2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
48 #define CREATE_TRACE_POINTS
51 #include <asm/debugreg.h>
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS \
61 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS \
65 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
67 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
69 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
77 * - enable syscall per default because its emulated by KVM
78 * - enable LME and LMA per default on 64 bit KVM
81 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
83 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
89 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
91 struct kvm_cpuid_entry2 __user
*entries
);
93 struct kvm_x86_ops
*kvm_x86_ops
;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
97 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
99 #define KVM_NR_SHARED_MSRS 16
101 struct kvm_shared_msrs_global
{
103 u32 msrs
[KVM_NR_SHARED_MSRS
];
106 struct kvm_shared_msrs
{
107 struct user_return_notifier urn
;
109 struct kvm_shared_msr_values
{
112 } values
[KVM_NR_SHARED_MSRS
];
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
118 struct kvm_stats_debugfs_item debugfs_entries
[] = {
119 { "pf_fixed", VCPU_STAT(pf_fixed
) },
120 { "pf_guest", VCPU_STAT(pf_guest
) },
121 { "tlb_flush", VCPU_STAT(tlb_flush
) },
122 { "invlpg", VCPU_STAT(invlpg
) },
123 { "exits", VCPU_STAT(exits
) },
124 { "io_exits", VCPU_STAT(io_exits
) },
125 { "mmio_exits", VCPU_STAT(mmio_exits
) },
126 { "signal_exits", VCPU_STAT(signal_exits
) },
127 { "irq_window", VCPU_STAT(irq_window_exits
) },
128 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
129 { "halt_exits", VCPU_STAT(halt_exits
) },
130 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
131 { "hypercalls", VCPU_STAT(hypercalls
) },
132 { "request_irq", VCPU_STAT(request_irq_exits
) },
133 { "irq_exits", VCPU_STAT(irq_exits
) },
134 { "host_state_reload", VCPU_STAT(host_state_reload
) },
135 { "efer_reload", VCPU_STAT(efer_reload
) },
136 { "fpu_reload", VCPU_STAT(fpu_reload
) },
137 { "insn_emulation", VCPU_STAT(insn_emulation
) },
138 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
139 { "irq_injections", VCPU_STAT(irq_injections
) },
140 { "nmi_injections", VCPU_STAT(nmi_injections
) },
141 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
142 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
143 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
144 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
145 { "mmu_flooded", VM_STAT(mmu_flooded
) },
146 { "mmu_recycled", VM_STAT(mmu_recycled
) },
147 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
148 { "mmu_unsync", VM_STAT(mmu_unsync
) },
149 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
150 { "largepages", VM_STAT(lpages
) },
154 u64 __read_mostly host_xcr0
;
156 static inline u32
bit(int bitno
)
158 return 1 << (bitno
& 31);
161 static void kvm_on_user_return(struct user_return_notifier
*urn
)
164 struct kvm_shared_msrs
*locals
165 = container_of(urn
, struct kvm_shared_msrs
, urn
);
166 struct kvm_shared_msr_values
*values
;
168 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
169 values
= &locals
->values
[slot
];
170 if (values
->host
!= values
->curr
) {
171 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
172 values
->curr
= values
->host
;
175 locals
->registered
= false;
176 user_return_notifier_unregister(urn
);
179 static void shared_msr_update(unsigned slot
, u32 msr
)
181 struct kvm_shared_msrs
*smsr
;
184 smsr
= &__get_cpu_var(shared_msrs
);
185 /* only read, and nobody should modify it at this time,
186 * so don't need lock */
187 if (slot
>= shared_msrs_global
.nr
) {
188 printk(KERN_ERR
"kvm: invalid MSR slot!");
191 rdmsrl_safe(msr
, &value
);
192 smsr
->values
[slot
].host
= value
;
193 smsr
->values
[slot
].curr
= value
;
196 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
198 if (slot
>= shared_msrs_global
.nr
)
199 shared_msrs_global
.nr
= slot
+ 1;
200 shared_msrs_global
.msrs
[slot
] = msr
;
201 /* we need ensured the shared_msr_global have been updated */
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
206 static void kvm_shared_msr_cpu_online(void)
210 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
211 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
214 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
216 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
218 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
220 smsr
->values
[slot
].curr
= value
;
221 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
222 if (!smsr
->registered
) {
223 smsr
->urn
.on_user_return
= kvm_on_user_return
;
224 user_return_notifier_register(&smsr
->urn
);
225 smsr
->registered
= true;
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
230 static void drop_user_return_notifiers(void *ignore
)
232 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
234 if (smsr
->registered
)
235 kvm_on_user_return(&smsr
->urn
);
238 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
240 if (irqchip_in_kernel(vcpu
->kvm
))
241 return vcpu
->arch
.apic_base
;
243 return vcpu
->arch
.apic_base
;
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
247 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
249 /* TODO: reserve bits check */
250 if (irqchip_in_kernel(vcpu
->kvm
))
251 kvm_lapic_set_base(vcpu
, data
);
253 vcpu
->arch
.apic_base
= data
;
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
257 #define EXCPT_BENIGN 0
258 #define EXCPT_CONTRIBUTORY 1
261 static int exception_class(int vector
)
271 return EXCPT_CONTRIBUTORY
;
278 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
279 unsigned nr
, bool has_error
, u32 error_code
,
285 if (!vcpu
->arch
.exception
.pending
) {
287 vcpu
->arch
.exception
.pending
= true;
288 vcpu
->arch
.exception
.has_error_code
= has_error
;
289 vcpu
->arch
.exception
.nr
= nr
;
290 vcpu
->arch
.exception
.error_code
= error_code
;
291 vcpu
->arch
.exception
.reinject
= reinject
;
295 /* to check exception */
296 prev_nr
= vcpu
->arch
.exception
.nr
;
297 if (prev_nr
== DF_VECTOR
) {
298 /* triple fault -> shutdown */
299 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
302 class1
= exception_class(prev_nr
);
303 class2
= exception_class(nr
);
304 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
305 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
306 /* generate double fault per SDM Table 5-5 */
307 vcpu
->arch
.exception
.pending
= true;
308 vcpu
->arch
.exception
.has_error_code
= true;
309 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
310 vcpu
->arch
.exception
.error_code
= 0;
312 /* replace previous exception with a new one in a hope
313 that instruction re-execution will regenerate lost
318 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
320 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
322 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
324 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
326 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
330 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
333 ++vcpu
->stat
.pf_guest
;
334 vcpu
->arch
.cr2
= addr
;
335 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
338 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
340 vcpu
->arch
.nmi_pending
= 1;
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
344 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
346 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
350 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
352 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
357 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
358 * a #GP and return false.
360 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
362 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
364 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
367 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
370 * Load the pae pdptrs. Return true is they are all valid.
372 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
374 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
375 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
378 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
380 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
381 offset
* sizeof(u64
), sizeof(pdpte
));
386 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
387 if (is_present_gpte(pdpte
[i
]) &&
388 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
395 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
396 __set_bit(VCPU_EXREG_PDPTR
,
397 (unsigned long *)&vcpu
->arch
.regs_avail
);
398 __set_bit(VCPU_EXREG_PDPTR
,
399 (unsigned long *)&vcpu
->arch
.regs_dirty
);
404 EXPORT_SYMBOL_GPL(load_pdptrs
);
406 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
408 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
412 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
415 if (!test_bit(VCPU_EXREG_PDPTR
,
416 (unsigned long *)&vcpu
->arch
.regs_avail
))
419 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
422 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
428 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
430 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
431 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
432 X86_CR0_CD
| X86_CR0_NW
;
437 if (cr0
& 0xffffffff00000000UL
)
441 cr0
&= ~CR0_RESERVED_BITS
;
443 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
446 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
449 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
451 if ((vcpu
->arch
.efer
& EFER_LME
)) {
456 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
461 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
))
465 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
467 if ((cr0
^ old_cr0
) & update_bits
)
468 kvm_mmu_reset_context(vcpu
);
471 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
473 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
475 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
477 EXPORT_SYMBOL_GPL(kvm_lmsw
);
479 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
483 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
484 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
487 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
489 if (!(xcr0
& XSTATE_FP
))
491 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
493 if (xcr0
& ~host_xcr0
)
495 vcpu
->arch
.xcr0
= xcr0
;
496 vcpu
->guest_xcr0_loaded
= 0;
500 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
502 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
503 kvm_inject_gp(vcpu
, 0);
508 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
512 struct kvm_cpuid_entry2
*best
;
514 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
515 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
518 static void update_cpuid(struct kvm_vcpu
*vcpu
)
520 struct kvm_cpuid_entry2
*best
;
522 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
526 /* Update OSXSAVE bit */
527 if (cpu_has_xsave
&& best
->function
== 0x1) {
528 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
529 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
530 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
534 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
536 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
537 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
539 if (cr4
& CR4_RESERVED_BITS
)
542 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
545 if (is_long_mode(vcpu
)) {
546 if (!(cr4
& X86_CR4_PAE
))
548 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
549 && ((cr4
^ old_cr4
) & pdptr_bits
)
550 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
))
553 if (cr4
& X86_CR4_VMXE
)
556 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
558 if ((cr4
^ old_cr4
) & pdptr_bits
)
559 kvm_mmu_reset_context(vcpu
);
561 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
566 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
568 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
570 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
571 kvm_mmu_sync_roots(vcpu
);
572 kvm_mmu_flush_tlb(vcpu
);
576 if (is_long_mode(vcpu
)) {
577 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
581 if (cr3
& CR3_PAE_RESERVED_BITS
)
583 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
))
587 * We don't check reserved bits in nonpae mode, because
588 * this isn't enforced, and VMware depends on this.
593 * Does the new cr3 value map to physical memory? (Note, we
594 * catch an invalid cr3 even in real-mode, because it would
595 * cause trouble later on when we turn on paging anyway.)
597 * A real CPU would silently accept an invalid cr3 and would
598 * attempt to use it - with largely undefined (and often hard
599 * to debug) behavior on the guest side.
601 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
603 vcpu
->arch
.cr3
= cr3
;
604 vcpu
->arch
.mmu
.new_cr3(vcpu
);
607 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
609 int __kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
611 if (cr8
& CR8_RESERVED_BITS
)
613 if (irqchip_in_kernel(vcpu
->kvm
))
614 kvm_lapic_set_tpr(vcpu
, cr8
);
616 vcpu
->arch
.cr8
= cr8
;
620 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
622 if (__kvm_set_cr8(vcpu
, cr8
))
623 kvm_inject_gp(vcpu
, 0);
625 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
627 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
629 if (irqchip_in_kernel(vcpu
->kvm
))
630 return kvm_lapic_get_cr8(vcpu
);
632 return vcpu
->arch
.cr8
;
634 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
636 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
640 vcpu
->arch
.db
[dr
] = val
;
641 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
642 vcpu
->arch
.eff_db
[dr
] = val
;
645 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
649 if (val
& 0xffffffff00000000ULL
)
651 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
654 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
658 if (val
& 0xffffffff00000000ULL
)
660 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
661 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
662 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
663 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
671 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
675 res
= __kvm_set_dr(vcpu
, dr
, val
);
677 kvm_queue_exception(vcpu
, UD_VECTOR
);
679 kvm_inject_gp(vcpu
, 0);
683 EXPORT_SYMBOL_GPL(kvm_set_dr
);
685 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
689 *val
= vcpu
->arch
.db
[dr
];
692 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
696 *val
= vcpu
->arch
.dr6
;
699 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
703 *val
= vcpu
->arch
.dr7
;
710 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
712 if (_kvm_get_dr(vcpu
, dr
, val
)) {
713 kvm_queue_exception(vcpu
, UD_VECTOR
);
718 EXPORT_SYMBOL_GPL(kvm_get_dr
);
721 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
724 * This list is modified at module load time to reflect the
725 * capabilities of the host cpu. This capabilities test skips MSRs that are
726 * kvm-specific. Those are put in the beginning of the list.
729 #define KVM_SAVE_MSRS_BEGIN 7
730 static u32 msrs_to_save
[] = {
731 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
732 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
733 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
734 HV_X64_MSR_APIC_ASSIST_PAGE
,
735 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
738 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
740 MSR_IA32_TSC
, MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
743 static unsigned num_msrs_to_save
;
745 static u32 emulated_msrs
[] = {
746 MSR_IA32_MISC_ENABLE
,
751 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
753 u64 old_efer
= vcpu
->arch
.efer
;
755 if (efer
& efer_reserved_bits
)
759 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
762 if (efer
& EFER_FFXSR
) {
763 struct kvm_cpuid_entry2
*feat
;
765 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
766 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
770 if (efer
& EFER_SVME
) {
771 struct kvm_cpuid_entry2
*feat
;
773 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
774 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
779 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
781 kvm_x86_ops
->set_efer(vcpu
, efer
);
783 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
784 kvm_mmu_reset_context(vcpu
);
786 /* Update reserved bits */
787 if ((efer
^ old_efer
) & EFER_NX
)
788 kvm_mmu_reset_context(vcpu
);
793 void kvm_enable_efer_bits(u64 mask
)
795 efer_reserved_bits
&= ~mask
;
797 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
801 * Writes msr value into into the appropriate "register".
802 * Returns 0 on success, non-0 otherwise.
