[PATCH] fix scheduler deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob4e7efac7b1ec65069ab7bf009a44ffc12c21c7e6
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <asm/tlb.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 * and back.
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
92 #define EXIT_WEIGHT 3
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
125 * too hard.
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 MAX_SLEEP_AVG)
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
134 #ifdef CONFIG_SMP
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 num_online_cpus())
138 #else
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #endif
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
146 #define DELTA(p) \
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
175 else
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t;
189 struct prio_array {
190 unsigned int nr_active;
191 unsigned long bitmap[BITMAP_SIZE];
192 struct list_head queue[MAX_PRIO];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
202 struct runqueue {
203 spinlock_t lock;
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running;
210 #ifdef CONFIG_SMP
211 unsigned long cpu_load[3];
212 #endif
213 unsigned long long nr_switches;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible;
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
225 task_t *curr, *idle;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
229 atomic_t nr_iowait;
231 #ifdef CONFIG_SMP
232 struct sched_domain *sd;
234 /* For active balancing */
235 int active_balance;
236 int push_cpu;
238 task_t *migration_thread;
239 struct list_head migration_queue;
240 int cpu;
241 #endif
243 #ifdef CONFIG_SCHEDSTATS
244 /* latency stats */
245 struct sched_info rq_sched_info;
247 /* sys_sched_yield() stats */
248 unsigned long yld_exp_empty;
249 unsigned long yld_act_empty;
250 unsigned long yld_both_empty;
251 unsigned long yld_cnt;
253 /* schedule() stats */
254 unsigned long sched_switch;
255 unsigned long sched_cnt;
256 unsigned long sched_goidle;
258 /* try_to_wake_up() stats */
259 unsigned long ttwu_cnt;
260 unsigned long ttwu_local;
261 #endif
264 static DEFINE_PER_CPU(struct runqueue, runqueues);
267 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
268 * See detach_destroy_domains: synchronize_sched for details.
270 * The domain tree of any CPU may only be accessed from within
271 * preempt-disabled sections.
273 #define for_each_domain(cpu, domain) \
274 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
276 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
277 #define this_rq() (&__get_cpu_var(runqueues))
278 #define task_rq(p) cpu_rq(task_cpu(p))
279 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
281 #ifndef prepare_arch_switch
282 # define prepare_arch_switch(next) do { } while (0)
283 #endif
284 #ifndef finish_arch_switch
285 # define finish_arch_switch(prev) do { } while (0)
286 #endif
288 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
289 static inline int task_running(runqueue_t *rq, task_t *p)
291 return rq->curr == p;
294 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
298 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
300 #ifdef CONFIG_DEBUG_SPINLOCK
301 /* this is a valid case when another task releases the spinlock */
302 rq->lock.owner = current;
303 #endif
304 spin_unlock_irq(&rq->lock);
307 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
308 static inline int task_running(runqueue_t *rq, task_t *p)
310 #ifdef CONFIG_SMP
311 return p->oncpu;
312 #else
313 return rq->curr == p;
314 #endif
317 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
319 #ifdef CONFIG_SMP
321 * We can optimise this out completely for !SMP, because the
322 * SMP rebalancing from interrupt is the only thing that cares
323 * here.
325 next->oncpu = 1;
326 #endif
327 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
328 spin_unlock_irq(&rq->lock);
329 #else
330 spin_unlock(&rq->lock);
331 #endif
334 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
336 #ifdef CONFIG_SMP
338 * After ->oncpu is cleared, the task can be moved to a different CPU.
339 * We must ensure this doesn't happen until the switch is completely
340 * finished.
342 smp_wmb();
343 prev->oncpu = 0;
344 #endif
345 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
346 local_irq_enable();
347 #endif
349 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352 * task_rq_lock - lock the runqueue a given task resides on and disable
353 * interrupts. Note the ordering: we can safely lookup the task_rq without
354 * explicitly disabling preemption.
356 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
357 __acquires(rq->lock)
359 struct runqueue *rq;
361 repeat_lock_task:
362 local_irq_save(*flags);
363 rq = task_rq(p);
364 spin_lock(&rq->lock);
365 if (unlikely(rq != task_rq(p))) {
366 spin_unlock_irqrestore(&rq->lock, *flags);
367 goto repeat_lock_task;
369 return rq;
372 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
373 __releases(rq->lock)
375 spin_unlock_irqrestore(&rq->lock, *flags);
378 #ifdef CONFIG_SCHEDSTATS
380 * bump this up when changing the output format or the meaning of an existing
381 * format, so that tools can adapt (or abort)
383 #define SCHEDSTAT_VERSION 12
385 static int show_schedstat(struct seq_file *seq, void *v)
387 int cpu;
389 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
390 seq_printf(seq, "timestamp %lu\n", jiffies);
391 for_each_online_cpu(cpu) {
392 runqueue_t *rq = cpu_rq(cpu);
393 #ifdef CONFIG_SMP
394 struct sched_domain *sd;
395 int dcnt = 0;
396 #endif
398 /* runqueue-specific stats */
399 seq_printf(seq,
400 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
401 cpu, rq->yld_both_empty,
402 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
403 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
404 rq->ttwu_cnt, rq->ttwu_local,
405 rq->rq_sched_info.cpu_time,
406 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
408 seq_printf(seq, "\n");
410 #ifdef CONFIG_SMP
411 /* domain-specific stats */
412 preempt_disable();
413 for_each_domain(cpu, sd) {
414 enum idle_type itype;
415 char mask_str[NR_CPUS];
417 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
418 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
419 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
420 itype++) {
421 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
422 sd->lb_cnt[itype],
423 sd->lb_balanced[itype],
424 sd->lb_failed[itype],
425 sd->lb_imbalance[itype],
426 sd->lb_gained[itype],
427 sd->lb_hot_gained[itype],
428 sd->lb_nobusyq[itype],
429 sd->lb_nobusyg[itype]);
431 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
432 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
433 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
434 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
435 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
437 preempt_enable();
438 #endif
440 return 0;
443 static int schedstat_open(struct inode *inode, struct file *file)
445 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
446 char *buf = kmalloc(size, GFP_KERNEL);
447 struct seq_file *m;
448 int res;
450 if (!buf)
451 return -ENOMEM;
452 res = single_open(file, show_schedstat, NULL);
453 if (!res) {
454 m = file->private_data;
455 m->buf = buf;
456 m->size = size;
457 } else
458 kfree(buf);
459 return res;
462 struct file_operations proc_schedstat_operations = {
463 .open = schedstat_open,
464 .read = seq_read,
465 .llseek = seq_lseek,
466 .release = single_release,
469 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
470 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
471 #else /* !CONFIG_SCHEDSTATS */
472 # define schedstat_inc(rq, field) do { } while (0)
473 # define schedstat_add(rq, field, amt) do { } while (0)
474 #endif
477 * rq_lock - lock a given runqueue and disable interrupts.
479 static inline runqueue_t *this_rq_lock(void)
480 __acquires(rq->lock)
482 runqueue_t *rq;
484 local_irq_disable();
485 rq = this_rq();
486 spin_lock(&rq->lock);
488 return rq;
491 #ifdef CONFIG_SCHEDSTATS
493 * Called when a process is dequeued from the active array and given
494 * the cpu. We should note that with the exception of interactive
495 * tasks, the expired queue will become the active queue after the active
496 * queue is empty, without explicitly dequeuing and requeuing tasks in the
497 * expired queue. (Interactive tasks may be requeued directly to the
498 * active queue, thus delaying tasks in the expired queue from running;
499 * see scheduler_tick()).
501 * This function is only called from sched_info_arrive(), rather than
502 * dequeue_task(). Even though a task may be queued and dequeued multiple
503 * times as it is shuffled about, we're really interested in knowing how
504 * long it was from the *first* time it was queued to the time that it
505 * finally hit a cpu.
507 static inline void sched_info_dequeued(task_t *t)
509 t->sched_info.last_queued = 0;
513 * Called when a task finally hits the cpu. We can now calculate how
514 * long it was waiting to run. We also note when it began so that we
515 * can keep stats on how long its timeslice is.
517 static void sched_info_arrive(task_t *t)
519 unsigned long now = jiffies, diff = 0;
520 struct runqueue *rq = task_rq(t);
522 if (t->sched_info.last_queued)
523 diff = now - t->sched_info.last_queued;
524 sched_info_dequeued(t);
525 t->sched_info.run_delay += diff;
526 t->sched_info.last_arrival = now;
527 t->sched_info.pcnt++;
529 if (!rq)
530 return;
532 rq->rq_sched_info.run_delay += diff;
533 rq->rq_sched_info.pcnt++;
537 * Called when a process is queued into either the active or expired
538 * array. The time is noted and later used to determine how long we
539 * had to wait for us to reach the cpu. Since the expired queue will
540 * become the active queue after active queue is empty, without dequeuing
541 * and requeuing any tasks, we are interested in queuing to either. It
542 * is unusual but not impossible for tasks to be dequeued and immediately
543 * requeued in the same or another array: this can happen in sched_yield(),
544 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
545 * to runqueue.
547 * This function is only called from enqueue_task(), but also only updates
548 * the timestamp if it is already not set. It's assumed that
549 * sched_info_dequeued() will clear that stamp when appropriate.
551 static inline void sched_info_queued(task_t *t)
553 if (!t->sched_info.last_queued)
554 t->sched_info.last_queued = jiffies;
558 * Called when a process ceases being the active-running process, either
559 * voluntarily or involuntarily. Now we can calculate how long we ran.
561 static inline void sched_info_depart(task_t *t)
563 struct runqueue *rq = task_rq(t);
564 unsigned long diff = jiffies - t->sched_info.last_arrival;
566 t->sched_info.cpu_time += diff;
568 if (rq)
569 rq->rq_sched_info.cpu_time += diff;
573 * Called when tasks are switched involuntarily due, typically, to expiring
574 * their time slice. (This may also be called when switching to or from
575 * the idle task.) We are only called when prev != next.
577 static inline void sched_info_switch(task_t *prev, task_t *next)
579 struct runqueue *rq = task_rq(prev);
582 * prev now departs the cpu. It's not interesting to record
583 * stats about how efficient we were at scheduling the idle
584 * process, however.
586 if (prev != rq->idle)
587 sched_info_depart(prev);
589 if (next != rq->idle)
590 sched_info_arrive(next);
592 #else
593 #define sched_info_queued(t) do { } while (0)
594 #define sched_info_switch(t, next) do { } while (0)
595 #endif /* CONFIG_SCHEDSTATS */
598 * Adding/removing a task to/from a priority array:
600 static void dequeue_task(struct task_struct *p, prio_array_t *array)
602 array->nr_active--;
603 list_del(&p->run_list);
604 if (list_empty(array->queue + p->prio))
605 __clear_bit(p->prio, array->bitmap);
608 static void enqueue_task(struct task_struct *p, prio_array_t *array)
610 sched_info_queued(p);
611 list_add_tail(&p->run_list, array->queue + p->prio);
612 __set_bit(p->prio, array->bitmap);
613 array->nr_active++;
614 p->array = array;
618 * Put task to the end of the run list without the overhead of dequeue
619 * followed by enqueue.
621 static void requeue_task(struct task_struct *p, prio_array_t *array)
623 list_move_tail(&p->run_list, array->queue + p->prio);
626 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
628 list_add(&p->run_list, array->queue + p->prio);
629 __set_bit(p->prio, array->bitmap);
630 array->nr_active++;
631 p->array = array;
635 * effective_prio - return the priority that is based on the static
636 * priority but is modified by bonuses/penalties.
638 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
639 * into the -5 ... 0 ... +5 bonus/penalty range.
641 * We use 25% of the full 0...39 priority range so that:
643 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
644 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
646 * Both properties are important to certain workloads.
648 static int effective_prio(task_t *p)
650 int bonus, prio;
652 if (rt_task(p))
653 return p->prio;
655 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
657 prio = p->static_prio - bonus;
658 if (prio < MAX_RT_PRIO)
659 prio = MAX_RT_PRIO;
660 if (prio > MAX_PRIO-1)
661 prio = MAX_PRIO-1;
662 return prio;
666 * __activate_task - move a task to the runqueue.
668 static inline void __activate_task(task_t *p, runqueue_t *rq)
670 enqueue_task(p, rq->active);
671 rq->nr_running++;
675 * __activate_idle_task - move idle task to the _front_ of runqueue.
677 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
679 enqueue_task_head(p, rq->active);
680 rq->nr_running++;
683 static int recalc_task_prio(task_t *p, unsigned long long now)
685 /* Caller must always ensure 'now >= p->timestamp' */
686 unsigned long long __sleep_time = now - p->timestamp;
687 unsigned long sleep_time;
689 if (unlikely(p->policy == SCHED_BATCH))
690 sleep_time = 0;
691 else {
692 if (__sleep_time > NS_MAX_SLEEP_AVG)
693 sleep_time = NS_MAX_SLEEP_AVG;
694 else
695 sleep_time = (unsigned long)__sleep_time;
698 if (likely(sleep_time > 0)) {
700 * User tasks that sleep a long time are categorised as
701 * idle and will get just interactive status to stay active &
702 * prevent them suddenly becoming cpu hogs and starving
703 * other processes.
705 if (p->mm && p->activated != -1 &&
706 sleep_time > INTERACTIVE_SLEEP(p)) {
707 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
708 DEF_TIMESLICE);
709 } else {
711 * The lower the sleep avg a task has the more
712 * rapidly it will rise with sleep time.
714 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
717 * Tasks waking from uninterruptible sleep are
718 * limited in their sleep_avg rise as they
719 * are likely to be waiting on I/O
721 if (p->activated == -1 && p->mm) {
722 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
723 sleep_time = 0;
724 else if (p->sleep_avg + sleep_time >=
725 INTERACTIVE_SLEEP(p)) {
726 p->sleep_avg = INTERACTIVE_SLEEP(p);
727 sleep_time = 0;
732 * This code gives a bonus to interactive tasks.
734 * The boost works by updating the 'average sleep time'
735 * value here, based on ->timestamp. The more time a
736 * task spends sleeping, the higher the average gets -
737 * and the higher the priority boost gets as well.
739 p->sleep_avg += sleep_time;
741 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
742 p->sleep_avg = NS_MAX_SLEEP_AVG;
746 return effective_prio(p);
750 * activate_task - move a task to the runqueue and do priority recalculation
752 * Update all the scheduling statistics stuff. (sleep average
753 * calculation, priority modifiers, etc.)
755 static void activate_task(task_t *p, runqueue_t *rq, int local)
757 unsigned long long now;
759 now = sched_clock();
760 #ifdef CONFIG_SMP
761 if (!local) {
762 /* Compensate for drifting sched_clock */
763 runqueue_t *this_rq = this_rq();
764 now = (now - this_rq->timestamp_last_tick)
765 + rq->timestamp_last_tick;
767 #endif
769 if (!rt_task(p))
770 p->prio = recalc_task_prio(p, now);
773 * This checks to make sure it's not an uninterruptible task
774 * that is now waking up.
776 if (!p->activated) {
778 * Tasks which were woken up by interrupts (ie. hw events)
779 * are most likely of interactive nature. So we give them
780 * the credit of extending their sleep time to the period
781 * of time they spend on the runqueue, waiting for execution
782 * on a CPU, first time around:
784 if (in_interrupt())
785 p->activated = 2;
786 else {
788 * Normal first-time wakeups get a credit too for
789 * on-runqueue time, but it will be weighted down:
791 p->activated = 1;
794 p->timestamp = now;
796 __activate_task(p, rq);
800 * deactivate_task - remove a task from the runqueue.
802 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
804 rq->nr_running--;
805 dequeue_task(p, p->array);
806 p->array = NULL;
810 * resched_task - mark a task 'to be rescheduled now'.
812 * On UP this means the setting of the need_resched flag, on SMP it
813 * might also involve a cross-CPU call to trigger the scheduler on
814 * the target CPU.
816 #ifdef CONFIG_SMP
817 static void resched_task(task_t *p)
819 int cpu;
821 assert_spin_locked(&task_rq(p)->lock);
823 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
824 return;
826 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
828 cpu = task_cpu(p);
829 if (cpu == smp_processor_id())
830 return;
832 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
833 smp_mb();
834 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
835 smp_send_reschedule(cpu);
837 #else
838 static inline void resched_task(task_t *p)
840 assert_spin_locked(&task_rq(p)->lock);
841 set_tsk_need_resched(p);
843 #endif
846 * task_curr - is this task currently executing on a CPU?
847 * @p: the task in question.
849 inline int task_curr(const task_t *p)
851 return cpu_curr(task_cpu(p)) == p;
854 #ifdef CONFIG_SMP
855 typedef struct {
856 struct list_head list;
858 task_t *task;
859 int dest_cpu;
861 struct completion done;
862 } migration_req_t;
865 * The task's runqueue lock must be held.
866 * Returns true if you have to wait for migration thread.
868 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
870 runqueue_t *rq = task_rq(p);
873 * If the task is not on a runqueue (and not running), then
874 * it is sufficient to simply update the task's cpu field.
876 if (!p->array && !task_running(rq, p)) {
877 set_task_cpu(p, dest_cpu);
878 return 0;
881 init_completion(&req->done);
882 req->task = p;
883 req->dest_cpu = dest_cpu;
884 list_add(&req->list, &rq->migration_queue);
885 return 1;
889 * wait_task_inactive - wait for a thread to unschedule.
891 * The caller must ensure that the task *will* unschedule sometime soon,
892 * else this function might spin for a *long* time. This function can't
893 * be called with interrupts off, or it may introduce deadlock with
894 * smp_call_function() if an IPI is sent by the same process we are
895 * waiting to become inactive.
897 void wait_task_inactive(task_t *p)
899 unsigned long flags;
900 runqueue_t *rq;
901 int preempted;
903 repeat:
904 rq = task_rq_lock(p, &flags);
905 /* Must be off runqueue entirely, not preempted. */
906 if (unlikely(p->array || task_running(rq, p))) {
907 /* If it's preempted, we yield. It could be a while. */
908 preempted = !task_running(rq, p);
909 task_rq_unlock(rq, &flags);
910 cpu_relax();
911 if (preempted)
912 yield();
913 goto repeat;
915 task_rq_unlock(rq, &flags);
918 /***
919 * kick_process - kick a running thread to enter/exit the kernel
920 * @p: the to-be-kicked thread
922 * Cause a process which is running on another CPU to enter
923 * kernel-mode, without any delay. (to get signals handled.)
925 * NOTE: this function doesnt have to take the runqueue lock,
926 * because all it wants to ensure is that the remote task enters
927 * the kernel. If the IPI races and the task has been migrated
928 * to another CPU then no harm is done and the purpose has been
929 * achieved as well.
931 void kick_process(task_t *p)
933 int cpu;
935 preempt_disable();
936 cpu = task_cpu(p);
937 if ((cpu != smp_processor_id()) && task_curr(p))
938 smp_send_reschedule(cpu);
939 preempt_enable();
943 * Return a low guess at the load of a migration-source cpu.
945 * We want to under-estimate the load of migration sources, to
946 * balance conservatively.
948 static inline unsigned long source_load(int cpu, int type)
950 runqueue_t *rq = cpu_rq(cpu);
951 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
952 if (type == 0)
953 return load_now;
955 return min(rq->cpu_load[type-1], load_now);
959 * Return a high guess at the load of a migration-target cpu
961 static inline unsigned long target_load(int cpu, int type)
963 runqueue_t *rq = cpu_rq(cpu);
964 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
965 if (type == 0)
966 return load_now;
968 return max(rq->cpu_load[type-1], load_now);
972 * find_idlest_group finds and returns the least busy CPU group within the
973 * domain.
