4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
64 error
= uptodate
? uptodate
: -EIO
;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq
) && error
)
71 nr_bytes
= rq
->hard_nr_sectors
<< 9;
73 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
85 if (!__blk_end_request(rq
, error
, nr_bytes
)) {
87 HWGROUP(drive
)->rq
= NULL
;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
107 unsigned int nr_bytes
= nr_sectors
<< 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock
, flags
);
117 rq
= HWGROUP(drive
)->rq
;
120 if (blk_pc_request(rq
))
121 nr_bytes
= rq
->data_len
;
123 nr_bytes
= rq
->hard_cur_sectors
<< 9;
126 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
128 spin_unlock_irqrestore(&ide_lock
, flags
);
131 EXPORT_SYMBOL(ide_end_request
);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
143 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
148 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
150 struct request_pm_state
*pm
= rq
->data
;
152 if (drive
->media
!= ide_disk
)
155 switch (pm
->pm_step
) {
156 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
157 if (pm
->pm_state
== PM_EVENT_FREEZE
)
158 pm
->pm_step
= ide_pm_state_completed
;
160 pm
->pm_step
= idedisk_pm_standby
;
162 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
163 pm
->pm_step
= ide_pm_state_completed
;
165 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
166 pm
->pm_step
= idedisk_pm_idle
;
168 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
169 pm
->pm_step
= ide_pm_restore_dma
;
174 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
176 struct request_pm_state
*pm
= rq
->data
;
177 ide_task_t
*args
= rq
->special
;
179 memset(args
, 0, sizeof(*args
));
181 switch (pm
->pm_step
) {
182 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
183 if (drive
->media
!= ide_disk
)
185 /* Not supported? Switch to next step now. */
186 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
187 ide_complete_power_step(drive
, rq
, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive
->id
))
191 args
->tf
.command
= WIN_FLUSH_CACHE_EXT
;
193 args
->tf
.command
= WIN_FLUSH_CACHE
;
196 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
197 args
->tf
.command
= WIN_STANDBYNOW1
;
200 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive
);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive
->media
!= ide_disk
)
206 pm
->pm_step
= ide_pm_restore_dma
;
208 ide_complete_power_step(drive
, rq
, 0, 0);
211 case idedisk_pm_idle
: /* Resume step 2 (idle) */
212 args
->tf
.command
= WIN_IDLEIMMEDIATE
;
215 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive
->hwif
->dma_host_set
== NULL
)
224 * TODO: respect ->using_dma setting
229 pm
->pm_step
= ide_pm_state_completed
;
233 args
->tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
234 args
->data_phase
= TASKFILE_NO_DATA
;
235 return do_rw_taskfile(drive
, args
);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
254 int uptodate
, int nr_sectors
)
259 spin_lock_irqsave(&ide_lock
, flags
);
260 BUG_ON(!blk_rq_started(rq
));
261 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
262 spin_unlock_irqrestore(&ide_lock
, flags
);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
282 printk("%s: completing PM request, %s\n", drive
->name
,
283 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock
, flags
);
286 if (blk_pm_suspend_request(rq
)) {
287 blk_stop_queue(drive
->queue
);
290 blk_start_queue(drive
->queue
);
292 HWGROUP(drive
)->rq
= NULL
;
293 if (__blk_end_request(rq
, 0, 0))
295 spin_unlock_irqrestore(&ide_lock
, flags
);
298 void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
300 ide_hwif_t
*hwif
= drive
->hwif
;
301 struct ide_taskfile
*tf
= &task
->tf
;
303 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
304 u16 data
= hwif
->INW(hwif
->io_ports
[IDE_DATA_OFFSET
]);
306 tf
->data
= data
& 0xff;
307 tf
->hob_data
= (data
>> 8) & 0xff;
310 /* be sure we're looking at the low order bits */
311 hwif
->OUTB(drive
->ctl
& ~0x80, hwif
->io_ports
[IDE_CONTROL_OFFSET
]);
313 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
314 tf
->nsect
= hwif
->INB(hwif
->io_ports
[IDE_NSECTOR_OFFSET
]);
315 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
316 tf
->lbal
= hwif
->INB(hwif
->io_ports
[IDE_SECTOR_OFFSET
]);
317 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
318 tf
->lbam
= hwif
->INB(hwif
->io_ports
[IDE_LCYL_OFFSET
]);
319 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
320 tf
->lbah
= hwif
->INB(hwif
->io_ports
[IDE_HCYL_OFFSET
]);
321 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
322 tf
->device
= hwif
->INB(hwif
->io_ports
[IDE_SELECT_OFFSET
]);
324 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
325 hwif
->OUTB(drive
->ctl
| 0x80,
326 hwif
->io_ports
[IDE_CONTROL_OFFSET
]);
328 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
330 hwif
->INB(hwif
->io_ports
[IDE_FEATURE_OFFSET
]);
331 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
333 hwif
->INB(hwif
->io_ports
[IDE_NSECTOR_OFFSET
]);
334 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
336 hwif
->INB(hwif
->io_ports
[IDE_SECTOR_OFFSET
]);
337 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
339 hwif
->INB(hwif
->io_ports
[IDE_LCYL_OFFSET
]);
340 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
342 hwif
->INB(hwif
->io_ports
[IDE_HCYL_OFFSET
]);
347 * ide_end_drive_cmd - end an explicit drive command
352 * Clean up after success/failure of an explicit drive command.
