via-pmu: Add compat_pmu_ioctl
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / onenand / onenand_base.c
bloba2bb520286f8f995a909527931cebdfbf63d6210
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
9 * Credits:
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
16 * OTP support
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
36 #include <asm/io.h>
39 * Multiblock erase if number of blocks to erase is 2 or more.
40 * Maximum number of blocks for simultaneous erase is 64.
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
50 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 "DIE_BDRY: SLC boundary of the die"
52 "LOCK: Locking information for SLC boundary"
53 " : 0->Set boundary in unlocked status"
54 " : 1->Set boundary in locked status");
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
61 "Syntax : otp=LOCK_TYPE"
62 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 " : 0 -> Default (No Blocks Locked)"
64 " : 1 -> OTP Block lock"
65 " : 2 -> 1st Block lock"
66 " : 3 -> BOTH OTP Block and 1st Block lock");
68 /**
69 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70 * For now, we expose only 64 out of 80 ecc bytes
72 static struct nand_ecclayout onenand_oob_128 = {
73 .eccbytes = 64,
74 .eccpos = {
75 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81 102, 103, 104, 105
83 .oobfree = {
84 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85 {66, 4}, {82, 4}, {98, 4}, {114, 4}
89 /**
90 * onenand_oob_64 - oob info for large (2KB) page
92 static struct nand_ecclayout onenand_oob_64 = {
93 .eccbytes = 20,
94 .eccpos = {
95 8, 9, 10, 11, 12,
96 24, 25, 26, 27, 28,
97 40, 41, 42, 43, 44,
98 56, 57, 58, 59, 60,
100 .oobfree = {
101 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102 {34, 3}, {46, 2}, {50, 3}, {62, 2}
107 * onenand_oob_32 - oob info for middle (1KB) page
109 static struct nand_ecclayout onenand_oob_32 = {
110 .eccbytes = 10,
111 .eccpos = {
112 8, 9, 10, 11, 12,
113 24, 25, 26, 27, 28,
115 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
118 static const unsigned char ffchars[] = {
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
138 * onenand_readw - [OneNAND Interface] Read OneNAND register
139 * @param addr address to read
141 * Read OneNAND register
143 static unsigned short onenand_readw(void __iomem *addr)
145 return readw(addr);
149 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150 * @param value value to write
151 * @param addr address to write
153 * Write OneNAND register with value
155 static void onenand_writew(unsigned short value, void __iomem *addr)
157 writew(value, addr);
161 * onenand_block_address - [DEFAULT] Get block address
162 * @param this onenand chip data structure
163 * @param block the block
164 * @return translated block address if DDP, otherwise same
166 * Setup Start Address 1 Register (F100h)
168 static int onenand_block_address(struct onenand_chip *this, int block)
170 /* Device Flash Core select, NAND Flash Block Address */
171 if (block & this->density_mask)
172 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
174 return block;
178 * onenand_bufferram_address - [DEFAULT] Get bufferram address
179 * @param this onenand chip data structure
180 * @param block the block
181 * @return set DBS value if DDP, otherwise 0
183 * Setup Start Address 2 Register (F101h) for DDP
185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
187 /* Device BufferRAM Select */
188 if (block & this->density_mask)
189 return ONENAND_DDP_CHIP1;
191 return ONENAND_DDP_CHIP0;
195 * onenand_page_address - [DEFAULT] Get page address
196 * @param page the page address
197 * @param sector the sector address
198 * @return combined page and sector address
200 * Setup Start Address 8 Register (F107h)
202 static int onenand_page_address(int page, int sector)
204 /* Flash Page Address, Flash Sector Address */
205 int fpa, fsa;
207 fpa = page & ONENAND_FPA_MASK;
208 fsa = sector & ONENAND_FSA_MASK;
210 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
214 * onenand_buffer_address - [DEFAULT] Get buffer address
215 * @param dataram1 DataRAM index
216 * @param sectors the sector address
217 * @param count the number of sectors
218 * @return the start buffer value
220 * Setup Start Buffer Register (F200h)
222 static int onenand_buffer_address(int dataram1, int sectors, int count)
224 int bsa, bsc;
226 /* BufferRAM Sector Address */
227 bsa = sectors & ONENAND_BSA_MASK;
229 if (dataram1)
230 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
231 else
232 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
234 /* BufferRAM Sector Count */
235 bsc = count & ONENAND_BSC_MASK;
237 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
241 * flexonenand_block- For given address return block number
242 * @param this - OneNAND device structure
243 * @param addr - Address for which block number is needed
245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
247 unsigned boundary, blk, die = 0;
249 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250 die = 1;
251 addr -= this->diesize[0];
254 boundary = this->boundary[die];
256 blk = addr >> (this->erase_shift - 1);
257 if (blk > boundary)
258 blk = (blk + boundary + 1) >> 1;
260 blk += die ? this->density_mask : 0;
261 return blk;
264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
266 if (!FLEXONENAND(this))
267 return addr >> this->erase_shift;
268 return flexonenand_block(this, addr);
272 * flexonenand_addr - Return address of the block
273 * @this: OneNAND device structure
274 * @block: Block number on Flex-OneNAND
276 * Return address of the block
278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
280 loff_t ofs = 0;
281 int die = 0, boundary;
283 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284 block -= this->density_mask;
285 die = 1;
286 ofs = this->diesize[0];
289 boundary = this->boundary[die];
290 ofs += (loff_t)block << (this->erase_shift - 1);
291 if (block > (boundary + 1))
292 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293 return ofs;
296 loff_t onenand_addr(struct onenand_chip *this, int block)
298 if (!FLEXONENAND(this))
299 return (loff_t)block << this->erase_shift;
300 return flexonenand_addr(this, block);
302 EXPORT_SYMBOL(onenand_addr);
305 * onenand_get_density - [DEFAULT] Get OneNAND density
306 * @param dev_id OneNAND device ID
308 * Get OneNAND density from device ID
310 static inline int onenand_get_density(int dev_id)
312 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313 return (density & ONENAND_DEVICE_DENSITY_MASK);
317 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318 * @param mtd MTD device structure
319 * @param addr address whose erase region needs to be identified
321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
323 int i;
325 for (i = 0; i < mtd->numeraseregions; i++)
326 if (addr < mtd->eraseregions[i].offset)
327 break;
328 return i - 1;
330 EXPORT_SYMBOL(flexonenand_region);
333 * onenand_command - [DEFAULT] Send command to OneNAND device
334 * @param mtd MTD device structure
335 * @param cmd the command to be sent
336 * @param addr offset to read from or write to
337 * @param len number of bytes to read or write
339 * Send command to OneNAND device. This function is used for middle/large page
340 * devices (1KB/2KB Bytes per page)
342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
344 struct onenand_chip *this = mtd->priv;
345 int value, block, page;
347 /* Address translation */
348 switch (cmd) {
349 case ONENAND_CMD_UNLOCK:
350 case ONENAND_CMD_LOCK:
351 case ONENAND_CMD_LOCK_TIGHT:
352 case ONENAND_CMD_UNLOCK_ALL:
353 block = -1;
354 page = -1;
355 break;
357 case FLEXONENAND_CMD_PI_ACCESS:
358 /* addr contains die index */
359 block = addr * this->density_mask;
360 page = -1;
361 break;
363 case ONENAND_CMD_ERASE:
364 case ONENAND_CMD_MULTIBLOCK_ERASE:
365 case ONENAND_CMD_ERASE_VERIFY:
366 case ONENAND_CMD_BUFFERRAM:
367 case ONENAND_CMD_OTP_ACCESS:
368 block = onenand_block(this, addr);
369 page = -1;
370 break;
372 case FLEXONENAND_CMD_READ_PI:
373 cmd = ONENAND_CMD_READ;
374 block = addr * this->density_mask;
375 page = 0;
376 break;
378 default:
379 block = onenand_block(this, addr);
380 if (FLEXONENAND(this))
381 page = (int) (addr - onenand_addr(this, block))>>\
382 this->page_shift;
383 else
384 page = (int) (addr >> this->page_shift);
385 if (ONENAND_IS_2PLANE(this)) {
386 /* Make the even block number */
387 block &= ~1;
388 /* Is it the odd plane? */
389 if (addr & this->writesize)
390 block++;
391 page >>= 1;
393 page &= this->page_mask;
394 break;
397 /* NOTE: The setting order of the registers is very important! */
398 if (cmd == ONENAND_CMD_BUFFERRAM) {
399 /* Select DataRAM for DDP */
400 value = onenand_bufferram_address(this, block);
401 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
403 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this) ||
404 ONENAND_IS_4KB_PAGE(this))
405 /* It is always BufferRAM0 */
406 ONENAND_SET_BUFFERRAM0(this);
407 else
408 /* Switch to the next data buffer */
409 ONENAND_SET_NEXT_BUFFERRAM(this);
411 return 0;
414 if (block != -1) {
415 /* Write 'DFS, FBA' of Flash */
416 value = onenand_block_address(this, block);
417 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
419 /* Select DataRAM for DDP */
420 value = onenand_bufferram_address(this, block);
421 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
424 if (page != -1) {
425 /* Now we use page size operation */
426 int sectors = 0, count = 0;
427 int dataram;
429 switch (cmd) {
430 case FLEXONENAND_CMD_RECOVER_LSB:
431 case ONENAND_CMD_READ:
432 case ONENAND_CMD_READOOB:
433 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
434 /* It is always BufferRAM0 */
435 dataram = ONENAND_SET_BUFFERRAM0(this);
436 else
437 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
438 break;
440 default:
441 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
442 cmd = ONENAND_CMD_2X_PROG;
443 dataram = ONENAND_CURRENT_BUFFERRAM(this);
444 break;
447 /* Write 'FPA, FSA' of Flash */
448 value = onenand_page_address(page, sectors);
449 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
451 /* Write 'BSA, BSC' of DataRAM */
452 value = onenand_buffer_address(dataram, sectors, count);
453 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
456 /* Interrupt clear */
457 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
459 /* Write command */
460 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
462 return 0;
466 * onenand_read_ecc - return ecc status
467 * @param this onenand chip structure
469 static inline int onenand_read_ecc(struct onenand_chip *this)
471 int ecc, i, result = 0;
473 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
474 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
476 for (i = 0; i < 4; i++) {
477 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
478 if (likely(!ecc))
479 continue;
480 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
481 return ONENAND_ECC_2BIT_ALL;
482 else
483 result = ONENAND_ECC_1BIT_ALL;
486 return result;
490 * onenand_wait - [DEFAULT] wait until the command is done
491 * @param mtd MTD device structure
492 * @param state state to select the max. timeout value
494 * Wait for command done. This applies to all OneNAND command
495 * Read can take up to 30us, erase up to 2ms and program up to 350us
496 * according to general OneNAND specs
498 static int onenand_wait(struct mtd_info *mtd, int state)
500 struct onenand_chip * this = mtd->priv;
501 unsigned long timeout;
502 unsigned int flags = ONENAND_INT_MASTER;
503 unsigned int interrupt = 0;
504 unsigned int ctrl;
506 /* The 20 msec is enough */
507 timeout = jiffies + msecs_to_jiffies(20);
508 while (time_before(jiffies, timeout)) {
509 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
511 if (interrupt & flags)
512 break;
514 if (state != FL_READING && state != FL_PREPARING_ERASE)
515 cond_resched();
517 /* To get correct interrupt status in timeout case */
518 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
520 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
523 * In the Spec. it checks the controller status first
524 * However if you get the correct information in case of
525 * power off recovery (POR) test, it should read ECC status first
527 if (interrupt & ONENAND_INT_READ) {
528 int ecc = onenand_read_ecc(this);
529 if (ecc) {
530 if (ecc & ONENAND_ECC_2BIT_ALL) {
531 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
532 __func__, ecc);
533 mtd->ecc_stats.failed++;
534 return -EBADMSG;
535 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
536 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
537 __func__, ecc);
538 mtd->ecc_stats.corrected++;
541 } else if (state == FL_READING) {
542 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
543 __func__, ctrl, interrupt);
544 return -EIO;
547 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
548 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
549 __func__, ctrl, interrupt);
550 return -EIO;
553 if (!(interrupt & ONENAND_INT_MASTER)) {
554 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
555 __func__, ctrl, interrupt);
556 return -EIO;
559 /* If there's controller error, it's a real error */
560 if (ctrl & ONENAND_CTRL_ERROR) {
561 printk(KERN_ERR "%s: controller error = 0x%04x\n",
562 __func__, ctrl);
563 if (ctrl & ONENAND_CTRL_LOCK)
564 printk(KERN_ERR "%s: it's locked error.\n", __func__);
565 return -EIO;
568 return 0;
572 * onenand_interrupt - [DEFAULT] onenand interrupt handler
573 * @param irq onenand interrupt number
574 * @param dev_id interrupt data
576 * complete the work
578 static irqreturn_t onenand_interrupt(int irq, void *data)
580 struct onenand_chip *this = data;
582 /* To handle shared interrupt */
583 if (!this->complete.done)
584 complete(&this->complete);
586 return IRQ_HANDLED;
590 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
591 * @param mtd MTD device structure
592 * @param state state to select the max. timeout value
594 * Wait for command done.
