via-pmu: Add compat_pmu_ioctl
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / paging_tmpl.h
blob51ef9097960d43624b462f6f0a698553b292f362
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affilates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
35 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #ifdef CONFIG_X86_64
37 #define PT_MAX_FULL_LEVELS 4
38 #define CMPXCHG cmpxchg
39 #else
40 #define CMPXCHG cmpxchg64
41 #define PT_MAX_FULL_LEVELS 2
42 #endif
43 #elif PTTYPE == 32
44 #define pt_element_t u32
45 #define guest_walker guest_walker32
46 #define FNAME(name) paging##32_##name
47 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
48 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
49 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
50 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
51 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
52 #define PT_LEVEL_BITS PT32_LEVEL_BITS
53 #define PT_MAX_FULL_LEVELS 2
54 #define CMPXCHG cmpxchg
55 #else
56 #error Invalid PTTYPE value
57 #endif
59 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
60 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
63 * The guest_walker structure emulates the behavior of the hardware page
64 * table walker.
66 struct guest_walker {
67 int level;
68 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
69 pt_element_t ptes[PT_MAX_FULL_LEVELS];
70 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
71 unsigned pt_access;
72 unsigned pte_access;
73 gfn_t gfn;
74 u32 error_code;
77 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
79 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
82 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
83 gfn_t table_gfn, unsigned index,
84 pt_element_t orig_pte, pt_element_t new_pte)
86 pt_element_t ret;
87 pt_element_t *table;
88 struct page *page;
90 page = gfn_to_page(kvm, table_gfn);
92 table = kmap_atomic(page, KM_USER0);
93 ret = CMPXCHG(&table[index], orig_pte, new_pte);
94 kunmap_atomic(table, KM_USER0);
96 kvm_release_page_dirty(page);
98 return (ret != orig_pte);
101 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
103 unsigned access;
105 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
106 #if PTTYPE == 64
107 if (is_nx(vcpu))
108 access &= ~(gpte >> PT64_NX_SHIFT);
109 #endif
110 return access;
114 * Fetch a guest pte for a guest virtual address
116 static int FNAME(walk_addr)(struct guest_walker *walker,
117 struct kvm_vcpu *vcpu, gva_t addr,
118 int write_fault, int user_fault, int fetch_fault)
120 pt_element_t pte;
121 gfn_t table_gfn;
122 unsigned index, pt_access, uninitialized_var(pte_access);
123 gpa_t pte_gpa;
124 bool eperm, present, rsvd_fault;
126 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
127 fetch_fault);
128 walk:
129 present = true;
130 eperm = rsvd_fault = false;
131 walker->level = vcpu->arch.mmu.root_level;
132 pte = vcpu->arch.cr3;
133 #if PTTYPE == 64
134 if (!is_long_mode(vcpu)) {
135 pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
136 trace_kvm_mmu_paging_element(pte, walker->level);
137 if (!is_present_gpte(pte)) {
138 present = false;
139 goto error;
141 --walker->level;
143 #endif
144 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
145 (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
147 pt_access = ACC_ALL;
149 for (;;) {
150 index = PT_INDEX(addr, walker->level);
152 table_gfn = gpte_to_gfn(pte);
153 pte_gpa = gfn_to_gpa(table_gfn);
154 pte_gpa += index * sizeof(pt_element_t);
155 walker->table_gfn[walker->level - 1] = table_gfn;
156 walker->pte_gpa[walker->level - 1] = pte_gpa;
158 if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte))) {
159 present = false;
160 break;
163 trace_kvm_mmu_paging_element(pte, walker->level);
165 if (!is_present_gpte(pte)) {
166 present = false;
167 break;
170 if (is_rsvd_bits_set(vcpu, pte, walker->level)) {
171 rsvd_fault = true;
172 break;
175 if (write_fault && !is_writable_pte(pte))
176 if (user_fault || is_write_protection(vcpu))
177 eperm = true;
179 if (user_fault && !(pte & PT_USER_MASK))
180 eperm = true;
182 #if PTTYPE == 64
183 if (fetch_fault && (pte & PT64_NX_MASK))
184 eperm = true;
185 #endif
187 if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
188 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
189 sizeof(pte));
190 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
191 index, pte, pte|PT_ACCESSED_MASK))
192 goto walk;
193 mark_page_dirty(vcpu->kvm, table_gfn);
194 pte |= PT_ACCESSED_MASK;
197 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
199 walker->ptes[walker->level - 1] = pte;