803 * Assumes vcpu_load() was already called.
805 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
807 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
811 * Adapt set_msr() to msr_io()'s calling convention
813 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
815 return kvm_set_msr(vcpu
, index
, *data
);
818 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
822 struct pvclock_wall_clock wc
;
823 struct timespec boot
;
828 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
833 ++version
; /* first time write, random junk */
837 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
840 * The guest calculates current wall clock time by adding
841 * system time (updated by kvm_write_guest_time below) to the
842 * wall clock specified here. guest system time equals host
843 * system time for us, thus we must fill in host boot time here.
847 wc
.sec
= boot
.tv_sec
;
848 wc
.nsec
= boot
.tv_nsec
;
849 wc
.version
= version
;
851 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
854 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
857 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
859 uint32_t quotient
, remainder
;
861 /* Don't try to replace with do_div(), this one calculates
862 * "(dividend << 32) / divisor" */
864 : "=a" (quotient
), "=d" (remainder
)
865 : "0" (0), "1" (dividend
), "r" (divisor
) );
869 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
871 uint64_t nsecs
= 1000000000LL;
876 tps64
= tsc_khz
* 1000LL;
877 while (tps64
> nsecs
*2) {
882 tps32
= (uint32_t)tps64
;
883 while (tps32
<= (uint32_t)nsecs
) {
888 hv_clock
->tsc_shift
= shift
;
889 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
891 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
892 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
893 hv_clock
->tsc_to_system_mul
);
896 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
898 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
902 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
904 unsigned long this_tsc_khz
;
906 if ((!vcpu
->time_page
))
909 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
910 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
911 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
912 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
914 put_cpu_var(cpu_tsc_khz
);
916 /* Keep irq disabled to prevent changes to the clock */
917 local_irq_save(flags
);
918 kvm_get_msr(v
, MSR_IA32_TSC
, &vcpu
->hv_clock
.tsc_timestamp
);
920 monotonic_to_bootbased(&ts
);
921 local_irq_restore(flags
);
923 /* With all the info we got, fill in the values */
925 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
926 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
) + v
->kvm
->arch
.kvmclock_offset
;
928 vcpu
->hv_clock
.flags
= 0;
931 * The interface expects us to write an even number signaling that the
932 * update is finished. Since the guest won't see the intermediate
933 * state, we just increase by 2 at the end.
935 vcpu
->hv_clock
.version
+= 2;
937 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
939 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
940 sizeof(vcpu
->hv_clock
));
942 kunmap_atomic(shared_kaddr
, KM_USER0
);
944 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
947 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
949 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
951 if (!vcpu
->time_page
)
953 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE
, v
);
957 static bool msr_mtrr_valid(unsigned msr
)
960 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
961 case MSR_MTRRfix64K_00000
:
962 case MSR_MTRRfix16K_80000
:
963 case MSR_MTRRfix16K_A0000
:
964 case MSR_MTRRfix4K_C0000
:
965 case MSR_MTRRfix4K_C8000
:
966 case MSR_MTRRfix4K_D0000
:
967 case MSR_MTRRfix4K_D8000
:
968 case MSR_MTRRfix4K_E0000
:
969 case MSR_MTRRfix4K_E8000
:
970 case MSR_MTRRfix4K_F0000
:
971 case MSR_MTRRfix4K_F8000
:
972 case MSR_MTRRdefType
:
973 case MSR_IA32_CR_PAT
:
981 static bool valid_pat_type(unsigned t
)
983 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
986 static bool valid_mtrr_type(unsigned t
)
988 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
991 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
995 if (!msr_mtrr_valid(msr
))
998 if (msr
== MSR_IA32_CR_PAT
) {
999 for (i
= 0; i
< 8; i
++)
1000 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1003 } else if (msr
== MSR_MTRRdefType
) {
1006 return valid_mtrr_type(data
& 0xff);
1007 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1008 for (i
= 0; i
< 8 ; i
++)
1009 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1014 /* variable MTRRs */
1015 return valid_mtrr_type(data
& 0xff);
1018 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1020 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1022 if (!mtrr_valid(vcpu
, msr
, data
))
1025 if (msr
== MSR_MTRRdefType
) {
1026 vcpu
->arch
.mtrr_state
.def_type
= data
;
1027 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1028 } else if (msr
== MSR_MTRRfix64K_00000
)
1030 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1031 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1032 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1033 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1034 else if (msr
== MSR_IA32_CR_PAT
)
1035 vcpu
->arch
.pat
= data
;
1036 else { /* Variable MTRRs */
1037 int idx
, is_mtrr_mask
;
1040 idx
= (msr
- 0x200) / 2;
1041 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1044 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1047 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1051 kvm_mmu_reset_context(vcpu
);
1055 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1057 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1058 unsigned bank_num
= mcg_cap
& 0xff;
1061 case MSR_IA32_MCG_STATUS
:
1062 vcpu
->arch
.mcg_status
= data
;
1064 case MSR_IA32_MCG_CTL
:
1065 if (!(mcg_cap
& MCG_CTL_P
))
1067 if (data
!= 0 && data
!= ~(u64
)0)
1069 vcpu
->arch
.mcg_ctl
= data
;
1072 if (msr
>= MSR_IA32_MC0_CTL
&&
1073 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1074 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1075 /* only 0 or all 1s can be written to IA32_MCi_CTL
1076 * some Linux kernels though clear bit 10 in bank 4 to
1077 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1078 * this to avoid an uncatched #GP in the guest
1080 if ((offset
& 0x3) == 0 &&
1081 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1083 vcpu
->arch
.mce_banks
[offset
] = data
;
1091 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1093 struct kvm
*kvm
= vcpu
->kvm
;
1094 int lm
= is_long_mode(vcpu
);
1095 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1096 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1097 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1098 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1099 u32 page_num
= data
& ~PAGE_MASK
;
1100 u64 page_addr
= data
& PAGE_MASK
;
1105 if (page_num
>= blob_size
)
1108 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1112 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1114 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1123 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1125 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1128 static bool kvm_hv_msr_partition_wide(u32 msr
)
1132 case HV_X64_MSR_GUEST_OS_ID
:
1133 case HV_X64_MSR_HYPERCALL
:
1141 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1143 struct kvm
*kvm
= vcpu
->kvm
;
1146 case HV_X64_MSR_GUEST_OS_ID
:
1147 kvm
->arch
.hv_guest_os_id
= data
;
1148 /* setting guest os id to zero disables hypercall page */
1149 if (!kvm
->arch
.hv_guest_os_id
)
1150 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1152 case HV_X64_MSR_HYPERCALL
: {
1157 /* if guest os id is not set hypercall should remain disabled */
1158 if (!kvm
->arch
.hv_guest_os_id
)
1160 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1161 kvm
->arch
.hv_hypercall
= data
;
1164 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1165 addr
= gfn_to_hva(kvm
, gfn
);
1166 if (kvm_is_error_hva(addr
))
1168 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1169 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1170 if (copy_to_user((void __user
*)addr
, instructions
, 4))
1172 kvm
->arch
.hv_hypercall
= data
;
1176 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1177 "data 0x%llx\n", msr
, data
);
1183 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1186 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1189 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1190 vcpu
->arch
.hv_vapic
= data
;
1193 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1194 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1195 if (kvm_is_error_hva(addr
))
1197 if (clear_user((void __user
*)addr
, PAGE_SIZE
))
1199 vcpu
->arch
.hv_vapic
= data
;
1202 case HV_X64_MSR_EOI
:
1203 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1204 case HV_X64_MSR_ICR
:
1205 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1206 case HV_X64_MSR_TPR
:
1207 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1209 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1210 "data 0x%llx\n", msr
, data
);
1217 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1221 return set_efer(vcpu
, data
);
1223 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1224 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1226 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1231 case MSR_FAM10H_MMIO_CONF_BASE
:
1233 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1238 case MSR_AMD64_NB_CFG
:
1240 case MSR_IA32_DEBUGCTLMSR
:
1242 /* We support the non-activated case already */
1244 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1245 /* Values other than LBR and BTF are vendor-specific,
1246 thus reserved and should throw a #GP */
1249 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1252 case MSR_IA32_UCODE_REV
:
1253 case MSR_IA32_UCODE_WRITE
:
1254 case MSR_VM_HSAVE_PA
:
1255 case MSR_AMD64_PATCH_LOADER
:
1257 case 0x200 ... 0x2ff:
1258 return set_msr_mtrr(vcpu
, msr
, data
);
1259 case MSR_IA32_APICBASE
:
1260 kvm_set_apic_base(vcpu
, data
);
1262 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1263 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1264 case MSR_IA32_MISC_ENABLE
:
1265 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1267 case MSR_KVM_WALL_CLOCK_NEW
:
1268 case MSR_KVM_WALL_CLOCK
:
1269 vcpu
->kvm
->arch
.wall_clock
= data
;
1270 kvm_write_wall_clock(vcpu
->kvm
, data
);
1272 case MSR_KVM_SYSTEM_TIME_NEW
:
1273 case MSR_KVM_SYSTEM_TIME
: {
1274 if (vcpu
->arch
.time_page
) {
1275 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1276 vcpu
->arch
.time_page
= NULL
;
1279 vcpu
->arch
.time
= data
;
1281 /* we verify if the enable bit is set... */
1285 /* ...but clean it before doing the actual write */
1286 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1288 vcpu
->arch
.time_page
=
1289 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1291 if (is_error_page(vcpu
->arch
.time_page
)) {
1292 kvm_release_page_clean(vcpu
->arch
.time_page
);
1293 vcpu
->arch
.time_page
= NULL
;
1296 kvm_request_guest_time_update(vcpu
);
1299 case MSR_IA32_MCG_CTL
:
1300 case MSR_IA32_MCG_STATUS
:
1301 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1302 return set_msr_mce(vcpu
, msr
, data
);
1304 /* Performance counters are not protected by a CPUID bit,
1305 * so we should check all of them in the generic path for the sake of
1306 * cross vendor migration.
1307 * Writing a zero into the event select MSRs disables them,
1308 * which we perfectly emulate ;-). Any other value should be at least
1309 * reported, some guests depend on them.
1311 case MSR_P6_EVNTSEL0
:
1312 case MSR_P6_EVNTSEL1
:
1313 case MSR_K7_EVNTSEL0
:
1314 case MSR_K7_EVNTSEL1
:
1315 case MSR_K7_EVNTSEL2
:
1316 case MSR_K7_EVNTSEL3
:
1318 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1319 "0x%x data 0x%llx\n", msr
, data
);
1321 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1322 * so we ignore writes to make it happy.
1324 case MSR_P6_PERFCTR0
:
1325 case MSR_P6_PERFCTR1
:
1326 case MSR_K7_PERFCTR0
:
1327 case MSR_K7_PERFCTR1
:
1328 case MSR_K7_PERFCTR2
:
1329 case MSR_K7_PERFCTR3
:
1330 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1331 "0x%x data 0x%llx\n", msr
, data
);
1333 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1334 if (kvm_hv_msr_partition_wide(msr
)) {
1336 mutex_lock(&vcpu
->kvm
->lock
);
1337 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1338 mutex_unlock(&vcpu
->kvm
->lock
);
1341 return set_msr_hyperv(vcpu
, msr
, data
);
1344 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1345 return xen_hvm_config(vcpu
, data
);
1347 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1351 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1358 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1362 * Reads an msr value (of 'msr_index') into 'pdata'.
1363 * Returns 0 on success, non-0 otherwise.
1364 * Assumes vcpu_load() was already called.