596 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
598 struct onenand_chip *this = mtd->priv;
600 wait_for_completion(&this->complete);
602 return onenand_wait(mtd, state);
606 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
607 * @param mtd MTD device structure
608 * @param state state to select the max. timeout value
610 * Try interrupt based wait (It is used one-time)
612 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
614 struct onenand_chip *this = mtd->priv;
615 unsigned long remain, timeout;
617 /* We use interrupt wait first */
618 this->wait = onenand_interrupt_wait;
620 timeout = msecs_to_jiffies(100);
621 remain = wait_for_completion_timeout(&this->complete, timeout);
622 if (!remain) {
623 printk(KERN_INFO "OneNAND: There's no interrupt. "
624 "We use the normal wait\n");
626 /* Release the irq */
627 free_irq(this->irq, this);
629 this->wait = onenand_wait;
632 return onenand_wait(mtd, state);
636 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
637 * @param mtd MTD device structure
639 * There's two method to wait onenand work
640 * 1. polling - read interrupt status register
641 * 2. interrupt - use the kernel interrupt method
643 static void onenand_setup_wait(struct mtd_info *mtd)
645 struct onenand_chip *this = mtd->priv;
646 int syscfg;
648 init_completion(&this->complete);
650 if (this->irq <= 0) {
651 this->wait = onenand_wait;
652 return;
655 if (request_irq(this->irq, &onenand_interrupt,
656 IRQF_SHARED, "onenand", this)) {
657 /* If we can't get irq, use the normal wait */
658 this->wait = onenand_wait;
659 return;
662 /* Enable interrupt */
663 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
664 syscfg |= ONENAND_SYS_CFG1_IOBE;
665 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
667 this->wait = onenand_try_interrupt_wait;
671 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
672 * @param mtd MTD data structure
673 * @param area BufferRAM area
674 * @return offset given area
676 * Return BufferRAM offset given area
678 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
680 struct onenand_chip *this = mtd->priv;
682 if (ONENAND_CURRENT_BUFFERRAM(this)) {
683 /* Note: the 'this->writesize' is a real page size */
684 if (area == ONENAND_DATARAM)
685 return this->writesize;
686 if (area == ONENAND_SPARERAM)
687 return mtd->oobsize;
690 return 0;
694 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
695 * @param mtd MTD data structure
696 * @param area BufferRAM area
697 * @param buffer the databuffer to put/get data
698 * @param offset offset to read from or write to
699 * @param count number of bytes to read/write
701 * Read the BufferRAM area
703 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
704 unsigned char *buffer, int offset, size_t count)
706 struct onenand_chip *this = mtd->priv;
707 void __iomem *bufferram;
709 bufferram = this->base + area;
711 bufferram += onenand_bufferram_offset(mtd, area);
713 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
714 unsigned short word;
716 /* Align with word(16-bit) size */
717 count--;
719 /* Read word and save byte */
720 word = this->read_word(bufferram + offset + count);
721 buffer[count] = (word & 0xff);
724 memcpy(buffer, bufferram + offset, count);
726 return 0;
730 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
731 * @param mtd MTD data structure
732 * @param area BufferRAM area
733 * @param buffer the databuffer to put/get data
734 * @param offset offset to read from or write to
735 * @param count number of bytes to read/write
737 * Read the BufferRAM area with Sync. Burst Mode
739 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
740 unsigned char *buffer, int offset, size_t count)
742 struct onenand_chip *this = mtd->priv;
743 void __iomem *bufferram;
745 bufferram = this->base + area;
747 bufferram += onenand_bufferram_offset(mtd, area);
749 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
751 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
752 unsigned short word;
754 /* Align with word(16-bit) size */
755 count--;
757 /* Read word and save byte */
758 word = this->read_word(bufferram + offset + count);
759 buffer[count] = (word & 0xff);
762 memcpy(buffer, bufferram + offset, count);
764 this->mmcontrol(mtd, 0);
766 return 0;
770 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
771 * @param mtd MTD data structure
772 * @param area BufferRAM area
773 * @param buffer the databuffer to put/get data
774 * @param offset offset to read from or write to
775 * @param count number of bytes to read/write
777 * Write the BufferRAM area
779 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
780 const unsigned char *buffer, int offset, size_t count)
782 struct onenand_chip *this = mtd->priv;
783 void __iomem *bufferram;
785 bufferram = this->base + area;
787 bufferram += onenand_bufferram_offset(mtd, area);
789 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
790 unsigned short word;
791 int byte_offset;
793 /* Align with word(16-bit) size */
794 count--;
796 /* Calculate byte access offset */
797 byte_offset = offset + count;
799 /* Read word and save byte */
800 word = this->read_word(bufferram + byte_offset);
801 word = (word & ~0xff) | buffer[count];
802 this->write_word(word, bufferram + byte_offset);
805 memcpy(bufferram + offset, buffer, count);
807 return 0;
811 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
812 * @param mtd MTD data structure
813 * @param addr address to check
814 * @return blockpage address
816 * Get blockpage address at 2x program mode
818 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
820 struct onenand_chip *this = mtd->priv;
821 int blockpage, block, page;
823 /* Calculate the even block number */
824 block = (int) (addr >> this->erase_shift) & ~1;
825 /* Is it the odd plane? */
826 if (addr & this->writesize)
827 block++;
828 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
829 blockpage = (block << 7) | page;
831 return blockpage;
835 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
836 * @param mtd MTD data structure
837 * @param addr address to check
838 * @return 1 if there are valid data, otherwise 0
840 * Check bufferram if there is data we required
842 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
844 struct onenand_chip *this = mtd->priv;
845 int blockpage, found = 0;
846 unsigned int i;
848 if (ONENAND_IS_2PLANE(this))
849 blockpage = onenand_get_2x_blockpage(mtd, addr);
850 else
851 blockpage = (int) (addr >> this->page_shift);
853 /* Is there valid data? */
854 i = ONENAND_CURRENT_BUFFERRAM(this);
855 if (this->bufferram[i].blockpage == blockpage)
856 found = 1;
857 else {
858 /* Check another BufferRAM */
859 i = ONENAND_NEXT_BUFFERRAM(this);
860 if (this->bufferram[i].blockpage == blockpage) {
861 ONENAND_SET_NEXT_BUFFERRAM(this);
862 found = 1;
866 if (found && ONENAND_IS_DDP(this)) {
867 /* Select DataRAM for DDP */
868 int block = onenand_block(this, addr);
869 int value = onenand_bufferram_address(this, block);
870 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
873 return found;
877 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
878 * @param mtd MTD data structure
879 * @param addr address to update
880 * @param valid valid flag
882 * Update BufferRAM information
884 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
885 int valid)
887 struct onenand_chip *this = mtd->priv;
888 int blockpage;
889 unsigned int i;
891 if (ONENAND_IS_2PLANE(this))
892 blockpage = onenand_get_2x_blockpage(mtd, addr);
893 else
894 blockpage = (int) (addr >> this->page_shift);
896 /* Invalidate another BufferRAM */
897 i = ONENAND_NEXT_BUFFERRAM(this);
898 if (this->bufferram[i].blockpage == blockpage)
899 this->bufferram[i].blockpage = -1;
901 /* Update BufferRAM */
902 i = ONENAND_CURRENT_BUFFERRAM(this);
903 if (valid)
904 this->bufferram[i].blockpage = blockpage;
905 else
906 this->bufferram[i].blockpage = -1;
910 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
911 * @param mtd MTD data structure
912 * @param addr start address to invalidate
913 * @param len length to invalidate
915 * Invalidate BufferRAM information
917 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
918 unsigned int len)
920 struct onenand_chip *this = mtd->priv;
921 int i;
922 loff_t end_addr = addr + len;
924 /* Invalidate BufferRAM */
925 for (i = 0; i < MAX_BUFFERRAM; i++) {
926 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
927 if (buf_addr >= addr && buf_addr < end_addr)
928 this->bufferram[i].blockpage = -1;
933 * onenand_get_device - [GENERIC] Get chip for selected access
934 * @param mtd MTD device structure
935 * @param new_state the state which is requested
937 * Get the device and lock it for exclusive access
939 static int onenand_get_device(struct mtd_info *mtd, int new_state)
941 struct onenand_chip *this = mtd->priv;
942 DECLARE_WAITQUEUE(wait, current);
945 * Grab the lock and see if the device is available
947 while (1) {
948 spin_lock(&this->chip_lock);
949 if (this->state == FL_READY) {
950 this->state = new_state;
951 spin_unlock(&this->chip_lock);
952 break;
954 if (new_state == FL_PM_SUSPENDED) {
955 spin_unlock(&this->chip_lock);
956 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
958 set_current_state(TASK_UNINTERRUPTIBLE);
959 add_wait_queue(&this->wq, &wait);
960 spin_unlock(&this->chip_lock);
961 schedule();
962 remove_wait_queue(&this->wq, &wait);
965 return 0;
969 * onenand_release_device - [GENERIC] release chip
970 * @param mtd MTD device structure
972 * Deselect, release chip lock and wake up anyone waiting on the device
974 static void onenand_release_device(struct mtd_info *mtd)
976 struct onenand_chip *this = mtd->priv;
978 /* Release the chip */
979 spin_lock(&this->chip_lock);
980 this->state = FL_READY;
981 wake_up(&this->wq);
982 spin_unlock(&this->chip_lock);
986 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
987 * @param mtd MTD device structure
988 * @param buf destination address
989 * @param column oob offset to read from
990 * @param thislen oob length to read
992 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
993 int thislen)
995 struct onenand_chip *this = mtd->priv;
996 struct nand_oobfree *free;
997 int readcol = column;
998 int readend = column + thislen;
999 int lastgap = 0;
1000 unsigned int i;
1001 uint8_t *oob_buf = this->oob_buf;
1003 free = this->ecclayout->oobfree;
1004 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1005 if (readcol >= lastgap)
1006 readcol += free->offset - lastgap;
1007 if (readend >= lastgap)
1008 readend += free->offset - lastgap;
1009 lastgap = free->offset + free->length;
1011 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1012 free = this->ecclayout->oobfree;
1013 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1014 int free_end = free->offset + free->length;
1015 if (free->offset < readend && free_end > readcol) {
1016 int st = max_t(int,free->offset,readcol);
1017 int ed = min_t(int,free_end,readend);
1018 int n = ed - st;
1019 memcpy(buf, oob_buf + st, n);
1020 buf += n;
1021 } else if (column == 0)
1022 break;
1024 return 0;
1028 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1029 * @param mtd MTD device structure
1030 * @param addr address to recover
1031 * @param status return value from onenand_wait / onenand_bbt_wait
1033 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1034 * lower page address and MSB page has higher page address in paired pages.
1035 * If power off occurs during MSB page program, the paired LSB page data can
1036 * become corrupt. LSB page recovery read is a way to read LSB page though page
1037 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1038 * read after power up, issue LSB page recovery read.
1040 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1042 struct onenand_chip *this = mtd->priv;
1043 int i;
1045 /* Recovery is only for Flex-OneNAND */
1046 if (!FLEXONENAND(this))
1047 return status;
1049 /* check if we failed due to uncorrectable error */
1050 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1051 return status;
1053 /* check if address lies in MLC region */
1054 i = flexonenand_region(mtd, addr);
1055 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1056 return status;
1058 /* We are attempting to reread, so decrement stats.failed
1059 * which was incremented by onenand_wait due to read failure
1061 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1062 __func__);
1063 mtd->ecc_stats.failed--;
1065 /* Issue the LSB page recovery command */
1066 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1067 return this->wait(mtd, FL_READING);
1071 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1072 * @param mtd MTD device structure
1073 * @param from offset to read from
1074 * @param ops: oob operation description structure
1076 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1077 * So, read-while-load is not present.