201 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
202 ((walker->level == PT_DIRECTORY_LEVEL) &&
203 is_large_pte(pte) &&
204 (PTTYPE == 64 || is_pse(vcpu))) ||
205 ((walker->level == PT_PDPE_LEVEL) &&
206 is_large_pte(pte) &&
207 is_long_mode(vcpu))) {
208 int lvl = walker->level;
210 walker->gfn = gpte_to_gfn_lvl(pte, lvl);
211 walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
212 >> PAGE_SHIFT;
214 if (PTTYPE == 32 &&
215 walker->level == PT_DIRECTORY_LEVEL &&
216 is_cpuid_PSE36())
217 walker->gfn += pse36_gfn_delta(pte);
219 break;
222 pt_access = pte_access;
223 --walker->level;
226 if (!present || eperm || rsvd_fault)
227 goto error;
229 if (write_fault && !is_dirty_gpte(pte)) {
230 bool ret;
232 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
233 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
234 pte|PT_DIRTY_MASK);
235 if (ret)
236 goto walk;
237 mark_page_dirty(vcpu->kvm, table_gfn);
238 pte |= PT_DIRTY_MASK;
239 walker->ptes[walker->level - 1] = pte;
242 walker->pt_access = pt_access;
243 walker->pte_access = pte_access;
244 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
245 __func__, (u64)pte, pte_access, pt_access);
246 return 1;
248 error:
249 walker->error_code = 0;
250 if (present)
251 walker->error_code |= PFERR_PRESENT_MASK;
252 if (write_fault)
253 walker->error_code |= PFERR_WRITE_MASK;
254 if (user_fault)
255 walker->error_code |= PFERR_USER_MASK;
256 if (fetch_fault && is_nx(vcpu))
257 walker->error_code |= PFERR_FETCH_MASK;
258 if (rsvd_fault)
259 walker->error_code |= PFERR_RSVD_MASK;
260 trace_kvm_mmu_walker_error(walker->error_code);
261 return 0;
264 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
265 u64 *spte, const void *pte)
267 pt_element_t gpte;
268 unsigned pte_access;
269 pfn_t pfn;
270 u64 new_spte;
272 gpte = *(const pt_element_t *)pte;
273 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
274 if (!is_present_gpte(gpte)) {
275 if (sp->unsync)
276 new_spte = shadow_trap_nonpresent_pte;
277 else
278 new_spte = shadow_notrap_nonpresent_pte;
279 __set_spte(spte, new_spte);
281 return;
283 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
284 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
285 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
286 return;
287 pfn = vcpu->arch.update_pte.pfn;
288 if (is_error_pfn(pfn))
289 return;
290 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
291 return;
292 kvm_get_pfn(pfn);
294 * we call mmu_set_spte() with reset_host_protection = true beacuse that
295 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
297 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
298 is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
299 gpte_to_gfn(gpte), pfn, true, true);
302 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
303 struct guest_walker *gw, int level)
305 int r;
306 pt_element_t curr_pte;
308 r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 1],
309 &curr_pte, sizeof(curr_pte));
310 return r || curr_pte != gw->ptes[level - 1];
314 * Fetch a shadow pte for a specific level in the paging hierarchy.
316 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
317 struct guest_walker *gw,
318 int user_fault, int write_fault, int hlevel,
319 int *ptwrite, pfn_t pfn)
321 unsigned access = gw->pt_access;
322 struct kvm_mmu_page *sp = NULL;
323 bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
324 int top_level;
325 unsigned direct_access;
326 struct kvm_shadow_walk_iterator it;
328 if (!is_present_gpte(gw->ptes[gw->level - 1]))
329 return NULL;
331 direct_access = gw->pt_access & gw->pte_access;
332 if (!dirty)
333 direct_access &= ~ACC_WRITE_MASK;
335 top_level = vcpu->arch.mmu.root_level;
336 if (top_level == PT32E_ROOT_LEVEL)
337 top_level = PT32_ROOT_LEVEL;
339 * Verify that the top-level gpte is still there. Since the page
340 * is a root page, it is either write protected (and cannot be
341 * changed from now on) or it is invalid (in which case, we don't
342 * really care if it changes underneath us after this point).
344 if (FNAME(gpte_changed)(vcpu, gw, top_level))
345 goto out_gpte_changed;
347 for (shadow_walk_init(&it, vcpu, addr);
348 shadow_walk_okay(&it) && it.level > gw->level;
349 shadow_walk_next(&it)) {
350 gfn_t table_gfn;
352 drop_large_spte(vcpu, it.sptep);
354 sp = NULL;
355 if (!is_shadow_present_pte(*it.sptep)) {
356 table_gfn = gw->table_gfn[it.level - 2];
357 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
358 false, access, it.sptep);
362 * Verify that the gpte in the page we've just write
363 * protected is still there.