1366 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1368 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1371 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1373 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1375 if (!msr_mtrr_valid(msr
))
1378 if (msr
== MSR_MTRRdefType
)
1379 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1380 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1381 else if (msr
== MSR_MTRRfix64K_00000
)
1383 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1384 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1385 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1386 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1387 else if (msr
== MSR_IA32_CR_PAT
)
1388 *pdata
= vcpu
->arch
.pat
;
1389 else { /* Variable MTRRs */
1390 int idx
, is_mtrr_mask
;
1393 idx
= (msr
- 0x200) / 2;
1394 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1397 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1400 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1407 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1410 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1411 unsigned bank_num
= mcg_cap
& 0xff;
1414 case MSR_IA32_P5_MC_ADDR
:
1415 case MSR_IA32_P5_MC_TYPE
:
1418 case MSR_IA32_MCG_CAP
:
1419 data
= vcpu
->arch
.mcg_cap
;
1421 case MSR_IA32_MCG_CTL
:
1422 if (!(mcg_cap
& MCG_CTL_P
))
1424 data
= vcpu
->arch
.mcg_ctl
;
1426 case MSR_IA32_MCG_STATUS
:
1427 data
= vcpu
->arch
.mcg_status
;
1430 if (msr
>= MSR_IA32_MC0_CTL
&&
1431 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1432 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1433 data
= vcpu
->arch
.mce_banks
[offset
];
1442 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1445 struct kvm
*kvm
= vcpu
->kvm
;
1448 case HV_X64_MSR_GUEST_OS_ID
:
1449 data
= kvm
->arch
.hv_guest_os_id
;
1451 case HV_X64_MSR_HYPERCALL
:
1452 data
= kvm
->arch
.hv_hypercall
;
1455 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1463 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1468 case HV_X64_MSR_VP_INDEX
: {
1471 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1476 case HV_X64_MSR_EOI
:
1477 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1478 case HV_X64_MSR_ICR
:
1479 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1480 case HV_X64_MSR_TPR
:
1481 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1483 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1490 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1495 case MSR_IA32_PLATFORM_ID
:
1496 case MSR_IA32_UCODE_REV
:
1497 case MSR_IA32_EBL_CR_POWERON
:
1498 case MSR_IA32_DEBUGCTLMSR
:
1499 case MSR_IA32_LASTBRANCHFROMIP
:
1500 case MSR_IA32_LASTBRANCHTOIP
:
1501 case MSR_IA32_LASTINTFROMIP
:
1502 case MSR_IA32_LASTINTTOIP
:
1505 case MSR_VM_HSAVE_PA
:
1506 case MSR_P6_PERFCTR0
:
1507 case MSR_P6_PERFCTR1
:
1508 case MSR_P6_EVNTSEL0
:
1509 case MSR_P6_EVNTSEL1
:
1510 case MSR_K7_EVNTSEL0
:
1511 case MSR_K7_PERFCTR0
:
1512 case MSR_K8_INT_PENDING_MSG
:
1513 case MSR_AMD64_NB_CFG
:
1514 case MSR_FAM10H_MMIO_CONF_BASE
:
1518 data
= 0x500 | KVM_NR_VAR_MTRR
;
1520 case 0x200 ... 0x2ff:
1521 return get_msr_mtrr(vcpu
, msr
, pdata
);
1522 case 0xcd: /* fsb frequency */
1525 case MSR_IA32_APICBASE
:
1526 data
= kvm_get_apic_base(vcpu
);
1528 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1529 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1531 case MSR_IA32_MISC_ENABLE
:
1532 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1534 case MSR_IA32_PERF_STATUS
:
1535 /* TSC increment by tick */
1537 /* CPU multiplier */
1538 data
|= (((uint64_t)4ULL) << 40);
1541 data
= vcpu
->arch
.efer
;
1543 case MSR_KVM_WALL_CLOCK
:
1544 case MSR_KVM_WALL_CLOCK_NEW
:
1545 data
= vcpu
->kvm
->arch
.wall_clock
;
1547 case MSR_KVM_SYSTEM_TIME
:
1548 case MSR_KVM_SYSTEM_TIME_NEW
:
1549 data
= vcpu
->arch
.time
;
1551 case MSR_IA32_P5_MC_ADDR
:
1552 case MSR_IA32_P5_MC_TYPE
:
1553 case MSR_IA32_MCG_CAP
:
1554 case MSR_IA32_MCG_CTL
:
1555 case MSR_IA32_MCG_STATUS
:
1556 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1557 return get_msr_mce(vcpu
, msr
, pdata
);
1558 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1559 if (kvm_hv_msr_partition_wide(msr
)) {
1561 mutex_lock(&vcpu
->kvm
->lock
);
1562 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1563 mutex_unlock(&vcpu
->kvm
->lock
);
1566 return get_msr_hyperv(vcpu
, msr
, pdata
);
1570 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1573 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1581 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1584 * Read or write a bunch of msrs. All parameters are kernel addresses.
1586 * @return number of msrs set successfully.
1588 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1589 struct kvm_msr_entry
*entries
,
1590 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1591 unsigned index
, u64
*data
))
1595 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1596 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1597 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1599 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1605 * Read or write a bunch of msrs. Parameters are user addresses.
1607 * @return number of msrs set successfully.
1609 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1610 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1611 unsigned index
, u64
*data
),
1614 struct kvm_msrs msrs
;
1615 struct kvm_msr_entry
*entries
;
1620 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1624 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1628 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1629 entries
= kmalloc(size
, GFP_KERNEL
);
1634 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1637 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1642 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1653 int kvm_dev_ioctl_check_extension(long ext
)
1658 case KVM_CAP_IRQCHIP
:
1660 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1661 case KVM_CAP_SET_TSS_ADDR
:
1662 case KVM_CAP_EXT_CPUID
:
1663 case KVM_CAP_CLOCKSOURCE
:
1665 case KVM_CAP_NOP_IO_DELAY
:
1666 case KVM_CAP_MP_STATE
:
1667 case KVM_CAP_SYNC_MMU
:
1668 case KVM_CAP_REINJECT_CONTROL
:
1669 case KVM_CAP_IRQ_INJECT_STATUS
:
1670 case KVM_CAP_ASSIGN_DEV_IRQ
:
1672 case KVM_CAP_IOEVENTFD
:
1674 case KVM_CAP_PIT_STATE2
:
1675 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1676 case KVM_CAP_XEN_HVM
:
1677 case KVM_CAP_ADJUST_CLOCK
:
1678 case KVM_CAP_VCPU_EVENTS
:
1679 case KVM_CAP_HYPERV
:
1680 case KVM_CAP_HYPERV_VAPIC
:
1681 case KVM_CAP_HYPERV_SPIN
:
1682 case KVM_CAP_PCI_SEGMENT
:
1683 case KVM_CAP_DEBUGREGS
:
1684 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
1688 case KVM_CAP_COALESCED_MMIO
:
1689 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1692 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1694 case KVM_CAP_NR_VCPUS
:
1697 case KVM_CAP_NR_MEMSLOTS
:
1698 r
= KVM_MEMORY_SLOTS
;
1700 case KVM_CAP_PV_MMU
: /* obsolete */
1707 r
= KVM_MAX_MCE_BANKS
;
1720 long kvm_arch_dev_ioctl(struct file
*filp
,
1721 unsigned int ioctl
, unsigned long arg
)
1723 void __user
*argp
= (void __user
*)arg
;
1727 case KVM_GET_MSR_INDEX_LIST
: {
1728 struct kvm_msr_list __user
*user_msr_list
= argp
;
1729 struct kvm_msr_list msr_list
;
1733 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1736 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1737 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1740 if (n
< msr_list
.nmsrs
)
1743 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1744 num_msrs_to_save
* sizeof(u32
)))
1746 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1748 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1753 case KVM_GET_SUPPORTED_CPUID
: {
1754 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1755 struct kvm_cpuid2 cpuid
;
1758 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1760 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1761 cpuid_arg
->entries
);
1766 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1771 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1774 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1776 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1788 static void wbinvd_ipi(void *garbage
)
1793 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
1795 return vcpu
->kvm
->arch
.iommu_domain
&&
1796 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
1799 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1801 /* Address WBINVD may be executed by guest */
1802 if (need_emulate_wbinvd(vcpu
)) {
1803 if (kvm_x86_ops
->has_wbinvd_exit())
1804 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
1805 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
1806 smp_call_function_single(vcpu
->cpu
,
1807 wbinvd_ipi
, NULL
, 1);
1810 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1811 if (unlikely(per_cpu(cpu_tsc_khz
, cpu
) == 0)) {
1812 unsigned long khz
= cpufreq_quick_get(cpu
);
1815 per_cpu(cpu_tsc_khz
, cpu
) = khz
;
1817 kvm_request_guest_time_update(vcpu
);
1820 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1822 kvm_x86_ops
->vcpu_put(vcpu
);
1823 kvm_put_guest_fpu(vcpu
);
1826 static int is_efer_nx(void)
1828 unsigned long long efer
= 0;
1830 rdmsrl_safe(MSR_EFER
, &efer
);
1831 return efer
& EFER_NX
;
1834 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1837 struct kvm_cpuid_entry2
*e
, *entry
;
1840 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1841 e
= &vcpu
->arch
.cpuid_entries
[i
];
1842 if (e
->function
== 0x80000001) {
1847 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1848 entry
->edx
&= ~(1 << 20);
1849 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1853 /* when an old userspace process fills a new kernel module */
1854 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1855 struct kvm_cpuid
*cpuid
,
1856 struct kvm_cpuid_entry __user
*entries
)
1859 struct kvm_cpuid_entry
*cpuid_entries
;
1862 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1865 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1869 if (copy_from_user(cpuid_entries
, entries
,
1870 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1872 for (i
= 0; i
< cpuid
->nent
; i
++) {
1873 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1874 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1875 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1876 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1877 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1878 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1879 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1880 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1881 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1882 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1884 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1885 cpuid_fix_nx_cap(vcpu
);
1887 kvm_apic_set_version(vcpu
);
1888 kvm_x86_ops
->cpuid_update(vcpu
);
1892 vfree(cpuid_entries
);
1897 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1898 struct kvm_cpuid2
*cpuid
,
1899 struct kvm_cpuid_entry2 __user
*entries
)
1904 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1907 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1908 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1910 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1911 kvm_apic_set_version(vcpu
);
1912 kvm_x86_ops
->cpuid_update(vcpu
);
1920 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1921 struct kvm_cpuid2
*cpuid
,
1922 struct kvm_cpuid_entry2 __user
*entries
)
1927 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1930 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1931 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1936 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1940 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1943 entry
->function
= function
;
1944 entry
->index
= index
;
1945 cpuid_count(entry
->function
, entry
->index
,
1946 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1950 #define F(x) bit(X86_FEATURE_##x)
1952 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1953 u32 index
, int *nent
, int maxnent
)
1955 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1956 #ifdef CONFIG_X86_64
1957 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
1959 unsigned f_lm
= F(LM
);
1961 unsigned f_gbpages
= 0;
1964 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
1967 const u32 kvm_supported_word0_x86_features
=
1968 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1969 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1970 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1971 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1972 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1973 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1974 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1975 0 /* HTT, TM, Reserved, PBE */;
1976 /* cpuid 0x80000001.edx */
1977 const u32 kvm_supported_word1_x86_features
=
1978 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1979 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1980 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1981 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1982 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1983 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1984 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
1985 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1987 const u32 kvm_supported_word4_x86_features
=
1988 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
1989 0 /* DS-CPL, VMX, SMX, EST */ |
1990 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1991 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1992 0 /* Reserved, DCA */ | F(XMM4_1
) |
1993 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
1994 0 /* Reserved, AES */ | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
);
1995 /* cpuid 0x80000001.ecx */
1996 const u32 kvm_supported_word6_x86_features
=
1997 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1998 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1999 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
2000 0 /* SKINIT */ | 0 /* WDT */;
2002 /* all calls to cpuid_count() should be made on the same cpu */
2004 do_cpuid_1_ent(entry
, function
, index
);
2009 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2012 entry
->edx
&= kvm_supported_word0_x86_features
;
2013 entry
->ecx
&= kvm_supported_word4_x86_features
;
2014 /* we support x2apic emulation even if host does not support
2015 * it since we emulate x2apic in software */
2016 entry
->ecx
|= F(X2APIC
);
2018 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2019 * may return different values. This forces us to get_cpu() before
2020 * issuing the first command, and also to emulate this annoying behavior
2021 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2023 int t
, times
= entry
->eax
& 0xff;
2025 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2026 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2027 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2028 do_cpuid_1_ent(&entry
[t
], function
, 0);
2029 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2034 /* function 4 and 0xb have additional index. */
2038 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2039 /* read more entries until cache_type is zero */
2040 for (i
= 1; *nent
< maxnent
; ++i
) {
2041 cache_type
= entry
[i
- 1].eax
& 0x1f;
2044 do_cpuid_1_ent(&entry
[i
], function
, i
);
2046 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2054 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2055 /* read more entries until level_type is zero */
2056 for (i
= 1; *nent
< maxnent
; ++i
) {
2057 level_type
= entry
[i
- 1].ecx
& 0xff00;
2060 do_cpuid_1_ent(&entry
[i
], function
, i
);
2062 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2070 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2071 for (i
= 1; *nent
< maxnent
; ++i
) {
2072 if (entry
[i
- 1].eax
== 0 && i
!= 2)
2074 do_cpuid_1_ent(&entry
[i
], function
, i
);
2076 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2081 case KVM_CPUID_SIGNATURE
: {
2082 char signature
[12] = "KVMKVMKVM\0\0";
2083 u32
*sigptr
= (u32
*)signature
;
2085 entry
->ebx
= sigptr
[0];
2086 entry
->ecx
= sigptr
[1];
2087 entry
->edx
= sigptr
[2];
2090 case KVM_CPUID_FEATURES
:
2091 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2092 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2093 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2094 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2100 entry
->eax
= min(entry
->eax
, 0x8000001a);
2103 entry
->edx
&= kvm_supported_word1_x86_features
;
2104 entry
->ecx
&= kvm_supported_word6_x86_features
;
2108 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2115 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2116 struct kvm_cpuid_entry2 __user
*entries
)
2118 struct kvm_cpuid_entry2
*cpuid_entries
;
2119 int limit
, nent
= 0, r
= -E2BIG
;
2122 if (cpuid
->nent
< 1)
2124 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2125 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2127 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2131 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2132 limit
= cpuid_entries
[0].eax
;
2133 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2134 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2135 &nent
, cpuid
->nent
);
2137 if (nent
>= cpuid
->nent
)
2140 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2141 limit
= cpuid_entries