1079 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1080 struct mtd_oob_ops *ops)
1082 struct onenand_chip *this = mtd->priv;
1083 struct mtd_ecc_stats stats;
1084 size_t len = ops->len;
1085 size_t ooblen = ops->ooblen;
1086 u_char *buf = ops->datbuf;
1087 u_char *oobbuf = ops->oobbuf;
1088 int read = 0, column, thislen;
1089 int oobread = 0, oobcolumn, thisooblen, oobsize;
1090 int ret = 0;
1091 int writesize = this->writesize;
1093 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1094 __func__, (unsigned int) from, (int) len);
1096 if (ops->mode == MTD_OOB_AUTO)
1097 oobsize = this->ecclayout->oobavail;
1098 else
1099 oobsize = mtd->oobsize;
1101 oobcolumn = from & (mtd->oobsize - 1);
1103 /* Do not allow reads past end of device */
1104 if (from + len > mtd->size) {
1105 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1106 __func__);
1107 ops->retlen = 0;
1108 ops->oobretlen = 0;
1109 return -EINVAL;
1112 stats = mtd->ecc_stats;
1114 while (read < len) {
1115 cond_resched();
1117 thislen = min_t(int, writesize, len - read);
1119 column = from & (writesize - 1);
1120 if (column + thislen > writesize)
1121 thislen = writesize - column;
1123 if (!onenand_check_bufferram(mtd, from)) {
1124 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1126 ret = this->wait(mtd, FL_READING);
1127 if (unlikely(ret))
1128 ret = onenand_recover_lsb(mtd, from, ret);
1129 onenand_update_bufferram(mtd, from, !ret);
1130 if (ret == -EBADMSG)
1131 ret = 0;
1134 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1135 if (oobbuf) {
1136 thisooblen = oobsize - oobcolumn;
1137 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1139 if (ops->mode == MTD_OOB_AUTO)
1140 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1141 else
1142 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1143 oobread += thisooblen;
1144 oobbuf += thisooblen;
1145 oobcolumn = 0;
1148 read += thislen;
1149 if (read == len)
1150 break;
1152 from += thislen;
1153 buf += thislen;
1157 * Return success, if no ECC failures, else -EBADMSG
1158 * fs driver will take care of that, because
1159 * retlen == desired len and result == -EBADMSG
1161 ops->retlen = read;
1162 ops->oobretlen = oobread;
1164 if (ret)
1165 return ret;
1167 if (mtd->ecc_stats.failed - stats.failed)
1168 return -EBADMSG;
1170 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1174 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1175 * @param mtd MTD device structure
1176 * @param from offset to read from
1177 * @param ops: oob operation description structure
1179 * OneNAND read main and/or out-of-band data
1181 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1182 struct mtd_oob_ops *ops)
1184 struct onenand_chip *this = mtd->priv;
1185 struct mtd_ecc_stats stats;
1186 size_t len = ops->len;
1187 size_t ooblen = ops->ooblen;
1188 u_char *buf = ops->datbuf;
1189 u_char *oobbuf = ops->oobbuf;
1190 int read = 0, column, thislen;
1191 int oobread = 0, oobcolumn, thisooblen, oobsize;
1192 int ret = 0, boundary = 0;
1193 int writesize = this->writesize;
1195 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1196 __func__, (unsigned int) from, (int) len);
1198 if (ops->mode == MTD_OOB_AUTO)
1199 oobsize = this->ecclayout->oobavail;
1200 else
1201 oobsize = mtd->oobsize;
1203 oobcolumn = from & (mtd->oobsize - 1);
1205 /* Do not allow reads past end of device */
1206 if ((from + len) > mtd->size) {
1207 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1208 __func__);
1209 ops->retlen = 0;
1210 ops->oobretlen = 0;
1211 return -EINVAL;
1214 stats = mtd->ecc_stats;
1216 /* Read-while-load method */
1218 /* Do first load to bufferRAM */
1219 if (read < len) {
1220 if (!onenand_check_bufferram(mtd, from)) {
1221 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1222 ret = this->wait(mtd, FL_READING);
1223 onenand_update_bufferram(mtd, from, !ret);
1224 if (ret == -EBADMSG)
1225 ret = 0;
1229 thislen = min_t(int, writesize, len - read);
1230 column = from & (writesize - 1);
1231 if (column + thislen > writesize)
1232 thislen = writesize - column;
1234 while (!ret) {
1235 /* If there is more to load then start next load */
1236 from += thislen;
1237 if (read + thislen < len) {
1238 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1240 * Chip boundary handling in DDP
1241 * Now we issued chip 1 read and pointed chip 1
1242 * bufferram so we have to point chip 0 bufferram.
1244 if (ONENAND_IS_DDP(this) &&
1245 unlikely(from == (this->chipsize >> 1))) {
1246 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1247 boundary = 1;
1248 } else
1249 boundary = 0;
1250 ONENAND_SET_PREV_BUFFERRAM(this);
1252 /* While load is going, read from last bufferRAM */
1253 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1255 /* Read oob area if needed */
1256 if (oobbuf) {
1257 thisooblen = oobsize - oobcolumn;
1258 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1260 if (ops->mode == MTD_OOB_AUTO)
1261 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1262 else
1263 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1264 oobread += thisooblen;
1265 oobbuf += thisooblen;
1266 oobcolumn = 0;
1269 /* See if we are done */
1270 read += thislen;
1271 if (read == len)
1272 break;
1273 /* Set up for next read from bufferRAM */
1274 if (unlikely(boundary))
1275 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1276 ONENAND_SET_NEXT_BUFFERRAM(this);
1277 buf += thislen;
1278 thislen = min_t(int, writesize, len - read);
1279 column = 0;
1280 cond_resched();
1281 /* Now wait for load */
1282 ret = this->wait(mtd, FL_READING);
1283 onenand_update_bufferram(mtd, from, !ret);
1284 if (ret == -EBADMSG)
1285 ret = 0;
1289 * Return success, if no ECC failures, else -EBADMSG
1290 * fs driver will take care of that, because
1291 * retlen == desired len and result == -EBADMSG
1293 ops->retlen = read;
1294 ops->oobretlen = oobread;
1296 if (ret)
1297 return ret;
1299 if (mtd->ecc_stats.failed - stats.failed)
1300 return -EBADMSG;
1302 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1306 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1307 * @param mtd MTD device structure
1308 * @param from offset to read from
1309 * @param ops: oob operation description structure
1311 * OneNAND read out-of-band data from the spare area
1313 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1314 struct mtd_oob_ops *ops)
1316 struct onenand_chip *this = mtd->priv;
1317 struct mtd_ecc_stats stats;
1318 int read = 0, thislen, column, oobsize;
1319 size_t len = ops->ooblen;
1320 mtd_oob_mode_t mode = ops->mode;
1321 u_char *buf = ops->oobbuf;
1322 int ret = 0, readcmd;
1324 from += ops->ooboffs;
1326 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1327 __func__, (unsigned int) from, (int) len);
1329 /* Initialize return length value */
1330 ops->oobretlen = 0;
1332 if (mode == MTD_OOB_AUTO)
1333 oobsize = this->ecclayout->oobavail;
1334 else
1335 oobsize = mtd->oobsize;
1337 column = from & (mtd->oobsize - 1);
1339 if (unlikely(column >= oobsize)) {
1340 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1341 __func__);
1342 return -EINVAL;
1345 /* Do not allow reads past end of device */
1346 if (unlikely(from >= mtd->size ||
1347 column + len > ((mtd->size >> this->page_shift) -
1348 (from >> this->page_shift)) * oobsize)) {
1349 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1350 __func__);
1351 return -EINVAL;
1354 stats = mtd->ecc_stats;
1356 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1358 while (read < len) {
1359 cond_resched();
1361 thislen = oobsize - column;
1362 thislen = min_t(int, thislen, len);
1364 this->command(mtd, readcmd, from, mtd->oobsize);
1366 onenand_update_bufferram(mtd, from, 0);
1368 ret = this->wait(mtd, FL_READING);
1369 if (unlikely(ret))
1370 ret = onenand_recover_lsb(mtd, from, ret);
1372 if (ret && ret != -EBADMSG) {
1373 printk(KERN_ERR "%s: read failed = 0x%x\n",
1374 __func__, ret);
1375 break;
1378 if (mode == MTD_OOB_AUTO)
1379 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1380 else
1381 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1383 read += thislen;
1385 if (read == len)
1386 break;
1388 buf += thislen;
1390 /* Read more? */
1391 if (read < len) {
1392 /* Page size */
1393 from += mtd->writesize;
1394 column = 0;
1398 ops->oobretlen = read;
1400 if (ret)
1401 return ret;
1403 if (mtd->ecc_stats.failed - stats.failed)
1404 return -EBADMSG;
1406 return 0;
1410 * onenand_read - [MTD Interface] Read data from flash
1411 * @param mtd MTD device structure
1412 * @param from offset to read from
1413 * @param len number of bytes to read
1414 * @param retlen pointer to variable to store the number of read bytes
1415 * @param buf the databuffer to put data
1417 * Read with ecc
1419 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1420 size_t *retlen, u_char *buf)
1422 struct onenand_chip *this = mtd->priv;
1423 struct mtd_oob_ops ops = {
1424 .len = len,
1425 .ooblen = 0,
1426 .datbuf = buf,
1427 .oobbuf = NULL,
1429 int ret;
1431 onenand_get_device(mtd, FL_READING);
1432 ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1433 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1434 onenand_read_ops_nolock(mtd, from, &ops);
1435 onenand_release_device(mtd);
1437 *retlen = ops.retlen;
1438 return ret;
1442 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1443 * @param mtd: MTD device structure
1444 * @param from: offset to read from
1445 * @param ops: oob operation description structure
1447 * Read main and/or out-of-band
1449 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1450 struct mtd_oob_ops *ops)
1452 struct onenand_chip *this = mtd->priv;
1453 int ret;
1455 switch (ops->mode) {
1456 case MTD_OOB_PLACE:
1457 case MTD_OOB_AUTO:
1458 break;
1459 case MTD_OOB_RAW:
1460 /* Not implemented yet */
1461 default:
1462 return -EINVAL;
1465 onenand_get_device(mtd, FL_READING);
1466 if (ops->datbuf)
1467 ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1468 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1469 onenand_read_ops_nolock(mtd, from, ops);
1470 else
1471 ret = onenand_read_oob_nolock(mtd, from, ops);
1472 onenand_release_device(mtd);
1474 return ret;
1478 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1479 * @param mtd MTD device structure
1480 * @param state state to select the max. timeout value
1482 * Wait for command done.