353 * These get thrown onto the queue so they are synchronized with
354 * real I/O operations on the drive.
356 * In LBA48 mode we have to read the register set twice to get
357 * all the extra information out.
360 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
365 spin_lock_irqsave(&ide_lock
, flags
);
366 rq
= HWGROUP(drive
)->rq
;
367 spin_unlock_irqrestore(&ide_lock
, flags
);
369 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
370 ide_task_t
*task
= (ide_task_t
*)rq
->special
;
373 rq
->errors
= !OK_STAT(stat
, READY_STAT
, BAD_STAT
);
376 struct ide_taskfile
*tf
= &task
->tf
;
381 ide_tf_read(drive
, task
);
383 if (task
->tf_flags
& IDE_TFLAG_DYN
)
386 } else if (blk_pm_request(rq
)) {
387 struct request_pm_state
*pm
= rq
->data
;
389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
392 ide_complete_power_step(drive
, rq
, stat
, err
);
393 if (pm
->pm_step
== ide_pm_state_completed
)
394 ide_complete_pm_request(drive
, rq
);
398 spin_lock_irqsave(&ide_lock
, flags
);
399 HWGROUP(drive
)->rq
= NULL
;
401 if (unlikely(__blk_end_request(rq
, (rq
->errors
? -EIO
: 0),
404 spin_unlock_irqrestore(&ide_lock
, flags
);
407 EXPORT_SYMBOL(ide_end_drive_cmd
);
410 * try_to_flush_leftover_data - flush junk
411 * @drive: drive to flush
413 * try_to_flush_leftover_data() is invoked in response to a drive
414 * unexpectedly having its DRQ_STAT bit set. As an alternative to
415 * resetting the drive, this routine tries to clear the condition
416 * by read a sector's worth of data from the drive. Of course,
417 * this may not help if the drive is *waiting* for data from *us*.
419 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
421 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
423 if (drive
->media
!= ide_disk
)
427 u32 wcount
= (i
> 16) ? 16 : i
;
430 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
434 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
439 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
440 drv
->end_request(drive
, 0, 0);
442 ide_end_request(drive
, 0, 0);
445 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
447 ide_hwif_t
*hwif
= drive
->hwif
;
449 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
450 /* other bits are useless when BUSY */
451 rq
->errors
|= ERROR_RESET
;
452 } else if (stat
& ERR_STAT
) {
453 /* err has different meaning on cdrom and tape */
454 if (err
== ABRT_ERR
) {
455 if (drive
->select
.b
.lba
&&
456 /* some newer drives don't support WIN_SPECIFY */
457 hwif
->INB(hwif
->io_ports
[IDE_COMMAND_OFFSET
]) ==
460 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
461 /* UDMA crc error, just retry the operation */
463 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
464 /* retries won't help these */
465 rq
->errors
= ERROR_MAX
;
466 } else if (err
& TRK0_ERR
) {
467 /* help it find track zero */
468 rq
->errors
|= ERROR_RECAL
;
472 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
473 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0)
474 try_to_flush_leftover_data(drive
);
476 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
477 ide_kill_rq(drive
, rq
);
481 if (ide_read_status(drive
) & (BUSY_STAT
| DRQ_STAT
))
482 rq
->errors
|= ERROR_RESET
;
484 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
486 return ide_do_reset(drive
);
489 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
490 drive
->special
.b
.recalibrate
= 1;
497 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
499 ide_hwif_t
*hwif
= drive
->hwif
;
501 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
502 /* other bits are useless when BUSY */
503 rq
->errors
|= ERROR_RESET
;
505 /* add decoding error stuff */
508 if (ide_read_status(drive
) & (BUSY_STAT
| DRQ_STAT
))
510 hwif
->OUTB(WIN_IDLEIMMEDIATE
,
511 hwif
->io_ports
[IDE_COMMAND_OFFSET
]);
513 if (rq
->errors
>= ERROR_MAX
) {
514 ide_kill_rq(drive
, rq
);
516 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
518 return ide_do_reset(drive
);
527 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
529 if (drive
->media
== ide_disk
)
530 return ide_ata_error(drive
, rq
, stat
, err
);
531 return ide_atapi_error(drive
, rq
, stat
, err
);
534 EXPORT_SYMBOL_GPL(__ide_error
);
537 * ide_error - handle an error on the IDE
538 * @drive: drive the error occurred on
539 * @msg: message to report
542 * ide_error() takes action based on the error returned by the drive.
