via-pmu: Add compat_pmu_ioctl
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / mmu.c
blob311f6dad89513385a8f9de804baa651a02b84e39
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affilates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
44 * When setting this variable to true it enables Two-Dimensional-Paging
45 * where the hardware walks 2 page tables:
46 * 1. the guest-virtual to guest-physical
47 * 2. while doing 1. it walks guest-physical to host-physical
48 * If the hardware supports that we don't need to do shadow paging.
50 bool tdp_enabled = false;
52 #undef MMU_DEBUG
54 #undef AUDIT
56 #ifdef AUDIT
57 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
58 #else
59 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
60 #endif
62 #ifdef MMU_DEBUG
64 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
65 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
67 #else
69 #define pgprintk(x...) do { } while (0)
70 #define rmap_printk(x...) do { } while (0)
72 #endif
74 #if defined(MMU_DEBUG) || defined(AUDIT)
75 static int dbg = 0;
76 module_param(dbg, bool, 0644);
77 #endif
79 static int oos_shadow = 1;
80 module_param(oos_shadow, bool, 0644);
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
90 #endif
92 #define PT_FIRST_AVAIL_BITS_SHIFT 9
93 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95 #define PT64_LEVEL_BITS 9
97 #define PT64_LEVEL_SHIFT(level) \
98 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100 #define PT64_LEVEL_MASK(level) \
101 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
103 #define PT64_INDEX(address, level)\
104 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
107 #define PT32_LEVEL_BITS 10
109 #define PT32_LEVEL_SHIFT(level) \
110 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
112 #define PT32_LEVEL_MASK(level) \
113 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
114 #define PT32_LVL_OFFSET_MASK(level) \
115 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT32_LEVEL_BITS))) - 1))
118 #define PT32_INDEX(address, level)\
119 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
122 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
123 #define PT64_DIR_BASE_ADDR_MASK \
124 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
125 #define PT64_LVL_ADDR_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
128 #define PT64_LVL_OFFSET_MASK(level) \
129 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT64_LEVEL_BITS))) - 1))
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 * PT32_LEVEL_BITS))) - 1))
139 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
140 | PT64_NX_MASK)
142 #define RMAP_EXT 4
144 #define ACC_EXEC_MASK 1
145 #define ACC_WRITE_MASK PT_WRITABLE_MASK
146 #define ACC_USER_MASK PT_USER_MASK
147 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
149 #include <trace/events/kvm.h>
151 #define CREATE_TRACE_POINTS
152 #include "mmutrace.h"
154 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
156 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
158 struct kvm_rmap_desc {
159 u64 *sptes[RMAP_EXT];
160 struct kvm_rmap_desc *more;
163 struct kvm_shadow_walk_iterator {
164 u64 addr;
165 hpa_t shadow_addr;
166 int level;
167 u64 *sptep;
168 unsigned index;
171 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)); \
174 shadow_walk_next(&(_walker)))
176 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
178 static struct kmem_cache *pte_chain_cache;
179 static struct kmem_cache *rmap_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
182 static u64 __read_mostly shadow_trap_nonpresent_pte;
183 static u64 __read_mostly shadow_notrap_nonpresent_pte;
184 static u64 __read_mostly shadow_base_present_pte;
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
191 static inline u64 rsvd_bits(int s, int e)
193 return ((1ULL << (e - s + 1)) - 1) << s;
196 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
198 shadow_trap_nonpresent_pte = trap_pte;
199 shadow_notrap_nonpresent_pte = notrap_pte;
201 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
203 void kvm_mmu_set_base_ptes(u64 base_pte)
205 shadow_base_present_pte = base_pte;
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210 u64 dirty_mask, u64 nx_mask, u64 x_mask)
212 shadow_user_mask = user_mask;
213 shadow_accessed_mask = accessed_mask;
214 shadow_dirty_mask = dirty_mask;
215 shadow_nx_mask = nx_mask;
216 shadow_x_mask = x_mask;
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
220 static bool is_write_protection(struct kvm_vcpu *vcpu)
222 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
225 static int is_cpuid_PSE36(void)