1484 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1486 struct onenand_chip *this = mtd->priv;
1487 unsigned long timeout;
1488 unsigned int interrupt;
1489 unsigned int ctrl;
1491 /* The 20 msec is enough */
1492 timeout = jiffies + msecs_to_jiffies(20);
1493 while (time_before(jiffies, timeout)) {
1494 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1495 if (interrupt & ONENAND_INT_MASTER)
1496 break;
1498 /* To get correct interrupt status in timeout case */
1499 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1500 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1502 if (interrupt & ONENAND_INT_READ) {
1503 int ecc = onenand_read_ecc(this);
1504 if (ecc & ONENAND_ECC_2BIT_ALL) {
1505 printk(KERN_WARNING "%s: ecc error = 0x%04x, "
1506 "controller error 0x%04x\n",
1507 __func__, ecc, ctrl);
1508 return ONENAND_BBT_READ_ECC_ERROR;
1510 } else {
1511 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1512 __func__, ctrl, interrupt);
1513 return ONENAND_BBT_READ_FATAL_ERROR;
1516 /* Initial bad block case: 0x2400 or 0x0400 */
1517 if (ctrl & ONENAND_CTRL_ERROR) {
1518 printk(KERN_DEBUG "%s: controller error = 0x%04x\n",
1519 __func__, ctrl);
1520 return ONENAND_BBT_READ_ERROR;
1523 return 0;
1527 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1528 * @param mtd MTD device structure
1529 * @param from offset to read from
1530 * @param ops oob operation description structure
1532 * OneNAND read out-of-band data from the spare area for bbt scan
1534 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1535 struct mtd_oob_ops *ops)
1537 struct onenand_chip *this = mtd->priv;
1538 int read = 0, thislen, column;
1539 int ret = 0, readcmd;
1540 size_t len = ops->ooblen;
1541 u_char *buf = ops->oobbuf;
1543 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1544 __func__, (unsigned int) from, len);
1546 /* Initialize return value */
1547 ops->oobretlen = 0;
1549 /* Do not allow reads past end of device */
1550 if (unlikely((from + len) > mtd->size)) {
1551 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1552 __func__);
1553 return ONENAND_BBT_READ_FATAL_ERROR;
1556 /* Grab the lock and see if the device is available */
1557 onenand_get_device(mtd, FL_READING);
1559 column = from & (mtd->oobsize - 1);
1561 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1563 while (read < len) {
1564 cond_resched();
1566 thislen = mtd->oobsize - column;
1567 thislen = min_t(int, thislen, len);
1569 this->command(mtd, readcmd, from, mtd->oobsize);
1571 onenand_update_bufferram(mtd, from, 0);
1573 ret = this->bbt_wait(mtd, FL_READING);
1574 if (unlikely(ret))
1575 ret = onenand_recover_lsb(mtd, from, ret);
1577 if (ret)
1578 break;
1580 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1581 read += thislen;
1582 if (read == len)
1583 break;
1585 buf += thislen;
1587 /* Read more? */
1588 if (read < len) {
1589 /* Update Page size */
1590 from += this->writesize;
1591 column = 0;
1595 /* Deselect and wake up anyone waiting on the device */
1596 onenand_release_device(mtd);
1598 ops->oobretlen = read;
1599 return ret;
1602 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1604 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1605 * @param mtd MTD device structure
1606 * @param buf the databuffer to verify
1607 * @param to offset to read from
1609 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1611 struct onenand_chip *this = mtd->priv;
1612 u_char *oob_buf = this->oob_buf;
1613 int status, i, readcmd;
1615 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1617 this->command(mtd, readcmd, to, mtd->oobsize);
1618 onenand_update_bufferram(mtd, to, 0);
1619 status = this->wait(mtd, FL_READING);
1620 if (status)
1621 return status;
1623 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1624 for (i = 0; i < mtd->oobsize; i++)
1625 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1626 return -EBADMSG;
1628 return 0;
1632 * onenand_verify - [GENERIC] verify the chip contents after a write
1633 * @param mtd MTD device structure
1634 * @param buf the databuffer to verify
1635 * @param addr offset to read from
1636 * @param len number of bytes to read and compare
1638 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1640 struct onenand_chip *this = mtd->priv;
1641 int ret = 0;
1642 int thislen, column;
1644 while (len != 0) {
1645 thislen = min_t(int, this->writesize, len);
1646 column = addr & (this->writesize - 1);
1647 if (column + thislen > this->writesize)
1648 thislen = this->writesize - column;
1650 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1652 onenand_update_bufferram(mtd, addr, 0);
1654 ret = this->wait(mtd, FL_READING);
1655 if (ret)
1656 return ret;
1658 onenand_update_bufferram(mtd, addr, 1);
1660 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1662 if (memcmp(buf, this->verify_buf, thislen))
1663 return -EBADMSG;
1665 len -= thislen;
1666 buf += thislen;
1667 addr += thislen;
1670 return 0;
1672 #else
1673 #define onenand_verify(...) (0)
1674 #define onenand_verify_oob(...) (0)
1675 #endif
1677 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1679 static void onenand_panic_wait(struct mtd_info *mtd)
1681 struct onenand_chip *this = mtd->priv;
1682 unsigned int interrupt;
1683 int i;
1685 for (i = 0; i < 2000; i++) {
1686 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1687 if (interrupt & ONENAND_INT_MASTER)
1688 break;
1689 udelay(10);
1694 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1695 * @param mtd MTD device structure
1696 * @param to offset to write to
1697 * @param len number of bytes to write
1698 * @param retlen pointer to variable to store the number of written bytes
1699 * @param buf the data to write
1701 * Write with ECC
1703 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1704 size_t *retlen, const u_char *buf)
1706 struct onenand_chip *this = mtd->priv;
1707 int column, subpage;
1708 int written = 0;
1709 int ret = 0;
1711 if (this->state == FL_PM_SUSPENDED)
1712 return -EBUSY;
1714 /* Wait for any existing operation to clear */
1715 onenand_panic_wait(mtd);
1717 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1718 __func__, (unsigned int) to, (int) len);
1720 /* Initialize retlen, in case of early exit */
1721 *retlen = 0;
1723 /* Do not allow writes past end of device */
1724 if (unlikely((to + len) > mtd->size)) {
1725 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1726 __func__);
1727 return -EINVAL;
1730 /* Reject writes, which are not page aligned */
1731 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1732 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1733 __func__);
1734 return -EINVAL;
1737 column = to & (mtd->writesize - 1);
1739 /* Loop until all data write */
1740 while (written < len) {
1741 int thislen = min_t(int, mtd->writesize - column, len - written);
1742 u_char *wbuf = (u_char *) buf;
1744 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1746 /* Partial page write */
1747 subpage = thislen < mtd->writesize;
1748 if (subpage) {
1749 memset(this->page_buf, 0xff, mtd->writesize);
1750 memcpy(this->page_buf + column, buf, thislen);
1751 wbuf = this->page_buf;
1754 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1755 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1757 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1759 onenand_panic_wait(mtd);
1761 /* In partial page write we don't update bufferram */
1762 onenand_update_bufferram(mtd, to, !ret && !subpage);
1763 if (ONENAND_IS_2PLANE(this)) {
1764 ONENAND_SET_BUFFERRAM1(this);
1765 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1768 if (ret) {
1769 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1770 break;
1773 written += thislen;
1775 if (written == len)
1776 break;
1778 column = 0;
1779 to += thislen;
1780 buf += thislen;
1783 *retlen = written;
1784 return ret;
1788 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1789 * @param mtd MTD device structure
1790 * @param oob_buf oob buffer
1791 * @param buf source address
1792 * @param column oob offset to write to
1793 * @param thislen oob length to write
1795 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1796 const u_char *buf, int column, int thislen)
1798 struct onenand_chip *this = mtd->priv;
1799 struct nand_oobfree *free;
1800 int writecol = column;
1801 int writeend = column + thislen;
1802 int lastgap = 0;
1803 unsigned int i;
1805 free = this->ecclayout->oobfree;
1806 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1807 if (writecol >= lastgap)
1808 writecol += free->offset - lastgap;
1809 if (writeend >= lastgap)
1810 writeend += free->offset - lastgap;
1811 lastgap = free->offset + free->length;
1813 free = this->ecclayout->oobfree;
1814 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1815 int free_end = free->offset + free->length;
1816 if (free->offset < writeend && free_end > writecol) {
1817 int st = max_t(int,free->offset,writecol);
1818 int ed = min_t(int,free_end,writeend);
1819 int n = ed - st;
1820 memcpy(oob_buf + st, buf, n);
1821 buf += n;
1822 } else if (column == 0)
1823 break;
1825 return 0;
1829 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1830 * @param mtd MTD device structure
1831 * @param to offset to write to
1832 * @param ops oob operation description structure
1834 * Write main and/or oob with ECC
1836 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1837 struct mtd_oob_ops *ops)
1839 struct onenand_chip *this = mtd->priv;
1840 int written = 0, column, thislen = 0, subpage = 0;
1841 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1842 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1843 size_t len = ops->len;
1844 size_t ooblen = ops->ooblen;
1845 const u_char *buf = ops->datbuf;
1846 const u_char *oob = ops->oobbuf;
1847 u_char *oobbuf;
1848 int ret = 0;
1850 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1851 __func__, (unsigned int) to, (int) len);
1853 /* Initialize retlen, in case of early exit */
1854 ops->retlen = 0;
1855 ops->oobretlen = 0;
1857 /* Do not allow writes past end of device */
1858 if (unlikely((to + len) > mtd->size)) {
1859 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1860 __func__);
1861 return -EINVAL;
1864 /* Reject writes, which are not page aligned */
1865 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1866 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1867 __func__);
1868 return -EINVAL;
1871 /* Check zero length */
1872 if (!len)
1873 return 0;
1875 if (ops->mode == MTD_OOB_AUTO)
1876 oobsize = this->ecclayout->oobavail;
1877 else
1878 oobsize = mtd->oobsize;
1880 oobcolumn = to & (mtd->oobsize - 1);
1882 column = to & (mtd->writesize - 1);
1884 /* Loop until all data write */
1885 while (1) {
1886 if (written < len) {
1887 u_char *wbuf = (u_char *) buf;
1889 thislen = min_t(int, mtd->writesize - column, len - written);
1890 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1892 cond_resched();
1894 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1896 /* Partial page write */
1897 subpage = thislen < mtd->writesize;
1898 if (subpage) {
1899 memset(this->page_buf, 0xff, mtd->writesize);
1900 memcpy(this->page_buf + column, buf, thislen);
1901 wbuf = this->page_buf;
1904 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1906 if (oob) {
1907 oobbuf = this->oob_buf;
1909 /* We send data to spare ram with oobsize
1910 * to prevent byte access */
1911 memset(oobbuf, 0xff, mtd->oobsize);
1912 if (ops->mode == MTD_OOB_AUTO)
1913 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1914 else
1915 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1917 oobwritten += thisooblen;
1918 oob += thisooblen;
1919 oobcolumn = 0;
1920 } else
1921 oobbuf = (u_char *) ffchars;
1923 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1924 } else
1925 ONENAND_SET_NEXT_BUFFERRAM(this);
1928 * 2 PLANE, MLC, and Flex-OneNAND do not support
1929 * write-while-program feature.
1931 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1932 ONENAND_SET_PREV_BUFFERRAM(this);
1934 ret = this->wait(mtd, FL_WRITING);
1936 /* In partial page write we don't update bufferram */
1937 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1938 if (ret) {
1939 written -= prevlen;
1940 printk(KERN_ERR "%s: write failed %d\n",
1941 __func__, ret);
1942 break;
1945 if (written == len) {
1946 /* Only check verify write turn on */
1947 ret = onenand_verify(mtd, buf - len, to - len, len);
1948 if (ret)
1949 printk(KERN_ERR "%s: verify failed %d\n",
1950 __func__, ret);
1951 break;
1954 ONENAND_SET_NEXT_BUFFERRAM(this);
1957 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1960 * 2 PLANE, MLC, and Flex-OneNAND wait here
1962 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1963 ret = this->wait(mtd, FL_WRITING);
1965 /* In partial page write we don't update bufferram */
1966 onenand_update_bufferram(mtd, to, !ret && !subpage);
1967 if (ret) {
1968 printk(KERN_ERR "%s: write failed %d\n",
1969 __func__, ret);
1970 break;
1973 /* Only check verify write turn on */
1974 ret = onenand_verify(mtd, buf, to, thislen);
1975 if (ret) {
1976 printk(KERN_ERR "%s: verify failed %d\n",
1977 __func__, ret);
1978 break;
1981 written += thislen;
1983 if (written == len)
1984 break;
1986 } else
1987 written += thislen;
1989 column = 0;
1990 prev_subpage = subpage;
1991 prev = to;
1992 prevlen = thislen;
1993 to += thislen;
1994 buf += thislen;
1995 first = 0;
1998 /* In error case, clear all bufferrams */
1999 if (written != len)
2000 onenand_invalidate_bufferram(mtd, 0, -1);
2002 ops->retlen = written;
2003 ops->oobretlen = oobwritten;
2005 return ret;
2010 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2011 * @param mtd MTD device structure
2012 * @param to offset to write to
2013 * @param len number of bytes to write
2014 * @param retlen pointer to variable to store the number of written bytes
2015 * @param buf the data to write
2016 * @param mode operation mode
2018 * OneNAND write out-of-band
2020 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2021 struct mtd_oob_ops *ops)
2023 struct onenand_chip *this = mtd->priv;
2024 int column, ret = 0, oobsize;
2025 int written = 0, oobcmd;
2026 u_char *oobbuf;
2027 size_t len = ops->ooblen;
2028 const u_char *buf = ops->oobbuf;
2029 mtd_oob_mode_t mode = ops->mode;
2031 to += ops->ooboffs;
2033 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2034 __func__, (unsigned int) to, (int) len);
2036 /* Initialize retlen, in case of early exit */
2037 ops->oobretlen = 0;
2039 if (mode == MTD_OOB_AUTO)
2040 oobsize = this->ecclayout->oobavail;
2041 else
2042 oobsize = mtd->oobsize;
2044 column = to & (mtd->oobsize - 1);
2046 if (unlikely(column >= oobsize)) {
2047 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2048 __func__);
2049 return -EINVAL;
2052 /* For compatibility with NAND: Do not allow write past end of page */
2053 if (unlikely(column + len > oobsize)) {
2054 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2055 __func__);
2056 return -EINVAL;
2059 /* Do not allow reads past end of device */
2060 if (unlikely(to >= mtd->size ||
2061 column + len > ((mtd->size >> this->page_shift) -
2062 (to >> this->page_shift)) * oobsize)) {
2063 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2064 __func__);
2065 return -EINVAL;
2068 oobbuf = this->oob_buf;
2070 oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2072 /* Loop until all data write */
2073 while (written < len) {
2074 int thislen = min_t(int, oobsize, len - written);
2076 cond_resched();
2078 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2080 /* We send data to spare ram with oobsize
2081 * to prevent byte access */
2082 memset(oobbuf, 0xff, mtd->oobsize);
2083 if (mode == MTD_OOB_AUTO)
2084 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2085 else
2086 memcpy(oobbuf + column, buf, thislen);
2087 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2089 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) {
2090 /* Set main area of DataRAM to 0xff*/
2091 memset(this->page_buf, 0xff, mtd->writesize);
2092 this->write_bufferram(mtd, ONENAND_DATARAM,
2093 this->page_buf, 0, mtd->writesize);
2096 this->command(mtd, oobcmd, to, mtd->oobsize);
2098 onenand_update_bufferram(mtd, to, 0);
2099 if (ONENAND_IS_2PLANE(this)) {
2100 ONENAND_SET_BUFFERRAM1(this);
2101 onenand_update_bufferram(mtd, to + this->writesize, 0);
2104 ret = this->wait(mtd, FL_WRITING);
2105 if (ret) {
2106 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2107 break;
2110 ret = onenand_verify_oob(mtd, oobbuf, to);
2111 if (ret) {
2112 printk(KERN_ERR "%s: verify failed %d\n",
2113 __func__, ret);
2114 break;
2117 written += thislen;
2118 if (written == len)
2119 break;
2121 to += mtd->writesize;
2122 buf += thislen;
2123 column = 0;
2126 ops->oobretlen = written;
2128 return ret;
2132 * onenand_write - [MTD Interface] write buffer to FLASH
2133 * @param mtd MTD device structure
2134 * @param to offset to write to
2135 * @param len number of bytes to write
2136 * @param retlen pointer to variable to store the number of written bytes
2137 * @param buf the data to write
2139 * Write with ECC
2141 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2142 size_t *retlen, const u_char *buf)
2144 struct mtd_oob_ops ops = {
2145 .len = len,
2146 .ooblen = 0,
2147 .datbuf = (u_char *) buf,
2148 .oobbuf = NULL,
2150 int ret;
2152 onenand_get_device(mtd, FL_WRITING);
2153 ret = onenand_write_ops_nolock(mtd, to, &ops);
2154 onenand_release_device(mtd);
2156 *retlen = ops.retlen;
2157 return ret;
2161 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2162 * @param mtd: MTD device structure
2163 * @param to: offset to write
2164 * @param ops: oob operation description structure
2166 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2167 struct mtd_oob_ops *ops)
2169 int ret;
2171 switch (ops->mode) {
2172 case MTD_OOB_PLACE:
2173 case MTD_OOB_AUTO:
2174 break;
2175 case MTD_OOB_RAW:
2176 /* Not implemented yet */
2177 default:
2178 return -EINVAL;
2181 onenand_get_device(mtd, FL_WRITING);
2182 if (ops->datbuf)
2183 ret = onenand_write_ops_nolock(mtd, to, ops);
2184 else
2185 ret = onenand_write_oob_nolock(mtd, to, ops);
2186 onenand_release_device(mtd);
2188 return ret;
2192 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2193 * @param mtd MTD device structure
2194 * @param ofs offset from device start
2195 * @param allowbbt 1, if its allowed to access the bbt area
2197 * Check, if the block is bad. Either by reading the bad block table or
2198 * calling of the scan function.