975 static struct sched_group *
976 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
978 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
979 unsigned long min_load = ULONG_MAX, this_load = 0;
980 int load_idx = sd->forkexec_idx;
981 int imbalance = 100 + (sd->imbalance_pct-100)/2;
983 do {
984 unsigned long load, avg_load;
985 int local_group;
986 int i;
988 /* Skip over this group if it has no CPUs allowed */
989 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
990 goto nextgroup;
992 local_group = cpu_isset(this_cpu, group->cpumask);
994 /* Tally up the load of all CPUs in the group */
995 avg_load = 0;
997 for_each_cpu_mask(i, group->cpumask) {
998 /* Bias balancing toward cpus of our domain */
999 if (local_group)
1000 load = source_load(i, load_idx);
1001 else
1002 load = target_load(i, load_idx);
1004 avg_load += load;
1007 /* Adjust by relative CPU power of the group */
1008 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1010 if (local_group) {
1011 this_load = avg_load;
1012 this = group;
1013 } else if (avg_load < min_load) {
1014 min_load = avg_load;
1015 idlest = group;
1017 nextgroup:
1018 group = group->next;
1019 } while (group != sd->groups);
1021 if (!idlest || 100*this_load < imbalance*min_load)
1022 return NULL;
1023 return idlest;
1027 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1029 static int
1030 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1032 cpumask_t tmp;
1033 unsigned long load, min_load = ULONG_MAX;
1034 int idlest = -1;
1035 int i;
1037 /* Traverse only the allowed CPUs */
1038 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1040 for_each_cpu_mask(i, tmp) {
1041 load = source_load(i, 0);
1043 if (load < min_load || (load == min_load && i == this_cpu)) {
1044 min_load = load;
1045 idlest = i;
1049 return idlest;
1053 * sched_balance_self: balance the current task (running on cpu) in domains
1054 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1055 * SD_BALANCE_EXEC.
1057 * Balance, ie. select the least loaded group.
1059 * Returns the target CPU number, or the same CPU if no balancing is needed.
1061 * preempt must be disabled.
1063 static int sched_balance_self(int cpu, int flag)
1065 struct task_struct *t = current;
1066 struct sched_domain *tmp, *sd = NULL;
1068 for_each_domain(cpu, tmp)
1069 if (tmp->flags & flag)
1070 sd = tmp;
1072 while (sd) {
1073 cpumask_t span;
1074 struct sched_group *group;
1075 int new_cpu;
1076 int weight;
1078 span = sd->span;
1079 group = find_idlest_group(sd, t, cpu);
1080 if (!group)
1081 goto nextlevel;
1083 new_cpu = find_idlest_cpu(group, t, cpu);
1084 if (new_cpu == -1 || new_cpu == cpu)
1085 goto nextlevel;
1087 /* Now try balancing at a lower domain level */
1088 cpu = new_cpu;
1089 nextlevel:
1090 sd = NULL;
1091 weight = cpus_weight(span);
1092 for_each_domain(cpu, tmp) {
1093 if (weight <= cpus_weight(tmp->span))
1094 break;
1095 if (tmp->flags & flag)
1096 sd = tmp;
1098 /* while loop will break here if sd == NULL */
1101 return cpu;
1104 #endif /* CONFIG_SMP */
1107 * wake_idle() will wake a task on an idle cpu if task->cpu is
1108 * not idle and an idle cpu is available. The span of cpus to
1109 * search starts with cpus closest then further out as needed,
1110 * so we always favor a closer, idle cpu.
1112 * Returns the CPU we should wake onto.
1114 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1115 static int wake_idle(int cpu, task_t *p)
1117 cpumask_t tmp;
1118 struct sched_domain *sd;
1119 int i;
1121 if (idle_cpu(cpu))
1122 return cpu;
1124 for_each_domain(cpu, sd) {
1125 if (sd->flags & SD_WAKE_IDLE) {
1126 cpus_and(tmp, sd->span, p->cpus_allowed);
1127 for_each_cpu_mask(i, tmp) {
1128 if (idle_cpu(i))
1129 return i;
1132 else
1133 break;
1135 return cpu;
1137 #else
1138 static inline int wake_idle(int cpu, task_t *p)
1140 return cpu;
1142 #endif
1144 /***
1145 * try_to_wake_up - wake up a thread
1146 * @p: the to-be-woken-up thread
1147 * @state: the mask of task states that can be woken
1148 * @sync: do a synchronous wakeup?
1150 * Put it on the run-queue if it's not already there. The "current"
1151 * thread is always on the run-queue (except when the actual
1152 * re-schedule is in progress), and as such you're allowed to do
1153 * the simpler "current->state = TASK_RUNNING" to mark yourself
1154 * runnable without the overhead of this.
1156 * returns failure only if the task is already active.
1158 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1160 int cpu, this_cpu, success = 0;
1161 unsigned long flags;
1162 long old_state;
1163 runqueue_t *rq;
1164 #ifdef CONFIG_SMP
1165 unsigned long load, this_load;
1166 struct sched_domain *sd, *this_sd = NULL;
1167 int new_cpu;
1168 #endif
1170 rq = task_rq_lock(p, &flags);
1171 old_state = p->state;
1172 if (!(old_state & state))
1173 goto out;
1175 if (p->array)
1176 goto out_running;
1178 cpu = task_cpu(p);
1179 this_cpu = smp_processor_id();
1181 #ifdef CONFIG_SMP
1182 if (unlikely(task_running(rq, p)))
1183 goto out_activate;
1185 new_cpu = cpu;
1187 schedstat_inc(rq, ttwu_cnt);
1188 if (cpu == this_cpu) {
1189 schedstat_inc(rq, ttwu_local);
1190 goto out_set_cpu;
1193 for_each_domain(this_cpu, sd) {
1194 if (cpu_isset(cpu, sd->span)) {
1195 schedstat_inc(sd, ttwu_wake_remote);
1196 this_sd = sd;
1197 break;
1201 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1202 goto out_set_cpu;
1205 * Check for affine wakeup and passive balancing possibilities.
1207 if (this_sd) {
1208 int idx = this_sd->wake_idx;
1209 unsigned int imbalance;
1211 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1213 load = source_load(cpu, idx);
1214 this_load = target_load(this_cpu, idx);
1216 new_cpu = this_cpu; /* Wake to this CPU if we can */
1218 if (this_sd->flags & SD_WAKE_AFFINE) {
1219 unsigned long tl = this_load;
1221 * If sync wakeup then subtract the (maximum possible)
1222 * effect of the currently running task from the load
1223 * of the current CPU:
1225 if (sync)
1226 tl -= SCHED_LOAD_SCALE;
1228 if ((tl <= load &&
1229 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1230 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1232 * This domain has SD_WAKE_AFFINE and
1233 * p is cache cold in this domain, and
1234 * there is no bad imbalance.
1236 schedstat_inc(this_sd, ttwu_move_affine);
1237 goto out_set_cpu;
1242 * Start passive balancing when half the imbalance_pct
1243 * limit is reached.
1245 if (this_sd->flags & SD_WAKE_BALANCE) {
1246 if (imbalance*this_load <= 100*load) {
1247 schedstat_inc(this_sd, ttwu_move_balance);
1248 goto out_set_cpu;
1253 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1254 out_set_cpu:
1255 new_cpu = wake_idle(new_cpu, p);
1256 if (new_cpu != cpu) {
1257 set_task_cpu(p, new_cpu);
1258 task_rq_unlock(rq, &flags);
1259 /* might preempt at this point */
1260 rq = task_rq_lock(p, &flags);
1261 old_state = p->state;
1262 if (!(old_state & state))
1263 goto out;
1264 if (p->array)
1265 goto out_running;
1267 this_cpu = smp_processor_id();
1268 cpu = task_cpu(p);
1271 out_activate:
1272 #endif /* CONFIG_SMP */
1273 if (old_state == TASK_UNINTERRUPTIBLE) {
1274 rq->nr_uninterruptible--;
1276 * Tasks on involuntary sleep don't earn
1277 * sleep_avg beyond just interactive state.
1279 p->activated = -1;
1283 * Tasks that have marked their sleep as noninteractive get
1284 * woken up without updating their sleep average. (i.e. their
1285 * sleep is handled in a priority-neutral manner, no priority
1286 * boost and no penalty.)
1288 if (old_state & TASK_NONINTERACTIVE)
1289 __activate_task(p, rq);
1290 else
1291 activate_task(p, rq, cpu == this_cpu);
1293 * Sync wakeups (i.e. those types of wakeups where the waker
1294 * has indicated that it will leave the CPU in short order)
1295 * don't trigger a preemption, if the woken up task will run on
1296 * this cpu. (in this case the 'I will reschedule' promise of
1297 * the waker guarantees that the freshly woken up task is going
1298 * to be considered on this CPU.)
1300 if (!sync || cpu != this_cpu) {
1301 if (TASK_PREEMPTS_CURR(p, rq))
1302 resched_task(rq->curr);
1304 success = 1;
1306 out_running:
1307 p->state = TASK_RUNNING;
1308 out:
1309 task_rq_unlock(rq, &flags);
1311 return success;
1314 int fastcall wake_up_process(task_t *p)
1316 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1317 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1320 EXPORT_SYMBOL(wake_up_process);
1322 int fastcall wake_up_state(task_t *p, unsigned int state)
1324 return try_to_wake_up(p, state, 0);
1328 * Perform scheduler related setup for a newly forked process p.
1329 * p is forked by current.
1331 void fastcall sched_fork(task_t *p, int clone_flags)
1333 int cpu = get_cpu();
1335 #ifdef CONFIG_SMP
1336 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1337 #endif
1338 set_task_cpu(p, cpu);
1341 * We mark the process as running here, but have not actually
1342 * inserted it onto the runqueue yet. This guarantees that
1343 * nobody will actually run it, and a signal or other external
1344 * event cannot wake it up and insert it on the runqueue either.
1346 p->state = TASK_RUNNING;
1347 INIT_LIST_HEAD(&p->run_list);
1348 p->array = NULL;
1349 #ifdef CONFIG_SCHEDSTATS
1350 memset(&p->sched_info, 0, sizeof(p->sched_info));
1351 #endif
1352 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1353 p->oncpu = 0;
1354 #endif
1355 #ifdef CONFIG_PREEMPT
1356 /* Want to start with kernel preemption disabled. */
1357 task_thread_info(p)->preempt_count = 1;
1358 #endif
1360 * Share the timeslice between parent and child, thus the
1361 * total amount of pending timeslices in the system doesn't change,
1362 * resulting in more scheduling fairness.
1364 local_irq_disable();
1365 p->time_slice = (current->time_slice + 1) >> 1;
1367 * The remainder of the first timeslice might be recovered by
1368 * the parent if the child exits early enough.
1370 p->first_time_slice = 1;
1371 current->time_slice >>= 1;
1372 p->timestamp = sched_clock();
1373 if (unlikely(!current->time_slice)) {
1375 * This case is rare, it happens when the parent has only
1376 * a single jiffy left from its timeslice. Taking the
1377 * runqueue lock is not a problem.
1379 current->time_slice = 1;
1380 scheduler_tick();
1382 local_irq_enable();
1383 put_cpu();
1387 * wake_up_new_task - wake up a newly created task for the first time.
1389 * This function will do some initial scheduler statistics housekeeping
1390 * that must be done for every newly created context, then puts the task
1391 * on the runqueue and wakes it.
1393 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1395 unsigned long flags;
1396 int this_cpu, cpu;
1397 runqueue_t *rq, *this_rq;
1399 rq = task_rq_lock(p, &flags);
1400 BUG_ON(p->state != TASK_RUNNING);
1401 this_cpu = smp_processor_id();
1402 cpu = task_cpu(p);
1405 * We decrease the sleep average of forking parents
1406 * and children as well, to keep max-interactive tasks
1407 * from forking tasks that are max-interactive. The parent
1408 * (current) is done further down, under its lock.
1410 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1411 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1413 p->prio = effective_prio(p);
1415 if (likely(cpu == this_cpu)) {
1416 if (!(clone_flags & CLONE_VM)) {
1418 * The VM isn't cloned, so we're in a good position to
1419 * do child-runs-first in anticipation of an exec. This
1420 * usually avoids a lot of COW overhead.
1422 if (unlikely(!current->array))
1423 __activate_task(p, rq);
1424 else {
1425 p->prio = current->prio;
1426 list_add_tail(&p->run_list, &current->run_list);
1427 p->array = current->array;
1428 p->array->nr_active++;
1429 rq->nr_running++;
1431 set_need_resched();
1432 } else
1433 /* Run child last */
1434 __activate_task(p, rq);
1436 * We skip the following code due to cpu == this_cpu
1438 * task_rq_unlock(rq, &flags);
1439 * this_rq = task_rq_lock(current, &flags);
1441 this_rq = rq;
1442 } else {
1443 this_rq = cpu_rq(this_cpu);
1446 * Not the local CPU - must adjust timestamp. This should
1447 * get optimised away in the !CONFIG_SMP case.
1449 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1450 + rq->timestamp_last_tick;
1451 __activate_task(p, rq);
1452 if (TASK_PREEMPTS_CURR(p, rq))
1453 resched_task(rq->curr);
1456 * Parent and child are on different CPUs, now get the
1457 * parent runqueue to update the parent's ->sleep_avg:
1459 task_rq_unlock(rq, &flags);
1460 this_rq = task_rq_lock(current, &flags);
1462 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1463 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1464 task_rq_unlock(this_rq, &flags);
1468 * Potentially available exiting-child timeslices are
1469 * retrieved here - this way the parent does not get
1470 * penalized for creating too many threads.
1472 * (this cannot be used to 'generate' timeslices
1473 * artificially, because any timeslice recovered here
1474 * was given away by the parent in the first place.)
1476 void fastcall sched_exit(task_t *p)
1478 unsigned long flags;
1479 runqueue_t *rq;
1482 * If the child was a (relative-) CPU hog then decrease
1483 * the sleep_avg of the parent as well.
1485 rq = task_rq_lock(p->parent, &flags);
1486 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1487 p->parent->time_slice += p->time_slice;
1488 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1489 p->parent->time_slice = task_timeslice(p);
1491 if (p->sleep_avg < p->parent->sleep_avg)
1492 p->parent->sleep_avg = p->parent->sleep_avg /
1493 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1494 (EXIT_WEIGHT + 1);
1495 task_rq_unlock(rq, &flags);
1499 * prepare_task_switch - prepare to switch tasks
1500 * @rq: the runqueue preparing to switch
1501 * @next: the task we are going to switch to.
1503 * This is called with the rq lock held and interrupts off. It must
1504 * be paired with a subsequent finish_task_switch after the context
1505 * switch.
1507 * prepare_task_switch sets up locking and calls architecture specific
1508 * hooks.
1510 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1512 prepare_lock_switch(rq, next);
1513 prepare_arch_switch(next);
1517 * finish_task_switch - clean up after a task-switch
1518 * @rq: runqueue associated with task-switch
1519 * @prev: the thread we just switched away from.
1521 * finish_task_switch must be called after the context switch, paired
1522 * with a prepare_task_switch call before the context switch.
1523 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1524 * and do any other architecture-specific cleanup actions.
1526 * Note that we may have delayed dropping an mm in context_switch(). If
1527 * so, we finish that here outside of the runqueue lock. (Doing it
1528 * with the lock held can cause deadlocks; see schedule() for
1529 * details.)
1531 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1532 __releases(rq->lock)
1534 struct mm_struct *mm = rq->prev_mm;
1535 unsigned long prev_task_flags;
1537 rq->prev_mm = NULL;
1540 * A task struct has one reference for the use as "current".
1541 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1542 * calls schedule one last time. The schedule call will never return,
1543 * and the scheduled task must drop that reference.
1544 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1545 * still held, otherwise prev could be scheduled on another cpu, die
1546 * there before we look at prev->state, and then the reference would
1547 * be dropped twice.
1548 * Manfred Spraul <manfred@colorfullife.com>
1550 prev_task_flags = prev->flags;
1551 finish_arch_switch(prev);
1552 finish_lock_switch(rq, prev);
1553 if (mm)
1554 mmdrop(mm);
1555 if (unlikely(prev_task_flags & PF_DEAD))
1556 put_task_struct(prev);
1560 * schedule_tail - first thing a freshly forked thread must call.
1561 * @prev: the thread we just switched away from.
1563 asmlinkage void schedule_tail(task_t *prev)
1564 __releases(rq->lock)
1566 runqueue_t *rq = this_rq();
1567 finish_task_switch(rq, prev);
1568 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1569 /* In this case, finish_task_switch does not reenable preemption */
1570 preempt_enable();
1571 #endif
1572 if (current->set_child_tid)
1573 put_user(current->pid, current->set_child_tid);
1577 * context_switch - switch to the new MM and the new
1578 * thread's register state.
1580 static inline
1581 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1583 struct mm_struct *mm = next->mm;
1584 struct mm_struct *oldmm = prev->active_mm;
1586 if (unlikely(!mm)) {
1587 next->active_mm = oldmm;
1588 atomic_inc(&oldmm->mm_count);
1589 enter_lazy_tlb(oldmm, next);
1590 } else
1591 switch_mm(oldmm, mm, next);
1593 if (unlikely(!prev->mm)) {
1594 prev->active_mm = NULL;
1595 WARN_ON(rq->prev_mm);
1596 rq->prev_mm = oldmm;
1599 /* Here we just switch the register state and the stack. */
1600 switch_to(prev, next, prev);
1602 return prev;
1606 * nr_running, nr_uninterruptible and nr_context_switches:
1608 * externally visible scheduler statistics: current number of runnable
1609 * threads, current number of uninterruptible-sleeping threads, total
1610 * number of context switches performed since bootup.
1612 unsigned long nr_running(void)
1614 unsigned long i, sum = 0;
1616 for_each_online_cpu(i)
1617 sum += cpu_rq(i)->nr_running;
1619 return sum;
1622 unsigned long nr_uninterruptible(void)
1624 unsigned long i, sum = 0;
1626 for_each_cpu(i)
1627 sum += cpu_rq(i)->nr_uninterruptible;
1630 * Since we read the counters lockless, it might be slightly
1631 * inaccurate. Do not allow it to go below zero though:
1633 if (unlikely((long)sum < 0))
1634 sum = 0;
1636 return sum;
1639 unsigned long long nr_context_switches(void)
1641 unsigned long long i, sum = 0;
1643 for_each_cpu(i)
1644 sum += cpu_rq(i)->nr_switches;
1646 return sum;
1649 unsigned long nr_iowait(void)
1651 unsigned long i, sum = 0;
1653 for_each_cpu(i)
1654 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1656 return sum;
1659 #ifdef CONFIG_SMP
1662 * double_rq_lock - safely lock two runqueues
1664 * We must take them in cpu order to match code in
1665 * dependent_sleeper and wake_dependent_sleeper.
1667 * Note this does not disable interrupts like task_rq_lock,
1668 * you need to do so manually before calling.
1670 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1671 __acquires(rq1->lock)
1672 __acquires(rq2->lock)
1674 if (rq1 == rq2) {
1675 spin_lock(&rq1->lock);
1676 __acquire(rq2->lock); /* Fake it out ;) */
1677 } else {
1678 if (rq1->cpu < rq2->cpu) {
1679 spin_lock(&rq1->lock);
1680 spin_lock(&rq2->lock);
1681 } else {
1682 spin_lock(&rq2->lock);
1683 spin_lock(&rq1->lock);
1689 * double_rq_unlock - safely unlock two runqueues
1691 * Note this does not restore interrupts like task_rq_unlock,
1692 * you need to do so manually after calling.
1694 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1695 __releases(rq1->lock)
1696 __releases(rq2->lock)
1698 spin_unlock(&rq1->lock);
1699 if (rq1 != rq2)
1700 spin_unlock(&rq2->lock);
1701 else
1702 __release(rq2->lock);
1706 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1708 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1713 if (unlikely(!spin_trylock(&busiest->lock))) {
1714 if (busiest->cpu < this_rq->cpu) {
1715 spin_unlock(&this_rq->lock);
1716 spin_lock(&busiest->lock);
1717 spin_lock(&this_rq->lock);
1718 } else
1719 spin_lock(&busiest->lock);
1724 * If dest_cpu is allowed for this process, migrate the task to it.
1725 * This is accomplished by forcing the cpu_allowed mask to only
1726 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1727 * the cpu_allowed mask is restored.