543 * For normal I/O that may well include retries. We deal with
544 * both new-style (taskfile) and old style command handling here.
545 * In the case of taskfile command handling there is work left to
549 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
554 err
= ide_dump_status(drive
, msg
, stat
);
556 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
559 /* retry only "normal" I/O: */
560 if (!blk_fs_request(rq
)) {
562 ide_end_drive_cmd(drive
, stat
, err
);
569 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
570 return drv
->error(drive
, rq
, stat
, err
);
572 return __ide_error(drive
, rq
, stat
, err
);
575 EXPORT_SYMBOL_GPL(ide_error
);
577 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
579 if (drive
->media
!= ide_disk
)
580 rq
->errors
|= ERROR_RESET
;
582 ide_kill_rq(drive
, rq
);
587 EXPORT_SYMBOL_GPL(__ide_abort
);
590 * ide_abort - abort pending IDE operations
591 * @drive: drive the error occurred on
592 * @msg: message to report
594 * ide_abort kills and cleans up when we are about to do a
595 * host initiated reset on active commands. Longer term we
596 * want handlers to have sensible abort handling themselves
598 * This differs fundamentally from ide_error because in
599 * this case the command is doing just fine when we
603 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
607 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
610 /* retry only "normal" I/O: */
611 if (!blk_fs_request(rq
)) {
613 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
620 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
621 return drv
->abort(drive
, rq
);
623 return __ide_abort(drive
, rq
);
626 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
628 tf
->nsect
= drive
->sect
;
629 tf
->lbal
= drive
->sect
;
630 tf
->lbam
= drive
->cyl
;
631 tf
->lbah
= drive
->cyl
>> 8;
632 tf
->device
= ((drive
->head
- 1) | drive
->select
.all
) & ~ATA_LBA
;
633 tf
->command
= WIN_SPECIFY
;
636 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
638 tf
->nsect
= drive
->sect
;
639 tf
->command
= WIN_RESTORE
;
642 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
644 tf
->nsect
= drive
->mult_req
;
645 tf
->command
= WIN_SETMULT
;
648 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
650 special_t
*s
= &drive
->special
;
653 memset(&args
, 0, sizeof(ide_task_t
));
654 args
.data_phase
= TASKFILE_NO_DATA
;
656 if (s
->b
.set_geometry
) {
657 s
->b
.set_geometry
= 0;
658 ide_tf_set_specify_cmd(drive
, &args
.tf
);
659 } else if (s
->b
.recalibrate
) {
660 s
->b
.recalibrate
= 0;
661 ide_tf_set_restore_cmd(drive
, &args
.tf
);
662 } else if (s
->b
.set_multmode
) {
663 s
->b
.set_multmode
= 0;
664 if (drive
->mult_req
> drive
->id
->max_multsect
)
665 drive
->mult_req
= drive
->id
->max_multsect
;
666 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
668 int special
= s
->all
;
670 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
674 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
675 IDE_TFLAG_CUSTOM_HANDLER
;
677 do_rw_taskfile(drive
, &args
);
683 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
685 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
694 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
697 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
700 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
707 * do_special - issue some special commands
708 * @drive: drive the command is for
710 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
711 * commands to a drive. It used to do much more, but has been scaled
715 static ide_startstop_t
do_special (ide_drive_t
*drive
)
717 special_t
*s
= &drive
->special
;
720 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
723 ide_hwif_t
*hwif
= drive
->hwif
;
724 u8 req_pio
= drive
->tune_req
;
728 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
730 if (hwif
->set_pio_mode
== NULL
)
734 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
736 if (req_pio
== 8 || req_pio
== 9) {
739 spin_lock_irqsave(&ide_lock
, flags
);
740 hwif
->set_pio_mode(drive
, req_pio
);
741 spin_unlock_irqrestore(&ide_lock
, flags
);
743 hwif
->set_pio_mode(drive
, req_pio
);
745 int keep_dma
= drive
->using_dma
;
747 ide_set_pio(drive
, req_pio
);
749 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
757 if (drive
->media
== ide_disk
)
758 return ide_disk_special(drive
);
766 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
768 ide_hwif_t
*hwif
= drive
->hwif
;
769 struct scatterlist
*sg
= hwif
->sg_table
;
771 if (hwif
->sg_mapped
) /* needed by ide-scsi */
774 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
775 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
777 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
782 EXPORT_SYMBOL_GPL(ide_map_sg
);
784 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
786 ide_hwif_t
*hwif
= drive
->hwif
;
788 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
793 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
796 * execute_drive_command - issue special drive command
797 * @drive: the drive to issue the command on
798 * @rq: the request structure holding the command
800 * execute_drive_cmd() issues a special drive command, usually
801 * initiated by ioctl() from the external hdparm program. The
802 * command can be a drive command, drive task or taskfile
803 * operation. Weirdly you can call it with NULL to wait for
804 * all commands to finish. Don't do this as that is due to change
807 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
810 ide_hwif_t
*hwif
= HWIF(drive
);
811 ide_task_t
*task
= rq
->special
;
814 hwif
->data_phase
= task
->data_phase
;
816 switch (hwif
->data_phase
) {
817 case TASKFILE_MULTI_OUT
:
819 case TASKFILE_MULTI_IN
:
821 ide_init_sg_cmd(drive
, rq
);
822 ide_map_sg(drive
, rq
);
827 return do_rw_taskfile(drive
, task
);
831 * NULL is actually a valid way of waiting for
832 * all current requests to be flushed from the queue.