2200 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2202 struct onenand_chip *this = mtd->priv;
2203 struct bbm_info *bbm = this->bbm;
2205 /* Return info from the table */
2206 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2210 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2211 struct erase_info *instr)
2213 struct onenand_chip *this = mtd->priv;
2214 loff_t addr = instr->addr;
2215 int len = instr->len;
2216 unsigned int block_size = (1 << this->erase_shift);
2217 int ret = 0;
2219 while (len) {
2220 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2221 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2222 if (ret) {
2223 printk(KERN_ERR "%s: Failed verify, block %d\n",
2224 __func__, onenand_block(this, addr));
2225 instr->state = MTD_ERASE_FAILED;
2226 instr->fail_addr = addr;
2227 return -1;
2229 len -= block_size;
2230 addr += block_size;
2232 return 0;
2236 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2237 * @param mtd MTD device structure
2238 * @param instr erase instruction
2239 * @param region erase region
2241 * Erase one or more blocks up to 64 block at a time
2243 static int onenand_multiblock_erase(struct mtd_info *mtd,
2244 struct erase_info *instr,
2245 unsigned int block_size)
2247 struct onenand_chip *this = mtd->priv;
2248 loff_t addr = instr->addr;
2249 int len = instr->len;
2250 int eb_count = 0;
2251 int ret = 0;
2252 int bdry_block = 0;
2254 instr->state = MTD_ERASING;
2256 if (ONENAND_IS_DDP(this)) {
2257 loff_t bdry_addr = this->chipsize >> 1;
2258 if (addr < bdry_addr && (addr + len) > bdry_addr)
2259 bdry_block = bdry_addr >> this->erase_shift;
2262 /* Pre-check bbs */
2263 while (len) {
2264 /* Check if we have a bad block, we do not erase bad blocks */
2265 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2266 printk(KERN_WARNING "%s: attempt to erase a bad block "
2267 "at addr 0x%012llx\n",
2268 __func__, (unsigned long long) addr);
2269 instr->state = MTD_ERASE_FAILED;
2270 return -EIO;
2272 len -= block_size;
2273 addr += block_size;
2276 len = instr->len;
2277 addr = instr->addr;
2279 /* loop over 64 eb batches */
2280 while (len) {
2281 struct erase_info verify_instr = *instr;
2282 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2284 verify_instr.addr = addr;
2285 verify_instr.len = 0;
2287 /* do not cross chip boundary */
2288 if (bdry_block) {
2289 int this_block = (addr >> this->erase_shift);
2291 if (this_block < bdry_block) {
2292 max_eb_count = min(max_eb_count,
2293 (bdry_block - this_block));
2297 eb_count = 0;
2299 while (len > block_size && eb_count < (max_eb_count - 1)) {
2300 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2301 addr, block_size);
2302 onenand_invalidate_bufferram(mtd, addr, block_size);
2304 ret = this->wait(mtd, FL_PREPARING_ERASE);
2305 if (ret) {
2306 printk(KERN_ERR "%s: Failed multiblock erase, "
2307 "block %d\n", __func__,
2308 onenand_block(this, addr));
2309 instr->state = MTD_ERASE_FAILED;
2310 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2311 return -EIO;
2314 len -= block_size;
2315 addr += block_size;
2316 eb_count++;
2319 /* last block of 64-eb series */
2320 cond_resched();
2321 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2322 onenand_invalidate_bufferram(mtd, addr, block_size);
2324 ret = this->wait(mtd, FL_ERASING);
2325 /* Check if it is write protected */
2326 if (ret) {
2327 printk(KERN_ERR "%s: Failed erase, block %d\n",
2328 __func__, onenand_block(this, addr));
2329 instr->state = MTD_ERASE_FAILED;
2330 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2331 return -EIO;
2334 len -= block_size;
2335 addr += block_size;
2336 eb_count++;
2338 /* verify */
2339 verify_instr.len = eb_count * block_size;
2340 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2341 instr->state = verify_instr.state;
2342 instr->fail_addr = verify_instr.fail_addr;
2343 return -EIO;
2347 return 0;
2352 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2353 * @param mtd MTD device structure
2354 * @param instr erase instruction
2355 * @param region erase region
2356 * @param block_size erase block size
2358 * Erase one or more blocks one block at a time
2360 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2361 struct erase_info *instr,
2362 struct mtd_erase_region_info *region,
2363 unsigned int block_size)
2365 struct onenand_chip *this = mtd->priv;
2366 loff_t addr = instr->addr;
2367 int len = instr->len;
2368 loff_t region_end = 0;
2369 int ret = 0;
2371 if (region) {
2372 /* region is set for Flex-OneNAND */
2373 region_end = region->offset + region->erasesize * region->numblocks;
2376 instr->state = MTD_ERASING;
2378 /* Loop through the blocks */
2379 while (len) {
2380 cond_resched();
2382 /* Check if we have a bad block, we do not erase bad blocks */
2383 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2384 printk(KERN_WARNING "%s: attempt to erase a bad block "
2385 "at addr 0x%012llx\n",
2386 __func__, (unsigned long long) addr);
2387 instr->state = MTD_ERASE_FAILED;
2388 return -EIO;
2391 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2393 onenand_invalidate_bufferram(mtd, addr, block_size);
2395 ret = this->wait(mtd, FL_ERASING);
2396 /* Check, if it is write protected */
2397 if (ret) {
2398 printk(KERN_ERR "%s: Failed erase, block %d\n",
2399 __func__, onenand_block(this, addr));
2400 instr->state = MTD_ERASE_FAILED;
2401 instr->fail_addr = addr;
2402 return -EIO;
2405 len -= block_size;
2406 addr += block_size;
2408 if (addr == region_end) {
2409 if (!len)
2410 break;
2411 region++;
2413 block_size = region->erasesize;
2414 region_end = region->offset + region->erasesize * region->numblocks;
2416 if (len & (block_size - 1)) {
2417 /* FIXME: This should be handled at MTD partitioning level. */
2418 printk(KERN_ERR "%s: Unaligned address\n",
2419 __func__);
2420 return -EIO;
2424 return 0;
2428 * onenand_erase - [MTD Interface] erase block(s)
2429 * @param mtd MTD device structure
2430 * @param instr erase instruction
2432 * Erase one or more blocks
2434 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2436 struct onenand_chip *this = mtd->priv;
2437 unsigned int block_size;
2438 loff_t addr = instr->addr;
2439 loff_t len = instr->len;
2440 int ret = 0;
2441 struct mtd_erase_region_info *region = NULL;
2442 loff_t region_offset = 0;
2444 DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2445 (unsigned long long) instr->addr, (unsigned long long) instr->len);
2447 /* Do not allow erase past end of device */
2448 if (unlikely((len + addr) > mtd->size)) {
2449 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2450 return -EINVAL;
2453 if (FLEXONENAND(this)) {
2454 /* Find the eraseregion of this address */
2455 int i = flexonenand_region(mtd, addr);
2457 region = &mtd->eraseregions[i];
2458 block_size = region->erasesize;
2460 /* Start address within region must align on block boundary.
2461 * Erase region's start offset is always block start address.
2463 region_offset = region->offset;
2464 } else
2465 block_size = 1 << this->erase_shift;
2467 /* Start address must align on block boundary */
2468 if (unlikely((addr - region_offset) & (block_size - 1))) {
2469 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2470 return -EINVAL;
2473 /* Length must align on block boundary */
2474 if (unlikely(len & (block_size - 1))) {
2475 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2476 return -EINVAL;
2479 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2481 /* Grab the lock and see if the device is available */
2482 onenand_get_device(mtd, FL_ERASING);
2484 if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2485 /* region is set for Flex-OneNAND (no mb erase) */
2486 ret = onenand_block_by_block_erase(mtd, instr,
2487 region, block_size);
2488 } else {
2489 ret = onenand_multiblock_erase(mtd, instr, block_size);
2492 /* Deselect and wake up anyone waiting on the device */
2493 onenand_release_device(mtd);
2495 /* Do call back function */
2496 if (!ret) {
2497 instr->state = MTD_ERASE_DONE;
2498 mtd_erase_callback(instr);
2501 return ret;
2505 * onenand_sync - [MTD Interface] sync
2506 * @param mtd MTD device structure
2508 * Sync is actually a wait for chip ready function
2510 static void onenand_sync(struct mtd_info *mtd)
2512 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2514 /* Grab the lock and see if the device is available */
2515 onenand_get_device(mtd, FL_SYNCING);
2517 /* Release it and go back */
2518 onenand_release_device(mtd);
2522 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2523 * @param mtd MTD device structure
2524 * @param ofs offset relative to mtd start
2526 * Check whether the block is bad
2528 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2530 int ret;
2532 /* Check for invalid offset */
2533 if (ofs > mtd->size)
2534 return -EINVAL;
2536 onenand_get_device(mtd, FL_READING);
2537 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2538 onenand_release_device(mtd);
2539 return ret;
2543 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2544 * @param mtd MTD device structure
2545 * @param ofs offset from device start
2547 * This is the default implementation, which can be overridden by
2548 * a hardware specific driver.
2550 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2552 struct onenand_chip *this = mtd->priv;
2553 struct bbm_info *bbm = this->bbm;
2554 u_char buf[2] = {0, 0};
2555 struct mtd_oob_ops ops = {
2556 .mode = MTD_OOB_PLACE,
2557 .ooblen = 2,
2558 .oobbuf = buf,
2559 .ooboffs = 0,
2561 int block;
2563 /* Get block number */
2564 block = onenand_block(this, ofs);
2565 if (bbm->bbt)
2566 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2568 /* We write two bytes, so we don't have to mess with 16-bit access */
2569 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2570 /* FIXME : What to do when marking SLC block in partition
2571 * with MLC erasesize? For now, it is not advisable to
2572 * create partitions containing both SLC and MLC regions.