1729 static void sched_migrate_task(task_t *p, int dest_cpu)
1731 migration_req_t req;
1732 runqueue_t *rq;
1733 unsigned long flags;
1735 rq = task_rq_lock(p, &flags);
1736 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1737 || unlikely(cpu_is_offline(dest_cpu)))
1738 goto out;
1740 /* force the process onto the specified CPU */
1741 if (migrate_task(p, dest_cpu, &req)) {
1742 /* Need to wait for migration thread (might exit: take ref). */
1743 struct task_struct *mt = rq->migration_thread;
1744 get_task_struct(mt);
1745 task_rq_unlock(rq, &flags);
1746 wake_up_process(mt);
1747 put_task_struct(mt);
1748 wait_for_completion(&req.done);
1749 return;
1751 out:
1752 task_rq_unlock(rq, &flags);
1756 * sched_exec - execve() is a valuable balancing opportunity, because at
1757 * this point the task has the smallest effective memory and cache footprint.
1759 void sched_exec(void)
1761 int new_cpu, this_cpu = get_cpu();
1762 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1763 put_cpu();
1764 if (new_cpu != this_cpu)
1765 sched_migrate_task(current, new_cpu);
1769 * pull_task - move a task from a remote runqueue to the local runqueue.
1770 * Both runqueues must be locked.
1772 static
1773 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1774 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1776 dequeue_task(p, src_array);
1777 src_rq->nr_running--;
1778 set_task_cpu(p, this_cpu);
1779 this_rq->nr_running++;
1780 enqueue_task(p, this_array);
1781 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1782 + this_rq->timestamp_last_tick;
1784 * Note that idle threads have a prio of MAX_PRIO, for this test
1785 * to be always true for them.
1787 if (TASK_PREEMPTS_CURR(p, this_rq))
1788 resched_task(this_rq->curr);
1792 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1794 static
1795 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1796 struct sched_domain *sd, enum idle_type idle,
1797 int *all_pinned)
1800 * We do not migrate tasks that are:
1801 * 1) running (obviously), or
1802 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1803 * 3) are cache-hot on their current CPU.
1805 if (!cpu_isset(this_cpu, p->cpus_allowed))
1806 return 0;
1807 *all_pinned = 0;
1809 if (task_running(rq, p))
1810 return 0;
1813 * Aggressive migration if:
1814 * 1) task is cache cold, or
1815 * 2) too many balance attempts have failed.
1818 if (sd->nr_balance_failed > sd->cache_nice_tries)
1819 return 1;
1821 if (task_hot(p, rq->timestamp_last_tick, sd))
1822 return 0;
1823 return 1;
1827 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1828 * as part of a balancing operation within "domain". Returns the number of
1829 * tasks moved.
1831 * Called with both runqueues locked.
1833 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1834 unsigned long max_nr_move, struct sched_domain *sd,
1835 enum idle_type idle, int *all_pinned)
1837 prio_array_t *array, *dst_array;
1838 struct list_head *head, *curr;
1839 int idx, pulled = 0, pinned = 0;
1840 task_t *tmp;
1842 if (max_nr_move == 0)
1843 goto out;
1845 pinned = 1;
1848 * We first consider expired tasks. Those will likely not be
1849 * executed in the near future, and they are most likely to
1850 * be cache-cold, thus switching CPUs has the least effect
1851 * on them.
1853 if (busiest->expired->nr_active) {
1854 array = busiest->expired;
1855 dst_array = this_rq->expired;
1856 } else {
1857 array = busiest->active;
1858 dst_array = this_rq->active;
1861 new_array:
1862 /* Start searching at priority 0: */
1863 idx = 0;
1864 skip_bitmap:
1865 if (!idx)
1866 idx = sched_find_first_bit(array->bitmap);
1867 else
1868 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1869 if (idx >= MAX_PRIO) {
1870 if (array == busiest->expired && busiest->active->nr_active) {
1871 array = busiest->active;
1872 dst_array = this_rq->active;
1873 goto new_array;
1875 goto out;
1878 head = array->queue + idx;
1879 curr = head->prev;
1880 skip_queue:
1881 tmp = list_entry(curr, task_t, run_list);
1883 curr = curr->prev;
1885 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1886 if (curr != head)
1887 goto skip_queue;
1888 idx++;
1889 goto skip_bitmap;
1892 #ifdef CONFIG_SCHEDSTATS
1893 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1894 schedstat_inc(sd, lb_hot_gained[idle]);
1895 #endif
1897 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1898 pulled++;
1900 /* We only want to steal up to the prescribed number of tasks. */
1901 if (pulled < max_nr_move) {
1902 if (curr != head)
1903 goto skip_queue;
1904 idx++;
1905 goto skip_bitmap;
1907 out:
1909 * Right now, this is the only place pull_task() is called,
1910 * so we can safely collect pull_task() stats here rather than
1911 * inside pull_task().
1913 schedstat_add(sd, lb_gained[idle], pulled);
1915 if (all_pinned)
1916 *all_pinned = pinned;
1917 return pulled;
1921 * find_busiest_group finds and returns the busiest CPU group within the
1922 * domain. It calculates and returns the number of tasks which should be
1923 * moved to restore balance via the imbalance parameter.
1925 static struct sched_group *
1926 find_busiest_group(struct sched_domain *sd, int this_cpu,
1927 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1929 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1930 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1931 unsigned long max_pull;
1932 int load_idx;
1934 max_load = this_load = total_load = total_pwr = 0;
1935 if (idle == NOT_IDLE)
1936 load_idx = sd->busy_idx;
1937 else if (idle == NEWLY_IDLE)
1938 load_idx = sd->newidle_idx;
1939 else
1940 load_idx = sd->idle_idx;
1942 do {
1943 unsigned long load;
1944 int local_group;
1945 int i;
1947 local_group = cpu_isset(this_cpu, group->cpumask);
1949 /* Tally up the load of all CPUs in the group */
1950 avg_load = 0;
1952 for_each_cpu_mask(i, group->cpumask) {
1953 if (*sd_idle && !idle_cpu(i))
1954 *sd_idle = 0;
1956 /* Bias balancing toward cpus of our domain */
1957 if (local_group)
1958 load = target_load(i, load_idx);
1959 else
1960 load = source_load(i, load_idx);
1962 avg_load += load;
1965 total_load += avg_load;
1966 total_pwr += group->cpu_power;
1968 /* Adjust by relative CPU power of the group */
1969 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1971 if (local_group) {
1972 this_load = avg_load;
1973 this = group;
1974 } else if (avg_load > max_load) {
1975 max_load = avg_load;
1976 busiest = group;
1978 group = group->next;
1979 } while (group != sd->groups);
1981 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1982 goto out_balanced;
1984 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1986 if (this_load >= avg_load ||
1987 100*max_load <= sd->imbalance_pct*this_load)
1988 goto out_balanced;
1991 * We're trying to get all the cpus to the average_load, so we don't
1992 * want to push ourselves above the average load, nor do we wish to
1993 * reduce the max loaded cpu below the average load, as either of these
1994 * actions would just result in more rebalancing later, and ping-pong
1995 * tasks around. Thus we look for the minimum possible imbalance.
1996 * Negative imbalances (*we* are more loaded than anyone else) will
1997 * be counted as no imbalance for these purposes -- we can't fix that
1998 * by pulling tasks to us. Be careful of negative numbers as they'll
1999 * appear as very large values with unsigned longs.
2002 /* Don't want to pull so many tasks that a group would go idle */
2003 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2005 /* How much load to actually move to equalise the imbalance */
2006 *imbalance = min(max_pull * busiest->cpu_power,
2007 (avg_load - this_load) * this->cpu_power)
2008 / SCHED_LOAD_SCALE;
2010 if (*imbalance < SCHED_LOAD_SCALE) {
2011 unsigned long pwr_now = 0, pwr_move = 0;
2012 unsigned long tmp;
2014 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2015 *imbalance = 1;
2016 return busiest;
2020 * OK, we don't have enough imbalance to justify moving tasks,
2021 * however we may be able to increase total CPU power used by
2022 * moving them.
2025 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2026 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2027 pwr_now /= SCHED_LOAD_SCALE;
2029 /* Amount of load we'd subtract */
2030 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2031 if (max_load > tmp)
2032 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2033 max_load - tmp);
2035 /* Amount of load we'd add */
2036 if (max_load*busiest->cpu_power <
2037 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2038 tmp = max_load*busiest->cpu_power/this->cpu_power;
2039 else
2040 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2041 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2042 pwr_move /= SCHED_LOAD_SCALE;
2044 /* Move if we gain throughput */
2045 if (pwr_move <= pwr_now)
2046 goto out_balanced;
2048 *imbalance = 1;
2049 return busiest;
2052 /* Get rid of the scaling factor, rounding down as we divide */
2053 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2054 return busiest;
2056 out_balanced:
2058 *imbalance = 0;
2059 return NULL;
2063 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2065 static runqueue_t *find_busiest_queue(struct sched_group *group,
2066 enum idle_type idle)
2068 unsigned long load, max_load = 0;
2069 runqueue_t *busiest = NULL;
2070 int i;
2072 for_each_cpu_mask(i, group->cpumask) {
2073 load = source_load(i, 0);
2075 if (load > max_load) {
2076 max_load = load;
2077 busiest = cpu_rq(i);
2081 return busiest;
2085 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2086 * so long as it is large enough.
2088 #define MAX_PINNED_INTERVAL 512
2091 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2092 * tasks if there is an imbalance.
2094 * Called with this_rq unlocked.
2096 static int load_balance(int this_cpu, runqueue_t *this_rq,
2097 struct sched_domain *sd, enum idle_type idle)
2099 struct sched_group *group;
2100 runqueue_t *busiest;
2101 unsigned long imbalance;
2102 int nr_moved, all_pinned = 0;
2103 int active_balance = 0;
2104 int sd_idle = 0;
2106 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2107 sd_idle = 1;
2109 schedstat_inc(sd, lb_cnt[idle]);
2111 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2112 if (!group) {
2113 schedstat_inc(sd, lb_nobusyg[idle]);
2114 goto out_balanced;
2117 busiest = find_busiest_queue(group, idle);
2118 if (!busiest) {
2119 schedstat_inc(sd, lb_nobusyq[idle]);
2120 goto out_balanced;
2123 BUG_ON(busiest == this_rq);
2125 schedstat_add(sd, lb_imbalance[idle], imbalance);
2127 nr_moved = 0;
2128 if (busiest->nr_running > 1) {
2130 * Attempt to move tasks. If find_busiest_group has found
2131 * an imbalance but busiest->nr_running <= 1, the group is
2132 * still unbalanced. nr_moved simply stays zero, so it is
2133 * correctly treated as an imbalance.
2135 double_rq_lock(this_rq, busiest);
2136 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2137 imbalance, sd, idle, &all_pinned);
2138 double_rq_unlock(this_rq, busiest);
2140 /* All tasks on this runqueue were pinned by CPU affinity */
2141 if (unlikely(all_pinned))
2142 goto out_balanced;
2145 if (!nr_moved) {
2146 schedstat_inc(sd, lb_failed[idle]);
2147 sd->nr_balance_failed++;
2149 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2151 spin_lock(&busiest->lock);
2153 /* don't kick the migration_thread, if the curr
2154 * task on busiest cpu can't be moved to this_cpu
2156 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2157 spin_unlock(&busiest->lock);
2158 all_pinned = 1;
2159 goto out_one_pinned;
2162 if (!busiest->active_balance) {
2163 busiest->active_balance = 1;
2164 busiest->push_cpu = this_cpu;
2165 active_balance = 1;
2167 spin_unlock(&busiest->lock);
2168 if (active_balance)
2169 wake_up_process(busiest->migration_thread);
2172 * We've kicked active balancing, reset the failure
2173 * counter.
2175 sd->nr_balance_failed = sd->cache_nice_tries+1;
2177 } else
2178 sd->nr_balance_failed = 0;
2180 if (likely(!active_balance)) {
2181 /* We were unbalanced, so reset the balancing interval */
2182 sd->balance_interval = sd->min_interval;
2183 } else {
2185 * If we've begun active balancing, start to back off. This
2186 * case may not be covered by the all_pinned logic if there
2187 * is only 1 task on the busy runqueue (because we don't call
2188 * move_tasks).
2190 if (sd->balance_interval < sd->max_interval)
2191 sd->balance_interval *= 2;
2194 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2195 return -1;
2196 return nr_moved;
2198 out_balanced:
2199 schedstat_inc(sd, lb_balanced[idle]);
2201 sd->nr_balance_failed = 0;
2203 out_one_pinned:
2204 /* tune up the balancing interval */
2205 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2206 (sd->balance_interval < sd->max_interval))
2207 sd->balance_interval *= 2;
2209 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2210 return -1;
2211 return 0;
2215 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2216 * tasks if there is an imbalance.
2218 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2219 * this_rq is locked.
2221 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2222 struct sched_domain *sd)
2224 struct sched_group *group;
2225 runqueue_t *busiest = NULL;
2226 unsigned long imbalance;
2227 int nr_moved = 0;
2228 int sd_idle = 0;
2230 if (sd->flags & SD_SHARE_CPUPOWER)
2231 sd_idle = 1;
2233 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2234 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2235 if (!group) {
2236 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2237 goto out_balanced;
2240 busiest = find_busiest_queue(group, NEWLY_IDLE);
2241 if (!busiest) {
2242 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2243 goto out_balanced;
2246 BUG_ON(busiest == this_rq);
2248 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2250 nr_moved = 0;
2251 if (busiest->nr_running > 1) {
2252 /* Attempt to move tasks */
2253 double_lock_balance(this_rq, busiest);
2254 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2255 imbalance, sd, NEWLY_IDLE, NULL);
2256 spin_unlock(&busiest->lock);
2259 if (!nr_moved) {
2260 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2261 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2262 return -1;
2263 } else
2264 sd->nr_balance_failed = 0;
2266 return nr_moved;
2268 out_balanced:
2269 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2270 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2271 return -1;
2272 sd->nr_balance_failed = 0;
2273 return 0;
2277 * idle_balance is called by schedule() if this_cpu is about to become
2278 * idle. Attempts to pull tasks from other CPUs.
2280 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2282 struct sched_domain *sd;
2284 for_each_domain(this_cpu, sd) {
2285 if (sd->flags & SD_BALANCE_NEWIDLE) {
2286 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2287 /* We've pulled tasks over so stop searching */
2288 break;
2295 * active_load_balance is run by migration threads. It pushes running tasks
2296 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2297 * running on each physical CPU where possible, and avoids physical /
2298 * logical imbalances.
2300 * Called with busiest_rq locked.
2302 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2304 struct sched_domain *sd;
2305 runqueue_t *target_rq;
2306 int target_cpu = busiest_rq->push_cpu;
2308 if (busiest_rq->nr_running <= 1)
2309 /* no task to move */
2310 return;
2312 target_rq = cpu_rq(target_cpu);
2315 * This condition is "impossible", if it occurs
2316 * we need to fix it. Originally reported by
2317 * Bjorn Helgaas on a 128-cpu setup.
2319 BUG_ON(busiest_rq == target_rq);
2321 /* move a task from busiest_rq to target_rq */
2322 double_lock_balance(busiest_rq, target_rq);
2324 /* Search for an sd spanning us and the target CPU. */
2325 for_each_domain(target_cpu, sd)
2326 if ((sd->flags & SD_LOAD_BALANCE) &&
2327 cpu_isset(busiest_cpu, sd->span))
2328 break;
2330 if (unlikely(sd == NULL))
2331 goto out;
2333 schedstat_inc(sd, alb_cnt);
2335 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2336 schedstat_inc(sd, alb_pushed);
2337 else
2338 schedstat_inc(sd, alb_failed);
2339 out:
2340 spin_unlock(&target_rq->lock);
2344 * rebalance_tick will get called every timer tick, on every CPU.
2346 * It checks each scheduling domain to see if it is due to be balanced,
2347 * and initiates a balancing operation if so.
2349 * Balancing parameters are set up in arch_init_sched_domains.
2352 /* Don't have all balancing operations going off at once */
2353 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2355 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2356 enum idle_type idle)
2358 unsigned long old_load, this_load;
2359 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2360 struct sched_domain *sd;
2361 int i;
2363 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2364 /* Update our load */
2365 for (i = 0; i < 3; i++) {
2366 unsigned long new_load = this_load;
2367 int scale = 1 << i;
2368 old_load = this_rq->cpu_load[i];
2370 * Round up the averaging division if load is increasing. This
2371 * prevents us from getting stuck on 9 if the load is 10, for
2372 * example.
2374 if (new_load > old_load)
2375 new_load += scale-1;
2376 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2379 for_each_domain(this_cpu, sd) {
2380 unsigned long interval;
2382 if (!(sd->flags & SD_LOAD_BALANCE))
2383 continue;
2385 interval = sd->balance_interval;
2386 if (idle != SCHED_IDLE)
2387 interval *= sd->busy_factor;
2389 /* scale ms to jiffies */
2390 interval = msecs_to_jiffies(interval);
2391 if (unlikely(!interval))
2392 interval = 1;
2394 if (j - sd->last_balance >= interval) {
2395 if (load_balance(this_cpu, this_rq, sd, idle)) {
2397 * We've pulled tasks over so either we're no
2398 * longer idle, or one of our SMT siblings is
2399 * not idle.
2401 idle = NOT_IDLE;
2403 sd->last_balance += interval;
2407 #else
2409 * on UP we do not need to balance between CPUs:
2411 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2414 static inline void idle_balance(int cpu, runqueue_t *rq)
2417 #endif
2419 static inline int wake_priority_sleeper(runqueue_t *rq)
2421 int ret = 0;
2422 #ifdef CONFIG_SCHED_SMT
2423 spin_lock(&rq->lock);
2425 * If an SMT sibling task has been put to sleep for priority
2426 * reasons reschedule the idle task to see if it can now run.
2428 if (rq->nr_running) {
2429 resched_task(rq->idle);
2430 ret = 1;
2432 spin_unlock(&rq->lock);
2433 #endif
2434 return ret;
2437 DEFINE_PER_CPU(struct kernel_stat, kstat);
2439 EXPORT_PER_CPU_SYMBOL(kstat);
2442 * This is called on clock ticks and on context switches.
2443 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2445 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2446 unsigned long long now)
2448 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2449 p->sched_time += now - last;
2453 * Return current->sched_time plus any more ns on the sched_clock
2454 * that have not yet been banked.
2456 unsigned long long current_sched_time(const task_t *tsk)
2458 unsigned long long ns;
2459 unsigned long flags;
2460 local_irq_save(flags);
2461 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2462 ns = tsk->sched_time + (sched_clock() - ns);
2463 local_irq_restore(flags);
2464 return ns;
2468 * We place interactive tasks back into the active array, if possible.
2470 * To guarantee that this does not starve expired tasks we ignore the
2471 * interactivity of a task if the first expired task had to wait more
2472 * than a 'reasonable' amount of time. This deadline timeout is
2473 * load-dependent, as the frequency of array switched decreases with
2474 * increasing number of running tasks. We also ignore the interactivity
2475 * if a better static_prio task has expired:
2477 #define EXPIRED_STARVING(rq) \
2478 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2479 (jiffies - (rq)->expired_timestamp >= \
2480 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2481 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2484 * Account user cpu time to a process.
2485 * @p: the process that the cpu time gets accounted to
2486 * @hardirq_offset: the offset to subtract from hardirq_count()
2487 * @cputime: the cpu time spent in user space since the last update
2489 void account_user_time(struct task_struct *p, cputime_t cputime)
2491 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2492 cputime64_t tmp;
2494 p->utime = cputime_add(p->utime, cputime);
2496 /* Add user time to cpustat. */
2497 tmp = cputime_to_cputime64(cputime);
2498 if (TASK_NICE(p) > 0)
2499 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2500 else
2501 cpustat->user = cputime64_add(cpustat->user, tmp);
2505 * Account system cpu time to a process.
2506 * @p: the process that the cpu time gets accounted to
2507 * @hardirq_offset: the offset to subtract from hardirq_count()
2508 * @cputime: the cpu time spent in kernel space since the last update
2510 void account_system_time(struct task_struct *p, int hardirq_offset,
2511 cputime_t cputime)
2513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2514 runqueue_t *rq = this_rq();
2515 cputime64_t tmp;
2517 p->stime = cputime_add(p->stime, cputime);
2519 /* Add system time to cpustat. */
2520 tmp = cputime_to_cputime64(cputime);
2521 if (hardirq_count() - hardirq_offset)
2522 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2523 else if (softirq_count())
2524 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2525 else if (p != rq->idle)
2526 cpustat->system = cputime64_add(cpustat->system, tmp);
2527 else if (atomic_read(&rq->nr_iowait) > 0)
2528 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2529 else
2530 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2531 /* Account for system time used */
2532 acct_update_integrals(p);
2536 * Account for involuntary wait time.