[nent
- 1].eax
;
2142 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2143 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2144 &nent
, cpuid
->nent
);
2149 if (nent
>= cpuid
->nent
)
2152 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2156 if (nent
>= cpuid
->nent
)
2159 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2163 if (nent
>= cpuid
->nent
)
2167 if (copy_to_user(entries
, cpuid_entries
,
2168 nent
* sizeof(struct kvm_cpuid_entry2
)))
2174 vfree(cpuid_entries
);
2179 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2180 struct kvm_lapic_state
*s
)
2182 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2187 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2188 struct kvm_lapic_state
*s
)
2190 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2191 kvm_apic_post_state_restore(vcpu
);
2192 update_cr8_intercept(vcpu
);
2197 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2198 struct kvm_interrupt
*irq
)
2200 if (irq
->irq
< 0 || irq
->irq
>= 256)
2202 if (irqchip_in_kernel(vcpu
->kvm
))
2205 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2210 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2212 kvm_inject_nmi(vcpu
);
2217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2218 struct kvm_tpr_access_ctl
*tac
)
2222 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2230 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2233 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2235 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2238 vcpu
->arch
.mcg_cap
= mcg_cap
;
2239 /* Init IA32_MCG_CTL to all 1s */
2240 if (mcg_cap
& MCG_CTL_P
)
2241 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2242 /* Init IA32_MCi_CTL to all 1s */
2243 for (bank
= 0; bank
< bank_num
; bank
++)
2244 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2249 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2250 struct kvm_x86_mce
*mce
)
2252 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2253 unsigned bank_num
= mcg_cap
& 0xff;
2254 u64
*banks
= vcpu
->arch
.mce_banks
;
2256 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2259 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2260 * reporting is disabled
2262 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2263 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2265 banks
+= 4 * mce
->bank
;
2267 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2268 * reporting is disabled for the bank
2270 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2272 if (mce
->status
& MCI_STATUS_UC
) {
2273 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2274 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2275 printk(KERN_DEBUG
"kvm: set_mce: "
2276 "injects mce exception while "
2277 "previous one is in progress!\n");
2278 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2281 if (banks
[1] & MCI_STATUS_VAL
)
2282 mce
->status
|= MCI_STATUS_OVER
;
2283 banks
[2] = mce
->addr
;
2284 banks
[3] = mce
->misc
;
2285 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2286 banks
[1] = mce
->status
;
2287 kvm_queue_exception(vcpu
, MC_VECTOR
);
2288 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2289 || !(banks
[1] & MCI_STATUS_UC
)) {
2290 if (banks
[1] & MCI_STATUS_VAL
)
2291 mce
->status
|= MCI_STATUS_OVER
;
2292 banks
[2] = mce
->addr
;
2293 banks
[3] = mce
->misc
;
2294 banks
[1] = mce
->status
;
2296 banks
[1] |= MCI_STATUS_OVER
;
2300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2301 struct kvm_vcpu_events
*events
)
2303 events
->exception
.injected
=
2304 vcpu
->arch
.exception
.pending
&&
2305 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2306 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2307 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2308 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2310 events
->interrupt
.injected
=
2311 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2312 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2313 events
->interrupt
.soft
= 0;
2314 events
->interrupt
.shadow
=
2315 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2316 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2318 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2319 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
;
2320 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2322 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2324 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2325 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2326 | KVM_VCPUEVENT_VALID_SHADOW
);
2329 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2330 struct kvm_vcpu_events
*events
)
2332 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2333 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2334 | KVM_VCPUEVENT_VALID_SHADOW
))
2337 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2338 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2339 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2340 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2342 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2343 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2344 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2345 if (vcpu
->arch
.interrupt
.pending
&& irqchip_in_kernel(vcpu
->kvm
))
2346 kvm_pic_clear_isr_ack(vcpu
->kvm
);
2347 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2348 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2349 events
->interrupt
.shadow
);
2351 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2352 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2353 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2354 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2356 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2357 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2363 struct kvm_debugregs
*dbgregs
)
2365 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2366 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2367 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2372 struct kvm_debugregs
*dbgregs
)
2377 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2378 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2379 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2384 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2385 struct kvm_xsave
*guest_xsave
)
2388 memcpy(guest_xsave
->region
,
2389 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2392 memcpy(guest_xsave
->region
,
2393 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2394 sizeof(struct i387_fxsave_struct
));
2395 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2400 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2401 struct kvm_xsave
*guest_xsave
)
2404 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2407 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2408 guest_xsave
->region
, xstate_size
);
2410 if (xstate_bv
& ~XSTATE_FPSSE
)
2412 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2413 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2418 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2419 struct kvm_xcrs
*guest_xcrs
)
2421 if (!cpu_has_xsave
) {
2422 guest_xcrs
->nr_xcrs
= 0;
2426 guest_xcrs
->nr_xcrs
= 1;
2427 guest_xcrs
->flags
= 0;
2428 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2429 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2432 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2433 struct kvm_xcrs
*guest_xcrs
)
2440 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2443 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2444 /* Only support XCR0 currently */
2445 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2446 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2447 guest_xcrs
->xcrs
[0].value
);
2455 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2456 unsigned int ioctl
, unsigned long arg
)
2458 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2459 void __user
*argp
= (void __user
*)arg
;
2462 struct kvm_lapic_state
*lapic
;
2463 struct kvm_xsave
*xsave
;
2464 struct kvm_xcrs
*xcrs
;
2470 case KVM_GET_LAPIC
: {
2472 if (!vcpu
->arch
.apic
)
2474 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2479 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2483 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2488 case KVM_SET_LAPIC
: {
2490 if (!vcpu
->arch
.apic
)
2492 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2497 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
2499 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2505 case KVM_INTERRUPT
: {
2506 struct kvm_interrupt irq
;
2509 if (copy_from_user(&irq
, argp
, sizeof irq
))
2511 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2518 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2524 case KVM_SET_CPUID
: {
2525 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2526 struct kvm_cpuid cpuid
;
2529 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2531 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2536 case KVM_SET_CPUID2
: {
2537 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2538 struct kvm_cpuid2 cpuid
;
2541 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2543 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2544 cpuid_arg
->entries
);
2549 case KVM_GET_CPUID2
: {
2550 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2551 struct kvm_cpuid2 cpuid
;
2554 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2556 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2557 cpuid_arg
->entries
);
2561 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2567 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2570 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2572 case KVM_TPR_ACCESS_REPORTING
: {
2573 struct kvm_tpr_access_ctl tac
;
2576 if (copy_from_user(&tac
, argp
, sizeof tac
))
2578 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2582 if (copy_to_user(argp
, &tac
, sizeof tac
))
2587 case KVM_SET_VAPIC_ADDR
: {
2588 struct kvm_vapic_addr va
;
2591 if (!irqchip_in_kernel(vcpu
->kvm
))
2594 if (copy_from_user(&va
, argp
, sizeof va
))
2597 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2600 case KVM_X86_SETUP_MCE
: {
2604 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2606 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2609 case KVM_X86_SET_MCE
: {
2610 struct kvm_x86_mce mce
;
2613 if (copy_from_user(&mce
, argp
, sizeof mce
))
2615 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2618 case KVM_GET_VCPU_EVENTS
: {
2619 struct kvm_vcpu_events events
;
2621 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2624 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2629 case KVM_SET_VCPU_EVENTS
: {
2630 struct kvm_vcpu_events events
;
2633 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2636 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2639 case KVM_GET_DEBUGREGS
: {
2640 struct kvm_debugregs dbgregs
;
2642 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2645 if (copy_to_user(argp
, &dbgregs
,
2646 sizeof(struct kvm_debugregs
)))
2651 case KVM_SET_DEBUGREGS
: {
2652 struct kvm_debugregs dbgregs
;
2655 if (copy_from_user(&dbgregs
, argp
,
2656 sizeof(struct kvm_debugregs
)))
2659 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2662 case KVM_GET_XSAVE
: {
2663 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2668 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
2671 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
2676 case KVM_SET_XSAVE
: {
2677 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2683 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
2686 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
2689 case KVM_GET_XCRS
: {
2690 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2695 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
2698 if (copy_to_user(argp
, u
.xcrs
,
2699 sizeof(struct kvm_xcrs
)))
2704 case KVM_SET_XCRS
: {
2705 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2711 if (copy_from_user(u
.xcrs
, argp
,
2712 sizeof(struct kvm_xcrs
)))
2715 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
2726 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
2730 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
2732 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
2736 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
2739 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
2743 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
2744 u32 kvm_nr_mmu_pages
)
2746 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
2749 mutex_lock(&kvm
->slots_lock
);
2750 spin_lock(&kvm
->mmu_lock
);
2752 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
2753 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
2755 spin_unlock(&kvm
->mmu_lock
);
2756 mutex_unlock(&kvm
->slots_lock
);
2760 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
2762 return kvm
->arch
.n_alloc_mmu_pages
;
2765 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2770 switch (chip
->chip_id
) {
2771 case KVM_IRQCHIP_PIC_MASTER
:
2772 memcpy(&chip
->chip
.pic
,
2773 &pic_irqchip(kvm
)->pics
[0],
2774 sizeof(struct kvm_pic_state
));
2776 case KVM_IRQCHIP_PIC_SLAVE
:
2777 memcpy(&chip
->chip
.pic
,
2778 &pic_irqchip(kvm
)->pics
[1],
2779 sizeof(struct kvm_pic_state
));
2781 case KVM_IRQCHIP_IOAPIC
:
2782 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
2791 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2796 switch (chip
->chip_id
) {
2797 case KVM_IRQCHIP_PIC_MASTER
:
2798 raw_spin_lock(&pic_irqchip(kvm
)->lock
);
2799 memcpy(&pic_irqchip(kvm
)->pics
[0],
2801 sizeof(struct kvm_pic_state
));
2802 raw_spin_unlock(&pic_irqchip(kvm
)->lock
);
2804 case KVM_IRQCHIP_PIC_SLAVE
:
2805 raw_spin_lock(&pic_irqchip(kvm
)->lock
);
2806 memcpy(&pic_irqchip(kvm
)->pics
[1],
2808 sizeof(struct kvm_pic_state
));
2809 raw_spin_unlock(&pic_irqchip(kvm
)->lock
);
2811 case KVM_IRQCHIP_IOAPIC
:
2812 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
2818 kvm_pic_update_irq(pic_irqchip(kvm
));
2822 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2826 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2827 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2828 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2832 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2836 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2837 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2838 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2839 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2843 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2847 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2848 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2849 sizeof(ps
->channels
));
2850 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2851 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2855 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2857 int r
= 0, start
= 0;
2858 u32 prev_legacy
, cur_legacy
;
2859 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2860 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2861 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2862 if (!prev_legacy
&& cur_legacy
)
2864 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2865 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2866 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2867 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2868 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2872 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2873 struct kvm_reinject_control
*control
)
2875 if (!kvm
->arch
.vpit
)
2877 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2878 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2879 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2884 * Get (and clear) the dirty memory log for a memory slot.
2886 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2887 struct kvm_dirty_log
*log
)
2890 struct kvm_memory_slot
*memslot
;
2892 unsigned long is_dirty
= 0;
2894 mutex_lock(&kvm
->slots_lock
);
2897 if (log
->slot
>= KVM_MEMORY_SLOTS
)
2900 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
2902 if (!memslot
->dirty_bitmap
)
2905 n
= kvm_dirty_bitmap_bytes(memslot
);
2907 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
2908 is_dirty
= memslot
->dirty_bitmap
[i
];
2910 /* If nothing is dirty, don't bother messing with page tables. */
2912 struct kvm_memslots
*slots
, *old_slots
;
2913 unsigned long *dirty_bitmap
;
2915 spin_lock(&kvm
->mmu_lock
);
2916 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2917 spin_unlock(&kvm
->mmu_lock
);
2920 dirty_bitmap
= vmalloc(n
);
2923 memset(dirty_bitmap
, 0, n
);
2926 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
2928 vfree(dirty_bitmap
);
2931 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
2932 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
2934 old_slots
= kvm
->memslots
;
2935 rcu_assign_pointer(kvm
->memslots
, slots
);
2936 synchronize_srcu_expedited(&kvm
->srcu
);
2937 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
2941 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
)) {
2942 vfree(dirty_bitmap
);
2945 vfree(dirty_bitmap
);
2948 if (clear_user(log
->dirty_bitmap
, n
))
2954 mutex_unlock(&kvm
->slots_lock
);
2958 long kvm_arch_vm_ioctl(struct file
*filp
,
2959 unsigned int ioctl
, unsigned long arg
)
2961 struct kvm
*kvm
= filp
->private_data
;
2962 void __user
*argp
= (void __user
*)arg
;
2965 * This union makes it completely explicit to gcc-3.x
2966 * that these two variables' stack usage should be
2967 * combined, not added together.