227 return 1;
230 static int is_nx(struct kvm_vcpu *vcpu)
232 return vcpu->arch.efer & EFER_NX;
235 static int is_shadow_present_pte(u64 pte)
237 return pte != shadow_trap_nonpresent_pte
238 && pte != shadow_notrap_nonpresent_pte;
241 static int is_large_pte(u64 pte)
243 return pte & PT_PAGE_SIZE_MASK;
246 static int is_writable_pte(unsigned long pte)
248 return pte & PT_WRITABLE_MASK;
251 static int is_dirty_gpte(unsigned long pte)
253 return pte & PT_DIRTY_MASK;
256 static int is_rmap_spte(u64 pte)
258 return is_shadow_present_pte(pte);
261 static int is_last_spte(u64 pte, int level)
263 if (level == PT_PAGE_TABLE_LEVEL)
264 return 1;
265 if (is_large_pte(pte))
266 return 1;
267 return 0;
270 static pfn_t spte_to_pfn(u64 pte)
272 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
275 static gfn_t pse36_gfn_delta(u32 gpte)
277 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
279 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 static void __set_spte(u64 *sptep, u64 spte)
284 set_64bit(sptep, spte);
287 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
289 #ifdef CONFIG_X86_64
290 return xchg(sptep, new_spte);
291 #else
292 u64 old_spte;
294 do {
295 old_spte = *sptep;
296 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
298 return old_spte;
299 #endif
302 static void update_spte(u64 *sptep, u64 new_spte)
304 u64 old_spte;
306 if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask) ||
307 !is_rmap_spte(*sptep))
308 __set_spte(sptep, new_spte);
309 else {
310 old_spte = __xchg_spte(sptep, new_spte);
311 if (old_spte & shadow_accessed_mask)
312 mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
316 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
317 struct kmem_cache *base_cache, int min)
319 void *obj;
321 if (cache->nobjs >= min)
322 return 0;
323 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
324 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
325 if (!obj)
326 return -ENOMEM;
327 cache->objects[cache->nobjs++] = obj;
329 return 0;
332 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
333 struct kmem_cache *cache)
335 while (mc->nobjs)
336 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
339 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
340 int min)
342 struct page *page;
344 if (cache->nobjs >= min)
345 return 0;
346 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
347 page = alloc_page(GFP_KERNEL);
348 if (!page)
349 return -ENOMEM;
350 cache->objects[cache->nobjs++] = page_address(page);
352 return 0;
355 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
357 while (mc->nobjs)
358 free_page((unsigned long)mc->objects[--mc->nobjs]);
361 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
363 int r;
365 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
366 pte_chain_cache, 4);
367 if (r)
368 goto out;
369 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
370 rmap_desc_cache, 4);
371 if (r)
372 goto out;
373 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
374 if (r)
375 goto out;
376 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
377 mmu_page_header_cache, 4);
378 out:
379 return r;
382 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
384 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
385 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
386 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
387 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
388 mmu_page_header_cache);
391 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
392 size_t size)
394 void *p;
396 BUG_ON(!mc->nobjs);
397 p = mc->objects[--mc->nobjs];
398 return p;
401 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
403 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
404 sizeof(struct kvm_pte_chain));
407 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
409 kmem_cache_free(pte_chain_cache, pc);
412 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
414 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
415 sizeof(struct kvm_rmap_desc));
418 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
420 kmem_cache_free(rmap_desc_cache, rd);
423 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
425 if (!sp->role.direct)
426 return sp->gfns[index];
428 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
431 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
433 if (sp->role.direct)
434 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
435 else
436 sp->gfns[index] = gfn;
440 * Return the pointer to the largepage write count for a given
441 * gfn, handling slots that are not large page aligned.