2574 return onenand_write_oob_nolock(mtd, ofs, &ops);
2578 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2579 * @param mtd MTD device structure
2580 * @param ofs offset relative to mtd start
2582 * Mark the block as bad
2584 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2586 struct onenand_chip *this = mtd->priv;
2587 int ret;
2589 ret = onenand_block_isbad(mtd, ofs);
2590 if (ret) {
2591 /* If it was bad already, return success and do nothing */
2592 if (ret > 0)
2593 return 0;
2594 return ret;
2597 onenand_get_device(mtd, FL_WRITING);
2598 ret = this->block_markbad(mtd, ofs);
2599 onenand_release_device(mtd);
2600 return ret;
2604 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2605 * @param mtd MTD device structure
2606 * @param ofs offset relative to mtd start
2607 * @param len number of bytes to lock or unlock
2608 * @param cmd lock or unlock command
2610 * Lock or unlock one or more blocks
2612 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2614 struct onenand_chip *this = mtd->priv;
2615 int start, end, block, value, status;
2616 int wp_status_mask;
2618 start = onenand_block(this, ofs);
2619 end = onenand_block(this, ofs + len) - 1;
2621 if (cmd == ONENAND_CMD_LOCK)
2622 wp_status_mask = ONENAND_WP_LS;
2623 else
2624 wp_status_mask = ONENAND_WP_US;
2626 /* Continuous lock scheme */
2627 if (this->options & ONENAND_HAS_CONT_LOCK) {
2628 /* Set start block address */
2629 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2630 /* Set end block address */
2631 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2632 /* Write lock command */
2633 this->command(mtd, cmd, 0, 0);
2635 /* There's no return value */
2636 this->wait(mtd, FL_LOCKING);
2638 /* Sanity check */
2639 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2640 & ONENAND_CTRL_ONGO)
2641 continue;
2643 /* Check lock status */
2644 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2645 if (!(status & wp_status_mask))
2646 printk(KERN_ERR "%s: wp status = 0x%x\n",
2647 __func__, status);
2649 return 0;
2652 /* Block lock scheme */
2653 for (block = start; block < end + 1; block++) {
2654 /* Set block address */
2655 value = onenand_block_address(this, block);
2656 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2657 /* Select DataRAM for DDP */
2658 value = onenand_bufferram_address(this, block);
2659 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2660 /* Set start block address */
2661 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2662 /* Write lock command */
2663 this->command(mtd, cmd, 0, 0);
2665 /* There's no return value */
2666 this->wait(mtd, FL_LOCKING);
2668 /* Sanity check */
2669 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2670 & ONENAND_CTRL_ONGO)
2671 continue;
2673 /* Check lock status */
2674 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2675 if (!(status & wp_status_mask))
2676 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2677 __func__, block, status);
2680 return 0;
2684 * onenand_lock - [MTD Interface] Lock block(s)
2685 * @param mtd MTD device structure
2686 * @param ofs offset relative to mtd start
2687 * @param len number of bytes to unlock
2689 * Lock one or more blocks
2691 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2693 int ret;
2695 onenand_get_device(mtd, FL_LOCKING);
2696 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2697 onenand_release_device(mtd);
2698 return ret;
2702 * onenand_unlock - [MTD Interface] Unlock block(s)
2703 * @param mtd MTD device structure
2704 * @param ofs offset relative to mtd start
2705 * @param len number of bytes to unlock
2707 * Unlock one or more blocks
2709 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2711 int ret;
2713 onenand_get_device(mtd, FL_LOCKING);
2714 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2715 onenand_release_device(mtd);
2716 return ret;
2720 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2721 * @param this onenand chip data structure
2723 * Check lock status
2725 static int onenand_check_lock_status(struct onenand_chip *this)
2727 unsigned int value, block, status;
2728 unsigned int end;
2730 end = this->chipsize >> this->erase_shift;
2731 for (block = 0; block < end; block++) {
2732 /* Set block address */
2733 value = onenand_block_address(this, block);
2734 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2735 /* Select DataRAM for DDP */
2736 value = onenand_bufferram_address(this, block);
2737 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2738 /* Set start block address */
2739 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2741 /* Check lock status */
2742 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2743 if (!(status & ONENAND_WP_US)) {
2744 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2745 __func__, block, status);
2746 return 0;
2750 return 1;
2754 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2755 * @param mtd MTD device structure
2757 * Unlock all blocks
2759 static void onenand_unlock_all(struct mtd_info *mtd)
2761 struct onenand_chip *this = mtd->priv;
2762 loff_t ofs = 0;
2763 loff_t len = mtd->size;
2765 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2766 /* Set start block address */
2767 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2768 /* Write unlock command */
2769 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2771 /* There's no return value */
2772 this->wait(mtd, FL_LOCKING);
2774 /* Sanity check */
2775 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2776 & ONENAND_CTRL_ONGO)
2777 continue;
2779 /* Don't check lock status */
2780 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2781 return;
2783 /* Check lock status */
2784 if (onenand_check_lock_status(this))
2785 return;
2787 /* Workaround for all block unlock in DDP */
2788 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2789 /* All blocks on another chip */
2790 ofs = this->chipsize >> 1;
2791 len = this->chipsize >> 1;
2795 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2798 #ifdef CONFIG_MTD_ONENAND_OTP
2801 * onenand_otp_command - Send OTP specific command to OneNAND device
2802 * @param mtd MTD device structure
2803 * @param cmd the command to be sent
2804 * @param addr offset to read from or write to
2805 * @param len number of bytes to read or write
2807 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2808 size_t len)
2810 struct onenand_chip *this = mtd->priv;
2811 int value, block, page;
2813 /* Address translation */
2814 switch (cmd) {
2815 case ONENAND_CMD_OTP_ACCESS:
2816 block = (int) (addr >> this->erase_shift);
2817 page = -1;
2818 break;
2820 default:
2821 block = (int) (addr >> this->erase_shift);
2822 page = (int) (addr >> this->page_shift);
2824 if (ONENAND_IS_2PLANE(this)) {
2825 /* Make the even block number */
2826 block &= ~1;
2827 /* Is it the odd plane? */
2828 if (addr & this->writesize)
2829 block++;
2830 page >>= 1;
2832 page &= this->page_mask;
2833 break;
2836 if (block != -1) {
2837 /* Write 'DFS, FBA' of Flash */
2838 value = onenand_block_address(this, block);
2839 this->write_word(value, this->base +
2840 ONENAND_REG_START_ADDRESS1);
2843 if (page != -1) {
2844 /* Now we use page size operation */
2845 int sectors = 4, count = 4;
2846 int dataram;
2848 switch (cmd) {
2849 default:
2850 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2851 cmd = ONENAND_CMD_2X_PROG;
2852 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2853 break;
2856 /* Write 'FPA, FSA' of Flash */
2857 value = onenand_page_address(page, sectors);
2858 this->write_word(value, this->base +
2859 ONENAND_REG_START_ADDRESS8);
2861 /* Write 'BSA, BSC' of DataRAM */
2862 value = onenand_buffer_address(dataram, sectors, count);
2863 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2866 /* Interrupt clear */
2867 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2869 /* Write command */
2870 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2872 return 0;
2876 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2877 * @param mtd MTD device structure
2878 * @param to offset to write to
2879 * @param len number of bytes to write
2880 * @param retlen pointer to variable to store the number of written bytes
2881 * @param buf the data to write
2883 * OneNAND write out-of-band only for OTP
2885 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2886 struct mtd_oob_ops *ops)
2888 struct onenand_chip *this = mtd->priv;
2889 int column, ret = 0, oobsize;
2890 int written = 0;
2891 u_char *oobbuf;
2892 size_t len = ops->ooblen;
2893 const u_char *buf = ops->oobbuf;
2894 int block, value, status;
2896 to += ops->ooboffs;
2898 /* Initialize retlen, in case of early exit */
2899 ops->oobretlen = 0;
2901 oobsize = mtd->oobsize;
2903 column = to & (mtd->oobsize - 1);
2905 oobbuf = this->oob_buf;
2907 /* Loop until all data write */
2908 while (written < len) {
2909 int thislen = min_t(int, oobsize, len - written);
2911 cond_resched();
2913 block = (int) (to >> this->erase_shift);
2915 * Write 'DFS, FBA' of Flash
2916 * Add: F100h DQ=DFS, FBA
2919 value = onenand_block_address(this, block);
2920 this->write_word(value, this->base +
2921 ONENAND_REG_START_ADDRESS1);
2924 * Select DataRAM for DDP
2925 * Add: F101h DQ=DBS
2928 value = onenand_bufferram_address(this, block);
2929 this->write_word(value, this->base +
2930 ONENAND_REG_START_ADDRESS2);
2931 ONENAND_SET_NEXT_BUFFERRAM(this);
2934 * Enter OTP access mode
2936 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2937 this->wait(mtd, FL_OTPING);
2939 /* We send data to spare ram with oobsize
2940 * to prevent byte access */
2941 memcpy(oobbuf + column, buf, thislen);
2944 * Write Data into DataRAM
2945 * Add: 8th Word
2946 * in sector0/spare/page0
2947 * DQ=XXFCh
2949 this->write_bufferram(mtd, ONENAND_SPARERAM,
2950 oobbuf, 0, mtd->oobsize);
2952 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2953 onenand_update_bufferram(mtd, to, 0);
2954 if (ONENAND_IS_2PLANE(this)) {
2955 ONENAND_SET_BUFFERRAM1(this);
2956 onenand_update_bufferram(mtd, to + this->writesize, 0);
2959 ret = this->wait(mtd, FL_WRITING);
2960 if (ret) {
2961 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2962 break;
2965 /* Exit OTP access mode */
2966 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2967 this->wait(mtd, FL_RESETING);
2969 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2970 status &= 0x60;
2972 if (status == 0x60) {
2973 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2974 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2975 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2976 } else if (status == 0x20) {
2977 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2978 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2979 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2980 } else if (status == 0x40) {
2981 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2982 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2983 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2984 } else {
2985 printk(KERN_DEBUG "Reboot to check\n");
2988 written += thislen;
2989 if (written == len)
2990 break;
2992 to += mtd->writesize;
2993 buf += thislen;
2994 column = 0;
2997 ops->oobretlen = written;
2999 return ret;
3002 /* Internal OTP operation */
3003 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3004 size_t *retlen, u_char *buf);
3007 * do_otp_read - [DEFAULT] Read OTP block area
3008 * @param mtd MTD device structure
3009 * @param from The offset to read
3010 * @param len number of bytes to read
3011 * @param retlen pointer to variable to store the number of readbytes
3012 * @param buf the databuffer to put/get data
3014 * Read OTP block area.
3016 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3017 size_t *retlen, u_char *buf)
3019 struct onenand_chip *this = mtd->priv;
3020 struct mtd_oob_ops ops = {
3021 .len = len,
3022 .ooblen = 0,
3023 .datbuf = buf,
3024 .oobbuf = NULL,
3026 int ret;
3028 /* Enter OTP access mode */
3029 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3030 this->wait(mtd, FL_OTPING);
3032 ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
3033 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3034 onenand_read_ops_nolock(mtd, from, &ops);
3036 /* Exit OTP access mode */
3037 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3038 this->wait(mtd, FL_RESETING);
3040 return ret;
3044 * do_otp_write - [DEFAULT] Write OTP block area
3045 * @param mtd MTD device structure
3046 * @param to The offset to write
3047 * @param len number of bytes to write
3048 * @param retlen pointer to variable to store the number of write bytes
3049 * @param buf the databuffer to put/get data
3051 * Write OTP block area.
3053 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3054 size_t *retlen, u_char *buf)
3056 struct onenand_chip *this = mtd->priv;
3057 unsigned char *pbuf = buf;
3058 int ret;
3059 struct mtd_oob_ops ops;
3061 /* Force buffer page aligned */
3062 if (len < mtd->writesize) {
3063 memcpy(this->page_buf, buf, len);
3064 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3065 pbuf = this->page_buf;
3066 len = mtd->writesize;
3069 /* Enter OTP access mode */
3070 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3071 this->wait(mtd, FL_OTPING);
3073 ops.len = len;
3074 ops.ooblen = 0;
3075 ops.datbuf = pbuf;
3076 ops.oobbuf = NULL;
3077 ret = onenand_write_ops_nolock(mtd, to, &ops);
3078 *retlen = ops.retlen;
3080 /* Exit OTP access mode */
3081 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3082 this->wait(mtd, FL_RESETING);
3084 return ret;
3088 * do_otp_lock - [DEFAULT] Lock OTP block area
3089 * @param mtd MTD device structure
3090 * @param from The offset to lock
3091 * @param len number of bytes to lock
3092 * @param retlen pointer to variable to store the number of lock bytes
3093 * @param buf the databuffer to put/get data
3095 * Lock OTP block area.
3097 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3098 size_t *retlen, u_char *buf)
3100 struct onenand_chip *this = mtd->priv;
3101 struct mtd_oob_ops ops;
3102 int ret;
3104 if (FLEXONENAND(this)) {
3106 /* Enter OTP access mode */
3107 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3108 this->wait(mtd, FL_OTPING);
3110 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3111 * main area of page 49.
3113 ops.len = mtd->writesize;
3114 ops.ooblen = 0;
3115 ops.datbuf = buf;
3116 ops.oobbuf = NULL;
3117 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3118 *retlen = ops.retlen;
3120 /* Exit OTP access mode */
3121 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3122 this->wait(mtd, FL_RESETING);
3123 } else {
3124 ops.mode = MTD_OOB_PLACE;
3125 ops.ooblen = len;
3126 ops.oobbuf = buf;
3127 ops.ooboffs = 0;
3128 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3129 *retlen = ops.oobretlen;
3132 return ret;
3136 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3137 * @param mtd MTD device structure
3138 * @param from The offset to read/write
3139 * @param len number of bytes to read/write
3140 * @param retlen pointer to variable to store the number of read bytes
3141 * @param buf the databuffer to put/get data
3142 * @param action do given action
3143 * @param mode specify user and factory
3145 * Handle OTP operation.