2970 struct kvm_pit_state ps
;
2971 struct kvm_pit_state2 ps2
;
2972 struct kvm_pit_config pit_config
;
2976 case KVM_SET_TSS_ADDR
:
2977 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2981 case KVM_SET_IDENTITY_MAP_ADDR
: {
2985 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
2987 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
2992 case KVM_SET_NR_MMU_PAGES
:
2993 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2997 case KVM_GET_NR_MMU_PAGES
:
2998 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3000 case KVM_CREATE_IRQCHIP
: {
3001 struct kvm_pic
*vpic
;
3003 mutex_lock(&kvm
->lock
);
3006 goto create_irqchip_unlock
;
3008 vpic
= kvm_create_pic(kvm
);
3010 r
= kvm_ioapic_init(kvm
);
3012 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3015 goto create_irqchip_unlock
;
3018 goto create_irqchip_unlock
;
3020 kvm
->arch
.vpic
= vpic
;
3022 r
= kvm_setup_default_irq_routing(kvm
);
3024 mutex_lock(&kvm
->irq_lock
);
3025 kvm_ioapic_destroy(kvm
);
3026 kvm_destroy_pic(kvm
);
3027 mutex_unlock(&kvm
->irq_lock
);
3029 create_irqchip_unlock
:
3030 mutex_unlock(&kvm
->lock
);
3033 case KVM_CREATE_PIT
:
3034 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3036 case KVM_CREATE_PIT2
:
3038 if (copy_from_user(&u
.pit_config
, argp
,
3039 sizeof(struct kvm_pit_config
)))
3042 mutex_lock(&kvm
->slots_lock
);
3045 goto create_pit_unlock
;
3047 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3051 mutex_unlock(&kvm
->slots_lock
);
3053 case KVM_IRQ_LINE_STATUS
:
3054 case KVM_IRQ_LINE
: {
3055 struct kvm_irq_level irq_event
;
3058 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3061 if (irqchip_in_kernel(kvm
)) {
3063 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3064 irq_event
.irq
, irq_event
.level
);
3065 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3067 irq_event
.status
= status
;
3068 if (copy_to_user(argp
, &irq_event
,
3076 case KVM_GET_IRQCHIP
: {
3077 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3078 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3084 if (copy_from_user(chip
, argp
, sizeof *chip
))
3085 goto get_irqchip_out
;
3087 if (!irqchip_in_kernel(kvm
))
3088 goto get_irqchip_out
;
3089 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3091 goto get_irqchip_out
;
3093 if (copy_to_user(argp
, chip
, sizeof *chip
))
3094 goto get_irqchip_out
;
3102 case KVM_SET_IRQCHIP
: {
3103 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3104 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3110 if (copy_from_user(chip
, argp
, sizeof *chip
))
3111 goto set_irqchip_out
;
3113 if (!irqchip_in_kernel(kvm
))
3114 goto set_irqchip_out
;
3115 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3117 goto set_irqchip_out
;
3127 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3130 if (!kvm
->arch
.vpit
)
3132 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3136 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3143 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3146 if (!kvm
->arch
.vpit
)
3148 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3154 case KVM_GET_PIT2
: {
3156 if (!kvm
->arch
.vpit
)
3158 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3162 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3167 case KVM_SET_PIT2
: {
3169 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3172 if (!kvm
->arch
.vpit
)
3174 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3180 case KVM_REINJECT_CONTROL
: {
3181 struct kvm_reinject_control control
;
3183 if (copy_from_user(&control
, argp
, sizeof(control
)))
3185 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3191 case KVM_XEN_HVM_CONFIG
: {
3193 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3194 sizeof(struct kvm_xen_hvm_config
)))
3197 if (kvm
->arch
.xen_hvm_config
.flags
)
3202 case KVM_SET_CLOCK
: {
3203 struct timespec now
;
3204 struct kvm_clock_data user_ns
;
3209 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3218 now_ns
= timespec_to_ns(&now
);
3219 delta
= user_ns
.clock
- now_ns
;
3220 kvm
->arch
.kvmclock_offset
= delta
;
3223 case KVM_GET_CLOCK
: {
3224 struct timespec now
;
3225 struct kvm_clock_data user_ns
;
3229 now_ns
= timespec_to_ns(&now
);
3230 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3234 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3247 static void kvm_init_msr_list(void)
3252 /* skip the first msrs in the list. KVM-specific */
3253 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3254 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3257 msrs_to_save
[j
] = msrs_to_save
[i
];
3260 num_msrs_to_save
= j
;
3263 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3266 if (vcpu
->arch
.apic
&&
3267 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3270 return kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3273 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3275 if (vcpu
->arch
.apic
&&
3276 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3279 return kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3282 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3283 struct kvm_segment
*var
, int seg
)
3285 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3288 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3289 struct kvm_segment
*var
, int seg
)
3291 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3294 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3296 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3297 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
3300 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3302 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3303 access
|= PFERR_FETCH_MASK
;
3304 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
3307 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3309 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3310 access
|= PFERR_WRITE_MASK
;
3311 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
3314 /* uses this to access any guest's mapped memory without checking CPL */
3315 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3317 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, 0, error
);
3320 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3321 struct kvm_vcpu
*vcpu
, u32 access
,
3325 int r
= X86EMUL_CONTINUE
;
3328 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
, access
, error
);
3329 unsigned offset
= addr
& (PAGE_SIZE
-1);
3330 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3333 if (gpa
== UNMAPPED_GVA
) {
3334 r
= X86EMUL_PROPAGATE_FAULT
;
3337 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3339 r
= X86EMUL_IO_NEEDED
;
3351 /* used for instruction fetching */
3352 static int kvm_fetch_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3353 struct kvm_vcpu
*vcpu
, u32
*error
)
3355 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3356 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3357 access
| PFERR_FETCH_MASK
, error
);
3360 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3361 struct kvm_vcpu
*vcpu
, u32
*error
)
3363 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3364 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3368 static int kvm_read_guest_virt_system(gva_t addr
, void *val
, unsigned int bytes
,
3369 struct kvm_vcpu
*vcpu
, u32
*error
)
3371 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, error
);
3374 static int kvm_write_guest_virt_system(gva_t addr
, void *val
,
3376 struct kvm_vcpu
*vcpu
,
3380 int r
= X86EMUL_CONTINUE
;
3383 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
,
3384 PFERR_WRITE_MASK
, error
);
3385 unsigned offset
= addr
& (PAGE_SIZE
-1);
3386 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3389 if (gpa
== UNMAPPED_GVA
) {
3390 r
= X86EMUL_PROPAGATE_FAULT
;
3393 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3395 r
= X86EMUL_IO_NEEDED
;
3407 static int emulator_read_emulated(unsigned long addr
,
3410 unsigned int *error_code
,
3411 struct kvm_vcpu
*vcpu
)
3415 if (vcpu
->mmio_read_completed
) {
3416 memcpy(val
, vcpu
->mmio_data
, bytes
);
3417 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3418 vcpu
->mmio_phys_addr
, *(u64
*)val
);
3419 vcpu
->mmio_read_completed
= 0;
3420 return X86EMUL_CONTINUE
;
3423 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, addr
, error_code
);
3425 if (gpa
== UNMAPPED_GVA
)
3426 return X86EMUL_PROPAGATE_FAULT
;
3428 /* For APIC access vmexit */
3429 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3432 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
, NULL
)
3433 == X86EMUL_CONTINUE
)
3434 return X86EMUL_CONTINUE
;
3438 * Is this MMIO handled locally?
3440 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
3441 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
3442 return X86EMUL_CONTINUE
;
3445 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3447 vcpu
->mmio_needed
= 1;
3448 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3449 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3450 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3451 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 0;
3453 return X86EMUL_IO_NEEDED
;
3456 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3457 const void *val
, int bytes
)
3461 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3464 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
3468 static int emulator_write_emulated_onepage(unsigned long addr
,
3471 unsigned int *error_code
,
3472 struct kvm_vcpu
*vcpu
)
3476 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, error_code
);
3478 if (gpa
== UNMAPPED_GVA
)
3479 return X86EMUL_PROPAGATE_FAULT
;
3481 /* For APIC access vmexit */
3482 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3485 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
3486 return X86EMUL_CONTINUE
;
3489 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3491 * Is this MMIO handled locally?
3493 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
3494 return X86EMUL_CONTINUE
;
3496 vcpu
->mmio_needed
= 1;
3497 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3498 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3499 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3500 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 1;
3501 memcpy(vcpu
->run
->mmio
.data
, val
, bytes
);
3503 return X86EMUL_CONTINUE
;
3506 int emulator_write_emulated(unsigned long addr
,
3509 unsigned int *error_code
,
3510 struct kvm_vcpu
*vcpu
)
3512 /* Crossing a page boundary? */
3513 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3516 now
= -addr
& ~PAGE_MASK
;
3517 rc
= emulator_write_emulated_onepage(addr
, val
, now
, error_code
,
3519 if (rc
!= X86EMUL_CONTINUE
)
3525 return emulator_write_emulated_onepage(addr
, val
, bytes
, error_code
,
3529 #define CMPXCHG_TYPE(t, ptr, old, new) \
3530 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3532 #ifdef CONFIG_X86_64
3533 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3535 # define CMPXCHG64(ptr, old, new) \
3536 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3539 static int emulator_cmpxchg_emulated(unsigned long addr
,
3543 unsigned int *error_code
,
3544 struct kvm_vcpu
*vcpu
)
3551 /* guests cmpxchg8b have to be emulated atomically */
3552 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3555 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3557 if (gpa
== UNMAPPED_GVA
||
3558 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3561 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3564 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3565 if (is_error_page(page
)) {
3566 kvm_release_page_clean(page
);
3570 kaddr
= kmap_atomic(page
, KM_USER0
);
3571 kaddr
+= offset_in_page(gpa
);
3574 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3577 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3580 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3583 exchanged
= CMPXCHG64(kaddr
, old
, new);
3588 kunmap_atomic(kaddr
, KM_USER0
);
3589 kvm_release_page_dirty(page
);
3592 return X86EMUL_CMPXCHG_FAILED
;
3594 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
3596 return X86EMUL_CONTINUE
;
3599 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3601 return emulator_write_emulated(addr
, new, bytes
, error_code
, vcpu
);
3604 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3606 /* TODO: String I/O for in kernel device */
3609 if (vcpu
->arch
.pio
.in
)
3610 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3611 vcpu
->arch
.pio
.size
, pd
);
3613 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3614 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3620 static int emulator_pio_in_emulated(int size
, unsigned short port
, void *val
,
3621 unsigned int count
, struct kvm_vcpu
*vcpu
)
3623 if (vcpu
->arch
.pio
.count
)
3626 trace_kvm_pio(1, port
, size
, 1);
3628 vcpu
->arch
.pio
.port
= port
;
3629 vcpu
->arch
.pio
.in
= 1;
3630 vcpu
->arch
.pio
.count
= count
;
3631 vcpu
->arch
.pio
.size
= size
;
3633 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3635 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
3636 vcpu
->arch
.pio
.count
= 0;
3640 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3641 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
3642 vcpu
->run
->io
.size
= size
;
3643 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3644 vcpu
->run
->io
.count
= count
;
3645 vcpu
->run
->io
.port
= port
;
3650 static int emulator_pio_out_emulated(int size
, unsigned short port
,
3651 const void *val
, unsigned int count
,
3652 struct kvm_vcpu
*vcpu
)
3654 trace_kvm_pio(0, port
, size
, 1);
3656 vcpu
->arch
.pio
.port
= port
;
3657 vcpu
->arch
.pio
.in
= 0;
3658 vcpu
->arch
.pio
.count
= count
;
3659 vcpu
->arch
.pio
.size
= size
;
3661 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
3663 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3664 vcpu
->arch
.pio
.count
= 0;
3668 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3669 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
3670 vcpu
->run
->io
.size
= size
;
3671 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3672 vcpu
->run
->io
.count
= count
;
3673 vcpu
->run
->io
.port
= port
;
3678 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3680 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
3683 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
3685 kvm_mmu_invlpg(vcpu
, address
);
3686 return X86EMUL_CONTINUE
;
3689 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3691 if (!need_emulate_wbinvd(vcpu
))
3692 return X86EMUL_CONTINUE
;
3694 if (kvm_x86_ops
->has_wbinvd_exit()) {
3695 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
3696 wbinvd_ipi
, NULL
, 1);
3697 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
3700 return X86EMUL_CONTINUE
;
3702 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
3704 int emulate_clts(struct kvm_vcpu
*vcpu
)
3706 kvm_x86_ops
->set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
3707 kvm_x86_ops
->fpu_activate(vcpu
);
3708 return X86EMUL_CONTINUE
;
3711 int emulator_get_dr(int dr
, unsigned long *dest
, struct kvm_vcpu
*vcpu
)
3713 return _kvm_get_dr(vcpu
, dr
, dest
);
3716 int emulator_set_dr(int dr
, unsigned long value
, struct kvm_vcpu
*vcpu
)
3719 return __kvm_set_dr(vcpu
, dr
, value
);
3722 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3724 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3727 static unsigned long emulator_get_cr(int cr
, struct kvm_vcpu
*vcpu
)
3729 unsigned long value
;
3733 value
= kvm_read_cr0(vcpu
);
3736 value
= vcpu
->arch
.cr2
;
3739 value
= vcpu
->arch
.cr3
;
3742 value
= kvm_read_cr4(vcpu
);
3745 value
= kvm_get_cr8(vcpu
);
3748 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3755 static int emulator_set_cr(int cr
, unsigned long val
, struct kvm_vcpu
*vcpu
)
3761 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
3764 vcpu
->arch
.cr2
= val
;
3767 res
= kvm_set_cr3(vcpu
, val
);
3770 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
3773 res
= __kvm_set_cr8(vcpu
, val
& 0xfUL
);
3776 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3783 static int emulator_get_cpl(struct kvm_vcpu
*vcpu
)
3785 return kvm_x86_ops
->get_cpl(vcpu
);
3788 static void emulator_get_gdt(struct desc_ptr
*dt
, struct kvm_vcpu
*vcpu
)
3790 kvm_x86_ops
->get_gdt(vcpu
, dt
);
3793 static unsigned long emulator_get_cached_segment_base(int seg
,
3794 struct kvm_vcpu
*vcpu
)
3796 return get_segment_base(vcpu
, seg
);
3799 static bool emulator_get_cached_descriptor(struct desc_struct
*desc
, int seg
,
3800 struct kvm_vcpu
*vcpu
)
3802 struct kvm_segment var
;
3804 kvm_get_segment(vcpu
, &var
, seg
);
3811 set_desc_limit(desc
, var
.limit
);
3812 set_desc_base(desc
, (unsigned long)var
.base
);
3813 desc
->type
= var
.type
;
3815 desc
->dpl
= var
.dpl
;
3816 desc
->p
= var
.present
;
3817 desc
->avl
= var
.avl
;