443 static int *slot_largepage_idx(gfn_t gfn,
444 struct kvm_memory_slot *slot,
445 int level)
447 unsigned long idx;
449 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
450 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
451 return &slot->lpage_info[level - 2][idx].write_count;
454 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
456 struct kvm_memory_slot *slot;
457 int *write_count;
458 int i;
460 slot = gfn_to_memslot(kvm, gfn);
461 for (i = PT_DIRECTORY_LEVEL;
462 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
463 write_count = slot_largepage_idx(gfn, slot, i);
464 *write_count += 1;
468 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
470 struct kvm_memory_slot *slot;
471 int *write_count;
472 int i;
474 slot = gfn_to_memslot(kvm, gfn);
475 for (i = PT_DIRECTORY_LEVEL;
476 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
477 write_count = slot_largepage_idx(gfn, slot, i);
478 *write_count -= 1;
479 WARN_ON(*write_count < 0);
483 static int has_wrprotected_page(struct kvm *kvm,
484 gfn_t gfn,
485 int level)
487 struct kvm_memory_slot *slot;
488 int *largepage_idx;
490 slot = gfn_to_memslot(kvm, gfn);
491 if (slot) {
492 largepage_idx = slot_largepage_idx(gfn, slot, level);
493 return *largepage_idx;
496 return 1;
499 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
501 unsigned long page_size;
502 int i, ret = 0;
504 page_size = kvm_host_page_size(kvm, gfn);
506 for (i = PT_PAGE_TABLE_LEVEL;
507 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
508 if (page_size >= KVM_HPAGE_SIZE(i))
509 ret = i;
510 else
511 break;
514 return ret;
517 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
519 struct kvm_memory_slot *slot;
520 int host_level, level, max_level;
522 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
523 if (slot && slot->dirty_bitmap)
524 return PT_PAGE_TABLE_LEVEL;
526 host_level = host_mapping_level(vcpu->kvm, large_gfn);
528 if (host_level == PT_PAGE_TABLE_LEVEL)
529 return host_level;
531 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
532 kvm_x86_ops->get_lpage_level() : host_level;
534 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
535 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
536 break;
538 return level - 1;
542 * Take gfn and return the reverse mapping to it.
545 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
547 struct kvm_memory_slot *slot;
548 unsigned long idx;
550 slot = gfn_to_memslot(kvm, gfn);
551 if (likely(level == PT_PAGE_TABLE_LEVEL))
552 return &slot->rmap[gfn - slot->base_gfn];
554 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
555 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
557 return &slot->lpage_info[level - 2][idx].rmap_pde;
561 * Reverse mapping data structures:
563 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
564 * that points to page_address(page).
566 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
567 * containing more mappings.
569 * Returns the number of rmap entries before the spte was added or zero if
570 * the spte was not added.
573 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
575 struct kvm_mmu_page *sp;
576 struct kvm_rmap_desc *desc;
577 unsigned long *rmapp;
578 int i, count = 0;
580 if (!is_rmap_spte(*spte))
581 return count;
582 sp = page_header(__pa(spte));
583 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
584 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
585 if (!*rmapp) {
586 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
587 *rmapp = (unsigned long)spte;
588 } else if (!(*rmapp & 1)) {
589 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
590 desc = mmu_alloc_rmap_desc(vcpu);
591 desc->sptes[0] = (u64 *)*rmapp;
592 desc->sptes[1] = spte;
593 *rmapp = (unsigned long)desc | 1;
594 } else {
595 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
596 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
597 while (desc->sptes[RMAP_EXT-1] && desc->more) {
598 desc = desc->more;
599 count += RMAP_EXT;
601 if (desc->sptes[RMAP_EXT-1]) {
602 desc->more = mmu_alloc_rmap_desc(vcpu);
603 desc = desc->more;
605 for (i = 0; desc->sptes[i]; ++i)
607 desc->sptes[i] = spte;
609 return count;
612 static void rmap_desc_remove_entry(unsigned long *rmapp,
613 struct kvm_rmap_desc *desc,
614 int i,
615 struct kvm_rmap_desc *prev_desc)
617 int j;
619 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
621 desc->sptes[i] = desc->sptes[j];
622 desc->sptes[j] = NULL;
623 if (j != 0)