835 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
837 ide_end_drive_cmd(drive
, ide_read_status(drive
), ide_read_error(drive
));
842 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
844 struct request_pm_state
*pm
= rq
->data
;
846 if (blk_pm_suspend_request(rq
) &&
847 pm
->pm_step
== ide_pm_state_start_suspend
)
848 /* Mark drive blocked when starting the suspend sequence. */
850 else if (blk_pm_resume_request(rq
) &&
851 pm
->pm_step
== ide_pm_state_start_resume
) {
853 * The first thing we do on wakeup is to wait for BSY bit to
854 * go away (with a looong timeout) as a drive on this hwif may
855 * just be POSTing itself.
856 * We do that before even selecting as the "other" device on
857 * the bus may be broken enough to walk on our toes at this
862 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
864 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
866 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
868 ide_set_irq(drive
, 1);
869 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
871 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
876 * start_request - start of I/O and command issuing for IDE
878 * start_request() initiates handling of a new I/O request. It
879 * accepts commands and I/O (read/write) requests. It also does
880 * the final remapping for weird stuff like EZDrive. Once
881 * device mapper can work sector level the EZDrive stuff can go away
883 * FIXME: this function needs a rename
886 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
888 ide_startstop_t startstop
;
891 BUG_ON(!blk_rq_started(rq
));
894 printk("%s: start_request: current=0x%08lx\n",
895 HWIF(drive
)->name
, (unsigned long) rq
);
898 /* bail early if we've exceeded max_failures */
899 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
900 rq
->cmd_flags
|= REQ_FAILED
;
905 if (blk_fs_request(rq
) &&
906 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
907 block
+= drive
->sect0
;
909 /* Yecch - this will shift the entire interval,
910 possibly killing some innocent following sector */
911 if (block
== 0 && drive
->remap_0_to_1
== 1)
912 block
= 1; /* redirect MBR access to EZ-Drive partn table */
914 if (blk_pm_request(rq
))
915 ide_check_pm_state(drive
, rq
);
918 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
919 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
922 if (!drive
->special
.all
) {
926 * We reset the drive so we need to issue a SETFEATURES.
927 * Do it _after_ do_special() restored device parameters.
929 if (drive
->current_speed
== 0xff)
930 ide_config_drive_speed(drive
, drive
->desired_speed
);
932 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
933 return execute_drive_cmd(drive
, rq
);
934 else if (blk_pm_request(rq
)) {
935 struct request_pm_state
*pm
= rq
->data
;
937 printk("%s: start_power_step(step: %d)\n",
938 drive
->name
, rq
->pm
->pm_step
);
940 startstop
= ide_start_power_step(drive
, rq
);
941 if (startstop
== ide_stopped
&&
942 pm
->pm_step
== ide_pm_state_completed
)
943 ide_complete_pm_request(drive
, rq
);
947 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
948 return drv
->do_request(drive
, rq
, block
);
950 return do_special(drive
);
952 ide_kill_rq(drive
, rq
);
957 * ide_stall_queue - pause an IDE device
958 * @drive: drive to stall
959 * @timeout: time to stall for (jiffies)
961 * ide_stall_queue() can be used by a drive to give excess bandwidth back
962 * to the hwgroup by sleeping for timeout jiffies.
965 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
967 if (timeout
> WAIT_WORSTCASE
)
968 timeout
= WAIT_WORSTCASE
;
969 drive
->sleep
= timeout
+ jiffies
;
973 EXPORT_SYMBOL(ide_stall_queue
);
975 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
978 * choose_drive - select a drive to service
979 * @hwgroup: hardware group to select on
981 * choose_drive() selects the next drive which will be serviced.
982 * This is necessary because the IDE layer can't issue commands
983 * to both drives on the same cable, unlike SCSI.
986 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
988 ide_drive_t
*drive
, *best
;
992 drive
= hwgroup
->drive
;
995 * drive is doing pre-flush, ordered write, post-flush sequence. even
996 * though that is 3 requests, it must be seen as a single transaction.