3825 static void emulator_set_cached_descriptor(struct desc_struct
*desc
, int seg
,
3826 struct kvm_vcpu
*vcpu
)
3828 struct kvm_segment var
;
3830 /* needed to preserve selector */
3831 kvm_get_segment(vcpu
, &var
, seg
);
3833 var
.base
= get_desc_base(desc
);
3834 var
.limit
= get_desc_limit(desc
);
3836 var
.limit
= (var
.limit
<< 12) | 0xfff;
3837 var
.type
= desc
->type
;
3838 var
.present
= desc
->p
;
3839 var
.dpl
= desc
->dpl
;
3844 var
.avl
= desc
->avl
;
3845 var
.present
= desc
->p
;
3846 var
.unusable
= !var
.present
;
3849 kvm_set_segment(vcpu
, &var
, seg
);
3853 static u16
emulator_get_segment_selector(int seg
, struct kvm_vcpu
*vcpu
)
3855 struct kvm_segment kvm_seg
;
3857 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3858 return kvm_seg
.selector
;
3861 static void emulator_set_segment_selector(u16 sel
, int seg
,
3862 struct kvm_vcpu
*vcpu
)
3864 struct kvm_segment kvm_seg
;
3866 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3867 kvm_seg
.selector
= sel
;
3868 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3871 static struct x86_emulate_ops emulate_ops
= {
3872 .read_std
= kvm_read_guest_virt_system
,
3873 .write_std
= kvm_write_guest_virt_system
,
3874 .fetch
= kvm_fetch_guest_virt
,
3875 .read_emulated
= emulator_read_emulated
,
3876 .write_emulated
= emulator_write_emulated
,
3877 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
3878 .pio_in_emulated
= emulator_pio_in_emulated
,
3879 .pio_out_emulated
= emulator_pio_out_emulated
,
3880 .get_cached_descriptor
= emulator_get_cached_descriptor
,
3881 .set_cached_descriptor
= emulator_set_cached_descriptor
,
3882 .get_segment_selector
= emulator_get_segment_selector
,
3883 .set_segment_selector
= emulator_set_segment_selector
,
3884 .get_cached_segment_base
= emulator_get_cached_segment_base
,
3885 .get_gdt
= emulator_get_gdt
,
3886 .get_cr
= emulator_get_cr
,
3887 .set_cr
= emulator_set_cr
,
3888 .cpl
= emulator_get_cpl
,
3889 .get_dr
= emulator_get_dr
,
3890 .set_dr
= emulator_set_dr
,
3891 .set_msr
= kvm_set_msr
,
3892 .get_msr
= kvm_get_msr
,
3895 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
3897 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3898 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3899 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
3900 vcpu
->arch
.regs_dirty
= ~0;
3903 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
3905 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
3907 * an sti; sti; sequence only disable interrupts for the first
3908 * instruction. So, if the last instruction, be it emulated or
3909 * not, left the system with the INT_STI flag enabled, it
3910 * means that the last instruction is an sti. We should not
3911 * leave the flag on in this case. The same goes for mov ss
3913 if (!(int_shadow
& mask
))
3914 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
3917 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
3919 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
3920 if (ctxt
->exception
== PF_VECTOR
)
3921 kvm_inject_page_fault(vcpu
, ctxt
->cr2
, ctxt
->error_code
);
3922 else if (ctxt
->error_code_valid
)
3923 kvm_queue_exception_e(vcpu
, ctxt
->exception
, ctxt
->error_code
);
3925 kvm_queue_exception(vcpu
, ctxt
->exception
);
3928 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
3930 ++vcpu
->stat
.insn_emulation_fail
;
3931 trace_kvm_emulate_insn_failed(vcpu
);
3932 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3933 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3934 vcpu
->run
->internal
.ndata
= 0;
3935 kvm_queue_exception(vcpu
, UD_VECTOR
);
3936 return EMULATE_FAIL
;
3939 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
3947 * if emulation was due to access to shadowed page table
3948 * and it failed try to unshadow page and re-entetr the
3949 * guest to let CPU execute the instruction.
3951 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
3954 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
3956 if (gpa
== UNMAPPED_GVA
)
3957 return true; /* let cpu generate fault */
3959 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
3965 int emulate_instruction(struct kvm_vcpu
*vcpu
,
3971 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
3973 kvm_clear_exception_queue(vcpu
);
3974 vcpu
->arch
.mmio_fault_cr2
= cr2
;
3976 * TODO: fix emulate.c to use guest_read/write_register
3977 * instead of direct ->regs accesses, can save hundred cycles
3978 * on Intel for instructions that don't read/change RSP, for
3981 cache_all_regs(vcpu
);
3983 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
3985 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
3987 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
3988 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3989 vcpu
->arch
.emulate_ctxt
.eip
= kvm_rip_read(vcpu
);
3990 vcpu
->arch
.emulate_ctxt
.mode
=
3991 (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
3992 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
3993 ? X86EMUL_MODE_VM86
: cs_l
3994 ? X86EMUL_MODE_PROT64
: cs_db
3995 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
3996 memset(c
, 0, sizeof(struct decode_cache
));
3997 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
3998 vcpu
->arch
.emulate_ctxt
.interruptibility
= 0;
3999 vcpu
->arch
.emulate_ctxt
.exception
= -1;
4001 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
4002 trace_kvm_emulate_insn_start(vcpu
);
4004 /* Only allow emulation of specific instructions on #UD
4005 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4006 if (emulation_type
& EMULTYPE_TRAP_UD
) {
4008 return EMULATE_FAIL
;
4010 case 0x01: /* VMMCALL */
4011 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
4012 return EMULATE_FAIL
;
4014 case 0x34: /* sysenter */
4015 case 0x35: /* sysexit */
4016 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
4017 return EMULATE_FAIL
;
4019 case 0x05: /* syscall */
4020 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
4021 return EMULATE_FAIL
;
4024 return EMULATE_FAIL
;
4027 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
4028 return EMULATE_FAIL
;
4031 ++vcpu
->stat
.insn_emulation
;
4033 if (reexecute_instruction(vcpu
, cr2
))
4034 return EMULATE_DONE
;
4035 if (emulation_type
& EMULTYPE_SKIP
)
4036 return EMULATE_FAIL
;
4037 return handle_emulation_failure(vcpu
);
4041 if (emulation_type
& EMULTYPE_SKIP
) {
4042 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
4043 return EMULATE_DONE
;
4046 /* this is needed for vmware backdor interface to work since it
4047 changes registers values during IO operation */
4048 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
4051 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
4053 if (r
) { /* emulation failed */
4054 if (reexecute_instruction(vcpu
, cr2
))
4055 return EMULATE_DONE
;
4057 return handle_emulation_failure(vcpu
);
4060 toggle_interruptibility(vcpu
, vcpu
->arch
.emulate_ctxt
.interruptibility
);
4061 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
4062 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
4063 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
4065 if (vcpu
->arch
.emulate_ctxt
.exception
>= 0) {
4066 inject_emulated_exception(vcpu
);
4067 return EMULATE_DONE
;
4070 if (vcpu
->arch
.pio
.count
) {
4071 if (!vcpu
->arch
.pio
.in
)
4072 vcpu
->arch
.pio
.count
= 0;
4073 return EMULATE_DO_MMIO
;
4076 if (vcpu
->mmio_needed
) {
4077 if (vcpu
->mmio_is_write
)
4078 vcpu
->mmio_needed
= 0;
4079 return EMULATE_DO_MMIO
;
4082 if (vcpu
->arch
.emulate_ctxt
.restart
)
4085 return EMULATE_DONE
;
4087 EXPORT_SYMBOL_GPL(emulate_instruction
);
4089 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4091 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4092 int ret
= emulator_pio_out_emulated(size
, port
, &val
, 1, vcpu
);
4093 /* do not return to emulator after return from userspace */
4094 vcpu
->arch
.pio
.count
= 0;
4097 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4099 static void bounce_off(void *info
)
4104 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4107 struct cpufreq_freqs
*freq
= data
;
4109 struct kvm_vcpu
*vcpu
;
4110 int i
, send_ipi
= 0;
4112 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4114 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4116 per_cpu(cpu_tsc_khz
, freq
->cpu
) = freq
->new;
4118 spin_lock(&kvm_lock
);
4119 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4120 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4121 if (vcpu
->cpu
!= freq
->cpu
)
4123 if (!kvm_request_guest_time_update(vcpu
))
4125 if (vcpu
->cpu
!= smp_processor_id())
4129 spin_unlock(&kvm_lock
);
4131 if (freq
->old
< freq
->new && send_ipi
) {
4133 * We upscale the frequency. Must make the guest
4134 * doesn't see old kvmclock values while running with
4135 * the new frequency, otherwise we risk the guest sees
4136 * time go backwards.
4138 * In case we update the frequency for another cpu
4139 * (which might be in guest context) send an interrupt
4140 * to kick the cpu out of guest context. Next time
4141 * guest context is entered kvmclock will be updated,
4142 * so the guest will not see stale values.
4144 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
4149 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4150 .notifier_call
= kvmclock_cpufreq_notifier
4153 static void kvm_timer_init(void)
4157 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4158 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4159 CPUFREQ_TRANSITION_NOTIFIER
);
4160 for_each_online_cpu(cpu
) {
4161 unsigned long khz
= cpufreq_get(cpu
);
4164 per_cpu(cpu_tsc_khz
, cpu
) = khz
;
4167 for_each_possible_cpu(cpu
)
4168 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
4172 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4174 static int kvm_is_in_guest(void)
4176 return percpu_read(current_vcpu
) != NULL
;
4179 static int kvm_is_user_mode(void)
4183 if (percpu_read(current_vcpu
))
4184 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
4186 return user_mode
!= 0;
4189 static unsigned long kvm_get_guest_ip(void)
4191 unsigned long ip
= 0;
4193 if (percpu_read(current_vcpu
))
4194 ip
= kvm_rip_read(percpu_read(current_vcpu
));
4199 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4200 .is_in_guest
= kvm_is_in_guest
,
4201 .is_user_mode
= kvm_is_user_mode
,
4202 .get_guest_ip
= kvm_get_guest_ip
,
4205 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4207 percpu_write(current_vcpu
, vcpu
);
4209 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4211 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4213 percpu_write(current_vcpu
, NULL
);
4215 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4217 int kvm_arch_init(void *opaque
)
4220 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4223 printk(KERN_ERR
"kvm: already loaded the other module\n");
4228 if (!ops
->cpu_has_kvm_support()) {
4229 printk(KERN_ERR
"kvm: no hardware support\n");
4233 if (ops
->disabled_by_bios()) {
4234 printk(KERN_ERR
"kvm: disabled by bios\n");
4239 r
= kvm_mmu_module_init();
4243 kvm_init_msr_list();
4246 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4247 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
4248 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4249 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4253 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4256 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4264 void kvm_arch_exit(void)
4266 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4268 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4269 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4270 CPUFREQ_TRANSITION_NOTIFIER
);
4272 kvm_mmu_module_exit();
4275 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4277 ++vcpu
->stat
.halt_exits
;
4278 if (irqchip_in_kernel(vcpu
->kvm
)) {
4279 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4282 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4286 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4288 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
4291 if (is_long_mode(vcpu
))
4294 return a0
| ((gpa_t
)a1
<< 32);
4297 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4299 u64 param
, ingpa
, outgpa
, ret
;
4300 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4301 bool fast
, longmode
;
4305 * hypercall generates UD from non zero cpl and real mode
4308 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4309 kvm_queue_exception(vcpu
, UD_VECTOR
);
4313 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4314 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4317 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4318 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4319 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4320 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4321 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4322 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4324 #ifdef CONFIG_X86_64
4326 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4327 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4328 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4332 code
= param
& 0xffff;
4333 fast
= (param
>> 16) & 0x1;
4334 rep_cnt
= (param
>> 32) & 0xfff;
4335 rep_idx
= (param
>> 48) & 0xfff;
4337 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4340 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4341 kvm_vcpu_on_spin(vcpu
);
4344 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
4348 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
4350 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4352 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
4353 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
4359 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
4361 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
4364 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
4365 return kvm_hv_hypercall(vcpu
);
4367 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4368 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4369 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4370 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4371 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4373 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
4375 if (!is_long_mode(vcpu
)) {
4383 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
4389 case KVM_HC_VAPIC_POLL_IRQ
:
4393 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
4400 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4401 ++vcpu
->stat
.hypercalls
;
4404 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
4406 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
4408 char instruction
[3];
4409 unsigned long rip
= kvm_rip_read(vcpu
);
4412 * Blow out the MMU to ensure that no other VCPU has an active mapping
4413 * to ensure that the updated hypercall appears atomically across all
4416 kvm_mmu_zap_all(vcpu
->kvm
);
4418 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
4420 return emulator_write_emulated(rip
, instruction
, 3, NULL
, vcpu
);
4423 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4425 struct desc_ptr dt
= { limit
, base
};
4427 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4430 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4432 struct desc_ptr dt
= { limit
, base
};
4434 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4437 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
4439 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
4440 int j
, nent
= vcpu
->arch
.cpuid_nent
;
4442 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
4443 /* when no next entry is found, the current entry[i] is reselected */
4444 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
4445 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
4446 if (ej
->function
== e
->function
) {
4447 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
4451 return 0; /* silence gcc, even though control never reaches here */
4454 /* find an entry with matching function, matching index (if needed), and that
4455 * should be read next (if it's stateful) */
4456 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
4457 u32 function
, u32 index
)
4459 if (e
->function
!= function
)
4461 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
4463 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
4464 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
4469 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
4470 u32 function
, u32 index
)
4473 struct kvm_cpuid_entry2
*best
= NULL
;
4475 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
4476 struct kvm_cpuid_entry2
*e
;
4478 e
= &vcpu
->arch
.cpuid_entries
[i
];
4479 if (is_matching_cpuid_entry(e
, function
, index
)) {
4480 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
4481 move_to_next_stateful_cpuid_entry(vcpu
, i
);
4486 * Both basic or both extended?