624 return;
625 if (!prev_desc && !desc->more)
626 *rmapp = (unsigned long)desc->sptes[0];
627 else
628 if (prev_desc)
629 prev_desc->more = desc->more;
630 else
631 *rmapp = (unsigned long)desc->more | 1;
632 mmu_free_rmap_desc(desc);
635 static void rmap_remove(struct kvm *kvm, u64 *spte)
637 struct kvm_rmap_desc *desc;
638 struct kvm_rmap_desc *prev_desc;
639 struct kvm_mmu_page *sp;
640 gfn_t gfn;
641 unsigned long *rmapp;
642 int i;
644 sp = page_header(__pa(spte));
645 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
646 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
647 if (!*rmapp) {
648 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
649 BUG();
650 } else if (!(*rmapp & 1)) {
651 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
652 if ((u64 *)*rmapp != spte) {
653 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
654 spte, *spte);
655 BUG();
657 *rmapp = 0;
658 } else {
659 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
660 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
661 prev_desc = NULL;
662 while (desc) {
663 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
664 if (desc->sptes[i] == spte) {
665 rmap_desc_remove_entry(rmapp,
666 desc, i,
667 prev_desc);
668 return;
670 prev_desc = desc;
671 desc = desc->more;
673 pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
674 BUG();
678 static void set_spte_track_bits(u64 *sptep, u64 new_spte)
680 pfn_t pfn;
681 u64 old_spte = *sptep;
683 if (!shadow_accessed_mask || !is_shadow_present_pte(old_spte) ||
684 old_spte & shadow_accessed_mask) {
685 __set_spte(sptep, new_spte);
686 } else
687 old_spte = __xchg_spte(sptep, new_spte);
689 if (!is_rmap_spte(old_spte))
690 return;
691 pfn = spte_to_pfn(old_spte);
692 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
693 kvm_set_pfn_accessed(pfn);
694 if (is_writable_pte(old_spte))
695 kvm_set_pfn_dirty(pfn);
698 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
700 set_spte_track_bits(sptep, new_spte);
701 rmap_remove(kvm, sptep);
704 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
706 struct kvm_rmap_desc *desc;
707 u64 *prev_spte;
708 int i;
710 if (!*rmapp)
711 return NULL;
712 else if (!(*rmapp & 1)) {
713 if (!spte)
714 return (u64 *)*rmapp;
715 return NULL;
717 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
718 prev_spte = NULL;
719 while (desc) {
720 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
721 if (prev_spte == spte)
722 return desc->sptes[i];
723 prev_spte = desc->sptes[i];
725 desc = desc->more;
727 return NULL;
730 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
732 unsigned long *rmapp;
733 u64 *spte;
734 int i, write_protected = 0;
736 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
738 spte = rmap_next(kvm, rmapp, NULL);
739 while (spte) {
740 BUG_ON(!spte);
741 BUG_ON(!(*spte & PT_PRESENT_MASK));
742 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
743 if (is_writable_pte(*spte)) {
744 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
745 write_protected = 1;
747 spte = rmap_next(kvm, rmapp, spte);
749 if (write_protected) {
750 pfn_t pfn;
752 spte = rmap_next(kvm, rmapp, NULL);
753 pfn = spte_to_pfn(*spte);
754 kvm_set_pfn_dirty(pfn);
757 /* check for huge page mappings */
758 for (i = PT_DIRECTORY_LEVEL;
759 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
760 rmapp = gfn_to_rmap(kvm, gfn, i);
761 spte = rmap_next(kvm, rmapp, NULL);
762 while (spte) {
763 BUG_ON(!spte);
764 BUG_ON(!(*spte & PT_PRESENT_MASK));
765 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
766 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
767 if (is_writable_pte(*spte)) {
768 drop_spte(kvm, spte,
769 shadow_trap_nonpresent_pte);
770 --kvm->stat.lpages;
771 spte = NULL;
772 write_protected = 1;
774 spte = rmap_next(kvm, rmapp, spte);
778 return write_protected;
781 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
782 unsigned long data)
784 u64 *spte;
785 int need_tlb_flush = 0;
787 while ((spte = rmap_next(kvm, rmapp, NULL))) {
788 BUG_ON(!(*spte & PT_PRESENT_MASK));
789 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
790 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
791 need_tlb_flush = 1;
793 return need_tlb_flush;
796 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
797 unsigned long data)
799 int need_flush = 0;
800 u64 *spte, new_spte;
801 pte_t *ptep = (pte_t *)data;
802 pfn_t new_pfn;
804 WARN_ON(pte_huge(*ptep));
