup_preempt_entity(se
, pse
) == 1)
1726 * Only set the backward buddy when the current task is still
1727 * on the rq. This can happen when a wakeup gets interleaved
1728 * with schedule on the ->pre_schedule() or idle_balance()
1729 * point, either of which can * drop the rq lock.
1731 * Also, during early boot the idle thread is in the fair class,
1732 * for obvious reasons its a bad idea to schedule back to it.
1734 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1737 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1741 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1743 struct task_struct
*p
;
1744 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1745 struct sched_entity
*se
;
1747 if (!cfs_rq
->nr_running
)
1751 se
= pick_next_entity(cfs_rq
);
1752 set_next_entity(cfs_rq
, se
);
1753 cfs_rq
= group_cfs_rq(se
);
1757 hrtick_start_fair(rq
, p
);
1763 * Account for a descheduled task:
1765 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1767 struct sched_entity
*se
= &prev
->se
;
1768 struct cfs_rq
*cfs_rq
;
1770 for_each_sched_entity(se
) {
1771 cfs_rq
= cfs_rq_of(se
);
1772 put_prev_entity(cfs_rq
, se
);
1777 /**************************************************
1778 * Fair scheduling class load-balancing methods:
1782 * Load-balancing iterator. Note: while the runqueue stays locked
1783 * during the whole iteration, the current task might be
1784 * dequeued so the iterator has to be dequeue-safe. Here we
1785 * achieve that by always pre-iterating before returning
1788 static struct task_struct
*
1789 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1791 struct task_struct
*p
= NULL
;
1792 struct sched_entity
*se
;
1794 if (next
== &cfs_rq
->tasks
)
1797 se
= list_entry(next
, struct sched_entity
, group_node
);
1799 cfs_rq
->balance_iterator
= next
->next
;
1804 static struct task_struct
*load_balance_start_fair(void *arg
)
1806 struct cfs_rq
*cfs_rq
= arg
;
1808 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1811 static struct task_struct
*load_balance_next_fair(void *arg
)
1813 struct cfs_rq
*cfs_rq
= arg
;
1815 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1818 static unsigned long
1819 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1820 unsigned long max_load_move
, struct sched_domain
*sd
,
1821 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1822 struct cfs_rq
*cfs_rq
)
1824 struct rq_iterator cfs_rq_iterator
;
1826 cfs_rq_iterator
.start
= load_balance_start_fair
;
1827 cfs_rq_iterator
.next
= load_balance_next_fair
;
1828 cfs_rq_iterator
.arg
= cfs_rq
;
1830 return balance_tasks(this_rq
, this_cpu
, busiest
,
1831 max_load_move
, sd
, idle
, all_pinned
,
1832 this_best_prio
, &cfs_rq_iterator
);
1835 #ifdef CONFIG_FAIR_GROUP_SCHED
1836 static unsigned long
1837 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1838 unsigned long max_load_move
,
1839 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1840 int *all_pinned
, int *this_best_prio
)
1842 long rem_load_move
= max_load_move
;
1843 int busiest_cpu
= cpu_of(busiest
);
1844 struct task_group
*tg
;
1847 update_h_load(busiest_cpu
);
1849 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1850 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1851 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1852 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1853 u64 rem_load
, moved_load
;
1858 if (!busiest_cfs_rq
->task_weight
)
1861 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1862 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1864 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1865 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1866 tg
->cfs_rq
[busiest_cpu
]);
1871 moved_load
*= busiest_h_load
;
1872 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1874 rem_load_move
-= moved_load
;
1875 if (rem_load_move
< 0)
1880 return max_load_move
- rem_load_move
;
1883 static unsigned long
1884 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1885 unsigned long max_load_move
,
1886 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1887 int *all_pinned
, int *this_best_prio
)
1889 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1890 max_load_move
, sd
, idle
, all_pinned
,
1891 this_best_prio
, &busiest
->cfs
);
1896 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1897 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1899 struct cfs_rq
*busy_cfs_rq
;
1900 struct rq_iterator cfs_rq_iterator
;
1902 cfs_rq_iterator
.start
= load_balance_start_fair
;
1903 cfs_rq_iterator
.next
= load_balance_next_fair
;
1905 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1907 * pass busy_cfs_rq argument into
1908 * load_balance_[start|next]_fair iterators
1910 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1911 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1919 static void rq_online_fair(struct rq
*rq
)
1924 static void rq_offline_fair(struct rq
*rq
)
1929 #endif /* CONFIG_SMP */
1932 * scheduler tick hitting a task of our scheduling class:
1934 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1936 struct cfs_rq
*cfs_rq
;
1937 struct sched_entity
*se
= &curr
->se
;
1939 for_each_sched_entity(se
) {
1940 cfs_rq
= cfs_rq_of(se
);
1941 entity_tick(cfs_rq
, se
, queued
);
1946 * called on fork with the child task as argument from the parent's context
1947 * - child not yet on the tasklist
1948 * - preemption disabled
1950 static void task_fork_fair(struct task_struct
*p
)
1952 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
1953 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1954 int this_cpu
= smp_processor_id();
1955 struct rq
*rq
= this_rq();
1956 unsigned long flags
;
1958 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1960 if (unlikely(task_cpu(p
) != this_cpu
))
1961 __set_task_cpu(p
, this_cpu
);
1963 update_curr(cfs_rq
);
1966 se
->vruntime
= curr
->vruntime
;
1967 place_entity(cfs_rq
, se
, 1);
1969 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
1971 * Upon rescheduling, sched_class::put_prev_task() will place
1972 * 'current' within the tree based on its new key value.