365 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
366 goto out_gpte_changed;
368 if (sp)
369 link_shadow_page(it.sptep, sp);
372 for (;
373 shadow_walk_okay(&it) && it.level > hlevel;
374 shadow_walk_next(&it)) {
375 gfn_t direct_gfn;
377 validate_direct_spte(vcpu, it.sptep, direct_access);
379 drop_large_spte(vcpu, it.sptep);
381 if (is_shadow_present_pte(*it.sptep))
382 continue;
384 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
386 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
387 true, direct_access, it.sptep);
388 link_shadow_page(it.sptep, sp);
391 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
392 user_fault, write_fault, dirty, ptwrite, it.level,
393 gw->gfn, pfn, false, true);
395 return it.sptep;
397 out_gpte_changed:
398 if (sp)
399 kvm_mmu_put_page(sp, it.sptep);
400 kvm_release_pfn_clean(pfn);
401 return NULL;
405 * Page fault handler. There are several causes for a page fault:
406 * - there is no shadow pte for the guest pte
407 * - write access through a shadow pte marked read only so that we can set
408 * the dirty bit
409 * - write access to a shadow pte marked read only so we can update the page
410 * dirty bitmap, when userspace requests it
411 * - mmio access; in this case we will never install a present shadow pte
412 * - normal guest page fault due to the guest pte marked not present, not
413 * writable, or not executable
415 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
416 * a negative value on error.
418 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
419 u32 error_code)
421 int write_fault = error_code & PFERR_WRITE_MASK;
422 int user_fault = error_code & PFERR_USER_MASK;
423 int fetch_fault = error_code & PFERR_FETCH_MASK;
424 struct guest_walker walker;
425 u64 *sptep;
426 int write_pt = 0;
427 int r;
428 pfn_t pfn;
429 int level = PT_PAGE_TABLE_LEVEL;
430 unsigned long mmu_seq;
432 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
433 kvm_mmu_audit(vcpu, "pre page fault");
435 r = mmu_topup_memory_caches(vcpu);
436 if (r)
437 return r;
440 * Look up the guest pte for the faulting address.
442 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
443 fetch_fault);
446 * The page is not mapped by the guest. Let the guest handle it.
448 if (!r) {
449 pgprintk("%s: guest page fault\n", __func__);
450 inject_page_fault(vcpu, addr, walker.error_code);
451 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
452 return 0;
455 if (walker.level >= PT_DIRECTORY_LEVEL) {
456 level = min(walker.level, mapping_level(vcpu, walker.gfn));
457 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
460 mmu_seq = vcpu->kvm->mmu_notifier_seq;
461 smp_rmb();
462 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
464 /* mmio */
465 if (is_error_pfn(pfn))
466 return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
468 spin_lock(&vcpu->kvm->mmu_lock);
469 if (mmu_notifier_retry(vcpu, mmu_seq))
470 goto out_unlock;
471 kvm_mmu_free_some_pages(vcpu);
472 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
473 level, &write_pt, pfn);
474 (void)sptep;
475 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
476 sptep, *sptep, write_pt);
478 if (!write_pt)
479 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
481 ++vcpu->stat.pf_fixed;
482 kvm_mmu_audit(vcpu, "post page fault (fixed)");
483 spin_unlock(&vcpu->kvm->mmu_lock);
485 return write_pt;
487 out_unlock:
488 spin_unlock(&vcpu->kvm->mmu_lock);
489 kvm_release_pfn_clean(pfn);
490 return 0;
493 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
495 struct kvm_shadow_walk_iterator iterator;
496 struct kvm_mmu_page *sp;
497 gpa_t pte_gpa = -1;
498 int level;
499 u64 *sptep;
500 int need_flush = 0;
502 spin_lock(&vcpu->kvm->mmu_lock);
504 for_each_shadow_entry(vcpu, gva, iterator) {
505 level = iterator.level;
506 sptep = iterator.sptep;
508 sp = page_header(__pa(sptep));
509 if (is_last_spte(*sptep, level)) {
510 int offset, shift;
512 if (!sp->unsync)
513 break;
515 shift = PAGE_SHIFT -
516 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
517 offset = sp->role.quadrant << shift;
519 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