805 new_pfn = pte_pfn(*ptep);
806 spte = rmap_next(kvm, rmapp, NULL);
807 while (spte) {
808 BUG_ON(!is_shadow_present_pte(*spte));
809 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
810 need_flush = 1;
811 if (pte_write(*ptep)) {
812 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
813 spte = rmap_next(kvm, rmapp, NULL);
814 } else {
815 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
816 new_spte |= (u64)new_pfn << PAGE_SHIFT;
818 new_spte &= ~PT_WRITABLE_MASK;
819 new_spte &= ~SPTE_HOST_WRITEABLE;
820 new_spte &= ~shadow_accessed_mask;
821 set_spte_track_bits(spte, new_spte);
822 spte = rmap_next(kvm, rmapp, spte);
825 if (need_flush)
826 kvm_flush_remote_tlbs(kvm);
828 return 0;
831 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
832 unsigned long data,
833 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
834 unsigned long data))
836 int i, j;
837 int ret;
838 int retval = 0;
839 struct kvm_memslots *slots;
841 slots = kvm_memslots(kvm);
843 for (i = 0; i < slots->nmemslots; i++) {
844 struct kvm_memory_slot *memslot = &slots->memslots[i];
845 unsigned long start = memslot->userspace_addr;
846 unsigned long end;
848 end = start + (memslot->npages << PAGE_SHIFT);
849 if (hva >= start && hva < end) {
850 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
852 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
854 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
855 unsigned long idx;
856 int sh;
858 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
859 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
860 (memslot->base_gfn >> sh);
861 ret |= handler(kvm,
862 &memslot->lpage_info[j][idx].rmap_pde,
863 data);
865 trace_kvm_age_page(hva, memslot, ret);
866 retval |= ret;
870 return retval;
873 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
875 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
878 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
880 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
883 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
884 unsigned long data)
886 u64 *spte;
887 int young = 0;
890 * Emulate the accessed bit for EPT, by checking if this page has
891 * an EPT mapping, and clearing it if it does. On the next access,
892 * a new EPT mapping will be established.
893 * This has some overhead, but not as much as the cost of swapping
894 * out actively used pages or breaking up actively used hugepages.
896 if (!shadow_accessed_mask)
897 return kvm_unmap_rmapp(kvm, rmapp, data);
899 spte = rmap_next(kvm, rmapp, NULL);
900 while (spte) {
901 int _young;
902 u64 _spte = *spte;
903 BUG_ON(!(_spte & PT_PRESENT_MASK));
904 _young = _spte & PT_ACCESSED_MASK;
905 if (_young) {
906 young = 1;
907 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
909 spte = rmap_next(kvm, rmapp, spte);
911 return young;
914 #define RMAP_RECYCLE_THRESHOLD 1000
916 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
918 unsigned long *rmapp;
919 struct kvm_mmu_page *sp;
921 sp = page_header(__pa(spte));
923 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
925 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
926 kvm_flush_remote_tlbs(vcpu->kvm);
929 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
931 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
934 #ifdef MMU_DEBUG
935 static int is_empty_shadow_page(u64 *spt)
937 u64 *pos;
938 u64 *end;
940 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
941 if (is_shadow_present_pte(*pos)) {
942 printk(KERN_ERR "%s: %p %llx\n", __func__,
943 pos, *pos);
944 return 0;
946 return 1;
948 #endif
950 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
952 ASSERT(is_empty_shadow_page(sp->spt));
953 hlist_del(&sp->hash_link);
954 list_del(&sp->link);
955 __free_page(virt_to_page(sp->spt));
956 if (!sp->role.direct)
957 __free_page(virt_to_page(sp->gfns));
958 kmem_cache_free(mmu_page_header_cache, sp);
959 ++kvm->arch.n_free_mmu_pages;
962 static unsigned kvm_page_table_hashfn(gfn_t gfn)
964 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
967 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
968 u64 *parent_pte, int direct)
970 struct kvm_mmu_page *sp;
972 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
973 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
974 if (!direct)
975 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
976 PAGE_SIZE);
977 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