997 * we must not preempt this drive until that is complete
999 if (blk_queue_flushing(drive
->queue
)) {
1001 * small race where queue could get replugged during
1002 * the 3-request flush cycle, just yank the plug since
1003 * we want it to finish asap
1005 blk_remove_plug(drive
->queue
);
1010 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1011 && !elv_queue_empty(drive
->queue
)) {
1013 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1014 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1016 if (!blk_queue_plugged(drive
->queue
))
1020 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1021 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1022 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1023 if (t
>= WAIT_MIN_SLEEP
) {
1025 * We *may* have some time to spare, but first let's see if
1026 * someone can potentially benefit from our nice mood today..
1030 if (!drive
->sleeping
1031 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1032 && time_before(WAKEUP(drive
), jiffies
+ t
))
1034 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1037 } while ((drive
= drive
->next
) != best
);
1044 * Issue a new request to a drive from hwgroup
1045 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1047 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1048 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1049 * may have both interfaces in a single hwgroup to "serialize" access.
1050 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1051 * together into one hwgroup for serialized access.
1053 * Note also that several hwgroups can end up sharing a single IRQ,
1054 * possibly along with many other devices. This is especially common in
1055 * PCI-based systems with off-board IDE controller cards.
1057 * The IDE driver uses the single global ide_lock spinlock to protect
1058 * access to the request queues, and to protect the hwgroup->busy flag.
1060 * The first thread into the driver for a particular hwgroup sets the
1061 * hwgroup->busy flag to indicate that this hwgroup is now active,
1062 * and then initiates processing of the top request from the request queue.
1064 * Other threads attempting entry notice the busy setting, and will simply
1065 * queue their new requests and exit immediately. Note that hwgroup->busy
1066 * remains set even when the driver is merely awaiting the next interrupt.
1067 * Thus, the meaning is "this hwgroup is busy processing a request".
1069 * When processing of a request completes, the completing thread or IRQ-handler
1070 * will start the next request from the queue. If no more work remains,
1071 * the driver will clear the hwgroup->busy flag and exit.
1073 * The ide_lock (spinlock) is used to protect all access to the
1074 * hwgroup->busy flag, but is otherwise not needed for most processing in
1075 * the driver. This makes the driver much more friendlier to shared IRQs
1076 * than previous designs, while remaining 100% (?) SMP safe and capable.
1078 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1083 ide_startstop_t startstop
;
1086 /* for atari only: POSSIBLY BROKEN HERE(?) */
1087 ide_get_lock(ide_intr
, hwgroup
);
1089 /* caller must own ide_lock */
1090 BUG_ON(!irqs_disabled());
1092 while (!hwgroup
->busy
) {
1094 drive
= choose_drive(hwgroup
);
1095 if (drive
== NULL
) {
1097 unsigned long sleep
= 0; /* shut up, gcc */
1099 drive
= hwgroup
->drive
;
1101 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1103 sleep
= drive
->sleep
;
1105 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1108 * Take a short snooze, and then wake up this hwgroup again.
1109 * This gives other hwgroups on the same a chance to
1110 * play fairly with us, just in case there are big differences
1111 * in relative throughputs.. don't want to hog the cpu too much.
1113 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1114 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1116 if (timer_pending(&hwgroup
->timer
))
1117 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1119 /* so that ide_timer_expiry knows what to do */
1120 hwgroup
->sleeping
= 1;
1121 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1122 mod_timer(&hwgroup
->timer
, sleep
);
1123 /* we purposely leave hwgroup->busy==1
1126 /* Ugly, but how can we sleep for the lock
1127 * otherwise? perhaps from tq_disk?
1130 /* for atari only */
1135 /* no more work for this hwgroup (for now) */
1140 if (hwgroup
->hwif
->sharing_irq
&& hwif
!= hwgroup
->hwif
) {
1142 * set nIEN for previous hwif, drives in the
1143 * quirk_list may not like intr setups/cleanups
1145 if (drive
->quirk_list
!= 1)
1146 ide_set_irq(drive
, 0);
1148 hwgroup
->hwif
= hwif
;
1149 hwgroup
->drive
= drive
;
1150 drive
->sleeping
= 0;
1151 drive
->service_start
= jiffies
;
1153 if (blk_queue_plugged(drive
->queue
)) {
1154 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1159 * we know that the queue isn't empty, but this can happen
1160 * if the q->prep_rq_fn() decides to kill a request
1162 rq
= elv_next_request(drive
->queue
);
1169 * Sanity: don't accept a request that isn't a PM request
1170 * if we are currently power managed. This is very important as
1171 * blk_stop_queue() doesn't prevent the elv_next_request()
1172 * above to return us whatever is in the queue. Since we call
1173 * ide_do_request() ourselves, we end up taking requests while
1174 * the queue is blocked...