3147 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3148 size_t *retlen, u_char *buf,
3149 otp_op_t action, int mode)
3151 struct onenand_chip *this = mtd->priv;
3152 int otp_pages;
3153 int density;
3154 int ret = 0;
3156 *retlen = 0;
3158 density = onenand_get_density(this->device_id);
3159 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3160 otp_pages = 20;
3161 else
3162 otp_pages = 50;
3164 if (mode == MTD_OTP_FACTORY) {
3165 from += mtd->writesize * otp_pages;
3166 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3169 /* Check User/Factory boundary */
3170 if (mode == MTD_OTP_USER) {
3171 if (mtd->writesize * otp_pages < from + len)
3172 return 0;
3173 } else {
3174 if (mtd->writesize * otp_pages < len)
3175 return 0;
3178 onenand_get_device(mtd, FL_OTPING);
3179 while (len > 0 && otp_pages > 0) {
3180 if (!action) { /* OTP Info functions */
3181 struct otp_info *otpinfo;
3183 len -= sizeof(struct otp_info);
3184 if (len <= 0) {
3185 ret = -ENOSPC;
3186 break;
3189 otpinfo = (struct otp_info *) buf;
3190 otpinfo->start = from;
3191 otpinfo->length = mtd->writesize;
3192 otpinfo->locked = 0;
3194 from += mtd->writesize;
3195 buf += sizeof(struct otp_info);
3196 *retlen += sizeof(struct otp_info);
3197 } else {
3198 size_t tmp_retlen;
3200 ret = action(mtd, from, len, &tmp_retlen, buf);
3202 buf += tmp_retlen;
3203 len -= tmp_retlen;
3204 *retlen += tmp_retlen;
3206 if (ret)
3207 break;
3209 otp_pages--;
3211 onenand_release_device(mtd);
3213 return ret;
3217 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3218 * @param mtd MTD device structure
3219 * @param buf the databuffer to put/get data
3220 * @param len number of bytes to read
3222 * Read factory OTP info.
3224 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3225 struct otp_info *buf, size_t len)
3227 size_t retlen;
3228 int ret;
3230 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3232 return ret ? : retlen;
3236 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3237 * @param mtd MTD device structure
3238 * @param from The offset to read
3239 * @param len number of bytes to read
3240 * @param retlen pointer to variable to store the number of read bytes
3241 * @param buf the databuffer to put/get data
3243 * Read factory OTP area.
3245 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3246 size_t len, size_t *retlen, u_char *buf)
3248 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3252 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3253 * @param mtd MTD device structure
3254 * @param buf the databuffer to put/get data
3255 * @param len number of bytes to read
3257 * Read user OTP info.
3259 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3260 struct otp_info *buf, size_t len)
3262 size_t retlen;
3263 int ret;
3265 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3267 return ret ? : retlen;
3271 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3272 * @param mtd MTD device structure
3273 * @param from The offset to read
3274 * @param len number of bytes to read
3275 * @param retlen pointer to variable to store the number of read bytes
3276 * @param buf the databuffer to put/get data
3278 * Read user OTP area.
3280 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3281 size_t len, size_t *retlen, u_char *buf)
3283 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3287 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3288 * @param mtd MTD device structure
3289 * @param from The offset to write
3290 * @param len number of bytes to write
3291 * @param retlen pointer to variable to store the number of write bytes
3292 * @param buf the databuffer to put/get data
3294 * Write user OTP area.
3296 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3297 size_t len, size_t *retlen, u_char *buf)
3299 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3303 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3304 * @param mtd MTD device structure
3305 * @param from The offset to lock
3306 * @param len number of bytes to unlock
3308 * Write lock mark on spare area in page 0 in OTP block
3310 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3311 size_t len)
3313 struct onenand_chip *this = mtd->priv;
3314 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3315 size_t retlen;
3316 int ret;
3317 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3319 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3320 : mtd->oobsize);
3322 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3323 * We write 16 bytes spare area instead of 2 bytes.
3324 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3325 * main area of page 49.
3328 from = 0;
3329 len = FLEXONENAND(this) ? mtd->writesize : 16;
3332 * Note: OTP lock operation
3333 * OTP block : 0xXXFC XX 1111 1100
3334 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3335 * Both : 0xXXF0 (If chip support) XX 1111 0000
3337 if (FLEXONENAND(this))
3338 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3340 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3341 if (otp == 1)
3342 buf[otp_lock_offset] = 0xFC;
3343 else if (otp == 2)
3344 buf[otp_lock_offset] = 0xF3;
3345 else if (otp == 3)
3346 buf[otp_lock_offset] = 0xF0;
3347 else if (otp != 0)
3348 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3350 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3352 return ret ? : retlen;
3355 #endif /* CONFIG_MTD_ONENAND_OTP */
3358 * onenand_check_features - Check and set OneNAND features
3359 * @param mtd MTD data structure
3361 * Check and set OneNAND features
3362 * - lock scheme
3363 * - two plane
3365 static void onenand_check_features(struct mtd_info *mtd)
3367 struct onenand_chip *this = mtd->priv;
3368 unsigned int density, process;
3370 /* Lock scheme depends on density and process */
3371 density = onenand_get_density(this->device_id);
3372 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3374 /* Lock scheme */
3375 switch (density) {
3376 case ONENAND_DEVICE_DENSITY_4Gb:
3377 if (ONENAND_IS_DDP(this))
3378 this->options |= ONENAND_HAS_2PLANE;
3379 else
3380 this->options |= ONENAND_HAS_4KB_PAGE;
3382 case ONENAND_DEVICE_DENSITY_2Gb:
3383 /* 2Gb DDP does not have 2 plane */
3384 if (!ONENAND_IS_DDP(this))
3385 this->options |= ONENAND_HAS_2PLANE;
3386 this->options |= ONENAND_HAS_UNLOCK_ALL;
3388 case ONENAND_DEVICE_DENSITY_1Gb:
3389 /* A-Die has all block unlock */
3390 if (process)
3391 this->options |= ONENAND_HAS_UNLOCK_ALL;
3392 break;
3394 default:
3395 /* Some OneNAND has continuous lock scheme */
3396 if (!process)
3397 this->options |= ONENAND_HAS_CONT_LOCK;
3398 break;
3401 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3402 this->options &= ~ONENAND_HAS_2PLANE;
3404 if (FLEXONENAND(this)) {
3405 this->options &= ~ONENAND_HAS_CONT_LOCK;
3406 this->options |= ONENAND_HAS_UNLOCK_ALL;
3409 if (this->options & ONENAND_HAS_CONT_LOCK)
3410 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3411 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3412 printk(KERN_DEBUG "Chip support all block unlock\n");
3413 if (this->options & ONENAND_HAS_2PLANE)
3414 printk(KERN_DEBUG "Chip has 2 plane\n");
3415 if (this->options & ONENAND_HAS_4KB_PAGE)
3416 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3420 * onenand_print_device_info - Print device & version ID
3421 * @param device device ID
3422 * @param version version ID
3424 * Print device & version ID
3426 static void onenand_print_device_info(int device, int version)
3428 int vcc, demuxed, ddp, density, flexonenand;
3430 vcc = device & ONENAND_DEVICE_VCC_MASK;
3431 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3432 ddp = device & ONENAND_DEVICE_IS_DDP;
3433 density = onenand_get_density(device);
3434 flexonenand = device & DEVICE_IS_FLEXONENAND;
3435 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3436 demuxed ? "" : "Muxed ",
3437 flexonenand ? "Flex-" : "",
3438 ddp ? "(DDP)" : "",
3439 (16 << density),
3440 vcc ? "2.65/3.3" : "1.8",
3441 device);
3442 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3445 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3446 {ONENAND_MFR_SAMSUNG, "Samsung"},
3447 {ONENAND_MFR_NUMONYX, "Numonyx"},
3451 * onenand_check_maf - Check manufacturer ID
3452 * @param manuf manufacturer ID
3454 * Check manufacturer ID
3456 static int onenand_check_maf(int manuf)
3458 int size = ARRAY_SIZE(onenand_manuf_ids);
3459 char *name;
3460 int i;
3462 for (i = 0; i < size; i++)
3463 if (manuf == onenand_manuf_ids[i].id)
3464 break;
3466 if (i < size)
3467 name = onenand_manuf_ids[i].name;
3468 else
3469 name = "Unknown";
3471 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3473 return (i == size);
3477 * flexonenand_get_boundary - Reads the SLC boundary
3478 * @param onenand_info - onenand info structure
3480 static int flexonenand_get_boundary(struct mtd_info *mtd)
3482 struct onenand_chip *this = mtd->priv;
3483 unsigned die, bdry;
3484 int ret, syscfg, locked;
3486 /* Disable ECC */
3487 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3488 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3490 for (die = 0; die < this->dies; die++) {
3491 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3492 this->wait(mtd, FL_SYNCING);
3494 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3495 ret = this->wait(mtd, FL_READING);
3497 bdry = this->read_word(this->base + ONENAND_DATARAM);
3498 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3499 locked = 0;
3500 else
3501 locked = 1;
3502 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3504 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3505 ret = this->wait(mtd, FL_RESETING);
3507 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3508 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3511 /* Enable ECC */
3512 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3513 return 0;
3517 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3518 * boundary[], diesize[], mtd->size, mtd->erasesize
3519 * @param mtd - MTD device structure
3521 static void flexonenand_get_size(struct mtd_info *mtd)
3523 struct onenand_chip *this = mtd->priv;
3524 int die, i, eraseshift, density;
3525 int blksperdie, maxbdry;
3526 loff_t ofs;
3528 density = onenand_get_density(this->device_id);
3529 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3530 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3531 maxbdry = blksperdie - 1;
3532 eraseshift = this->erase_shift - 1;
3534 mtd->numeraseregions = this->dies << 1;
3536 /* This fills up the device boundary */
3537 flexonenand_get_boundary(mtd);
3538 die = ofs = 0;
3539 i = -1;
3540 for (; die < this->dies; die++) {
3541 if (!die || this->boundary[die-1] != maxbdry) {
3542 i++;
3543 mtd->eraseregions[i].offset = ofs;
3544 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3545 mtd->eraseregions[i].numblocks =
3546 this->boundary[die] + 1;
3547 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3548 eraseshift++;
3549 } else {
3550 mtd->numeraseregions -= 1;
3551 mtd->eraseregions[i].numblocks +=
3552 this->boundary[die] + 1;
3553 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3555 if (this->boundary[die] != maxbdry) {
3556 i++;
3557 mtd->eraseregions[i].offset = ofs;
3558 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3559 mtd->eraseregions[i].numblocks = maxbdry ^
3560 this->boundary[die];
3561 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3562 eraseshift--;
3563 } else
3564 mtd->numeraseregions -= 1;
3567 /* Expose MLC erase size except when all blocks are SLC */
3568 mtd->erasesize = 1 << this->erase_shift;
3569 if (mtd->numeraseregions == 1)
3570 mtd->erasesize >>= 1;
3572 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3573 for (i = 0; i < mtd->numeraseregions; i++)
3574 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3575 " numblocks: %04u]\n",
3576 (unsigned int) mtd->eraseregions[i].offset,
3577 mtd->eraseregions[i].erasesize,
3578 mtd->eraseregions[i].numblocks);
3580 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3581 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3582 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3583 << (this->erase_shift - 1);
3584 mtd->size += this->diesize[die];
3589 * flexonenand_check_blocks_erased - Check if blocks are erased
3590 * @param mtd_info - mtd info structure
3591 * @param start - first erase block to check
3592 * @param end - last erase block to check
3594 * Converting an unerased block from MLC to SLC
3595 * causes byte values to change. Since both data and its ECC
3596 * have changed, reads on the block give uncorrectable error.
3597 * This might lead to the block being detected as bad.
3599 * Avoid this by ensuring that the block to be converted is
3600 * erased.
3602 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3604 struct onenand_chip *this = mtd->priv;
3605 int i, ret;
3606 int block;
3607 struct mtd_oob_ops ops = {
3608 .mode = MTD_OOB_PLACE,
3609 .ooboffs = 0,
3610 .ooblen = mtd->oobsize,
3611 .datbuf = NULL,
3612 .oobbuf = this->oob_buf,
3614 loff_t addr;
3616 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3618 for (block = start; block <= end; block++) {
3619 addr = flexonenand_addr(this, block);
3620 if (onenand_block_isbad_nolock(mtd, addr, 0))
3621 continue;
3624 * Since main area write results in ECC write to spare,
3625 * it is sufficient to check only ECC bytes for change.