520 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
522 if (is_shadow_present_pte(*sptep)) {
523 if (is_large_pte(*sptep))
524 --vcpu->kvm->stat.lpages;
525 drop_spte(vcpu->kvm, sptep,
526 shadow_trap_nonpresent_pte);
527 need_flush = 1;
528 } else
529 __set_spte(sptep, shadow_trap_nonpresent_pte);
530 break;
533 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
534 break;
537 if (need_flush)
538 kvm_flush_remote_tlbs(vcpu->kvm);
540 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
542 spin_unlock(&vcpu->kvm->mmu_lock);
544 if (pte_gpa == -1)
545 return;
547 if (mmu_topup_memory_caches(vcpu))
548 return;
549 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
552 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
553 u32 *error)
555 struct guest_walker walker;
556 gpa_t gpa = UNMAPPED_GVA;
557 int r;
559 r = FNAME(walk_addr)(&walker, vcpu, vaddr,
560 !!(access & PFERR_WRITE_MASK),
561 !!(access & PFERR_USER_MASK),
562 !!(access & PFERR_FETCH_MASK));
564 if (r) {
565 gpa = gfn_to_gpa(walker.gfn);
566 gpa |= vaddr & ~PAGE_MASK;
567 } else if (error)
568 *error = walker.error_code;
570 return gpa;
573 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
574 struct kvm_mmu_page *sp)
576 int i, j, offset, r;
577 pt_element_t pt[256 / sizeof(pt_element_t)];
578 gpa_t pte_gpa;
580 if (sp->role.direct
581 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
582 nonpaging_prefetch_page(vcpu, sp);
583 return;
586 pte_gpa = gfn_to_gpa(sp->gfn);
587 if (PTTYPE == 32) {
588 offset = sp->role.quadrant << PT64_LEVEL_BITS;
589 pte_gpa += offset * sizeof(pt_element_t);
592 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
593 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
594 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
595 for (j = 0; j < ARRAY_SIZE(pt); ++j)
596 if (r || is_present_gpte(pt[j]))
597 sp->spt[i+j] = shadow_trap_nonpresent_pte;
598 else
599 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
604 * Using the cached information from sp->gfns is safe because:
605 * - The spte has a reference to the struct page, so the pfn for a given gfn
606 * can't change unless all sptes pointing to it are nuked first.
608 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
609 bool clear_unsync)
611 int i, offset, nr_present;
612 bool reset_host_protection;
613 gpa_t first_pte_gpa;
615 offset = nr_present = 0;
617 /* direct kvm_mmu_page can not be unsync. */
618 BUG_ON(sp->role.direct);
620 if (PTTYPE == 32)
621 offset = sp->role.quadrant << PT64_LEVEL_BITS;
623 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
625 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
626 unsigned pte_access;
627 pt_element_t gpte;
628 gpa_t pte_gpa;
629 gfn_t gfn;
631 if (!is_shadow_present_pte(sp->spt[i]))
632 continue;
634 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
636 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
637 sizeof(pt_element_t)))
638 return -EINVAL;
640 gfn = gpte_to_gfn(gpte);
641 if (is_rsvd_bits_set(vcpu, gpte, PT_PAGE_TABLE_LEVEL)
642 || gfn != sp->gfns[i] || !is_present_gpte(gpte)
643 || !(gpte & PT_ACCESSED_MASK)) {
644 u64 nonpresent;
646 if (is_present_gpte(gpte) || !clear_unsync)
647 nonpresent = shadow_trap_nonpresent_pte;
648 else
649 nonpresent = shadow_notrap_nonpresent_pte;
650 drop_spte(vcpu->kvm, &sp->spt[i], nonpresent);
651 continue;
654 nr_present++;
655 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
656 if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
657 pte_access &= ~ACC_WRITE_MASK;
658 reset_host_protection = 0;
659 } else {
660 reset_host_protection = 1;
662 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
663 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
664 spte_to_pfn(sp->spt[i]), true, false,
665 reset_host_protection);
668 return !nr_present;
671 #undef pt_element_t
672 #undef guest_walker
673 #undef FNAME
674 #undef PT_BASE_ADDR_MASK
675 #undef PT_INDEX
676 #undef PT_LEVEL_MASK
677 #undef PT_LVL_ADDR_MASK
678 #undef PT_LVL_OFFSET_MASK
679 #undef PT_LEVEL_BITS
680 #undef PT_MAX_FULL_LEVELS
681 #undef gpte_to_gfn
682 #undef gpte_to_gfn_lvl
683 #undef CMPXCHG