1176 * We let requests forced at head of queue with ide-preempt
1177 * though. I hope that doesn't happen too much, hopefully not
1178 * unless the subdriver triggers such a thing in its own PM
1181 * We count how many times we loop here to make sure we service
1182 * all drives in the hwgroup without looping for ever
1184 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1185 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1186 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1188 /* We clear busy, there should be no pending ATA command at this point. */
1196 * Some systems have trouble with IDE IRQs arriving while
1197 * the driver is still setting things up. So, here we disable
1198 * the IRQ used by this interface while the request is being started.
1199 * This may look bad at first, but pretty much the same thing
1200 * happens anyway when any interrupt comes in, IDE or otherwise
1201 * -- the kernel masks the IRQ while it is being handled.
1203 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1204 disable_irq_nosync(hwif
->irq
);
1205 spin_unlock(&ide_lock
);
1206 local_irq_enable_in_hardirq();
1207 /* allow other IRQs while we start this request */
1208 startstop
= start_request(drive
, rq
);
1209 spin_lock_irq(&ide_lock
);
1210 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1211 enable_irq(hwif
->irq
);
1212 if (startstop
== ide_stopped
)
1218 * Passes the stuff to ide_do_request
1220 void do_ide_request(struct request_queue
*q
)
1222 ide_drive_t
*drive
= q
->queuedata
;
1224 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1228 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1229 * retry the current request in pio mode instead of risking tossing it
1232 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1234 ide_hwif_t
*hwif
= HWIF(drive
);
1236 ide_startstop_t ret
= ide_stopped
;
1239 * end current dma transaction
1243 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1244 (void)HWIF(drive
)->ide_dma_end(drive
);
1245 ret
= ide_error(drive
, "dma timeout error",
1246 ide_read_status(drive
));
1248 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1249 hwif
->dma_timeout(drive
);
1253 * disable dma for now, but remember that we did so because of
1254 * a timeout -- we'll reenable after we finish this next request
1255 * (or rather the first chunk of it) in pio.
1258 drive
->state
= DMA_PIO_RETRY
;
1259 ide_dma_off_quietly(drive
);
1262 * un-busy drive etc (hwgroup->busy is cleared on return) and
1263 * make sure request is sane
1265 rq
= HWGROUP(drive
)->rq
;
1270 HWGROUP(drive
)->rq
= NULL
;
1277 rq
->sector
= rq
->bio
->bi_sector
;
1278 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1279 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1280 rq
->buffer
= bio_data(rq
->bio
);
1286 * ide_timer_expiry - handle lack of an IDE interrupt
1287 * @data: timer callback magic (hwgroup)
1289 * An IDE command has timed out before the expected drive return
1290 * occurred. At this point we attempt to clean up the current
1291 * mess. If the current handler includes an expiry handler then
1292 * we invoke the expiry handler, and providing it is happy the
1293 * work is done. If that fails we apply generic recovery rules
1294 * invoking the handler and checking the drive DMA status. We
1295 * have an excessively incestuous relationship with the DMA
1296 * logic that wants cleaning up.
1299 void ide_timer_expiry (unsigned long data
)
1301 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1302 ide_handler_t
*handler
;
1303 ide_expiry_t
*expiry
;
1304 unsigned long flags
;
1305 unsigned long wait
= -1;
1307 spin_lock_irqsave(&ide_lock
, flags
);
1309 if (((handler
= hwgroup
->handler
) == NULL
) ||
1310 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1312 * Either a marginal timeout occurred
1313 * (got the interrupt just as timer expired),
1314 * or we were "sleeping" to give other devices a chance.
1315 * Either way, we don't really want to complain about anything.
1317 if (hwgroup
->sleeping
) {
1318 hwgroup
->sleeping
= 0;
1322 ide_drive_t
*drive
= hwgroup
->drive
;
1324 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1325 hwgroup
->handler
= NULL
;
1328 ide_startstop_t startstop
= ide_stopped
;
1329 if (!hwgroup
->busy
) {
1330 hwgroup
->busy
= 1; /* paranoia */
1331 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1333 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1335 if ((wait
= expiry(drive
)) > 0) {
1337 hwgroup
->timer
.expires
= jiffies
+ wait
;
1338 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1339 add_timer(&hwgroup
->timer
);
1340 spin_unlock_irqrestore(&ide_lock
, flags
);
1344 hwgroup
->handler
= NULL
;
1346 * We need to simulate a real interrupt when invoking
1347 * the handler() function, which means we need to
1348 * globally mask the specific IRQ:
1350 spin_unlock(&ide_lock
);
1352 /* disable_irq_nosync ?? */
1353 disable_irq(hwif
->irq
);
1355 * as if we were handling an interrupt */
1356 local_irq_disable();
1357 if (hwgroup
->polling
) {
1358 startstop
= handler(drive
);
1359 } else if (drive_is_ready(drive
)) {
1360 if (drive
->waiting_for_dma
)
1361 hwgroup
->hwif
->dma_lost_irq(drive
);
1362 (void)ide_ack_intr(hwif
);
1363 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1364 startstop
= handler(drive
);
1366 if (drive
->waiting_for_dma
) {
1367 startstop
= ide_dma_timeout_retry(drive
, wait
);
1370 ide_error(drive
, "irq timeout",
1371 ide_read_status(drive
));
1373 drive
->service_time
= jiffies
- drive
->service_start
;
1374 spin_lock_irq(&ide_lock
);
1375 enable_irq(hwif
->irq
);
1376 if (startstop
== ide_stopped
)
1380 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1381 spin_unlock_irqrestore(&ide_lock
, flags
);
1385 * unexpected_intr - handle an unexpected IDE interrupt
1386 * @irq: interrupt line
1387 * @hwgroup: hwgroup being processed
1389 * There's nothing really useful we can do with an unexpected interrupt,
1390 * other than reading the status register (to clear it), and logging it.