2537 * @p: the process from which the cpu time has been stolen
2538 * @steal: the cpu time spent in involuntary wait
2540 void account_steal_time(struct task_struct *p, cputime_t steal)
2542 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2543 cputime64_t tmp = cputime_to_cputime64(steal);
2544 runqueue_t *rq = this_rq();
2546 if (p == rq->idle) {
2547 p->stime = cputime_add(p->stime, steal);
2548 if (atomic_read(&rq->nr_iowait) > 0)
2549 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2550 else
2551 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2552 } else
2553 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2557 * This function gets called by the timer code, with HZ frequency.
2558 * We call it with interrupts disabled.
2560 * It also gets called by the fork code, when changing the parent's
2561 * timeslices.
2563 void scheduler_tick(void)
2565 int cpu = smp_processor_id();
2566 runqueue_t *rq = this_rq();
2567 task_t *p = current;
2568 unsigned long long now = sched_clock();
2570 update_cpu_clock(p, rq, now);
2572 rq->timestamp_last_tick = now;
2574 if (p == rq->idle) {
2575 if (wake_priority_sleeper(rq))
2576 goto out;
2577 rebalance_tick(cpu, rq, SCHED_IDLE);
2578 return;
2581 /* Task might have expired already, but not scheduled off yet */
2582 if (p->array != rq->active) {
2583 set_tsk_need_resched(p);
2584 goto out;
2586 spin_lock(&rq->lock);
2588 * The task was running during this tick - update the
2589 * time slice counter. Note: we do not update a thread's
2590 * priority until it either goes to sleep or uses up its
2591 * timeslice. This makes it possible for interactive tasks
2592 * to use up their timeslices at their highest priority levels.
2594 if (rt_task(p)) {
2596 * RR tasks need a special form of timeslice management.
2597 * FIFO tasks have no timeslices.
2599 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2600 p->time_slice = task_timeslice(p);
2601 p->first_time_slice = 0;
2602 set_tsk_need_resched(p);
2604 /* put it at the end of the queue: */
2605 requeue_task(p, rq->active);
2607 goto out_unlock;
2609 if (!--p->time_slice) {
2610 dequeue_task(p, rq->active);
2611 set_tsk_need_resched(p);
2612 p->prio = effective_prio(p);
2613 p->time_slice = task_timeslice(p);
2614 p->first_time_slice = 0;
2616 if (!rq->expired_timestamp)
2617 rq->expired_timestamp = jiffies;
2618 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2619 enqueue_task(p, rq->expired);
2620 if (p->static_prio < rq->best_expired_prio)
2621 rq->best_expired_prio = p->static_prio;
2622 } else
2623 enqueue_task(p, rq->active);
2624 } else {
2626 * Prevent a too long timeslice allowing a task to monopolize
2627 * the CPU. We do this by splitting up the timeslice into
2628 * smaller pieces.
2630 * Note: this does not mean the task's timeslices expire or
2631 * get lost in any way, they just might be preempted by
2632 * another task of equal priority. (one with higher
2633 * priority would have preempted this task already.) We
2634 * requeue this task to the end of the list on this priority
2635 * level, which is in essence a round-robin of tasks with
2636 * equal priority.
2638 * This only applies to tasks in the interactive
2639 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2641 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2642 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2643 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2644 (p->array == rq->active)) {
2646 requeue_task(p, rq->active);
2647 set_tsk_need_resched(p);
2650 out_unlock:
2651 spin_unlock(&rq->lock);
2652 out:
2653 rebalance_tick(cpu, rq, NOT_IDLE);
2656 #ifdef CONFIG_SCHED_SMT
2657 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2659 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2660 if (rq->curr == rq->idle && rq->nr_running)
2661 resched_task(rq->idle);
2664 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2666 struct sched_domain *tmp, *sd = NULL;
2667 cpumask_t sibling_map;
2668 int i;
2670 for_each_domain(this_cpu, tmp)
2671 if (tmp->flags & SD_SHARE_CPUPOWER)
2672 sd = tmp;
2674 if (!sd)
2675 return;
2678 * Unlock the current runqueue because we have to lock in
2679 * CPU order to avoid deadlocks. Caller knows that we might
2680 * unlock. We keep IRQs disabled.
2682 spin_unlock(&this_rq->lock);
2684 sibling_map = sd->span;
2686 for_each_cpu_mask(i, sibling_map)
2687 spin_lock(&cpu_rq(i)->lock);
2689 * We clear this CPU from the mask. This both simplifies the
2690 * inner loop and keps this_rq locked when we exit:
2692 cpu_clear(this_cpu, sibling_map);
2694 for_each_cpu_mask(i, sibling_map) {
2695 runqueue_t *smt_rq = cpu_rq(i);
2697 wakeup_busy_runqueue(smt_rq);
2700 for_each_cpu_mask(i, sibling_map)
2701 spin_unlock(&cpu_rq(i)->lock);
2703 * We exit with this_cpu's rq still held and IRQs
2704 * still disabled:
2709 * number of 'lost' timeslices this task wont be able to fully
2710 * utilize, if another task runs on a sibling. This models the
2711 * slowdown effect of other tasks running on siblings:
2713 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2715 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2718 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2720 struct sched_domain *tmp, *sd = NULL;
2721 cpumask_t sibling_map;
2722 prio_array_t *array;
2723 int ret = 0, i;
2724 task_t *p;
2726 for_each_domain(this_cpu, tmp)
2727 if (tmp->flags & SD_SHARE_CPUPOWER)
2728 sd = tmp;
2730 if (!sd)
2731 return 0;
2734 * The same locking rules and details apply as for
2735 * wake_sleeping_dependent():
2737 spin_unlock(&this_rq->lock);
2738 sibling_map = sd->span;
2739 for_each_cpu_mask(i, sibling_map)
2740 spin_lock(&cpu_rq(i)->lock);
2741 cpu_clear(this_cpu, sibling_map);
2744 * Establish next task to be run - it might have gone away because
2745 * we released the runqueue lock above:
2747 if (!this_rq->nr_running)
2748 goto out_unlock;
2749 array = this_rq->active;
2750 if (!array->nr_active)
2751 array = this_rq->expired;
2752 BUG_ON(!array->nr_active);
2754 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2755 task_t, run_list);
2757 for_each_cpu_mask(i, sibling_map) {
2758 runqueue_t *smt_rq = cpu_rq(i);
2759 task_t *smt_curr = smt_rq->curr;
2761 /* Kernel threads do not participate in dependent sleeping */
2762 if (!p->mm || !smt_curr->mm || rt_task(p))
2763 goto check_smt_task;
2766 * If a user task with lower static priority than the
2767 * running task on the SMT sibling is trying to schedule,
2768 * delay it till there is proportionately less timeslice
2769 * left of the sibling task to prevent a lower priority
2770 * task from using an unfair proportion of the
2771 * physical cpu's resources. -ck
2773 if (rt_task(smt_curr)) {
2775 * With real time tasks we run non-rt tasks only
2776 * per_cpu_gain% of the time.
2778 if ((jiffies % DEF_TIMESLICE) >
2779 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2780 ret = 1;
2781 } else
2782 if (smt_curr->static_prio < p->static_prio &&
2783 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2784 smt_slice(smt_curr, sd) > task_timeslice(p))
2785 ret = 1;
2787 check_smt_task:
2788 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2789 rt_task(smt_curr))
2790 continue;
2791 if (!p->mm) {
2792 wakeup_busy_runqueue(smt_rq);
2793 continue;
2797 * Reschedule a lower priority task on the SMT sibling for
2798 * it to be put to sleep, or wake it up if it has been put to
2799 * sleep for priority reasons to see if it should run now.
2801 if (rt_task(p)) {
2802 if ((jiffies % DEF_TIMESLICE) >
2803 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2804 resched_task(smt_curr);
2805 } else {
2806 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2807 smt_slice(p, sd) > task_timeslice(smt_curr))
2808 resched_task(smt_curr);
2809 else
2810 wakeup_busy_runqueue(smt_rq);
2813 out_unlock:
2814 for_each_cpu_mask(i, sibling_map)
2815 spin_unlock(&cpu_rq(i)->lock);
2816 return ret;
2818 #else
2819 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2823 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2825 return 0;
2827 #endif
2829 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2831 void fastcall add_preempt_count(int val)
2834 * Underflow?
2836 BUG_ON((preempt_count() < 0));
2837 preempt_count() += val;
2839 * Spinlock count overflowing soon?
2841 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2843 EXPORT_SYMBOL(add_preempt_count);
2845 void fastcall sub_preempt_count(int val)
2848 * Underflow?
2850 BUG_ON(val > preempt_count());
2852 * Is the spinlock portion underflowing?
2854 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2855 preempt_count() -= val;
2857 EXPORT_SYMBOL(sub_preempt_count);
2859 #endif
2862 * schedule() is the main scheduler function.
2864 asmlinkage void __sched schedule(void)
2866 long *switch_count;
2867 task_t *prev, *next;
2868 runqueue_t *rq;
2869 prio_array_t *array;
2870 struct list_head *queue;
2871 unsigned long long now;
2872 unsigned long run_time;
2873 int cpu, idx, new_prio;
2876 * Test if we are atomic. Since do_exit() needs to call into
2877 * schedule() atomically, we ignore that path for now.
2878 * Otherwise, whine if we are scheduling when we should not be.
2880 if (likely(!current->exit_state)) {
2881 if (unlikely(in_atomic())) {
2882 printk(KERN_ERR "scheduling while atomic: "
2883 "%s/0x%08x/%d\n",
2884 current->comm, preempt_count(), current->pid);
2885 dump_stack();
2888 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2890 need_resched:
2891 preempt_disable();
2892 prev = current;
2893 release_kernel_lock(prev);
2894 need_resched_nonpreemptible:
2895 rq = this_rq();
2898 * The idle thread is not allowed to schedule!
2899 * Remove this check after it has been exercised a bit.
2901 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2902 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2903 dump_stack();
2906 schedstat_inc(rq, sched_cnt);
2907 now = sched_clock();
2908 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2909 run_time = now - prev->timestamp;
2910 if (unlikely((long long)(now - prev->timestamp) < 0))
2911 run_time = 0;
2912 } else
2913 run_time = NS_MAX_SLEEP_AVG;
2916 * Tasks charged proportionately less run_time at high sleep_avg to
2917 * delay them losing their interactive status
2919 run_time /= (CURRENT_BONUS(prev) ? : 1);
2921 spin_lock_irq(&rq->lock);
2923 if (unlikely(prev->flags & PF_DEAD))
2924 prev->state = EXIT_DEAD;
2926 switch_count = &prev->nivcsw;
2927 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2928 switch_count = &prev->nvcsw;
2929 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2930 unlikely(signal_pending(prev))))
2931 prev->state = TASK_RUNNING;
2932 else {
2933 if (prev->state == TASK_UNINTERRUPTIBLE)
2934 rq->nr_uninterruptible++;
2935 deactivate_task(prev, rq);
2939 cpu = smp_processor_id();
2940 if (unlikely(!rq->nr_running)) {
2941 go_idle:
2942 idle_balance(cpu, rq);
2943 if (!rq->nr_running) {
2944 next = rq->idle;
2945 rq->expired_timestamp = 0;
2946 wake_sleeping_dependent(cpu, rq);
2948 * wake_sleeping_dependent() might have released
2949 * the runqueue, so break out if we got new
2950 * tasks meanwhile:
2952 if (!rq->nr_running)
2953 goto switch_tasks;
2955 } else {
2956 if (dependent_sleeper(cpu, rq)) {
2957 next = rq->idle;
2958 goto switch_tasks;
2961 * dependent_sleeper() releases and reacquires the runqueue
2962 * lock, hence go into the idle loop if the rq went
2963 * empty meanwhile:
2965 if (unlikely(!rq->nr_running))
2966 goto go_idle;
2969 array = rq->active;
2970 if (unlikely(!array->nr_active)) {
2972 * Switch the active and expired arrays.
2974 schedstat_inc(rq, sched_switch);
2975 rq->active = rq->expired;
2976 rq->expired = array;
2977 array = rq->active;
2978 rq->expired_timestamp = 0;
2979 rq->best_expired_prio = MAX_PRIO;
2982 idx = sched_find_first_bit(array->bitmap);
2983 queue = array->queue + idx;
2984 next = list_entry(queue->next, task_t, run_list);
2986 if (!rt_task(next) && next->activated > 0) {
2987 unsigned long long delta = now - next->timestamp;
2988 if (unlikely((long long)(now - next->timestamp) < 0))
2989 delta = 0;
2991 if (next->activated == 1)
2992 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2994 array = next->array;
2995 new_prio = recalc_task_prio(next, next->timestamp + delta);
2997 if (unlikely(next->prio != new_prio)) {
2998 dequeue_task(next, array);
2999 next->prio = new_prio;
3000 enqueue_task(next, array);
3001 } else
3002 requeue_task(next, array);
3004 next->activated = 0;
3005 switch_tasks:
3006 if (next == rq->idle)
3007 schedstat_inc(rq, sched_goidle);
3008 prefetch(next);
3009 prefetch_stack(next);
3010 clear_tsk_need_resched(prev);
3011 rcu_qsctr_inc(task_cpu(prev));
3013 update_cpu_clock(prev, rq, now);
3015 prev->sleep_avg -= run_time;
3016 if ((long)prev->sleep_avg <= 0)
3017 prev->sleep_avg = 0;
3018 prev->timestamp = prev->last_ran = now;
3020 sched_info_switch(prev, next);
3021 if (likely(prev != next)) {
3022 next->timestamp = now;
3023 rq->nr_switches++;
3024 rq->curr = next;
3025 ++*switch_count;
3027 prepare_task_switch(rq, next);
3028 prev = context_switch(rq, prev, next);
3029 barrier();
3031 * this_rq must be evaluated again because prev may have moved
3032 * CPUs since it called schedule(), thus the 'rq' on its stack
3033 * frame will be invalid.
3035 finish_task_switch(this_rq(), prev);
3036 } else
3037 spin_unlock_irq(&rq->lock);
3039 prev = current;
3040 if (unlikely(reacquire_kernel_lock(prev) < 0))
3041 goto need_resched_nonpreemptible;
3042 preempt_enable_no_resched();
3043 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3044 goto need_resched;
3047 EXPORT_SYMBOL(schedule);
3049 #ifdef CONFIG_PREEMPT
3051 * this is is the entry point to schedule() from in-kernel preemption
3052 * off of preempt_enable. Kernel preemptions off return from interrupt
3053 * occur there and call schedule directly.
3055 asmlinkage void __sched preempt_schedule(void)
3057 struct thread_info *ti = current_thread_info();
3058 #ifdef CONFIG_PREEMPT_BKL
3059 struct task_struct *task = current;
3060 int saved_lock_depth;
3061 #endif
3063 * If there is a non-zero preempt_count or interrupts are disabled,
3064 * we do not want to preempt the current task. Just return..
3066 if (unlikely(ti->preempt_count || irqs_disabled()))
3067 return;
3069 need_resched:
3070 add_preempt_count(PREEMPT_ACTIVE);
3072 * We keep the big kernel semaphore locked, but we
3073 * clear ->lock_depth so that schedule() doesnt
3074 * auto-release the semaphore:
3076 #ifdef CONFIG_PREEMPT_BKL
3077 saved_lock_depth = task->lock_depth;
3078 task->lock_depth = -1;
3079 #endif
3080 schedule();
3081 #ifdef CONFIG_PREEMPT_BKL
3082 task->lock_depth = saved_lock_depth;
3083 #endif
3084 sub_preempt_count(PREEMPT_ACTIVE);
3086 /* we could miss a preemption opportunity between schedule and now */
3087 barrier();
3088 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3089 goto need_resched;
3092 EXPORT_SYMBOL(preempt_schedule);
3095 * this is is the entry point to schedule() from kernel preemption
3096 * off of irq context.
3097 * Note, that this is called and return with irqs disabled. This will
3098 * protect us against recursive calling from irq.
3100 asmlinkage void __sched preempt_schedule_irq(void)
3102 struct thread_info *ti = current_thread_info();
3103 #ifdef CONFIG_PREEMPT_BKL
3104 struct task_struct *task = current;
3105 int saved_lock_depth;
3106 #endif
3107 /* Catch callers which need to be fixed*/
3108 BUG_ON(ti->preempt_count || !irqs_disabled());
3110 need_resched:
3111 add_preempt_count(PREEMPT_ACTIVE);
3113 * We keep the big kernel semaphore locked, but we
3114 * clear ->lock_depth so that schedule() doesnt
3115 * auto-release the semaphore:
3117 #ifdef CONFIG_PREEMPT_BKL
3118 saved_lock_depth = task->lock_depth;
3119 task->lock_depth = -1;
3120 #endif
3121 local_irq_enable();
3122 schedule();
3123 local_irq_disable();
3124 #ifdef CONFIG_PREEMPT_BKL
3125 task->lock_depth = saved_lock_depth;
3126 #endif
3127 sub_preempt_count(PREEMPT_ACTIVE);
3129 /* we could miss a preemption opportunity between schedule and now */
3130 barrier();
3131 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3132 goto need_resched;
3135 #endif /* CONFIG_PREEMPT */
3137 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3138 void *key)
3140 task_t *p = curr->private;
3141 return try_to_wake_up(p, mode, sync);
3144 EXPORT_SYMBOL(default_wake_function);
3147 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3148 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3149 * number) then we wake all the non-exclusive tasks and one exclusive task.
3151 * There are circumstances in which we can try to wake a task which has already
3152 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3153 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3155 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3156 int nr_exclusive, int sync, void *key)
3158 struct list_head *tmp, *next;
3160 list_for_each_safe(tmp, next, &q->task_list) {
3161 wait_queue_t *curr;
3162 unsigned flags;
3163 curr = list_entry(tmp, wait_queue_t, task_list);
3164 flags = curr->flags;
3165 if (curr->func(curr, mode, sync, key) &&
3166 (flags & WQ_FLAG_EXCLUSIVE) &&
3167 !--nr_exclusive)
3168 break;
3173 * __wake_up - wake up threads blocked on a waitqueue.
3174 * @q: the waitqueue
3175 * @mode: which threads
3176 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3177 * @key: is directly passed to the wakeup function
3179 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3180 int nr_exclusive, void *key)
3182 unsigned long flags;
3184 spin_lock_irqsave(&q->lock, flags);
3185 __wake_up_common(q, mode, nr_exclusive, 0, key);
3186 spin_unlock_irqrestore(&q->lock, flags);
3189 EXPORT_SYMBOL(__wake_up);
3192 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3194 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3196 __wake_up_common(q, mode, 1, 0, NULL);
3200 * __wake_up_sync - wake up threads blocked on a waitqueue.
3201 * @q: the waitqueue
3202 * @mode: which threads
3203 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3205 * The sync wakeup differs that the waker knows that it will schedule
3206 * away soon, so while the target thread will be woken up, it will not
3207 * be migrated to another CPU - ie. the two threads are 'synchronized'
3208 * with each other. This can prevent needless bouncing between CPUs.
3210 * On UP it can prevent extra preemption.