4488 if (((e
->function
^ function
) & 0x80000000) == 0)
4489 if (!best
|| e
->function
> best
->function
)
4494 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
4496 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
4498 struct kvm_cpuid_entry2
*best
;
4500 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
4501 if (!best
|| best
->eax
< 0x80000008)
4503 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
4505 return best
->eax
& 0xff;
4510 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
4512 u32 function
, index
;
4513 struct kvm_cpuid_entry2
*best
;
4515 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4516 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4517 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
4518 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
4519 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
4520 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
4521 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
4523 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
4524 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
4525 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
4526 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
4528 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4529 trace_kvm_cpuid(function
,
4530 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
4531 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
4532 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
4533 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
4535 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
4538 * Check if userspace requested an interrupt window, and that the
4539 * interrupt window is open.
4541 * No need to exit to userspace if we already have an interrupt queued.
4543 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
4545 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
4546 vcpu
->run
->request_interrupt_window
&&
4547 kvm_arch_interrupt_allowed(vcpu
));
4550 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
4552 struct kvm_run
*kvm_run
= vcpu
->run
;
4554 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
4555 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
4556 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
4557 if (irqchip_in_kernel(vcpu
->kvm
))
4558 kvm_run
->ready_for_interrupt_injection
= 1;
4560 kvm_run
->ready_for_interrupt_injection
=
4561 kvm_arch_interrupt_allowed(vcpu
) &&
4562 !kvm_cpu_has_interrupt(vcpu
) &&
4563 !kvm_event_needs_reinjection(vcpu
);
4566 static void vapic_enter(struct kvm_vcpu
*vcpu
)
4568 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
4571 if (!apic
|| !apic
->vapic_addr
)
4574 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
4576 vcpu
->arch
.apic
->vapic_page
= page
;
4579 static void vapic_exit(struct kvm_vcpu
*vcpu
)
4581 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
4584 if (!apic
|| !apic
->vapic_addr
)
4587 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4588 kvm_release_page_dirty(apic
->vapic_page
);
4589 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
4590 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4593 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
4597 if (!kvm_x86_ops
->update_cr8_intercept
)
4600 if (!vcpu
->arch
.apic
)
4603 if (!vcpu
->arch
.apic
->vapic_addr
)
4604 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
4611 tpr
= kvm_lapic_get_cr8(vcpu
);
4613 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
4616 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
4618 /* try to reinject previous events if any */
4619 if (vcpu
->arch
.exception
.pending
) {
4620 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
4621 vcpu
->arch
.exception
.has_error_code
,
4622 vcpu
->arch
.exception
.error_code
);
4623 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
4624 vcpu
->arch
.exception
.has_error_code
,
4625 vcpu
->arch
.exception
.error_code
,
4626 vcpu
->arch
.exception
.reinject
);
4630 if (vcpu
->arch
.nmi_injected
) {
4631 kvm_x86_ops
->set_nmi(vcpu
);
4635 if (vcpu
->arch
.interrupt
.pending
) {
4636 kvm_x86_ops
->set_irq(vcpu
);
4640 /* try to inject new event if pending */
4641 if (vcpu
->arch
.nmi_pending
) {
4642 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
4643 vcpu
->arch
.nmi_pending
= false;
4644 vcpu
->arch
.nmi_injected
= true;
4645 kvm_x86_ops
->set_nmi(vcpu
);
4647 } else if (kvm_cpu_has_interrupt(vcpu
)) {
4648 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
4649 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
4651 kvm_x86_ops
->set_irq(vcpu
);
4656 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
4658 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
4659 !vcpu
->guest_xcr0_loaded
) {
4660 /* kvm_set_xcr() also depends on this */
4661 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
4662 vcpu
->guest_xcr0_loaded
= 1;
4666 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
4668 if (vcpu
->guest_xcr0_loaded
) {
4669 if (vcpu
->arch
.xcr0
!= host_xcr0
)
4670 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
4671 vcpu
->guest_xcr0_loaded
= 0;
4675 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
4678 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
4679 vcpu
->run
->request_interrupt_window
;
4681 if (vcpu
->requests
) {
4682 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
4683 kvm_mmu_unload(vcpu
);
4684 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
4685 __kvm_migrate_timers(vcpu
);
4686 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE
, vcpu
))
4687 kvm_write_guest_time(vcpu
);
4688 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
4689 kvm_mmu_sync_roots(vcpu
);
4690 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
4691 kvm_x86_ops
->tlb_flush(vcpu
);
4692 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
4693 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
4697 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
4698 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4702 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
4703 vcpu
->fpu_active
= 0;
4704 kvm_x86_ops
->fpu_deactivate(vcpu
);
4708 r
= kvm_mmu_reload(vcpu
);
4714 kvm_x86_ops
->prepare_guest_switch(vcpu
);
4715 if (vcpu
->fpu_active
)
4716 kvm_load_guest_fpu(vcpu
);
4717 kvm_load_guest_xcr0(vcpu
);
4719 atomic_set(&vcpu
->guest_mode
, 1);
4722 local_irq_disable();
4724 if (!atomic_read(&vcpu
->guest_mode
) || vcpu
->requests
4725 || need_resched() || signal_pending(current
)) {
4726 atomic_set(&vcpu
->guest_mode
, 0);
4734 inject_pending_event(vcpu
);
4736 /* enable NMI/IRQ window open exits if needed */
4737 if (vcpu
->arch
.nmi_pending
)
4738 kvm_x86_ops
->enable_nmi_window(vcpu
);
4739 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
4740 kvm_x86_ops
->enable_irq_window(vcpu
);
4742 if (kvm_lapic_enabled(vcpu
)) {
4743 update_cr8_intercept(vcpu
);
4744 kvm_lapic_sync_to_vapic(vcpu
);
4747 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
4751 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
4753 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
4754 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
4755 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
4756 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
4759 trace_kvm_entry(vcpu
->vcpu_id
);
4760 kvm_x86_ops
->run(vcpu
);
4763 * If the guest has used debug registers, at least dr7
4764 * will be disabled while returning to the host.
4765 * If we don't have active breakpoints in the host, we don't
4766 * care about the messed up debug address registers. But if
4767 * we have some of them active, restore the old state.
4769 if (hw_breakpoint_active())
4770 hw_breakpoint_restore();
4772 atomic_set(&vcpu
->guest_mode
, 0);
4779 * We must have an instruction between local_irq_enable() and
4780 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4781 * the interrupt shadow. The stat.exits increment will do nicely.
4782 * But we need to prevent reordering, hence this barrier():
4790 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4793 * Profile KVM exit RIPs:
4795 if (unlikely(prof_on
== KVM_PROFILING
)) {
4796 unsigned long rip
= kvm_rip_read(vcpu
);
4797 profile_hit(KVM_PROFILING
, (void *)rip
);
4801 kvm_lapic_sync_from_vapic(vcpu
);
4803 r
= kvm_x86_ops
->handle_exit(vcpu
);
4809 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
4812 struct kvm
*kvm
= vcpu
->kvm
;
4814 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
4815 pr_debug("vcpu %d received sipi with vector # %x\n",
4816 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
4817 kvm_lapic_reset(vcpu
);
4818 r
= kvm_arch_vcpu_reset(vcpu
);
4821 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4824 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4829 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
4830 r
= vcpu_enter_guest(vcpu
);
4832 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
4833 kvm_vcpu_block(vcpu
);
4834 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4835 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
4837 switch(vcpu
->arch
.mp_state
) {
4838 case KVM_MP_STATE_HALTED
:
4839 vcpu
->arch
.mp_state
=
4840 KVM_MP_STATE_RUNNABLE
;
4841 case KVM_MP_STATE_RUNNABLE
:
4843 case KVM_MP_STATE_SIPI_RECEIVED
:
4854 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
4855 if (kvm_cpu_has_pending_timer(vcpu
))
4856 kvm_inject_pending_timer_irqs(vcpu
);
4858 if (dm_request_for_irq_injection(vcpu
)) {
4860 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
4861 ++vcpu
->stat
.request_irq_exits
;
4863 if (signal_pending(current
)) {
4865 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
4866 ++vcpu
->stat
.signal_exits
;
4868 if (need_resched()) {
4869 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
4871 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4875 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
4882 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
4887 if (vcpu
->sigset_active
)
4888 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
4890 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
4891 kvm_vcpu_block(vcpu
);
4892 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
4897 /* re-sync apic's tpr */
4898 if (!irqchip_in_kernel(vcpu
->kvm
))
4899 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
4901 if (vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
||
4902 vcpu
->arch
.emulate_ctxt
.restart
) {
4903 if (vcpu
->mmio_needed
) {
4904 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
4905 vcpu
->mmio_read_completed
= 1;
4906 vcpu
->mmio_needed
= 0;
4908 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4909 r
= emulate_instruction(vcpu
, 0, 0, EMULTYPE_NO_DECODE
);
4910 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
4911 if (r
!= EMULATE_DONE
) {
4916 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
4917 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
4918 kvm_run
->hypercall
.ret
);
4920 r
= __vcpu_run(vcpu
);
4923 post_kvm_run_save(vcpu
);
4924 if (vcpu
->sigset_active
)
4925 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
4930 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
4932 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4933 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4934 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4935 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4936 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4937 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4938 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4939 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4940 #ifdef CONFIG_X86_64
4941 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4942 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
4943 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
4944 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
4945 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
4946 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
4947 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
4948 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
4951 regs
->rip
= kvm_rip_read(vcpu
);
4952 regs
->rflags
= kvm_get_rflags(vcpu
);
4957 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
4959 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
4960 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
4961 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
4962 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
4963 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
4964 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
4965 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
4966 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
4967 #ifdef CONFIG_X86_64
4968 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
4969 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
4970 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
4971 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
4972 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
4973 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
4974 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
4975 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
4978 kvm_rip_write(vcpu
, regs
->rip
);
4979 kvm_set_rflags(vcpu
, regs
->rflags
);
4981 vcpu
->arch
.exception
.pending
= false;
4986 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4988 struct kvm_segment cs
;
4990 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4994 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
4996 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
4997 struct kvm_sregs
*sregs
)
5001 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5002 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5003 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5004 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5005 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5006 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5008 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5009 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5011 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5012 sregs
->idt
.limit
= dt
.size
;
5013 sregs
->idt
.base
= dt
.address
;
5014 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5015 sregs
->gdt
.limit
= dt
.size
;
5016 sregs
->gdt
.base
= dt
.address
;
5018 sregs
->cr0
= kvm_read_cr0(vcpu
);
5019 sregs
->cr2
= vcpu
->arch
.cr2
;
5020 sregs
->cr3
= vcpu
->arch
.cr3
;
5021 sregs
->cr4
= kvm_read_cr4(vcpu
);
5022 sregs
->cr8
= kvm_get_cr8(vcpu
);
5023 sregs
->efer
= vcpu
->arch
.efer
;
5024 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5026 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5028 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5029 set_bit(vcpu
->arch
.interrupt
.nr
,
5030 (unsigned long *)sregs
->interrupt_bitmap
);
5035 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5036 struct kvm_mp_state
*mp_state
)
5038 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5042 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5043 struct kvm_mp_state
*mp_state
)
5045 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5049 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
5050 bool has_error_code
, u32 error_code
)
5052 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
5053 int cs_db
, cs_l
, ret
;
5054 cache_all_regs(vcpu
);
5056 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5058 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
5059 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
5060 vcpu
->arch
.emulate_ctxt
.eip
= kvm_rip_read(vcpu
);
5061 vcpu
->arch
.emulate_ctxt
.mode
=
5062 (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5063 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
5064 ? X86EMUL_MODE_VM86
: cs_l
5065 ? X86EMUL_MODE_PROT64
: cs_db
5066 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
5067 memset(c
, 0, sizeof(struct decode_cache
));
5068 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
5070 ret
= emulator_task_switch(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
,
5071 tss_selector
, reason
, has_error_code
,
5075 return EMULATE_FAIL
;
5077 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
5078 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
5079 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
5080 return EMULATE_DONE
;
5082 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5084 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5085 struct kvm_sregs
*sregs
)
5087 int mmu_reset_needed
= 0;
5088 int pending_vec
, max_bits
;
5091 dt
.size
= sregs
->idt
.limit
;
5092 dt
.address
= sregs
->idt
.base
;
5093 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5094 dt
.size
= sregs
->gdt
.limit
;
5095 dt
.address
= sregs
->gdt
.base
;
5096 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5098 vcpu
->arch
.cr2
= sregs
->cr2
;
5099 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
5100 vcpu
->arch
.cr3
= sregs
->cr3
;
5102 kvm_set_cr8(vcpu
, sregs
->cr8
);
5104 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5105 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5106 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5108 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5109 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5110 vcpu
->arch
.cr0
= sregs
->cr0
;
5112 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5113 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5114 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5115 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
5116 mmu_reset_needed
= 1;
5119 if (mmu_reset_needed
)
5120 kvm_mmu_reset_context(vcpu
);
5122 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
5123 pending_vec
= find_first_bit(
5124 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5125 if (pending_vec
< max_bits
) {
5126 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5127 pr_debug("Set back pending irq %d\n", pending_vec
);
5128 if (irqchip_in_kernel(vcpu
->kvm
))
5129 kvm_pic_clear_isr_ack(vcpu
->kvm
);
5132 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5133 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5134 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5135 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5136 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5137 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5139 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5140 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5142 update_cr8_intercept(vcpu
);
5144 /* Older userspace won't unhalt the vcpu on reset. */
5145 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5146 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5148 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5153 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5154 struct kvm_guest_debug
*dbg
)
5156 unsigned long rflags
;
5159 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5161 if (vcpu
->arch
.exception
.pending
)
5163 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5164 kvm_queue_exception(vcpu
, DB_VECTOR
);
5166 kvm_queue_exception(vcpu
, BP_VECTOR
);
5170 * Read rflags as long as potentially injected trace flags are still
5173 rflags
= kvm_get_rflags(vcpu
);
5175 vcpu
->guest_debug
= dbg
->control
;
5176 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5177 vcpu
->guest_debug
= 0;
5179 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5180 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5181 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5182 vcpu
->arch
.switch_db_regs
=
5183 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5185 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5186 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5187 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5190 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5191 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5192 get_segment_base(vcpu
, VCPU_SREG_CS
);
5195 * Trigger an rflags update that will inject or remove the trace
5198 kvm_set_rflags(vcpu
, rflags
);
5200 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5210 * Translate a guest virtual address to a guest physical address.