1391 * There should be no way that an irq can happen before we're ready for it,
1392 * so we needn't worry much about losing an "important" interrupt here.
1394 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1395 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1396 * looks "good", we just ignore the interrupt completely.
1398 * This routine assumes __cli() is in effect when called.
1400 * If an unexpected interrupt happens on irq15 while we are handling irq14
1401 * and if the two interfaces are "serialized" (CMD640), then it looks like
1402 * we could screw up by interfering with a new request being set up for
1405 * In reality, this is a non-issue. The new command is not sent unless
1406 * the drive is ready to accept one, in which case we know the drive is
1407 * not trying to interrupt us. And ide_set_handler() is always invoked
1408 * before completing the issuance of any new drive command, so we will not
1409 * be accidentally invoked as a result of any valid command completion
1412 * Note that we must walk the entire hwgroup here. We know which hwif
1413 * is doing the current command, but we don't know which hwif burped
1417 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1420 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1423 * handle the unexpected interrupt
1426 if (hwif
->irq
== irq
) {
1427 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1428 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1429 /* Try to not flood the console with msgs */
1430 static unsigned long last_msgtime
, count
;
1432 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1433 last_msgtime
= jiffies
;
1434 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1435 "status=0x%02x, count=%ld\n",
1437 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1441 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1445 * ide_intr - default IDE interrupt handler
1446 * @irq: interrupt number
1447 * @dev_id: hwif group
1448 * @regs: unused weirdness from the kernel irq layer
1450 * This is the default IRQ handler for the IDE layer. You should
1451 * not need to override it. If you do be aware it is subtle in
1454 * hwgroup->hwif is the interface in the group currently performing
1455 * a command. hwgroup->drive is the drive and hwgroup->handler is
1456 * the IRQ handler to call. As we issue a command the handlers
1457 * step through multiple states, reassigning the handler to the
1458 * next step in the process. Unlike a smart SCSI controller IDE
1459 * expects the main processor to sequence the various transfer
1460 * stages. We also manage a poll timer to catch up with most
1461 * timeout situations. There are still a few where the handlers
1462 * don't ever decide to give up.
1464 * The handler eventually returns ide_stopped to indicate the
1465 * request completed. At this point we issue the next request
1466 * on the hwgroup and the process begins again.
1469 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1471 unsigned long flags
;
1472 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1475 ide_handler_t
*handler
;
1476 ide_startstop_t startstop
;
1478 spin_lock_irqsave(&ide_lock
, flags
);
1479 hwif
= hwgroup
->hwif
;
1481 if (!ide_ack_intr(hwif
)) {
1482 spin_unlock_irqrestore(&ide_lock
, flags
);
1486 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1488 * Not expecting an interrupt from this drive.
1489 * That means this could be:
1490 * (1) an interrupt from another PCI device
1491 * sharing the same PCI INT# as us.
1492 * or (2) a drive just entered sleep or standby mode,
1493 * and is interrupting to let us know.
1494 * or (3) a spurious interrupt of unknown origin.
1496 * For PCI, we cannot tell the difference,
1497 * so in that case we just ignore it and hope it goes away.
1499 * FIXME: unexpected_intr should be hwif-> then we can
1500 * remove all the ifdef PCI crap
1502 #ifdef CONFIG_BLK_DEV_IDEPCI
1503 if (hwif
->chipset
!= ide_pci
)
1504 #endif /* CONFIG_BLK_DEV_IDEPCI */
1507 * Probably not a shared PCI interrupt,
1508 * so we can safely try to do something about it:
1510 unexpected_intr(irq
, hwgroup
);
1511 #ifdef CONFIG_BLK_DEV_IDEPCI
1514 * Whack the status register, just in case
1515 * we have a leftover pending IRQ.
1517 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1518 #endif /* CONFIG_BLK_DEV_IDEPCI */
1520 spin_unlock_irqrestore(&ide_lock
, flags
);
1523 drive
= hwgroup
->drive
;
1526 * This should NEVER happen, and there isn't much
1527 * we could do about it here.