3212 void fastcall
3213 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3215 unsigned long flags;
3216 int sync = 1;
3218 if (unlikely(!q))
3219 return;
3221 if (unlikely(!nr_exclusive))
3222 sync = 0;
3224 spin_lock_irqsave(&q->lock, flags);
3225 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3226 spin_unlock_irqrestore(&q->lock, flags);
3228 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3230 void fastcall complete(struct completion *x)
3232 unsigned long flags;
3234 spin_lock_irqsave(&x->wait.lock, flags);
3235 x->done++;
3236 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3237 1, 0, NULL);
3238 spin_unlock_irqrestore(&x->wait.lock, flags);
3240 EXPORT_SYMBOL(complete);
3242 void fastcall complete_all(struct completion *x)
3244 unsigned long flags;
3246 spin_lock_irqsave(&x->wait.lock, flags);
3247 x->done += UINT_MAX/2;
3248 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3249 0, 0, NULL);
3250 spin_unlock_irqrestore(&x->wait.lock, flags);
3252 EXPORT_SYMBOL(complete_all);
3254 void fastcall __sched wait_for_completion(struct completion *x)
3256 might_sleep();
3257 spin_lock_irq(&x->wait.lock);
3258 if (!x->done) {
3259 DECLARE_WAITQUEUE(wait, current);
3261 wait.flags |= WQ_FLAG_EXCLUSIVE;
3262 __add_wait_queue_tail(&x->wait, &wait);
3263 do {
3264 __set_current_state(TASK_UNINTERRUPTIBLE);
3265 spin_unlock_irq(&x->wait.lock);
3266 schedule();
3267 spin_lock_irq(&x->wait.lock);
3268 } while (!x->done);
3269 __remove_wait_queue(&x->wait, &wait);
3271 x->done--;
3272 spin_unlock_irq(&x->wait.lock);
3274 EXPORT_SYMBOL(wait_for_completion);
3276 unsigned long fastcall __sched
3277 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3279 might_sleep();
3281 spin_lock_irq(&x->wait.lock);
3282 if (!x->done) {
3283 DECLARE_WAITQUEUE(wait, current);
3285 wait.flags |= WQ_FLAG_EXCLUSIVE;
3286 __add_wait_queue_tail(&x->wait, &wait);
3287 do {
3288 __set_current_state(TASK_UNINTERRUPTIBLE);
3289 spin_unlock_irq(&x->wait.lock);
3290 timeout = schedule_timeout(timeout);
3291 spin_lock_irq(&x->wait.lock);
3292 if (!timeout) {
3293 __remove_wait_queue(&x->wait, &wait);
3294 goto out;
3296 } while (!x->done);
3297 __remove_wait_queue(&x->wait, &wait);
3299 x->done--;
3300 out:
3301 spin_unlock_irq(&x->wait.lock);
3302 return timeout;
3304 EXPORT_SYMBOL(wait_for_completion_timeout);
3306 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3308 int ret = 0;
3310 might_sleep();
3312 spin_lock_irq(&x->wait.lock);
3313 if (!x->done) {
3314 DECLARE_WAITQUEUE(wait, current);
3316 wait.flags |= WQ_FLAG_EXCLUSIVE;
3317 __add_wait_queue_tail(&x->wait, &wait);
3318 do {
3319 if (signal_pending(current)) {
3320 ret = -ERESTARTSYS;
3321 __remove_wait_queue(&x->wait, &wait);
3322 goto out;
3324 __set_current_state(TASK_INTERRUPTIBLE);
3325 spin_unlock_irq(&x->wait.lock);
3326 schedule();
3327 spin_lock_irq(&x->wait.lock);
3328 } while (!x->done);
3329 __remove_wait_queue(&x->wait, &wait);
3331 x->done--;
3332 out:
3333 spin_unlock_irq(&x->wait.lock);
3335 return ret;
3337 EXPORT_SYMBOL(wait_for_completion_interruptible);
3339 unsigned long fastcall __sched
3340 wait_for_completion_interruptible_timeout(struct completion *x,
3341 unsigned long timeout)
3343 might_sleep();
3345 spin_lock_irq(&x->wait.lock);
3346 if (!x->done) {
3347 DECLARE_WAITQUEUE(wait, current);
3349 wait.flags |= WQ_FLAG_EXCLUSIVE;
3350 __add_wait_queue_tail(&x->wait, &wait);
3351 do {
3352 if (signal_pending(current)) {
3353 timeout = -ERESTARTSYS;
3354 __remove_wait_queue(&x->wait, &wait);
3355 goto out;
3357 __set_current_state(TASK_INTERRUPTIBLE);
3358 spin_unlock_irq(&x->wait.lock);
3359 timeout = schedule_timeout(timeout);
3360 spin_lock_irq(&x->wait.lock);
3361 if (!timeout) {
3362 __remove_wait_queue(&x->wait, &wait);
3363 goto out;
3365 } while (!x->done);
3366 __remove_wait_queue(&x->wait, &wait);
3368 x->done--;
3369 out:
3370 spin_unlock_irq(&x->wait.lock);
3371 return timeout;
3373 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3376 #define SLEEP_ON_VAR \
3377 unsigned long flags; \
3378 wait_queue_t wait; \
3379 init_waitqueue_entry(&wait, current);
3381 #define SLEEP_ON_HEAD \
3382 spin_lock_irqsave(&q->lock,flags); \
3383 __add_wait_queue(q, &wait); \
3384 spin_unlock(&q->lock);
3386 #define SLEEP_ON_TAIL \
3387 spin_lock_irq(&q->lock); \
3388 __remove_wait_queue(q, &wait); \
3389 spin_unlock_irqrestore(&q->lock, flags);
3391 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3393 SLEEP_ON_VAR
3395 current->state = TASK_INTERRUPTIBLE;
3397 SLEEP_ON_HEAD
3398 schedule();
3399 SLEEP_ON_TAIL
3402 EXPORT_SYMBOL(interruptible_sleep_on);
3404 long fastcall __sched
3405 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3407 SLEEP_ON_VAR
3409 current->state = TASK_INTERRUPTIBLE;
3411 SLEEP_ON_HEAD
3412 timeout = schedule_timeout(timeout);
3413 SLEEP_ON_TAIL
3415 return timeout;
3418 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3420 void fastcall __sched sleep_on(wait_queue_head_t *q)
3422 SLEEP_ON_VAR
3424 current->state = TASK_UNINTERRUPTIBLE;
3426 SLEEP_ON_HEAD
3427 schedule();
3428 SLEEP_ON_TAIL
3431 EXPORT_SYMBOL(sleep_on);
3433 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3435 SLEEP_ON_VAR
3437 current->state = TASK_UNINTERRUPTIBLE;
3439 SLEEP_ON_HEAD
3440 timeout = schedule_timeout(timeout);
3441 SLEEP_ON_TAIL
3443 return timeout;
3446 EXPORT_SYMBOL(sleep_on_timeout);
3448 void set_user_nice(task_t *p, long nice)
3450 unsigned long flags;
3451 prio_array_t *array;
3452 runqueue_t *rq;
3453 int old_prio, new_prio, delta;
3455 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3456 return;
3458 * We have to be careful, if called from sys_setpriority(),
3459 * the task might be in the middle of scheduling on another CPU.
3461 rq = task_rq_lock(p, &flags);
3463 * The RT priorities are set via sched_setscheduler(), but we still
3464 * allow the 'normal' nice value to be set - but as expected
3465 * it wont have any effect on scheduling until the task is
3466 * not SCHED_NORMAL/SCHED_BATCH:
3468 if (rt_task(p)) {
3469 p->static_prio = NICE_TO_PRIO(nice);
3470 goto out_unlock;
3472 array = p->array;
3473 if (array)
3474 dequeue_task(p, array);
3476 old_prio = p->prio;
3477 new_prio = NICE_TO_PRIO(nice);
3478 delta = new_prio - old_prio;
3479 p->static_prio = NICE_TO_PRIO(nice);
3480 p->prio += delta;
3482 if (array) {
3483 enqueue_task(p, array);
3485 * If the task increased its priority or is running and
3486 * lowered its priority, then reschedule its CPU:
3488 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3489 resched_task(rq->curr);
3491 out_unlock:
3492 task_rq_unlock(rq, &flags);
3495 EXPORT_SYMBOL(set_user_nice);
3498 * can_nice - check if a task can reduce its nice value
3499 * @p: task
3500 * @nice: nice value
3502 int can_nice(const task_t *p, const int nice)
3504 /* convert nice value [19,-20] to rlimit style value [1,40] */
3505 int nice_rlim = 20 - nice;
3506 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3507 capable(CAP_SYS_NICE));
3510 #ifdef __ARCH_WANT_SYS_NICE
3513 * sys_nice - change the priority of the current process.
3514 * @increment: priority increment
3516 * sys_setpriority is a more generic, but much slower function that
3517 * does similar things.
3519 asmlinkage long sys_nice(int increment)
3521 int retval;
3522 long nice;
3525 * Setpriority might change our priority at the same moment.
3526 * We don't have to worry. Conceptually one call occurs first
3527 * and we have a single winner.
3529 if (increment < -40)
3530 increment = -40;
3531 if (increment > 40)
3532 increment = 40;
3534 nice = PRIO_TO_NICE(current->static_prio) + increment;
3535 if (nice < -20)
3536 nice = -20;
3537 if (nice > 19)
3538 nice = 19;
3540 if (increment < 0 && !can_nice(current, nice))
3541 return -EPERM;
3543 retval = security_task_setnice(current, nice);
3544 if (retval)
3545 return retval;
3547 set_user_nice(current, nice);
3548 return 0;
3551 #endif
3554 * task_prio - return the priority value of a given task.
3555 * @p: the task in question.
3557 * This is the priority value as seen by users in /proc.
3558 * RT tasks are offset by -200. Normal tasks are centered
3559 * around 0, value goes from -16 to +15.
3561 int task_prio(const task_t *p)
3563 return p->prio - MAX_RT_PRIO;
3567 * task_nice - return the nice value of a given task.
3568 * @p: the task in question.
3570 int task_nice(const task_t *p)
3572 return TASK_NICE(p);
3574 EXPORT_SYMBOL_GPL(task_nice);
3577 * idle_cpu - is a given cpu idle currently?
3578 * @cpu: the processor in question.
3580 int idle_cpu(int cpu)
3582 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3586 * idle_task - return the idle task for a given cpu.
3587 * @cpu: the processor in question.
3589 task_t *idle_task(int cpu)
3591 return cpu_rq(cpu)->idle;
3595 * find_process_by_pid - find a process with a matching PID value.
3596 * @pid: the pid in question.
3598 static inline task_t *find_process_by_pid(pid_t pid)
3600 return pid ? find_task_by_pid(pid) : current;
3603 /* Actually do priority change: must hold rq lock. */
3604 static void __setscheduler(struct task_struct *p, int policy, int prio)
3606 BUG_ON(p->array);
3607 p->policy = policy;
3608 p->rt_priority = prio;
3609 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3610 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3611 } else {
3612 p->prio = p->static_prio;
3614 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3616 if (policy == SCHED_BATCH)
3617 p->sleep_avg = 0;
3622 * sched_setscheduler - change the scheduling policy and/or RT priority of
3623 * a thread.
3624 * @p: the task in question.
3625 * @policy: new policy.
3626 * @param: structure containing the new RT priority.
3628 int sched_setscheduler(struct task_struct *p, int policy,
3629 struct sched_param *param)
3631 int retval;
3632 int oldprio, oldpolicy = -1;
3633 prio_array_t *array;
3634 unsigned long flags;
3635 runqueue_t *rq;
3637 recheck:
3638 /* double check policy once rq lock held */
3639 if (policy < 0)
3640 policy = oldpolicy = p->policy;
3641 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3642 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3643 return -EINVAL;
3645 * Valid priorities for SCHED_FIFO and SCHED_RR are
3646 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3647 * SCHED_BATCH is 0.
3649 if (param->sched_priority < 0 ||
3650 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3651 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3652 return -EINVAL;
3653 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3654 != (param->sched_priority == 0))
3655 return -EINVAL;
3658 * Allow unprivileged RT tasks to decrease priority:
3660 if (!capable(CAP_SYS_NICE)) {
3662 * can't change policy, except between SCHED_NORMAL
3663 * and SCHED_BATCH:
3665 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3666 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3667 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3668 return -EPERM;
3669 /* can't increase priority */
3670 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3671 param->sched_priority > p->rt_priority &&
3672 param->sched_priority >
3673 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3674 return -EPERM;
3675 /* can't change other user's priorities */
3676 if ((current->euid != p->euid) &&
3677 (current->euid != p->uid))
3678 return -EPERM;
3681 retval = security_task_setscheduler(p, policy, param);
3682 if (retval)
3683 return retval;
3685 * To be able to change p->policy safely, the apropriate
3686 * runqueue lock must be held.
3688 rq = task_rq_lock(p, &flags);
3689 /* recheck policy now with rq lock held */
3690 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3691 policy = oldpolicy = -1;
3692 task_rq_unlock(rq, &flags);
3693 goto recheck;
3695 array = p->array;
3696 if (array)
3697 deactivate_task(p, rq);
3698 oldprio = p->prio;
3699 __setscheduler(p, policy, param->sched_priority);
3700 if (array) {
3701 __activate_task(p, rq);
3703 * Reschedule if we are currently running on this runqueue and
3704 * our priority decreased, or if we are not currently running on
3705 * this runqueue and our priority is higher than the current's
3707 if (task_running(rq, p)) {
3708 if (p->prio > oldprio)
3709 resched_task(rq->curr);
3710 } else if (TASK_PREEMPTS_CURR(p, rq))
3711 resched_task(rq->curr);
3713 task_rq_unlock(rq, &flags);
3714 return 0;
3716 EXPORT_SYMBOL_GPL(sched_setscheduler);
3718 static int
3719 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3721 int retval;
3722 struct sched_param lparam;
3723 struct task_struct *p;
3725 if (!param || pid < 0)
3726 return -EINVAL;
3727 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3728 return -EFAULT;
3729 read_lock_irq(&tasklist_lock);
3730 p = find_process_by_pid(pid);
3731 if (!p) {
3732 read_unlock_irq(&tasklist_lock);
3733 return -ESRCH;
3735 retval = sched_setscheduler(p, policy, &lparam);
3736 read_unlock_irq(&tasklist_lock);
3737 return retval;
3741 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3742 * @pid: the pid in question.
3743 * @policy: new policy.
3744 * @param: structure containing the new RT priority.
3746 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3747 struct sched_param __user *param)
3749 /* negative values for policy are not valid */
3750 if (policy < 0)
3751 return -EINVAL;
3753 return do_sched_setscheduler(pid, policy, param);
3757 * sys_sched_setparam - set/change the RT priority of a thread
3758 * @pid: the pid in question.
3759 * @param: structure containing the new RT priority.
3761 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3763 return do_sched_setscheduler(pid, -1, param);
3767 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3768 * @pid: the pid in question.
3770 asmlinkage long sys_sched_getscheduler(pid_t pid)
3772 int retval = -EINVAL;
3773 task_t *p;
3775 if (pid < 0)
3776 goto out_nounlock;
3778 retval = -ESRCH;
3779 read_lock(&tasklist_lock);
3780 p = find_process_by_pid(pid);
3781 if (p) {
3782 retval = security_task_getscheduler(p);
3783 if (!retval)
3784 retval = p->policy;
3786 read_unlock(&tasklist_lock);
3788 out_nounlock:
3789 return retval;
3793 * sys_sched_getscheduler - get the RT priority of a thread
3794 * @pid: the pid in question.
3795 * @param: structure containing the RT priority.
3797 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3799 struct sched_param lp;
3800 int retval = -EINVAL;
3801 task_t *p;
3803 if (!param || pid < 0)
3804 goto out_nounlock;
3806 read_lock(&tasklist_lock);
3807 p = find_process_by_pid(pid);
3808 retval = -ESRCH;
3809 if (!p)
3810 goto out_unlock;
3812 retval = security_task_getscheduler(p);
3813 if (retval)
3814 goto out_unlock;
3816 lp.sched_priority = p->rt_priority;
3817 read_unlock(&tasklist_lock);
3820 * This one might sleep, we cannot do it with a spinlock held ...
3822 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3824 out_nounlock:
3825 return retval;
3827 out_unlock:
3828 read_unlock(&tasklist_lock);
3829 return retval;
3832 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3834 task_t *p;
3835 int retval;
3836 cpumask_t cpus_allowed;
3838 lock_cpu_hotplug();
3839 read_lock(&tasklist_lock);
3841 p = find_process_by_pid(pid);
3842 if (!p) {
3843 read_unlock(&tasklist_lock);
3844 unlock_cpu_hotplug();
3845 return -ESRCH;
3849 * It is not safe to call set_cpus_allowed with the
3850 * tasklist_lock held. We will bump the task_struct's
3851 * usage count and then drop tasklist_lock.
3853 get_task_struct(p);
3854 read_unlock(&tasklist_lock);
3856 retval = -EPERM;
3857 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3858 !capable(CAP_SYS_NICE))
3859 goto out_unlock;
3861 cpus_allowed = cpuset_cpus_allowed(p);
3862 cpus_and(new_mask, new_mask, cpus_allowed);
3863 retval = set_cpus_allowed(p, new_mask);
3865 out_unlock:
3866 put_task_struct(p);
3867 unlock_cpu_hotplug();
3868 return retval;
3871 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3872 cpumask_t *new_mask)
3874 if (len < sizeof(cpumask_t)) {
3875 memset(new_mask, 0, sizeof(cpumask_t));
3876 } else if (len > sizeof(cpumask_t)) {
3877 len = sizeof(cpumask_t);
3879 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3883 * sys_sched_setaffinity - set the cpu affinity of a process
3884 * @pid: pid of the process
3885 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3886 * @user_mask_ptr: user-space pointer to the new cpu mask
3888 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3889 unsigned long __user *user_mask_ptr)
3891 cpumask_t new_mask;
3892 int retval;
3894 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3895 if (retval)
3896 return retval;
3898 return sched_setaffinity(pid, new_mask);
3902 * Represents all cpu's present in the system
3903 * In systems capable of hotplug, this map could dynamically grow
3904 * as new cpu's are detected in the system via any platform specific
3905 * method, such as ACPI for e.g.
3908 cpumask_t cpu_present_map __read_mostly;
3909 EXPORT_SYMBOL(cpu_present_map);
3911 #ifndef CONFIG_SMP
3912 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3913 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3914 #endif
3916 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3918 int retval;
3919 task_t *p;
3921 lock_cpu_hotplug();
3922 read_lock(&tasklist_lock);
3924 retval = -ESRCH;
3925 p = find_process_by_pid(pid);
3926 if (!p)
3927 goto out_unlock;
3929 retval = 0;
3930 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3932 out_unlock:
3933 read_unlock(&tasklist_lock);
3934 unlock_cpu_hotplug();
3935 if (retval)
3936 return retval;
3938 return 0;
3942 * sys_sched_getaffinity - get the cpu affinity of a process
3943 * @pid: pid of the process
3944 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3945 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3947 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3948 unsigned long __user *user_mask_ptr)
3950 int ret;
3951 cpumask_t mask;
3953 if (len < sizeof(cpumask_t))
3954 return -EINVAL;
3956 ret = sched_getaffinity(pid, &mask);
3957 if (ret < 0)
3958 return ret;
3960 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3961 return -EFAULT;
3963 return sizeof(cpumask_t);
3967 * sys_sched_yield - yield the current processor to other threads.
3969 * this function yields the current CPU by moving the calling thread
3970 * to the expired array. If there are no other threads running on this
3971 * CPU then this function will return.
3973 asmlinkage long sys_sched_yield(void)
3975 runqueue_t *rq = this_rq_lock();
3976 prio_array_t *array = current->array;
3977 prio_array_t *target = rq->expired;
3979 schedstat_inc(rq, yld_cnt);
3981 * We implement yielding by moving the task into the expired
3982 * queue.
3984 * (special rule: RT tasks will just roundrobin in the active
3985 * array.)
3987 if (rt_task(current))
3988 target = rq->active;
3990 if (array->nr_active == 1) {
3991 schedstat_inc(rq, yld_act_empty);
3992 if (!rq->expired->nr_active)
3993 schedstat_inc(rq, yld_both_empty);
3994 } else if (!rq->expired->nr_active)
3995 schedstat_inc(rq, yld_exp_empty);
3997 if (array != target) {
3998 dequeue_task(current, array);
3999 enqueue_task(current, target);
4000 } else
4002 * requeue_task is cheaper so perform that if possible.
4004 requeue_task(current, array);
4007 * Since we are going to call schedule() anyway, there's
4008 * no need to preempt or enable interrupts:
4010 __release(rq->lock);
4011 _raw_spin_unlock(&rq->lock);
4012 preempt_enable_no_resched();
4014 schedule();
4016 return 0;
4019 static inline void __cond_resched(void)
4022 * The BKS might be reacquired before we have dropped
4023 * PREEMPT_ACTIVE, which could trigger a second
4024 * cond_resched() call.