5212 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5213 struct kvm_translation
*tr
)
5215 unsigned long vaddr
= tr
->linear_address
;
5219 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5220 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5221 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5222 tr
->physical_address
= gpa
;
5223 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5230 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5232 struct i387_fxsave_struct
*fxsave
=
5233 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5235 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5236 fpu
->fcw
= fxsave
->cwd
;
5237 fpu
->fsw
= fxsave
->swd
;
5238 fpu
->ftwx
= fxsave
->twd
;
5239 fpu
->last_opcode
= fxsave
->fop
;
5240 fpu
->last_ip
= fxsave
->rip
;
5241 fpu
->last_dp
= fxsave
->rdp
;
5242 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5247 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5249 struct i387_fxsave_struct
*fxsave
=
5250 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5252 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5253 fxsave
->cwd
= fpu
->fcw
;
5254 fxsave
->swd
= fpu
->fsw
;
5255 fxsave
->twd
= fpu
->ftwx
;
5256 fxsave
->fop
= fpu
->last_opcode
;
5257 fxsave
->rip
= fpu
->last_ip
;
5258 fxsave
->rdp
= fpu
->last_dp
;
5259 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5264 int fx_init(struct kvm_vcpu
*vcpu
)
5268 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5272 fpu_finit(&vcpu
->arch
.guest_fpu
);
5275 * Ensure guest xcr0 is valid for loading
5277 vcpu
->arch
.xcr0
= XSTATE_FP
;
5279 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5283 EXPORT_SYMBOL_GPL(fx_init
);
5285 static void fx_free(struct kvm_vcpu
*vcpu
)
5287 fpu_free(&vcpu
->arch
.guest_fpu
);
5290 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5292 if (vcpu
->guest_fpu_loaded
)
5296 * Restore all possible states in the guest,
5297 * and assume host would use all available bits.
5298 * Guest xcr0 would be loaded later.
5300 kvm_put_guest_xcr0(vcpu
);
5301 vcpu
->guest_fpu_loaded
= 1;
5302 unlazy_fpu(current
);
5303 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5307 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5309 kvm_put_guest_xcr0(vcpu
);
5311 if (!vcpu
->guest_fpu_loaded
)
5314 vcpu
->guest_fpu_loaded
= 0;
5315 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5316 ++vcpu
->stat
.fpu_reload
;
5317 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5321 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5323 if (vcpu
->arch
.time_page
) {
5324 kvm_release_page_dirty(vcpu
->arch
.time_page
);
5325 vcpu
->arch
.time_page
= NULL
;
5328 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5330 kvm_x86_ops
->vcpu_free(vcpu
);
5333 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
5336 return kvm_x86_ops
->vcpu_create(kvm
, id
);
5339 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
5343 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
5345 r
= kvm_arch_vcpu_reset(vcpu
);
5347 r
= kvm_mmu_setup(vcpu
);
5354 kvm_x86_ops
->vcpu_free(vcpu
);
5358 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
5361 kvm_mmu_unload(vcpu
);
5365 kvm_x86_ops
->vcpu_free(vcpu
);
5368 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
5370 vcpu
->arch
.nmi_pending
= false;
5371 vcpu
->arch
.nmi_injected
= false;
5373 vcpu
->arch
.switch_db_regs
= 0;
5374 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5375 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5376 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5378 return kvm_x86_ops
->vcpu_reset(vcpu
);
5381 int kvm_arch_hardware_enable(void *garbage
)
5384 * Since this may be called from a hotplug notifcation,
5385 * we can't get the CPU frequency directly.
5387 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5388 int cpu
= raw_smp_processor_id();
5389 per_cpu(cpu_tsc_khz
, cpu
) = 0;
5392 kvm_shared_msr_cpu_online();
5394 return kvm_x86_ops
->hardware_enable(garbage
);
5397 void kvm_arch_hardware_disable(void *garbage
)
5399 kvm_x86_ops
->hardware_disable(garbage
);
5400 drop_user_return_notifiers(garbage
);
5403 int kvm_arch_hardware_setup(void)
5405 return kvm_x86_ops
->hardware_setup();
5408 void kvm_arch_hardware_unsetup(void)
5410 kvm_x86_ops
->hardware_unsetup();
5413 void kvm_arch_check_processor_compat(void *rtn
)
5415 kvm_x86_ops
->check_processor_compatibility(rtn
);
5418 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5424 BUG_ON(vcpu
->kvm
== NULL
);
5427 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
5428 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5429 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5431 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5433 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5438 vcpu
->arch
.pio_data
= page_address(page
);
5440 r
= kvm_mmu_create(vcpu
);
5442 goto fail_free_pio_data
;
5444 if (irqchip_in_kernel(kvm
)) {
5445 r
= kvm_create_lapic(vcpu
);
5447 goto fail_mmu_destroy
;
5450 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
5452 if (!vcpu
->arch
.mce_banks
) {
5454 goto fail_free_lapic
;
5456 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
5458 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
5459 goto fail_free_mce_banks
;
5462 fail_free_mce_banks
:
5463 kfree(vcpu
->arch
.mce_banks
);
5465 kvm_free_lapic(vcpu
);
5467 kvm_mmu_destroy(vcpu
);
5469 free_page((unsigned long)vcpu
->arch
.pio_data
);
5474 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
5478 kfree(vcpu
->arch
.mce_banks
);
5479 kvm_free_lapic(vcpu
);
5480 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5481 kvm_mmu_destroy(vcpu
);
5482 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5483 free_page((unsigned long)vcpu
->arch
.pio_data
);
5486 struct kvm
*kvm_arch_create_vm(void)
5488 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
5491 return ERR_PTR(-ENOMEM
);
5493 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
5494 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
5496 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5497 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
5499 rdtscll(kvm
->arch
.vm_init_tsc
);
5504 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
5507 kvm_mmu_unload(vcpu
);
5511 static void kvm_free_vcpus(struct kvm
*kvm
)
5514 struct kvm_vcpu
*vcpu
;
5517 * Unpin any mmu pages first.
5519 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5520 kvm_unload_vcpu_mmu(vcpu
);
5521 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5522 kvm_arch_vcpu_free(vcpu
);
5524 mutex_lock(&kvm
->lock
);
5525 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
5526 kvm
->vcpus
[i
] = NULL
;
5528 atomic_set(&kvm
->online_vcpus
, 0);
5529 mutex_unlock(&kvm
->lock
);
5532 void kvm_arch_sync_events(struct kvm
*kvm
)
5534 kvm_free_all_assigned_devices(kvm
);
5538 void kvm_arch_destroy_vm(struct kvm
*kvm
)
5540 kvm_iommu_unmap_guest(kvm
);
5541 kfree(kvm
->arch
.vpic
);
5542 kfree(kvm
->arch
.vioapic
);
5543 kvm_free_vcpus(kvm
);
5544 kvm_free_physmem(kvm
);
5545 if (kvm
->arch
.apic_access_page
)
5546 put_page(kvm
->arch
.apic_access_page
);
5547 if (kvm
->arch
.ept_identity_pagetable
)
5548 put_page(kvm
->arch
.ept_identity_pagetable
);
5549 cleanup_srcu_struct(&kvm
->srcu
);
5553 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
5554 struct kvm_memory_slot
*memslot
,
5555 struct kvm_memory_slot old
,
5556 struct kvm_userspace_memory_region
*mem
,
5559 int npages
= memslot
->npages
;
5560 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
5562 /* Prevent internal slot pages from being moved by fork()/COW. */
5563 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
5564 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
5566 /*To keep backward compatibility with older userspace,
5567 *x86 needs to hanlde !user_alloc case.
5570 if (npages
&& !old
.rmap
) {
5571 unsigned long userspace_addr
;
5573 down_write(¤t
->mm
->mmap_sem
);
5574 userspace_addr
= do_mmap(NULL
, 0,
5576 PROT_READ
| PROT_WRITE
,
5579 up_write(¤t
->mm
->mmap_sem
);
5581 if (IS_ERR((void *)userspace_addr
))
5582 return PTR_ERR((void *)userspace_addr
);
5584 memslot
->userspace_addr
= userspace_addr
;
5592 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
5593 struct kvm_userspace_memory_region
*mem
,
5594 struct kvm_memory_slot old
,
5598 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
5600 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
5603 down_write(¤t
->mm
->mmap_sem
);
5604 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
5605 old
.npages
* PAGE_SIZE
);
5606 up_write(¤t
->mm
->mmap_sem
);
5609 "kvm_vm_ioctl_set_memory_region: "
5610 "failed to munmap memory\n");
5613 spin_lock(&kvm
->mmu_lock
);
5614 if (!kvm
->arch
.n_requested_mmu_pages
) {
5615 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
5616 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
5619 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
5620 spin_unlock(&kvm
->mmu_lock
);
5623 void kvm_arch_flush_shadow(struct kvm
*kvm
)
5625 kvm_mmu_zap_all(kvm
);
5626 kvm_reload_remote_mmus(kvm
);
5629 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
5631 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
5632 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
5633 || vcpu
->arch
.nmi_pending
||
5634 (kvm_arch_interrupt_allowed(vcpu
) &&
5635 kvm_cpu_has_interrupt(vcpu
));
5638 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
5641 int cpu
= vcpu
->cpu
;
5643 if (waitqueue_active(&vcpu
->wq
)) {
5644 wake_up_interruptible(&vcpu
->wq
);
5645 ++vcpu
->stat
.halt_wakeup
;
5649 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
5650 if (atomic_xchg(&vcpu
->guest_mode
, 0))
5651 smp_send_reschedule(cpu
);
5655 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5657 return kvm_x86_ops
->interrupt_allowed(vcpu
);
5660 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
5662 unsigned long current_rip
= kvm_rip_read(vcpu
) +
5663 get_segment_base(vcpu
, VCPU_SREG_CS
);
5665 return current_rip
== linear_rip
;
5667 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
5669 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
5671 unsigned long rflags
;
5673 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5674 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5675 rflags
&= ~X86_EFLAGS_TF
;
5678 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
5680 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
5682 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
5683 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
5684 rflags
|= X86_EFLAGS_TF
;
5685 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
5687 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
5689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
5690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
5691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
5692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
5693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
5694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
5695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
5696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
5697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
5698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
5699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
5700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);