978 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
979 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
980 sp->multimapped = 0;
981 sp->parent_pte = parent_pte;
982 --vcpu->kvm->arch.n_free_mmu_pages;
983 return sp;
986 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
987 struct kvm_mmu_page *sp, u64 *parent_pte)
989 struct kvm_pte_chain *pte_chain;
990 struct hlist_node *node;
991 int i;
993 if (!parent_pte)
994 return;
995 if (!sp->multimapped) {
996 u64 *old = sp->parent_pte;
998 if (!old) {
999 sp->parent_pte = parent_pte;
1000 return;
1002 sp->multimapped = 1;
1003 pte_chain = mmu_alloc_pte_chain(vcpu);
1004 INIT_HLIST_HEAD(&sp->parent_ptes);
1005 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1006 pte_chain->parent_ptes[0] = old;
1008 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1009 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1010 continue;
1011 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1012 if (!pte_chain->parent_ptes[i]) {
1013 pte_chain->parent_ptes[i] = parent_pte;
1014 return;
1017 pte_chain = mmu_alloc_pte_chain(vcpu);
1018 BUG_ON(!pte_chain);
1019 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1020 pte_chain->parent_ptes[0] = parent_pte;
1023 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1024 u64 *parent_pte)
1026 struct kvm_pte_chain *pte_chain;
1027 struct hlist_node *node;
1028 int i;
1030 if (!sp->multimapped) {
1031 BUG_ON(sp->parent_pte != parent_pte);
1032 sp->parent_pte = NULL;
1033 return;
1035 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1036 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1037 if (!pte_chain->parent_ptes[i])
1038 break;
1039 if (pte_chain->parent_ptes[i] != parent_pte)
1040 continue;
1041 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1042 && pte_chain->parent_ptes[i + 1]) {
1043 pte_chain->parent_ptes[i]
1044 = pte_chain->parent_ptes[i + 1];
1045 ++i;
1047 pte_chain->parent_ptes[i] = NULL;
1048 if (i == 0) {
1049 hlist_del(&pte_chain->link);
1050 mmu_free_pte_chain(pte_chain);
1051 if (hlist_empty(&sp->parent_ptes)) {
1052 sp->multimapped = 0;
1053 sp->parent_pte = NULL;
1056 return;
1058 BUG();
1061 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1063 struct kvm_pte_chain *pte_chain;
1064 struct hlist_node *node;
1065 struct kvm_mmu_page *parent_sp;
1066 int i;
1068 if (!sp->multimapped && sp->parent_pte) {
1069 parent_sp = page_header(__pa(sp->parent_pte));
1070 fn(parent_sp, sp->parent_pte);
1071 return;
1074 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1075 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1076 u64 *spte = pte_chain->parent_ptes[i];
1078 if (!spte)
1079 break;
1080 parent_sp = page_header(__pa(spte));
1081 fn(parent_sp, spte);
1085 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1086 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1088 mmu_parent_walk(sp, mark_unsync);
1091 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1093 unsigned int index;
1095 index = spte - sp->spt;
1096 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1097 return;
1098 if (sp->unsync_children++)
1099 return;
1100 kvm_mmu_mark_parents_unsync(sp);
1103 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1104 struct kvm_mmu_page *sp)
1106 int i;
1108 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1109 sp->spt[i] = shadow_trap_nonpresent_pte;
1112 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1113 struct kvm_mmu_page *sp, bool clear_unsync)
1115 return 1;
1118 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1122 #define KVM_PAGE_ARRAY_NR 16
1124 struct kvm_mmu_pages {
1125 struct mmu_page_and_offset {
1126 struct kvm_mmu_page *sp;
1127 unsigned int idx;
1128 } page[KVM_PAGE_ARRAY_NR];
1129 unsigned int nr;
1132 #define for_each_unsync_children(bitmap, idx) \
1133 for (idx = find_first_bit(bitmap, 512); \
1134 idx < 512; \
1135 idx = find_next_bit(bitmap, 512, idx+1))
1137 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1138 int idx)
1140 int i;
1142 if (sp->unsync)
1143 for (i=0; i < pvec->nr; i++)
1144 if (pvec->page[i].sp == sp)
1145 return 0;
1147 pvec->page[pvec->nr].sp = sp;
1148 pvec->page[pvec->nr].idx = idx;
1149 pvec->nr++;
1150 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1153 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1154 struct kvm_mmu_pages *pvec)
1156 int i, ret, nr_unsync_leaf = 0;
1158 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1159 struct kvm_mmu_page *child;