4026 if (unlikely(preempt_count()))
4027 return;
4028 if (unlikely(system_state != SYSTEM_RUNNING))
4029 return;
4030 do {
4031 add_preempt_count(PREEMPT_ACTIVE);
4032 schedule();
4033 sub_preempt_count(PREEMPT_ACTIVE);
4034 } while (need_resched());
4037 int __sched cond_resched(void)
4039 if (need_resched()) {
4040 __cond_resched();
4041 return 1;
4043 return 0;
4046 EXPORT_SYMBOL(cond_resched);
4049 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4050 * call schedule, and on return reacquire the lock.
4052 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4053 * operations here to prevent schedule() from being called twice (once via
4054 * spin_unlock(), once by hand).
4056 int cond_resched_lock(spinlock_t *lock)
4058 int ret = 0;
4060 if (need_lockbreak(lock)) {
4061 spin_unlock(lock);
4062 cpu_relax();
4063 ret = 1;
4064 spin_lock(lock);
4066 if (need_resched()) {
4067 _raw_spin_unlock(lock);
4068 preempt_enable_no_resched();
4069 __cond_resched();
4070 ret = 1;
4071 spin_lock(lock);
4073 return ret;
4076 EXPORT_SYMBOL(cond_resched_lock);
4078 int __sched cond_resched_softirq(void)
4080 BUG_ON(!in_softirq());
4082 if (need_resched()) {
4083 __local_bh_enable();
4084 __cond_resched();
4085 local_bh_disable();
4086 return 1;
4088 return 0;
4091 EXPORT_SYMBOL(cond_resched_softirq);
4095 * yield - yield the current processor to other threads.
4097 * this is a shortcut for kernel-space yielding - it marks the
4098 * thread runnable and calls sys_sched_yield().
4100 void __sched yield(void)
4102 set_current_state(TASK_RUNNING);
4103 sys_sched_yield();
4106 EXPORT_SYMBOL(yield);
4109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4110 * that process accounting knows that this is a task in IO wait state.
4112 * But don't do that if it is a deliberate, throttling IO wait (this task
4113 * has set its backing_dev_info: the queue against which it should throttle)
4115 void __sched io_schedule(void)
4117 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4119 atomic_inc(&rq->nr_iowait);
4120 schedule();
4121 atomic_dec(&rq->nr_iowait);
4124 EXPORT_SYMBOL(io_schedule);
4126 long __sched io_schedule_timeout(long timeout)
4128 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4129 long ret;
4131 atomic_inc(&rq->nr_iowait);
4132 ret = schedule_timeout(timeout);
4133 atomic_dec(&rq->nr_iowait);
4134 return ret;
4138 * sys_sched_get_priority_max - return maximum RT priority.
4139 * @policy: scheduling class.
4141 * this syscall returns the maximum rt_priority that can be used
4142 * by a given scheduling class.
4144 asmlinkage long sys_sched_get_priority_max(int policy)
4146 int ret = -EINVAL;
4148 switch (policy) {
4149 case SCHED_FIFO:
4150 case SCHED_RR:
4151 ret = MAX_USER_RT_PRIO-1;
4152 break;
4153 case SCHED_NORMAL:
4154 case SCHED_BATCH:
4155 ret = 0;
4156 break;
4158 return ret;
4162 * sys_sched_get_priority_min - return minimum RT priority.
4163 * @policy: scheduling class.
4165 * this syscall returns the minimum rt_priority that can be used
4166 * by a given scheduling class.
4168 asmlinkage long sys_sched_get_priority_min(int policy)
4170 int ret = -EINVAL;
4172 switch (policy) {
4173 case SCHED_FIFO:
4174 case SCHED_RR:
4175 ret = 1;
4176 break;
4177 case SCHED_NORMAL:
4178 case SCHED_BATCH:
4179 ret = 0;
4181 return ret;
4185 * sys_sched_rr_get_interval - return the default timeslice of a process.
4186 * @pid: pid of the process.
4187 * @interval: userspace pointer to the timeslice value.
4189 * this syscall writes the default timeslice value of a given process
4190 * into the user-space timespec buffer. A value of '0' means infinity.
4192 asmlinkage
4193 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4195 int retval = -EINVAL;
4196 struct timespec t;
4197 task_t *p;
4199 if (pid < 0)
4200 goto out_nounlock;
4202 retval = -ESRCH;
4203 read_lock(&tasklist_lock);
4204 p = find_process_by_pid(pid);
4205 if (!p)
4206 goto out_unlock;
4208 retval = security_task_getscheduler(p);
4209 if (retval)
4210 goto out_unlock;
4212 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4213 0 : task_timeslice(p), &t);
4214 read_unlock(&tasklist_lock);
4215 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4216 out_nounlock:
4217 return retval;
4218 out_unlock:
4219 read_unlock(&tasklist_lock);
4220 return retval;
4223 static inline struct task_struct *eldest_child(struct task_struct *p)
4225 if (list_empty(&p->children)) return NULL;
4226 return list_entry(p->children.next,struct task_struct,sibling);
4229 static inline struct task_struct *older_sibling(struct task_struct *p)
4231 if (p->sibling.prev==&p->parent->children) return NULL;
4232 return list_entry(p->sibling.prev,struct task_struct,sibling);
4235 static inline struct task_struct *younger_sibling(struct task_struct *p)
4237 if (p->sibling.next==&p->parent->children) return NULL;
4238 return list_entry(p->sibling.next,struct task_struct,sibling);
4241 static void show_task(task_t *p)
4243 task_t *relative;
4244 unsigned state;
4245 unsigned long free = 0;
4246 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4248 printk("%-13.13s ", p->comm);
4249 state = p->state ? __ffs(p->state) + 1 : 0;
4250 if (state < ARRAY_SIZE(stat_nam))
4251 printk(stat_nam[state]);
4252 else
4253 printk("?");
4254 #if (BITS_PER_LONG == 32)
4255 if (state == TASK_RUNNING)
4256 printk(" running ");
4257 else
4258 printk(" %08lX ", thread_saved_pc(p));
4259 #else
4260 if (state == TASK_RUNNING)
4261 printk(" running task ");
4262 else
4263 printk(" %016lx ", thread_saved_pc(p));
4264 #endif
4265 #ifdef CONFIG_DEBUG_STACK_USAGE
4267 unsigned long *n = end_of_stack(p);
4268 while (!*n)
4269 n++;
4270 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4272 #endif
4273 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4274 if ((relative = eldest_child(p)))
4275 printk("%5d ", relative->pid);
4276 else
4277 printk(" ");
4278 if ((relative = younger_sibling(p)))
4279 printk("%7d", relative->pid);
4280 else
4281 printk(" ");
4282 if ((relative = older_sibling(p)))
4283 printk(" %5d", relative->pid);
4284 else
4285 printk(" ");
4286 if (!p->mm)
4287 printk(" (L-TLB)\n");
4288 else
4289 printk(" (NOTLB)\n");
4291 if (state != TASK_RUNNING)
4292 show_stack(p, NULL);
4295 void show_state(void)
4297 task_t *g, *p;
4299 #if (BITS_PER_LONG == 32)
4300 printk("\n"
4301 " sibling\n");
4302 printk(" task PC pid father child younger older\n");
4303 #else
4304 printk("\n"
4305 " sibling\n");
4306 printk(" task PC pid father child younger older\n");
4307 #endif
4308 read_lock(&tasklist_lock);
4309 do_each_thread(g, p) {
4311 * reset the NMI-timeout, listing all files on a slow
4312 * console might take alot of time:
4314 touch_nmi_watchdog();
4315 show_task(p);
4316 } while_each_thread(g, p);
4318 read_unlock(&tasklist_lock);
4319 mutex_debug_show_all_locks();
4323 * init_idle - set up an idle thread for a given CPU
4324 * @idle: task in question
4325 * @cpu: cpu the idle task belongs to
4327 * NOTE: this function does not set the idle thread's NEED_RESCHED
4328 * flag, to make booting more robust.
4330 void __devinit init_idle(task_t *idle, int cpu)
4332 runqueue_t *rq = cpu_rq(cpu);
4333 unsigned long flags;
4335 idle->timestamp = sched_clock();
4336 idle->sleep_avg = 0;
4337 idle->array = NULL;
4338 idle->prio = MAX_PRIO;
4339 idle->state = TASK_RUNNING;
4340 idle->cpus_allowed = cpumask_of_cpu(cpu);
4341 set_task_cpu(idle, cpu);
4343 spin_lock_irqsave(&rq->lock, flags);
4344 rq->curr = rq->idle = idle;
4345 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4346 idle->oncpu = 1;
4347 #endif
4348 spin_unlock_irqrestore(&rq->lock, flags);
4350 /* Set the preempt count _outside_ the spinlocks! */
4351 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4352 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4353 #else
4354 task_thread_info(idle)->preempt_count = 0;
4355 #endif
4359 * In a system that switches off the HZ timer nohz_cpu_mask
4360 * indicates which cpus entered this state. This is used
4361 * in the rcu update to wait only for active cpus. For system
4362 * which do not switch off the HZ timer nohz_cpu_mask should
4363 * always be CPU_MASK_NONE.
4365 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4367 #ifdef CONFIG_SMP
4369 * This is how migration works:
4371 * 1) we queue a migration_req_t structure in the source CPU's
4372 * runqueue and wake up that CPU's migration thread.
4373 * 2) we down() the locked semaphore => thread blocks.
4374 * 3) migration thread wakes up (implicitly it forces the migrated
4375 * thread off the CPU)
4376 * 4) it gets the migration request and checks whether the migrated
4377 * task is still in the wrong runqueue.
4378 * 5) if it's in the wrong runqueue then the migration thread removes
4379 * it and puts it into the right queue.
4380 * 6) migration thread up()s the semaphore.
4381 * 7) we wake up and the migration is done.
4385 * Change a given task's CPU affinity. Migrate the thread to a
4386 * proper CPU and schedule it away if the CPU it's executing on
4387 * is removed from the allowed bitmask.
4389 * NOTE: the caller must have a valid reference to the task, the
4390 * task must not exit() & deallocate itself prematurely. The
4391 * call is not atomic; no spinlocks may be held.
4393 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4395 unsigned long flags;
4396 int ret = 0;
4397 migration_req_t req;
4398 runqueue_t *rq;
4400 rq = task_rq_lock(p, &flags);
4401 if (!cpus_intersects(new_mask, cpu_online_map)) {
4402 ret = -EINVAL;
4403 goto out;
4406 p->cpus_allowed = new_mask;
4407 /* Can the task run on the task's current CPU? If so, we're done */
4408 if (cpu_isset(task_cpu(p), new_mask))
4409 goto out;
4411 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4412 /* Need help from migration thread: drop lock and wait. */
4413 task_rq_unlock(rq, &flags);
4414 wake_up_process(rq->migration_thread);
4415 wait_for_completion(&req.done);
4416 tlb_migrate_finish(p->mm);
4417 return 0;
4419 out:
4420 task_rq_unlock(rq, &flags);
4421 return ret;
4424 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4427 * Move (not current) task off this cpu, onto dest cpu. We're doing
4428 * this because either it can't run here any more (set_cpus_allowed()
4429 * away from this CPU, or CPU going down), or because we're
4430 * attempting to rebalance this task on exec (sched_exec).
4432 * So we race with normal scheduler movements, but that's OK, as long
4433 * as the task is no longer on this CPU.
4435 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4437 runqueue_t *rq_dest, *rq_src;
4439 if (unlikely(cpu_is_offline(dest_cpu)))
4440 return;
4442 rq_src = cpu_rq(src_cpu);
4443 rq_dest = cpu_rq(dest_cpu);
4445 double_rq_lock(rq_src, rq_dest);
4446 /* Already moved. */
4447 if (task_cpu(p) != src_cpu)
4448 goto out;
4449 /* Affinity changed (again). */
4450 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4451 goto out;
4453 set_task_cpu(p, dest_cpu);
4454 if (p->array) {
4456 * Sync timestamp with rq_dest's before activating.
4457 * The same thing could be achieved by doing this step
4458 * afterwards, and pretending it was a local activate.
4459 * This way is cleaner and logically correct.
4461 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4462 + rq_dest->timestamp_last_tick;
4463 deactivate_task(p, rq_src);
4464 activate_task(p, rq_dest, 0);
4465 if (TASK_PREEMPTS_CURR(p, rq_dest))
4466 resched_task(rq_dest->curr);
4469 out:
4470 double_rq_unlock(rq_src, rq_dest);
4474 * migration_thread - this is a highprio system thread that performs
4475 * thread migration by bumping thread off CPU then 'pushing' onto
4476 * another runqueue.
4478 static int migration_thread(void *data)
4480 runqueue_t *rq;
4481 int cpu = (long)data;
4483 rq = cpu_rq(cpu);
4484 BUG_ON(rq->migration_thread != current);
4486 set_current_state(TASK_INTERRUPTIBLE);
4487 while (!kthread_should_stop()) {
4488 struct list_head *head;
4489 migration_req_t *req;
4491 try_to_freeze();
4493 spin_lock_irq(&rq->lock);
4495 if (cpu_is_offline(cpu)) {
4496 spin_unlock_irq(&rq->lock);
4497 goto wait_to_die;
4500 if (rq->active_balance) {
4501 active_load_balance(rq, cpu);
4502 rq->active_balance = 0;
4505 head = &rq->migration_queue;
4507 if (list_empty(head)) {
4508 spin_unlock_irq(&rq->lock);
4509 schedule();
4510 set_current_state(TASK_INTERRUPTIBLE);
4511 continue;
4513 req = list_entry(head->next, migration_req_t, list);
4514 list_del_init(head->next);
4516 spin_unlock(&rq->lock);
4517 __migrate_task(req->task, cpu, req->dest_cpu);
4518 local_irq_enable();
4520 complete(&req->done);
4522 __set_current_state(TASK_RUNNING);
4523 return 0;
4525 wait_to_die:
4526 /* Wait for kthread_stop */
4527 set_current_state(TASK_INTERRUPTIBLE);
4528 while (!kthread_should_stop()) {
4529 schedule();
4530 set_current_state(TASK_INTERRUPTIBLE);
4532 __set_current_state(TASK_RUNNING);
4533 return 0;
4536 #ifdef CONFIG_HOTPLUG_CPU
4537 /* Figure out where task on dead CPU should go, use force if neccessary. */
4538 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4540 int dest_cpu;
4541 cpumask_t mask;
4543 /* On same node? */
4544 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4545 cpus_and(mask, mask, tsk->cpus_allowed);
4546 dest_cpu = any_online_cpu(mask);
4548 /* On any allowed CPU? */
4549 if (dest_cpu == NR_CPUS)
4550 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4552 /* No more Mr. Nice Guy. */
4553 if (dest_cpu == NR_CPUS) {
4554 cpus_setall(tsk->cpus_allowed);
4555 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4558 * Don't tell them about moving exiting tasks or
4559 * kernel threads (both mm NULL), since they never
4560 * leave kernel.
4562 if (tsk->mm && printk_ratelimit())
4563 printk(KERN_INFO "process %d (%s) no "
4564 "longer affine to cpu%d\n",
4565 tsk->pid, tsk->comm, dead_cpu);
4567 __migrate_task(tsk, dead_cpu, dest_cpu);
4571 * While a dead CPU has no uninterruptible tasks queued at this point,
4572 * it might still have a nonzero ->nr_uninterruptible counter, because
4573 * for performance reasons the counter is not stricly tracking tasks to
4574 * their home CPUs. So we just add the counter to another CPU's counter,
4575 * to keep the global sum constant after CPU-down:
4577 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4579 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4580 unsigned long flags;
4582 local_irq_save(flags);
4583 double_rq_lock(rq_src, rq_dest);
4584 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4585 rq_src->nr_uninterruptible = 0;
4586 double_rq_unlock(rq_src, rq_dest);
4587 local_irq_restore(flags);
4590 /* Run through task list and migrate tasks from the dead cpu. */
4591 static void migrate_live_tasks(int src_cpu)
4593 struct task_struct *tsk, *t;
4595 write_lock_irq(&tasklist_lock);
4597 do_each_thread(t, tsk) {
4598 if (tsk == current)
4599 continue;
4601 if (task_cpu(tsk) == src_cpu)
4602 move_task_off_dead_cpu(src_cpu, tsk);
4603 } while_each_thread(t, tsk);
4605 write_unlock_irq(&tasklist_lock);
4608 /* Schedules idle task to be the next runnable task on current CPU.
4609 * It does so by boosting its priority to highest possible and adding it to
4610 * the _front_ of runqueue. Used by CPU offline code.
4612 void sched_idle_next(void)
4614 int cpu = smp_processor_id();
4615 runqueue_t *rq = this_rq();
4616 struct task_struct *p = rq->idle;
4617 unsigned long flags;
4619 /* cpu has to be offline */
4620 BUG_ON(cpu_online(cpu));
4622 /* Strictly not necessary since rest of the CPUs are stopped by now
4623 * and interrupts disabled on current cpu.
4625 spin_lock_irqsave(&rq->lock, flags);
4627 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4628 /* Add idle task to _front_ of it's priority queue */
4629 __activate_idle_task(p, rq);
4631 spin_unlock_irqrestore(&rq->lock, flags);
4634 /* Ensures that the idle task is using init_mm right before its cpu goes
4635 * offline.
4637 void idle_task_exit(void)
4639 struct mm_struct *mm = current->active_mm;
4641 BUG_ON(cpu_online(smp_processor_id()));
4643 if (mm != &init_mm)
4644 switch_mm(mm, &init_mm, current);
4645 mmdrop(mm);
4648 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4650 struct runqueue *rq = cpu_rq(dead_cpu);
4652 /* Must be exiting, otherwise would be on tasklist. */
4653 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4655 /* Cannot have done final schedule yet: would have vanished. */
4656 BUG_ON(tsk->flags & PF_DEAD);
4658 get_task_struct(tsk);
4661 * Drop lock around migration; if someone else moves it,
4662 * that's OK. No task can be added to this CPU, so iteration is
4663 * fine.
4665 spin_unlock_irq(&rq->lock);
4666 move_task_off_dead_cpu(dead_cpu, tsk);
4667 spin_lock_irq(&rq->lock);
4669 put_task_struct(tsk);
4672 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4673 static void migrate_dead_tasks(unsigned int dead_cpu)
4675 unsigned arr, i;
4676 struct runqueue *rq = cpu_rq(dead_cpu);
4678 for (arr = 0; arr < 2; arr++) {
4679 for (i = 0; i < MAX_PRIO; i++) {
4680 struct list_head *list = &rq->arrays[arr].queue[i];
4681 while (!list_empty(list))
4682 migrate_dead(dead_cpu,
4683 list_entry(list->next, task_t,
4684 run_list));
4688 #endif /* CONFIG_HOTPLUG_CPU */
4691 * migration_call - callback that gets triggered when a CPU is added.
4692 * Here we can start up the necessary migration thread for the new CPU.