1974 swap(curr
->vruntime
, se
->vruntime
);
1975 resched_task(rq
->curr
);
1978 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1982 * Priority of the task has changed. Check to see if we preempt
1985 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1986 int oldprio
, int running
)
1989 * Reschedule if we are currently running on this runqueue and
1990 * our priority decreased, or if we are not currently running on
1991 * this runqueue and our priority is higher than the current's
1994 if (p
->prio
> oldprio
)
1995 resched_task(rq
->curr
);
1997 check_preempt_curr(rq
, p
, 0);
2001 * We switched to the sched_fair class.
2003 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
2007 * We were most likely switched from sched_rt, so
2008 * kick off the schedule if running, otherwise just see
2009 * if we can still preempt the current task.
2012 resched_task(rq
->curr
);
2014 check_preempt_curr(rq
, p
, 0);
2017 /* Account for a task changing its policy or group.
2019 * This routine is mostly called to set cfs_rq->curr field when a task
2020 * migrates between groups/classes.
2022 static void set_curr_task_fair(struct rq
*rq
)
2024 struct sched_entity
*se
= &rq
->curr
->se
;
2026 for_each_sched_entity(se
)
2027 set_next_entity(cfs_rq_of(se
), se
);
2030 #ifdef CONFIG_FAIR_GROUP_SCHED
2031 static void moved_group_fair(struct task_struct
*p
)
2033 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
2035 update_curr(cfs_rq
);
2036 place_entity(cfs_rq
, &p
->se
, 1);
2040 unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
2042 struct sched_entity
*se
= &task
->se
;
2043 unsigned int rr_interval
= 0;
2046 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2049 if (rq
->cfs
.load
.weight
)
2050 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
2056 * All the scheduling class methods:
2058 static const struct sched_class fair_sched_class
= {
2059 .next
= &idle_sched_class
,
2060 .enqueue_task
= enqueue_task_fair
,
2061 .dequeue_task
= dequeue_task_fair
,
2062 .yield_task
= yield_task_fair
,
2064 .check_preempt_curr
= check_preempt_wakeup
,
2066 .pick_next_task
= pick_next_task_fair
,
2067 .put_prev_task
= put_prev_task_fair
,
2070 .select_task_rq
= select_task_rq_fair
,
2072 .load_balance
= load_balance_fair
,
2073 .move_one_task
= move_one_task_fair
,
2074 .rq_online
= rq_online_fair
,
2075 .rq_offline
= rq_offline_fair
,
2078 .set_curr_task
= set_curr_task_fair
,
2079 .task_tick
= task_tick_fair
,
2080 .task_fork
= task_fork_fair
,
2082 .prio_changed
= prio_changed_fair
,
2083 .switched_to
= switched_to_fair
,
2085 .get_rr_interval
= get_rr_interval_fair
,
2087 #ifdef CONFIG_FAIR_GROUP_SCHED
2088 .moved_group
= moved_group_fair
,
2092 #ifdef CONFIG_SCHED_DEBUG
2093 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
2095 struct cfs_rq
*cfs_rq
;
2098 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
2099 print_cfs_rq(m
, cpu
, cfs_rq
);