1160 u64 ent = sp->spt[i];
1162 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1163 goto clear_child_bitmap;
1165 child = page_header(ent & PT64_BASE_ADDR_MASK);
1167 if (child->unsync_children) {
1168 if (mmu_pages_add(pvec, child, i))
1169 return -ENOSPC;
1171 ret = __mmu_unsync_walk(child, pvec);
1172 if (!ret)
1173 goto clear_child_bitmap;
1174 else if (ret > 0)
1175 nr_unsync_leaf += ret;
1176 else
1177 return ret;
1178 } else if (child->unsync) {
1179 nr_unsync_leaf++;
1180 if (mmu_pages_add(pvec, child, i))
1181 return -ENOSPC;
1182 } else
1183 goto clear_child_bitmap;
1185 continue;
1187 clear_child_bitmap:
1188 __clear_bit(i, sp->unsync_child_bitmap);
1189 sp->unsync_children--;
1190 WARN_ON((int)sp->unsync_children < 0);
1194 return nr_unsync_leaf;
1197 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1198 struct kvm_mmu_pages *pvec)
1200 if (!sp->unsync_children)
1201 return 0;
1203 mmu_pages_add(pvec, sp, 0);
1204 return __mmu_unsync_walk(sp, pvec);
1207 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1209 WARN_ON(!sp->unsync);
1210 trace_kvm_mmu_sync_page(sp);
1211 sp->unsync = 0;
1212 --kvm->stat.mmu_unsync;
1215 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1216 struct list_head *invalid_list);
1217 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1218 struct list_head *invalid_list);
1220 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1221 hlist_for_each_entry(sp, pos, \
1222 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1223 if ((sp)->gfn != (gfn)) {} else
1225 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1226 hlist_for_each_entry(sp, pos, \
1227 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1228 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1229 (sp)->role.invalid) {} else
1231 /* @sp->gfn should be write-protected at the call site */
1232 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1233 struct list_head *invalid_list, bool clear_unsync)
1235 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1236 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1237 return 1;
1240 if (clear_unsync)
1241 kvm_unlink_unsync_page(vcpu->kvm, sp);
1243 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1244 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1245 return 1;
1248 kvm_mmu_flush_tlb(vcpu);
1249 return 0;
1252 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1253 struct kvm_mmu_page *sp)
1255 LIST_HEAD(invalid_list);
1256 int ret;
1258 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1259 if (ret)
1260 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1262 return ret;
1265 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1266 struct list_head *invalid_list)
1268 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1271 /* @gfn should be write-protected at the call site */
1272 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1274 struct kvm_mmu_page *s;
1275 struct hlist_node *node;
1276 LIST_HEAD(invalid_list);
1277 bool flush = false;
1279 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1280 if (!s->unsync)
1281 continue;
1283 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1284 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1285 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1286 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1287 continue;
1289 kvm_unlink_unsync_page(vcpu->kvm, s);
1290 flush = true;
1293 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1294 if (flush)
1295 kvm_mmu_flush_tlb(vcpu);
1298 struct mmu_page_path {
1299 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1300 unsigned int idx[PT64_ROOT_LEVEL-1];
1303 #define for_each_sp(pvec, sp, parents, i) \
1304 for (i = mmu_pages_next(&pvec, &parents, -1), \
1305 sp = pvec.page[i].sp; \
1306 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1307 i = mmu_pages_next(&pvec, &parents, i))
1309 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1310 struct mmu_page_path *parents,
1311 int i)
1313 int n;
1315 for (n = i+1; n < pvec->nr; n++) {
1316 struct kvm_mmu_page *sp = pvec->page[n].sp;
1318 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1319 parents->idx[0] = pvec->page[n].idx;
1320 return n;
1323 parents->parent[sp->role.level-2] = sp;
1324 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1327 return n;
1330 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1332 struct kvm_mmu_page *sp;
1333 unsigned int level = 0;
1335 do {
1336 unsigned int idx = parents->idx[level];