3627 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3628 if (ret)
3629 return ret;
3631 for (i = 0; i < mtd->oobsize; i++)
3632 if (this->oob_buf[i] != 0xff)
3633 break;
3635 if (i != mtd->oobsize) {
3636 printk(KERN_WARNING "%s: Block %d not erased.\n",
3637 __func__, block);
3638 return 1;
3642 return 0;
3646 * flexonenand_set_boundary - Writes the SLC boundary
3647 * @param mtd - mtd info structure
3649 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3650 int boundary, int lock)
3652 struct onenand_chip *this = mtd->priv;
3653 int ret, density, blksperdie, old, new, thisboundary;
3654 loff_t addr;
3656 /* Change only once for SDP Flex-OneNAND */
3657 if (die && (!ONENAND_IS_DDP(this)))
3658 return 0;
3660 /* boundary value of -1 indicates no required change */
3661 if (boundary < 0 || boundary == this->boundary[die])
3662 return 0;
3664 density = onenand_get_density(this->device_id);
3665 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3666 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3668 if (boundary >= blksperdie) {
3669 printk(KERN_ERR "%s: Invalid boundary value. "
3670 "Boundary not changed.\n", __func__);
3671 return -EINVAL;
3674 /* Check if converting blocks are erased */
3675 old = this->boundary[die] + (die * this->density_mask);
3676 new = boundary + (die * this->density_mask);
3677 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3678 if (ret) {
3679 printk(KERN_ERR "%s: Please erase blocks "
3680 "before boundary change\n", __func__);
3681 return ret;
3684 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3685 this->wait(mtd, FL_SYNCING);
3687 /* Check is boundary is locked */
3688 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3689 ret = this->wait(mtd, FL_READING);
3691 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3692 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3693 printk(KERN_ERR "%s: boundary locked\n", __func__);
3694 ret = 1;
3695 goto out;
3698 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3699 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3701 addr = die ? this->diesize[0] : 0;
3703 boundary &= FLEXONENAND_PI_MASK;
3704 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3706 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3707 ret = this->wait(mtd, FL_ERASING);
3708 if (ret) {
3709 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3710 __func__, die);
3711 goto out;
3714 this->write_word(boundary, this->base + ONENAND_DATARAM);
3715 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3716 ret = this->wait(mtd, FL_WRITING);
3717 if (ret) {
3718 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3719 __func__, die);
3720 goto out;
3723 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3724 ret = this->wait(mtd, FL_WRITING);
3725 out:
3726 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3727 this->wait(mtd, FL_RESETING);
3728 if (!ret)
3729 /* Recalculate device size on boundary change*/
3730 flexonenand_get_size(mtd);
3732 return ret;
3736 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3737 * @param mtd MTD device structure
3739 * OneNAND detection method:
3740 * Compare the values from command with ones from register
3742 static int onenand_chip_probe(struct mtd_info *mtd)
3744 struct onenand_chip *this = mtd->priv;
3745 int bram_maf_id, bram_dev_id, maf_id, dev_id;
3746 int syscfg;
3748 /* Save system configuration 1 */
3749 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3750 /* Clear Sync. Burst Read mode to read BootRAM */
3751 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3753 /* Send the command for reading device ID from BootRAM */
3754 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3756 /* Read manufacturer and device IDs from BootRAM */
3757 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3758 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3760 /* Reset OneNAND to read default register values */
3761 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3762 /* Wait reset */
3763 this->wait(mtd, FL_RESETING);
3765 /* Restore system configuration 1 */
3766 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3768 /* Check manufacturer ID */
3769 if (onenand_check_maf(bram_maf_id))
3770 return -ENXIO;
3772 /* Read manufacturer and device IDs from Register */
3773 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3774 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3776 /* Check OneNAND device */
3777 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3778 return -ENXIO;
3780 return 0;
3784 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3785 * @param mtd MTD device structure
3787 static int onenand_probe(struct mtd_info *mtd)
3789 struct onenand_chip *this = mtd->priv;
3790 int maf_id, dev_id, ver_id;
3791 int density;
3792 int ret;
3794 ret = this->chip_probe(mtd);
3795 if (ret)
3796 return ret;
3798 /* Read manufacturer and device IDs from Register */
3799 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3800 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3801 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3802 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3804 /* Flash device information */
3805 onenand_print_device_info(dev_id, ver_id);
3806 this->device_id = dev_id;
3807 this->version_id = ver_id;
3809 /* Check OneNAND features */
3810 onenand_check_features(mtd);
3812 density = onenand_get_density(dev_id);
3813 if (FLEXONENAND(this)) {
3814 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3815 /* Maximum possible erase regions */
3816 mtd->numeraseregions = this->dies << 1;
3817 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3818 * (this->dies << 1), GFP_KERNEL);
3819 if (!mtd->eraseregions)
3820 return -ENOMEM;
3824 * For Flex-OneNAND, chipsize represents maximum possible device size.
3825 * mtd->size represents the actual device size.
3827 this->chipsize = (16 << density) << 20;
3829 /* OneNAND page size & block size */
3830 /* The data buffer size is equal to page size */
3831 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3832 /* We use the full BufferRAM */
3833 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3834 mtd->writesize <<= 1;
3836 mtd->oobsize = mtd->writesize >> 5;
3837 /* Pages per a block are always 64 in OneNAND */
3838 mtd->erasesize = mtd->writesize << 6;
3840 * Flex-OneNAND SLC area has 64 pages per block.
3841 * Flex-OneNAND MLC area has 128 pages per block.
3842 * Expose MLC erase size to find erase_shift and page_mask.
3844 if (FLEXONENAND(this))
3845 mtd->erasesize <<= 1;
3847 this->erase_shift = ffs(mtd->erasesize) - 1;
3848 this->page_shift = ffs(mtd->writesize) - 1;
3849 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3850 /* Set density mask. it is used for DDP */
3851 if (ONENAND_IS_DDP(this))
3852 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3853 /* It's real page size */
3854 this->writesize = mtd->writesize;
3856 /* REVISIT: Multichip handling */
3858 if (FLEXONENAND(this))
3859 flexonenand_get_size(mtd);
3860 else
3861 mtd->size = this->chipsize;
3864 * We emulate the 4KiB page and 256KiB erase block size
3865 * But oobsize is still 64 bytes.
3866 * It is only valid if you turn on 2X program support,
3867 * Otherwise it will be ignored by compiler.
3869 if (ONENAND_IS_2PLANE(this)) {
3870 mtd->writesize <<= 1;
3871 mtd->erasesize <<= 1;
3874 return 0;
3878 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3879 * @param mtd MTD device structure
3881 static int onenand_suspend(struct mtd_info *mtd)
3883 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3887 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3888 * @param mtd MTD device structure
3890 static void onenand_resume(struct mtd_info *mtd)
3892 struct onenand_chip *this = mtd->priv;
3894 if (this->state == FL_PM_SUSPENDED)
3895 onenand_release_device(mtd);
3896 else
3897 printk(KERN_ERR "%s: resume() called for the chip which is not "
3898 "in suspended state\n", __func__);
3902 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3903 * @param mtd MTD device structure
3904 * @param maxchips Number of chips to scan for
3906 * This fills out all the not initialized function pointers
3907 * with the defaults.
3908 * The flash ID is read and the mtd/chip structures are
3909 * filled with the appropriate values.
3911 int onenand_scan(struct mtd_info *mtd, int maxchips)
3913 int i, ret;
3914 struct onenand_chip *this = mtd->priv;
3916 if (!this->read_word)
3917 this->read_word = onenand_readw;
3918 if (!this->write_word)
3919 this->write_word = onenand_writew;
3921 if (!this->command)
3922 this->command = onenand_command;
3923 if (!this->wait)
3924 onenand_setup_wait(mtd);
3925 if (!this->bbt_wait)
3926 this->bbt_wait = onenand_bbt_wait;
3927 if (!this->unlock_all)
3928 this->unlock_all = onenand_unlock_all;
3930 if (!this->chip_probe)
3931 this->chip_probe = onenand_chip_probe;
3933 if (!this->read_bufferram)
3934 this->read_bufferram = onenand_read_bufferram;
3935 if (!this->write_bufferram)
3936 this->write_bufferram = onenand_write_bufferram;
3938 if (!this->block_markbad)
3939 this->block_markbad = onenand_default_block_markbad;
3940 if (!this->scan_bbt)
3941 this->scan_bbt = onenand_default_bbt;
3943 if (onenand_probe(mtd))
3944 return -ENXIO;
3946 /* Set Sync. Burst Read after probing */
3947 if (this->mmcontrol) {
3948 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3949 this->read_bufferram = onenand_sync_read_bufferram;
3952 /* Allocate buffers, if necessary */
3953 if (!this->page_buf) {
3954 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3955 if (!this->page_buf) {
3956 printk(KERN_ERR "%s: Can't allocate page_buf\n",
3957 __func__);
3958 return -ENOMEM;
3960 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3961 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3962 if (!this->verify_buf) {
3963 kfree(this->page_buf);
3964 return -ENOMEM;
3966 #endif
3967 this->options |= ONENAND_PAGEBUF_ALLOC;
3969 if (!this->oob_buf) {
3970 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3971 if (!this->oob_buf) {
3972 printk(KERN_ERR "%s: Can't allocate oob_buf\n",
3973 __func__);
3974 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3975 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3976 kfree(this->page_buf);
3978 return -ENOMEM;
3980 this->options |= ONENAND_OOBBUF_ALLOC;
3983 this->state = FL_READY;
3984 init_waitqueue_head(&this->wq);
3985 spin_lock_init(&this->chip_lock);
3988 * Allow subpage writes up to oobsize.
3990 switch (mtd->oobsize) {
3991 case 128:
3992 this->ecclayout = &onenand_oob_128;
3993 mtd->subpage_sft = 0;
3994 break;
3995 case 64:
3996 this->ecclayout = &onenand_oob_64;
3997 mtd->subpage_sft = 2;
3998 break;
4000 case 32:
4001 this->ecclayout = &onenand_oob_32;
4002 mtd->subpage_sft = 1;
4003 break;
4005 default:
4006 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4007 __func__, mtd->oobsize);
4008 mtd->subpage_sft = 0;
4009 /* To prevent kernel oops */
4010 this->ecclayout = &onenand_oob_32;
4011 break;
4014 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4017 * The number of bytes available for a client to place data into
4018 * the out of band area
4020 this->ecclayout->oobavail = 0;
4021 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4022 this->ecclayout->oobfree[i].length; i++)
4023 this->ecclayout->oobavail +=
4024 this->ecclayout->oobfree[i].length;
4025 mtd->oobavail = this->ecclayout->oobavail;
4027 mtd->ecclayout = this->ecclayout;
4029 /* Fill in remaining MTD driver data */
4030 mtd->type = MTD_NANDFLASH;
4031 mtd->flags = MTD_CAP_NANDFLASH;
4032 mtd->erase = onenand_erase;
4033 mtd->point = NULL;
4034 mtd->unpoint = NULL;
4035 mtd->read = onenand_read;
4036 mtd->write = onenand_write;
4037 mtd->read_oob = onenand_read_oob;
4038 mtd->write_oob = onenand_write_oob;
4039 mtd->panic_write = onenand_panic_write;
4040 #ifdef CONFIG_MTD_ONENAND_OTP
4041 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4042 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4043 mtd->get_user_prot_info = onenand_get_user_prot_info;
4044 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4045 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4046 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4047 #endif
4048 mtd->sync = onenand_sync;
4049 mtd->lock = onenand_lock;
4050 mtd->unlock = onenand_unlock;
4051 mtd->suspend = onenand_suspend;
4052 mtd->resume = onenand_resume;
4053 mtd->block_isbad = onenand_block_isbad;
4054 mtd->block_markbad = onenand_block_markbad;
4055 mtd->owner = THIS_MODULE;
4057 /* Unlock whole block */
4058 this->unlock_all(mtd);
4060 ret = this->scan_bbt(mtd);
4061 if ((!FLEXONENAND(this)) || ret)
4062 return ret;
4064 /* Change Flex-OneNAND boundaries if required */
4065 for (i = 0; i < MAX_DIES; i++)
4066 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4067 flex_bdry[(2 * i) + 1]);
4069 return 0;
4073 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4074 * @param mtd MTD device structure
4076 void onenand_release(struct mtd_info *mtd)
4078 struct onenand_chip *this = mtd->priv;
4080 #ifdef CONFIG_MTD_PARTITIONS
4081 /* Deregister partitions */
4082 del_mtd_partitions (mtd);
4083 #endif
4084 /* Deregister the device */
4085 del_mtd_device (mtd);
4087 /* Free bad block table memory, if allocated */
4088 if (this->bbm) {
4089 struct bbm_info *bbm = this->bbm;
4090 kfree(bbm->bbt);
4091 kfree(this->bbm);
4093 /* Buffers allocated by onenand_scan */
4094 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4095 kfree(this->page_buf);
4096 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4097 kfree(this->verify_buf);
4098 #endif
4100 if (this->options & ONENAND_OOBBUF_ALLOC)
4101 kfree(this->oob_buf);
4102 kfree(mtd->eraseregions);
4105 EXPORT_SYMBOL_GPL(onenand_scan);
4106 EXPORT_SYMBOL_GPL(onenand_release);
4108 MODULE_LICENSE("GPL");
4109 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4110 MODULE_DESCRIPTION("Generic OneNAND flash driver code");