4694 static int migration_call(struct notifier_block *nfb, unsigned long action,
4695 void *hcpu)
4697 int cpu = (long)hcpu;
4698 struct task_struct *p;
4699 struct runqueue *rq;
4700 unsigned long flags;
4702 switch (action) {
4703 case CPU_UP_PREPARE:
4704 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4705 if (IS_ERR(p))
4706 return NOTIFY_BAD;
4707 p->flags |= PF_NOFREEZE;
4708 kthread_bind(p, cpu);
4709 /* Must be high prio: stop_machine expects to yield to it. */
4710 rq = task_rq_lock(p, &flags);
4711 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4712 task_rq_unlock(rq, &flags);
4713 cpu_rq(cpu)->migration_thread = p;
4714 break;
4715 case CPU_ONLINE:
4716 /* Strictly unneccessary, as first user will wake it. */
4717 wake_up_process(cpu_rq(cpu)->migration_thread);
4718 break;
4719 #ifdef CONFIG_HOTPLUG_CPU
4720 case CPU_UP_CANCELED:
4721 /* Unbind it from offline cpu so it can run. Fall thru. */
4722 kthread_bind(cpu_rq(cpu)->migration_thread,
4723 any_online_cpu(cpu_online_map));
4724 kthread_stop(cpu_rq(cpu)->migration_thread);
4725 cpu_rq(cpu)->migration_thread = NULL;
4726 break;
4727 case CPU_DEAD:
4728 migrate_live_tasks(cpu);
4729 rq = cpu_rq(cpu);
4730 kthread_stop(rq->migration_thread);
4731 rq->migration_thread = NULL;
4732 /* Idle task back to normal (off runqueue, low prio) */
4733 rq = task_rq_lock(rq->idle, &flags);
4734 deactivate_task(rq->idle, rq);
4735 rq->idle->static_prio = MAX_PRIO;
4736 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4737 migrate_dead_tasks(cpu);
4738 task_rq_unlock(rq, &flags);
4739 migrate_nr_uninterruptible(rq);
4740 BUG_ON(rq->nr_running != 0);
4742 /* No need to migrate the tasks: it was best-effort if
4743 * they didn't do lock_cpu_hotplug(). Just wake up
4744 * the requestors. */
4745 spin_lock_irq(&rq->lock);
4746 while (!list_empty(&rq->migration_queue)) {
4747 migration_req_t *req;
4748 req = list_entry(rq->migration_queue.next,
4749 migration_req_t, list);
4750 list_del_init(&req->list);
4751 complete(&req->done);
4753 spin_unlock_irq(&rq->lock);
4754 break;
4755 #endif
4757 return NOTIFY_OK;
4760 /* Register at highest priority so that task migration (migrate_all_tasks)
4761 * happens before everything else.
4763 static struct notifier_block __devinitdata migration_notifier = {
4764 .notifier_call = migration_call,
4765 .priority = 10
4768 int __init migration_init(void)
4770 void *cpu = (void *)(long)smp_processor_id();
4771 /* Start one for boot CPU. */
4772 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4773 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4774 register_cpu_notifier(&migration_notifier);
4775 return 0;
4777 #endif
4779 #ifdef CONFIG_SMP
4780 #undef SCHED_DOMAIN_DEBUG
4781 #ifdef SCHED_DOMAIN_DEBUG
4782 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4784 int level = 0;
4786 if (!sd) {
4787 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4788 return;
4791 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4793 do {
4794 int i;
4795 char str[NR_CPUS];
4796 struct sched_group *group = sd->groups;
4797 cpumask_t groupmask;
4799 cpumask_scnprintf(str, NR_CPUS, sd->span);
4800 cpus_clear(groupmask);
4802 printk(KERN_DEBUG);
4803 for (i = 0; i < level + 1; i++)
4804 printk(" ");
4805 printk("domain %d: ", level);
4807 if (!(sd->flags & SD_LOAD_BALANCE)) {
4808 printk("does not load-balance\n");
4809 if (sd->parent)
4810 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4811 break;
4814 printk("span %s\n", str);
4816 if (!cpu_isset(cpu, sd->span))
4817 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4818 if (!cpu_isset(cpu, group->cpumask))
4819 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4821 printk(KERN_DEBUG);
4822 for (i = 0; i < level + 2; i++)
4823 printk(" ");
4824 printk("groups:");
4825 do {
4826 if (!group) {
4827 printk("\n");
4828 printk(KERN_ERR "ERROR: group is NULL\n");
4829 break;
4832 if (!group->cpu_power) {
4833 printk("\n");
4834 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4837 if (!cpus_weight(group->cpumask)) {
4838 printk("\n");
4839 printk(KERN_ERR "ERROR: empty group\n");
4842 if (cpus_intersects(groupmask, group->cpumask)) {
4843 printk("\n");
4844 printk(KERN_ERR "ERROR: repeated CPUs\n");
4847 cpus_or(groupmask, groupmask, group->cpumask);
4849 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4850 printk(" %s", str);
4852 group = group->next;
4853 } while (group != sd->groups);
4854 printk("\n");
4856 if (!cpus_equal(sd->span, groupmask))
4857 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4859 level++;
4860 sd = sd->parent;
4862 if (sd) {
4863 if (!cpus_subset(groupmask, sd->span))
4864 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4867 } while (sd);
4869 #else
4870 #define sched_domain_debug(sd, cpu) {}
4871 #endif
4873 static int sd_degenerate(struct sched_domain *sd)
4875 if (cpus_weight(sd->span) == 1)
4876 return 1;
4878 /* Following flags need at least 2 groups */
4879 if (sd->flags & (SD_LOAD_BALANCE |
4880 SD_BALANCE_NEWIDLE |
4881 SD_BALANCE_FORK |
4882 SD_BALANCE_EXEC)) {
4883 if (sd->groups != sd->groups->next)
4884 return 0;
4887 /* Following flags don't use groups */
4888 if (sd->flags & (SD_WAKE_IDLE |
4889 SD_WAKE_AFFINE |
4890 SD_WAKE_BALANCE))
4891 return 0;
4893 return 1;
4896 static int sd_parent_degenerate(struct sched_domain *sd,
4897 struct sched_domain *parent)
4899 unsigned long cflags = sd->flags, pflags = parent->flags;
4901 if (sd_degenerate(parent))
4902 return 1;
4904 if (!cpus_equal(sd->span, parent->span))
4905 return 0;
4907 /* Does parent contain flags not in child? */
4908 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4909 if (cflags & SD_WAKE_AFFINE)
4910 pflags &= ~SD_WAKE_BALANCE;
4911 /* Flags needing groups don't count if only 1 group in parent */
4912 if (parent->groups == parent->groups->next) {
4913 pflags &= ~(SD_LOAD_BALANCE |
4914 SD_BALANCE_NEWIDLE |
4915 SD_BALANCE_FORK |
4916 SD_BALANCE_EXEC);
4918 if (~cflags & pflags)
4919 return 0;
4921 return 1;
4925 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4926 * hold the hotplug lock.
4928 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4930 runqueue_t *rq = cpu_rq(cpu);
4931 struct sched_domain *tmp;
4933 /* Remove the sched domains which do not contribute to scheduling. */
4934 for (tmp = sd; tmp; tmp = tmp->parent) {
4935 struct sched_domain *parent = tmp->parent;
4936 if (!parent)
4937 break;
4938 if (sd_parent_degenerate(tmp, parent))
4939 tmp->parent = parent->parent;
4942 if (sd && sd_degenerate(sd))
4943 sd = sd->parent;
4945 sched_domain_debug(sd, cpu);
4947 rcu_assign_pointer(rq->sd, sd);
4950 /* cpus with isolated domains */
4951 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4953 /* Setup the mask of cpus configured for isolated domains */
4954 static int __init isolated_cpu_setup(char *str)
4956 int ints[NR_CPUS], i;
4958 str = get_options(str, ARRAY_SIZE(ints), ints);
4959 cpus_clear(cpu_isolated_map);
4960 for (i = 1; i <= ints[0]; i++)
4961 if (ints[i] < NR_CPUS)
4962 cpu_set(ints[i], cpu_isolated_map);
4963 return 1;
4966 __setup ("isolcpus=", isolated_cpu_setup);
4969 * init_sched_build_groups takes an array of groups, the cpumask we wish
4970 * to span, and a pointer to a function which identifies what group a CPU
4971 * belongs to. The return value of group_fn must be a valid index into the
4972 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4973 * keep track of groups covered with a cpumask_t).
4975 * init_sched_build_groups will build a circular linked list of the groups
4976 * covered by the given span, and will set each group's ->cpumask correctly,
4977 * and ->cpu_power to 0.
4979 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4980 int (*group_fn)(int cpu))
4982 struct sched_group *first = NULL, *last = NULL;
4983 cpumask_t covered = CPU_MASK_NONE;
4984 int i;
4986 for_each_cpu_mask(i, span) {
4987 int group = group_fn(i);
4988 struct sched_group *sg = &groups[group];
4989 int j;
4991 if (cpu_isset(i, covered))
4992 continue;
4994 sg->cpumask = CPU_MASK_NONE;
4995 sg->cpu_power = 0;
4997 for_each_cpu_mask(j, span) {
4998 if (group_fn(j) != group)
4999 continue;
5001 cpu_set(j, covered);
5002 cpu_set(j, sg->cpumask);
5004 if (!first)
5005 first = sg;
5006 if (last)
5007 last->next = sg;
5008 last = sg;
5010 last->next = first;
5013 #define SD_NODES_PER_DOMAIN 16
5016 * Self-tuning task migration cost measurement between source and target CPUs.
5018 * This is done by measuring the cost of manipulating buffers of varying
5019 * sizes. For a given buffer-size here are the steps that are taken:
5021 * 1) the source CPU reads+dirties a shared buffer
5022 * 2) the target CPU reads+dirties the same shared buffer
5024 * We measure how long they take, in the following 4 scenarios:
5026 * - source: CPU1, target: CPU2 | cost1
5027 * - source: CPU2, target: CPU1 | cost2
5028 * - source: CPU1, target: CPU1 | cost3
5029 * - source: CPU2, target: CPU2 | cost4
5031 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5032 * the cost of migration.
5034 * We then start off from a small buffer-size and iterate up to larger
5035 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5036 * doing a maximum search for the cost. (The maximum cost for a migration
5037 * normally occurs when the working set size is around the effective cache
5038 * size.)
5040 #define SEARCH_SCOPE 2
5041 #define MIN_CACHE_SIZE (64*1024U)
5042 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5043 #define ITERATIONS 1
5044 #define SIZE_THRESH 130
5045 #define COST_THRESH 130
5048 * The migration cost is a function of 'domain distance'. Domain
5049 * distance is the number of steps a CPU has to iterate down its
5050 * domain tree to share a domain with the other CPU. The farther
5051 * two CPUs are from each other, the larger the distance gets.
5053 * Note that we use the distance only to cache measurement results,
5054 * the distance value is not used numerically otherwise. When two
5055 * CPUs have the same distance it is assumed that the migration
5056 * cost is the same. (this is a simplification but quite practical)
5058 #define MAX_DOMAIN_DISTANCE 32
5060 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5061 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5063 * Architectures may override the migration cost and thus avoid
5064 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5065 * virtualized hardware:
5067 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5068 CONFIG_DEFAULT_MIGRATION_COST
5069 #else
5070 -1LL
5071 #endif
5075 * Allow override of migration cost - in units of microseconds.
5076 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5077 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5079 static int __init migration_cost_setup(char *str)
5081 int ints[MAX_DOMAIN_DISTANCE+1], i;
5083 str = get_options(str, ARRAY_SIZE(ints), ints);
5085 printk("#ints: %d\n", ints[0]);
5086 for (i = 1; i <= ints[0]; i++) {
5087 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5088 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5090 return 1;
5093 __setup ("migration_cost=", migration_cost_setup);
5096 * Global multiplier (divisor) for migration-cutoff values,
5097 * in percentiles. E.g. use a value of 150 to get 1.5 times
5098 * longer cache-hot cutoff times.
5100 * (We scale it from 100 to 128 to long long handling easier.)
5103 #define MIGRATION_FACTOR_SCALE 128
5105 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5107 static int __init setup_migration_factor(char *str)
5109 get_option(&str, &migration_factor);
5110 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5111 return 1;
5114 __setup("migration_factor=", setup_migration_factor);
5117 * Estimated distance of two CPUs, measured via the number of domains
5118 * we have to pass for the two CPUs to be in the same span:
5120 static unsigned long domain_distance(int cpu1, int cpu2)
5122 unsigned long distance = 0;
5123 struct sched_domain *sd;
5125 for_each_domain(cpu1, sd) {
5126 WARN_ON(!cpu_isset(cpu1, sd->span));
5127 if (cpu_isset(cpu2, sd->span))
5128 return distance;
5129 distance++;
5131 if (distance >= MAX_DOMAIN_DISTANCE) {
5132 WARN_ON(1);
5133 distance = MAX_DOMAIN_DISTANCE-1;
5136 return distance;
5139 static unsigned int migration_debug;
5141 static int __init setup_migration_debug(char *str)
5143 get_option(&str, &migration_debug);
5144 return 1;
5147 __setup("migration_debug=", setup_migration_debug);
5150 * Maximum cache-size that the scheduler should try to measure.
5151 * Architectures with larger caches should tune this up during
5152 * bootup. Gets used in the domain-setup code (i.e. during SMP
5153 * bootup).
5155 unsigned int max_cache_size;
5157 static int __init setup_max_cache_size(char *str)
5159 get_option(&str, &max_cache_size);
5160 return 1;
5163 __setup("max_cache_size=", setup_max_cache_size);
5166 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5167 * is the operation that is timed, so we try to generate unpredictable
5168 * cachemisses that still end up filling the L2 cache:
5170 static void touch_cache(void *__cache, unsigned long __size)
5172 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5173 chunk2 = 2*size/3;
5174 unsigned long *cache = __cache;
5175 int i;
5177 for (i = 0; i < size/6; i += 8) {
5178 switch (i % 6) {
5179 case 0: cache[i]++;
5180 case 1: cache[size-1-i]++;
5181 case 2: cache[chunk1-i]++;
5182 case 3: cache[chunk1+i]++;
5183 case 4: cache[chunk2-i]++;
5184 case 5: cache[chunk2+i]++;
5190 * Measure the cache-cost of one task migration. Returns in units of nsec.
5192 static unsigned long long measure_one(void *cache, unsigned long size,
5193 int source, int target)
5195 cpumask_t mask, saved_mask;
5196 unsigned long long t0, t1, t2, t3, cost;
5198 saved_mask = current->cpus_allowed;
5201 * Flush source caches to RAM and invalidate them:
5203 sched_cacheflush();
5206 * Migrate to the source CPU:
5208 mask = cpumask_of_cpu(source);
5209 set_cpus_allowed(current, mask);
5210 WARN_ON(smp_processor_id() != source);
5213 * Dirty the working set:
5215 t0 = sched_clock();
5216 touch_cache(cache, size);
5217 t1 = sched_clock();
5220 * Migrate to the target CPU, dirty the L2 cache and access
5221 * the shared buffer. (which represents the working set
5222 * of a migrated task.)
5224 mask = cpumask_of_cpu(target);
5225 set_cpus_allowed(current, mask);
5226 WARN_ON(smp_processor_id() != target);
5228 t2 = sched_clock();
5229 touch_cache(cache, size);
5230 t3 = sched_clock();
5232 cost = t1-t0 + t3-t2;
5234 if (migration_debug >= 2)
5235 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5236 source, target, t1-t0, t1-t0, t3-t2, cost);
5238 * Flush target caches to RAM and invalidate them:
5240 sched_cacheflush();
5242 set_cpus_allowed(current, saved_mask);
5244 return cost;
5248 * Measure a series of task migrations and return the average
5249 * result. Since this code runs early during bootup the system
5250 * is 'undisturbed' and the average latency makes sense.
5252 * The algorithm in essence auto-detects the relevant cache-size,
5253 * so it will properly detect different cachesizes for different
5254 * cache-hierarchies, depending on how the CPUs are connected.
5256 * Architectures can prime the upper limit of the search range via
5257 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5259 static unsigned long long
5260 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5262 unsigned long long cost1, cost2;
5263 int i;
5266 * Measure the migration cost of 'size' bytes, over an
5267 * average of 10 runs:
5269 * (We perturb the cache size by a small (0..4k)
5270 * value to compensate size/alignment related artifacts.
5271 * We also subtract the cost of the operation done on
5272 * the same CPU.)
5274 cost1 = 0;
5277 * dry run, to make sure we start off cache-cold on cpu1,
5278 * and to get any vmalloc pagefaults in advance:
5280 measure_one(cache, size, cpu1, cpu2);
5281 for (i = 0; i < ITERATIONS; i++)
5282 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5284 measure_one(cache, size, cpu2, cpu1);
5285 for (i = 0; i < ITERATIONS; i++)
5286 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5289 * (We measure the non-migrating [cached] cost on both
5290 * cpu1 and cpu2, to handle CPUs with different speeds)
5292 cost2 = 0;
5294 measure_one(cache, size, cpu1, cpu1);
5295 for (i = 0; i < ITERATIONS; i++)
5296 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5298 measure_one(cache, size, cpu2, cpu2);
5299 for (i = 0; i < ITERATIONS; i++)
5300 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5303 * Get the per-iteration migration cost:
5305 do_div(cost1, 2*ITERATIONS);
5306 do_div(cost2, 2*ITERATIONS);
5308 return cost1 - cost2;
5311 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5313 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5314 unsigned int max_size, size, size_found = 0;
5315 long long cost = 0, prev_cost;
5316 void *cache;
5319 * Search from max_cache_size*5 down to 64K - the real relevant
5320 * cachesize has to lie somewhere inbetween.
5322 if (max_cache_size) {
5323 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5324 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5325 } else {
5327 * Since we have no estimation about the relevant
5328 * search range
5330 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5331 size = MIN_CACHE_SIZE;
5334 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5335 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5336 return 0;
5340 * Allocate the working set:
5342 cache = vmalloc(max_size);
5343 if (!cache) {
5344 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5345 return 1000000; // return 1 msec on very small boxen
5348 while (size <= max_size) {
5349 prev_cost = cost;
5350 cost = measure_cost(cpu1, cpu2, cache, size);
5353 * Update the max:
5355 if (cost > 0) {
5356 if (max_cost < cost) {
5357 max_cost = cost;
5358 size_found = size;
5362 * Calculate average fluctuation, we use this to prevent
5363 * noise from triggering an early break out of the loop:
5365 fluct = abs(cost - prev_cost);
5366 avg_fluct = (avg_fluct + fluct)/2;
5368 if (migration_debug)
5369 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5370 cpu1, cpu2, size,
5371 (long)cost / 1000000,
5372 ((long)cost / 100000) % 10,
5373 (long)max_cost / 1000000,
5374 ((long)max_cost / 100000) % 10,
5375 domain_distance(cpu1, cpu2),
5376 cost, avg_fluct);
5379 * If we iterated at least 20% past the previous maximum,
5380 * and the cost has dropped by more than 20% already,
5381 * (taking fluctuations into account) then we assume to
5382 * have found the maximum and break out of the loop early:
5384 if (size_found && (size*100 > size_found*SIZE_THRESH))
5385 if (cost+avg_fluct <= 0 ||
5386 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5388 if (migration_debug)
5389 printk("-> found max.\n");
5390 break;
5393 * Increase the cachesize in 10% steps:
5395 size = size * 10 / 9;
5398 if (migration_debug)
5399 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5400 cpu1, cpu2, size_found, max_cost);
5402 vfree(cache);
5405 * A task is considered 'cache cold' if at least 2 times
5406 * the worst-case cost of migration has passed.
5408 * (this limit is only listened to if the load-balancing
5409 * situation is 'nice' - if there is a large imbalance we
5410 * ignore it for the sake of CPU utilization and
5411 * processing fairness.)
5413 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5416 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5418 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5419 unsigned long j0, j1, distance, max_distance = 0;
5420 struct sched_domain *sd;
5422 j0 = jiffies;
5425 * First pass - calculate the cacheflush times:
5427 for_each_cpu_mask(cpu1, *cpu_map) {
5428 for_each_cpu_mask(cpu2, *cpu_map) {
5429 if (cpu1 == cpu2)
5430 continue;
5431 distance = domain_distance(cpu1, cpu2);
5432 max_distance = max(max_distance, distance);
5434 * No result cached yet?
5436 if (migration_cost[distance] == -1LL)
5437 migration_cost[distance] =
5438 measure_migration_cost(cpu1, cpu2);
5442 * Second pass - update the sched domain hierarchy with
5443 * the new cache-hot-time estimations:
5445 for_each_cpu_mask(cpu, *cpu_map) {
5446 distance = 0;
5447 for_each_domain(cpu, sd) {
5448 sd->cache_hot_time = migration_cost[distance];
5449 distance++;
5453 * Print the matrix:
5455 if (migration_debug)
5456 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5457 max_cache_size,
5458 #ifdef CONFIG_X86
5459 cpu_khz/1000
5460 #else
5462 #endif
5464 if (system_state == SYSTEM_BOOTING) {
5465 printk("migration_cost=");
5466 for (distance = 0; distance <= max_distance; distance++) {
5467 if (distance)
5468 printk(",");
5469 printk("%ld", (long)migration_cost[distance] / 1000);
5471 printk("\n");
5473 j1 = jiffies;
5474 if (migration_debug)
5475 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5478 * Move back to the original CPU. NUMA-Q gets confused
5479 * if we migrate to another quad during bootup.