1529 * [Note - this can occur if the drive is hot unplugged]
1531 spin_unlock_irqrestore(&ide_lock
, flags
);
1534 if (!drive_is_ready(drive
)) {
1536 * This happens regularly when we share a PCI IRQ with
1537 * another device. Unfortunately, it can also happen
1538 * with some buggy drives that trigger the IRQ before
1539 * their status register is up to date. Hopefully we have
1540 * enough advance overhead that the latter isn't a problem.
1542 spin_unlock_irqrestore(&ide_lock
, flags
);
1545 if (!hwgroup
->busy
) {
1546 hwgroup
->busy
= 1; /* paranoia */
1547 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1549 hwgroup
->handler
= NULL
;
1551 del_timer(&hwgroup
->timer
);
1552 spin_unlock(&ide_lock
);
1554 /* Some controllers might set DMA INTR no matter DMA or PIO;
1555 * bmdma status might need to be cleared even for
1556 * PIO interrupts to prevent spurious/lost irq.
1558 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1559 /* ide_dma_end() needs bmdma status for error checking.
1560 * So, skip clearing bmdma status here and leave it
1561 * to ide_dma_end() if this is dma interrupt.
1563 hwif
->ide_dma_clear_irq(drive
);
1566 local_irq_enable_in_hardirq();
1567 /* service this interrupt, may set handler for next interrupt */
1568 startstop
= handler(drive
);
1569 spin_lock_irq(&ide_lock
);
1572 * Note that handler() may have set things up for another
1573 * interrupt to occur soon, but it cannot happen until
1574 * we exit from this routine, because it will be the
1575 * same irq as is currently being serviced here, and Linux
1576 * won't allow another of the same (on any CPU) until we return.
1578 drive
->service_time
= jiffies
- drive
->service_start
;
1579 if (startstop
== ide_stopped
) {
1580 if (hwgroup
->handler
== NULL
) { /* paranoia */
1582 ide_do_request(hwgroup
, hwif
->irq
);
1584 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1585 "on exit\n", drive
->name
);
1588 spin_unlock_irqrestore(&ide_lock
, flags
);
1593 * ide_init_drive_cmd - initialize a drive command request
1594 * @rq: request object
1596 * Initialize a request before we fill it in and send it down to
1597 * ide_do_drive_cmd. Commands must be set up by this function. Right
1598 * now it doesn't do a lot, but if that changes abusers will have a
1602 void ide_init_drive_cmd (struct request
*rq
)
1604 memset(rq
, 0, sizeof(*rq
));
1608 EXPORT_SYMBOL(ide_init_drive_cmd
);
1611 * ide_do_drive_cmd - issue IDE special command
1612 * @drive: device to issue command
1613 * @rq: request to issue
1614 * @action: action for processing
1616 * This function issues a special IDE device request
1617 * onto the request queue.
1619 * If action is ide_wait, then the rq is queued at the end of the
1620 * request queue, and the function sleeps until it has been processed.
1621 * This is for use when invoked from an ioctl handler.
1623 * If action is ide_preempt, then the rq is queued at the head of
1624 * the request queue, displacing the currently-being-processed
1625 * request and this function returns immediately without waiting
1626 * for the new rq to be completed. This is VERY DANGEROUS, and is
1627 * intended for careful use by the ATAPI tape/cdrom driver code.
1629 * If action is ide_end, then the rq is queued at the end of the
1630 * request queue, and the function returns immediately without waiting
1631 * for the new rq to be completed. This is again intended for careful
1632 * use by the ATAPI tape/cdrom driver code.
1635 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1637 unsigned long flags
;
1638 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1639 DECLARE_COMPLETION_ONSTACK(wait
);
1640 int where
= ELEVATOR_INSERT_BACK
, err
;
1641 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1646 * we need to hold an extra reference to request for safe inspection
1651 rq
->end_io_data
= &wait
;
1652 rq
->end_io
= blk_end_sync_rq
;
1655 spin_lock_irqsave(&ide_lock
, flags
);
1656 if (action
== ide_preempt
)
1658 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1659 where
= ELEVATOR_INSERT_FRONT
;
1660 rq
->cmd_flags
|= REQ_PREEMPT
;
1662 __elv_add_request(drive
->queue
, rq
, where
, 0);
1663 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1664 spin_unlock_irqrestore(&ide_lock
, flags
);
1668 wait_for_completion(&wait
);
1672 blk_put_request(rq
);
1678 EXPORT_SYMBOL(ide_do_drive_cmd
);
1680 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1684 memset(&task
, 0, sizeof(task
));
1685 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1686 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1687 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1688 task
.tf
.lbam
= bcount
& 0xff;
1689 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1691 ide_tf_load(drive
, &task
);
1694 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);