5481 if (raw_smp_processor_id() != orig_cpu) {
5482 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5483 saved_mask = current->cpus_allowed;
5485 set_cpus_allowed(current, mask);
5486 set_cpus_allowed(current, saved_mask);
5490 #ifdef CONFIG_NUMA
5493 * find_next_best_node - find the next node to include in a sched_domain
5494 * @node: node whose sched_domain we're building
5495 * @used_nodes: nodes already in the sched_domain
5497 * Find the next node to include in a given scheduling domain. Simply
5498 * finds the closest node not already in the @used_nodes map.
5500 * Should use nodemask_t.
5502 static int find_next_best_node(int node, unsigned long *used_nodes)
5504 int i, n, val, min_val, best_node = 0;
5506 min_val = INT_MAX;
5508 for (i = 0; i < MAX_NUMNODES; i++) {
5509 /* Start at @node */
5510 n = (node + i) % MAX_NUMNODES;
5512 if (!nr_cpus_node(n))
5513 continue;
5515 /* Skip already used nodes */
5516 if (test_bit(n, used_nodes))
5517 continue;
5519 /* Simple min distance search */
5520 val = node_distance(node, n);
5522 if (val < min_val) {
5523 min_val = val;
5524 best_node = n;
5528 set_bit(best_node, used_nodes);
5529 return best_node;
5533 * sched_domain_node_span - get a cpumask for a node's sched_domain
5534 * @node: node whose cpumask we're constructing
5535 * @size: number of nodes to include in this span
5537 * Given a node, construct a good cpumask for its sched_domain to span. It
5538 * should be one that prevents unnecessary balancing, but also spreads tasks
5539 * out optimally.
5541 static cpumask_t sched_domain_node_span(int node)
5543 int i;
5544 cpumask_t span, nodemask;
5545 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5547 cpus_clear(span);
5548 bitmap_zero(used_nodes, MAX_NUMNODES);
5550 nodemask = node_to_cpumask(node);
5551 cpus_or(span, span, nodemask);
5552 set_bit(node, used_nodes);
5554 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5555 int next_node = find_next_best_node(node, used_nodes);
5556 nodemask = node_to_cpumask(next_node);
5557 cpus_or(span, span, nodemask);
5560 return span;
5562 #endif
5565 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5566 * can switch it on easily if needed.
5568 #ifdef CONFIG_SCHED_SMT
5569 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5570 static struct sched_group sched_group_cpus[NR_CPUS];
5571 static int cpu_to_cpu_group(int cpu)
5573 return cpu;
5575 #endif
5577 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5578 static struct sched_group sched_group_phys[NR_CPUS];
5579 static int cpu_to_phys_group(int cpu)
5581 #ifdef CONFIG_SCHED_SMT
5582 return first_cpu(cpu_sibling_map[cpu]);
5583 #else
5584 return cpu;
5585 #endif
5588 #ifdef CONFIG_NUMA
5590 * The init_sched_build_groups can't handle what we want to do with node
5591 * groups, so roll our own. Now each node has its own list of groups which
5592 * gets dynamically allocated.
5594 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5595 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5597 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5598 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5600 static int cpu_to_allnodes_group(int cpu)
5602 return cpu_to_node(cpu);
5604 #endif
5607 * Build sched domains for a given set of cpus and attach the sched domains
5608 * to the individual cpus
5610 void build_sched_domains(const cpumask_t *cpu_map)
5612 int i;
5613 #ifdef CONFIG_NUMA
5614 struct sched_group **sched_group_nodes = NULL;
5615 struct sched_group *sched_group_allnodes = NULL;
5618 * Allocate the per-node list of sched groups
5620 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5621 GFP_ATOMIC);
5622 if (!sched_group_nodes) {
5623 printk(KERN_WARNING "Can not alloc sched group node list\n");
5624 return;
5626 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5627 #endif
5630 * Set up domains for cpus specified by the cpu_map.
5632 for_each_cpu_mask(i, *cpu_map) {
5633 int group;
5634 struct sched_domain *sd = NULL, *p;
5635 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5637 cpus_and(nodemask, nodemask, *cpu_map);
5639 #ifdef CONFIG_NUMA
5640 if (cpus_weight(*cpu_map)
5641 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5642 if (!sched_group_allnodes) {
5643 sched_group_allnodes
5644 = kmalloc(sizeof(struct sched_group)
5645 * MAX_NUMNODES,
5646 GFP_KERNEL);
5647 if (!sched_group_allnodes) {
5648 printk(KERN_WARNING
5649 "Can not alloc allnodes sched group\n");
5650 break;
5652 sched_group_allnodes_bycpu[i]
5653 = sched_group_allnodes;
5655 sd = &per_cpu(allnodes_domains, i);
5656 *sd = SD_ALLNODES_INIT;
5657 sd->span = *cpu_map;
5658 group = cpu_to_allnodes_group(i);
5659 sd->groups = &sched_group_allnodes[group];
5660 p = sd;
5661 } else
5662 p = NULL;
5664 sd = &per_cpu(node_domains, i);
5665 *sd = SD_NODE_INIT;
5666 sd->span = sched_domain_node_span(cpu_to_node(i));
5667 sd->parent = p;
5668 cpus_and(sd->span, sd->span, *cpu_map);
5669 #endif
5671 p = sd;
5672 sd = &per_cpu(phys_domains, i);
5673 group = cpu_to_phys_group(i);
5674 *sd = SD_CPU_INIT;
5675 sd->span = nodemask;
5676 sd->parent = p;
5677 sd->groups = &sched_group_phys[group];
5679 #ifdef CONFIG_SCHED_SMT
5680 p = sd;
5681 sd = &per_cpu(cpu_domains, i);
5682 group = cpu_to_cpu_group(i);
5683 *sd = SD_SIBLING_INIT;
5684 sd->span = cpu_sibling_map[i];
5685 cpus_and(sd->span, sd->span, *cpu_map);
5686 sd->parent = p;
5687 sd->groups = &sched_group_cpus[group];
5688 #endif
5691 #ifdef CONFIG_SCHED_SMT
5692 /* Set up CPU (sibling) groups */
5693 for_each_cpu_mask(i, *cpu_map) {
5694 cpumask_t this_sibling_map = cpu_sibling_map[i];
5695 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5696 if (i != first_cpu(this_sibling_map))
5697 continue;
5699 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5700 &cpu_to_cpu_group);
5702 #endif
5704 /* Set up physical groups */
5705 for (i = 0; i < MAX_NUMNODES; i++) {
5706 cpumask_t nodemask = node_to_cpumask(i);
5708 cpus_and(nodemask, nodemask, *cpu_map);
5709 if (cpus_empty(nodemask))
5710 continue;
5712 init_sched_build_groups(sched_group_phys, nodemask,
5713 &cpu_to_phys_group);
5716 #ifdef CONFIG_NUMA
5717 /* Set up node groups */
5718 if (sched_group_allnodes)
5719 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5720 &cpu_to_allnodes_group);
5722 for (i = 0; i < MAX_NUMNODES; i++) {
5723 /* Set up node groups */
5724 struct sched_group *sg, *prev;
5725 cpumask_t nodemask = node_to_cpumask(i);
5726 cpumask_t domainspan;
5727 cpumask_t covered = CPU_MASK_NONE;
5728 int j;
5730 cpus_and(nodemask, nodemask, *cpu_map);
5731 if (cpus_empty(nodemask)) {
5732 sched_group_nodes[i] = NULL;
5733 continue;
5736 domainspan = sched_domain_node_span(i);
5737 cpus_and(domainspan, domainspan, *cpu_map);
5739 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5740 sched_group_nodes[i] = sg;
5741 for_each_cpu_mask(j, nodemask) {
5742 struct sched_domain *sd;
5743 sd = &per_cpu(node_domains, j);
5744 sd->groups = sg;
5745 if (sd->groups == NULL) {
5746 /* Turn off balancing if we have no groups */
5747 sd->flags = 0;
5750 if (!sg) {
5751 printk(KERN_WARNING
5752 "Can not alloc domain group for node %d\n", i);
5753 continue;
5755 sg->cpu_power = 0;
5756 sg->cpumask = nodemask;
5757 cpus_or(covered, covered, nodemask);
5758 prev = sg;
5760 for (j = 0; j < MAX_NUMNODES; j++) {
5761 cpumask_t tmp, notcovered;
5762 int n = (i + j) % MAX_NUMNODES;
5764 cpus_complement(notcovered, covered);
5765 cpus_and(tmp, notcovered, *cpu_map);
5766 cpus_and(tmp, tmp, domainspan);
5767 if (cpus_empty(tmp))
5768 break;
5770 nodemask = node_to_cpumask(n);
5771 cpus_and(tmp, tmp, nodemask);
5772 if (cpus_empty(tmp))
5773 continue;
5775 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5776 if (!sg) {
5777 printk(KERN_WARNING
5778 "Can not alloc domain group for node %d\n", j);
5779 break;
5781 sg->cpu_power = 0;
5782 sg->cpumask = tmp;
5783 cpus_or(covered, covered, tmp);
5784 prev->next = sg;
5785 prev = sg;
5787 prev->next = sched_group_nodes[i];
5789 #endif
5791 /* Calculate CPU power for physical packages and nodes */
5792 for_each_cpu_mask(i, *cpu_map) {
5793 int power;
5794 struct sched_domain *sd;
5795 #ifdef CONFIG_SCHED_SMT
5796 sd = &per_cpu(cpu_domains, i);
5797 power = SCHED_LOAD_SCALE;
5798 sd->groups->cpu_power = power;
5799 #endif
5801 sd = &per_cpu(phys_domains, i);
5802 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5803 (cpus_weight(sd->groups->cpumask)-1) / 10;
5804 sd->groups->cpu_power = power;
5806 #ifdef CONFIG_NUMA
5807 sd = &per_cpu(allnodes_domains, i);
5808 if (sd->groups) {
5809 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5810 (cpus_weight(sd->groups->cpumask)-1) / 10;
5811 sd->groups->cpu_power = power;
5813 #endif
5816 #ifdef CONFIG_NUMA
5817 for (i = 0; i < MAX_NUMNODES; i++) {
5818 struct sched_group *sg = sched_group_nodes[i];
5819 int j;
5821 if (sg == NULL)
5822 continue;
5823 next_sg:
5824 for_each_cpu_mask(j, sg->cpumask) {
5825 struct sched_domain *sd;
5826 int power;
5828 sd = &per_cpu(phys_domains, j);
5829 if (j != first_cpu(sd->groups->cpumask)) {
5831 * Only add "power" once for each
5832 * physical package.
5834 continue;
5836 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5837 (cpus_weight(sd->groups->cpumask)-1) / 10;
5839 sg->cpu_power += power;
5841 sg = sg->next;
5842 if (sg != sched_group_nodes[i])
5843 goto next_sg;
5845 #endif
5847 /* Attach the domains */
5848 for_each_cpu_mask(i, *cpu_map) {
5849 struct sched_domain *sd;
5850 #ifdef CONFIG_SCHED_SMT
5851 sd = &per_cpu(cpu_domains, i);
5852 #else
5853 sd = &per_cpu(phys_domains, i);
5854 #endif
5855 cpu_attach_domain(sd, i);
5858 * Tune cache-hot values:
5860 calibrate_migration_costs(cpu_map);
5863 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5865 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5867 cpumask_t cpu_default_map;
5870 * Setup mask for cpus without special case scheduling requirements.
5871 * For now this just excludes isolated cpus, but could be used to
5872 * exclude other special cases in the future.
5874 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5876 build_sched_domains(&cpu_default_map);
5879 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5881 #ifdef CONFIG_NUMA
5882 int i;
5883 int cpu;
5885 for_each_cpu_mask(cpu, *cpu_map) {
5886 struct sched_group *sched_group_allnodes
5887 = sched_group_allnodes_bycpu[cpu];
5888 struct sched_group **sched_group_nodes
5889 = sched_group_nodes_bycpu[cpu];
5891 if (sched_group_allnodes) {
5892 kfree(sched_group_allnodes);
5893 sched_group_allnodes_bycpu[cpu] = NULL;
5896 if (!sched_group_nodes)
5897 continue;
5899 for (i = 0; i < MAX_NUMNODES; i++) {
5900 cpumask_t nodemask = node_to_cpumask(i);
5901 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5903 cpus_and(nodemask, nodemask, *cpu_map);
5904 if (cpus_empty(nodemask))
5905 continue;
5907 if (sg == NULL)
5908 continue;
5909 sg = sg->next;
5910 next_sg:
5911 oldsg = sg;
5912 sg = sg->next;
5913 kfree(oldsg);
5914 if (oldsg != sched_group_nodes[i])
5915 goto next_sg;
5917 kfree(sched_group_nodes);
5918 sched_group_nodes_bycpu[cpu] = NULL;
5920 #endif
5924 * Detach sched domains from a group of cpus specified in cpu_map
5925 * These cpus will now be attached to the NULL domain
5927 static void detach_destroy_domains(const cpumask_t *cpu_map)
5929 int i;
5931 for_each_cpu_mask(i, *cpu_map)
5932 cpu_attach_domain(NULL, i);
5933 synchronize_sched();
5934 arch_destroy_sched_domains(cpu_map);
5938 * Partition sched domains as specified by the cpumasks below.
5939 * This attaches all cpus from the cpumasks to the NULL domain,
5940 * waits for a RCU quiescent period, recalculates sched
5941 * domain information and then attaches them back to the
5942 * correct sched domains
5943 * Call with hotplug lock held
5945 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5947 cpumask_t change_map;
5949 cpus_and(*partition1, *partition1, cpu_online_map);
5950 cpus_and(*partition2, *partition2, cpu_online_map);
5951 cpus_or(change_map, *partition1, *partition2);
5953 /* Detach sched domains from all of the affected cpus */
5954 detach_destroy_domains(&change_map);
5955 if (!cpus_empty(*partition1))
5956 build_sched_domains(partition1);
5957 if (!cpus_empty(*partition2))
5958 build_sched_domains(partition2);
5961 #ifdef CONFIG_HOTPLUG_CPU
5963 * Force a reinitialization of the sched domains hierarchy. The domains
5964 * and groups cannot be updated in place without racing with the balancing
5965 * code, so we temporarily attach all running cpus to the NULL domain
5966 * which will prevent rebalancing while the sched domains are recalculated.
5968 static int update_sched_domains(struct notifier_block *nfb,
5969 unsigned long action, void *hcpu)
5971 switch (action) {
5972 case CPU_UP_PREPARE:
5973 case CPU_DOWN_PREPARE:
5974 detach_destroy_domains(&cpu_online_map);
5975 return NOTIFY_OK;
5977 case CPU_UP_CANCELED:
5978 case CPU_DOWN_FAILED:
5979 case CPU_ONLINE:
5980 case CPU_DEAD:
5982 * Fall through and re-initialise the domains.
5984 break;
5985 default:
5986 return NOTIFY_DONE;
5989 /* The hotplug lock is already held by cpu_up/cpu_down */
5990 arch_init_sched_domains(&cpu_online_map);
5992 return NOTIFY_OK;
5994 #endif
5996 void __init sched_init_smp(void)
5998 lock_cpu_hotplug();
5999 arch_init_sched_domains(&cpu_online_map);
6000 unlock_cpu_hotplug();
6001 /* XXX: Theoretical race here - CPU may be hotplugged now */
6002 hotcpu_notifier(update_sched_domains, 0);
6004 #else
6005 void __init sched_init_smp(void)
6008 #endif /* CONFIG_SMP */
6010 int in_sched_functions(unsigned long addr)
6012 /* Linker adds these: start and end of __sched functions */
6013 extern char __sched_text_start[], __sched_text_end[];
6014 return in_lock_functions(addr) ||
6015 (addr >= (unsigned long)__sched_text_start
6016 && addr < (unsigned long)__sched_text_end);
6019 void __init sched_init(void)
6021 runqueue_t *rq;
6022 int i, j, k;
6024 for_each_cpu(i) {
6025 prio_array_t *array;
6027 rq = cpu_rq(i);
6028 spin_lock_init(&rq->lock);
6029 rq->nr_running = 0;
6030 rq->active = rq->arrays;
6031 rq->expired = rq->arrays + 1;
6032 rq->best_expired_prio = MAX_PRIO;
6034 #ifdef CONFIG_SMP
6035 rq->sd = NULL;
6036 for (j = 1; j < 3; j++)
6037 rq->cpu_load[j] = 0;
6038 rq->active_balance = 0;
6039 rq->push_cpu = 0;
6040 rq->migration_thread = NULL;
6041 INIT_LIST_HEAD(&rq->migration_queue);
6042 rq->cpu = i;
6043 #endif
6044 atomic_set(&rq->nr_iowait, 0);
6046 for (j = 0; j < 2; j++) {
6047 array = rq->arrays + j;
6048 for (k = 0; k < MAX_PRIO; k++) {
6049 INIT_LIST_HEAD(array->queue + k);
6050 __clear_bit(k, array->bitmap);
6052 // delimiter for bitsearch
6053 __set_bit(MAX_PRIO, array->bitmap);
6058 * The boot idle thread does lazy MMU switching as well:
6060 atomic_inc(&init_mm.mm_count);
6061 enter_lazy_tlb(&init_mm, current);
6064 * Make us the idle thread. Technically, schedule() should not be
6065 * called from this thread, however somewhere below it might be,
6066 * but because we are the idle thread, we just pick up running again
6067 * when this runqueue becomes "idle".
6069 init_idle(current, smp_processor_id());
6072 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6073 void __might_sleep(char *file, int line)
6075 #if defined(in_atomic)
6076 static unsigned long prev_jiffy; /* ratelimiting */
6078 if ((in_atomic() || irqs_disabled()) &&
6079 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6080 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6081 return;
6082 prev_jiffy = jiffies;
6083 printk(KERN_ERR "Debug: sleeping function called from invalid"
6084 " context at %s:%d\n", file, line);
6085 printk("in_atomic():%d, irqs_disabled():%d\n",
6086 in_atomic(), irqs_disabled());
6087 dump_stack();
6089 #endif
6091 EXPORT_SYMBOL(__might_sleep);
6092 #endif
6094 #ifdef CONFIG_MAGIC_SYSRQ
6095 void normalize_rt_tasks(void)
6097 struct task_struct *p;
6098 prio_array_t *array;
6099 unsigned long flags;
6100 runqueue_t *rq;
6102 read_lock_irq(&tasklist_lock);
6103 for_each_process (p) {
6104 if (!rt_task(p))
6105 continue;
6107 rq = task_rq_lock(p, &flags);
6109 array = p->array;
6110 if (array)
6111 deactivate_task(p, task_rq(p));
6112 __setscheduler(p, SCHED_NORMAL, 0);
6113 if (array) {
6114 __activate_task(p, task_rq(p));
6115 resched_task(rq->curr);
6118 task_rq_unlock(rq, &flags);
6120 read_unlock_irq(&tasklist_lock);
6123 #endif /* CONFIG_MAGIC_SYSRQ */
6125 #ifdef CONFIG_IA64
6127 * These functions are only useful for the IA64 MCA handling.
6129 * They can only be called when the whole system has been
6130 * stopped - every CPU needs to be quiescent, and no scheduling
6131 * activity can take place. Using them for anything else would
6132 * be a serious bug, and as a result, they aren't even visible
6133 * under any other configuration.
6137 * curr_task - return the current task for a given cpu.
6138 * @cpu: the processor in question.
6140 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6142 task_t *curr_task(int cpu)
6144 return cpu_curr(cpu);
6148 * set_curr_task - set the current task for a given cpu.
6149 * @cpu: the processor in question.
6150 * @p: the task pointer to set.
6152 * Description: This function must only be used when non-maskable interrupts
6153 * are serviced on a separate stack. It allows the architecture to switch the
6154 * notion of the current task on a cpu in a non-blocking manner. This function
6155 * must be called with all CPU's synchronized, and interrupts disabled, the
6156 * and caller must save the original value of the current task (see
6157 * curr_task() above) and restore that value before reenabling interrupts and
6158 * re-starting the system.
6160 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6162 void set_curr_task(int cpu, task_t *p)
6164 cpu_curr(cpu) = p;
6167 #endif