1338 sp = parents->parent[level];
1339 if (!sp)
1340 return;
1342 --sp->unsync_children;
1343 WARN_ON((int)sp->unsync_children < 0);
1344 __clear_bit(idx, sp->unsync_child_bitmap);
1345 level++;
1346 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1349 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1350 struct mmu_page_path *parents,
1351 struct kvm_mmu_pages *pvec)
1353 parents->parent[parent->role.level-1] = NULL;
1354 pvec->nr = 0;
1357 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1358 struct kvm_mmu_page *parent)
1360 int i;
1361 struct kvm_mmu_page *sp;
1362 struct mmu_page_path parents;
1363 struct kvm_mmu_pages pages;
1364 LIST_HEAD(invalid_list);
1366 kvm_mmu_pages_init(parent, &parents, &pages);
1367 while (mmu_unsync_walk(parent, &pages)) {
1368 int protected = 0;
1370 for_each_sp(pages, sp, parents, i)
1371 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1373 if (protected)
1374 kvm_flush_remote_tlbs(vcpu->kvm);
1376 for_each_sp(pages, sp, parents, i) {
1377 kvm_sync_page(vcpu, sp, &invalid_list);
1378 mmu_pages_clear_parents(&parents);
1380 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1381 cond_resched_lock(&vcpu->kvm->mmu_lock);
1382 kvm_mmu_pages_init(parent, &parents, &pages);
1386 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1387 gfn_t gfn,
1388 gva_t gaddr,
1389 unsigned level,
1390 int direct,
1391 unsigned access,
1392 u64 *parent_pte)
1394 union kvm_mmu_page_role role;
1395 unsigned quadrant;
1396 struct kvm_mmu_page *sp;
1397 struct hlist_node *node;
1398 bool need_sync = false;
1400 role = vcpu->arch.mmu.base_role;
1401 role.level = level;
1402 role.direct = direct;
1403 if (role.direct)
1404 role.cr4_pae = 0;
1405 role.access = access;
1406 if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1407 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1408 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1409 role.quadrant = quadrant;
1411 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1412 if (!need_sync && sp->unsync)
1413 need_sync = true;
1415 if (sp->role.word != role.word)
1416 continue;
1418 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1419 break;
1421 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1422 if (sp->unsync_children) {
1423 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1424 kvm_mmu_mark_parents_unsync(sp);
1425 } else if (sp->unsync)
1426 kvm_mmu_mark_parents_unsync(sp);
1428 trace_kvm_mmu_get_page(sp, false);
1429 return sp;
1431 ++vcpu->kvm->stat.mmu_cache_miss;
1432 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1433 if (!sp)
1434 return sp;
1435 sp->gfn = gfn;
1436 sp->role = role;
1437 hlist_add_head(&sp->hash_link,
1438 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1439 if (!direct) {
1440 if (rmap_write_protect(vcpu->kvm, gfn))
1441 kvm_flush_remote_tlbs(vcpu->kvm);
1442 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1443 kvm_sync_pages(vcpu, gfn);
1445 account_shadowed(vcpu->kvm, gfn);
1447 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1448 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1449 else
1450 nonpaging_prefetch_page(vcpu, sp);
1451 trace_kvm_mmu_get_page(sp, true);
1452 return sp;
1455 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1456 struct kvm_vcpu *vcpu, u64 addr)
1458 iterator->addr = addr;
1459 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1460 iterator->level = vcpu->arch.mmu.shadow_root_level;
1461 if (iterator->level == PT32E_ROOT_LEVEL) {
1462 iterator->shadow_addr
1463 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1464 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1465 --iterator->level;
1466 if (!iterator->shadow_addr)
1467 iterator->level = 0;
1471 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1473 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1474 return false;
1476 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1477 if (is_large_pte(*iterator->sptep))
1478 return false;
1480 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1481 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1482 return true;
1485 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1487 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1488 --iterator->level;
1491 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1493 u64 spte;
1495 spte = __pa(sp->spt)
1496 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1497 | PT_WRITABLE_MASK | PT_USER_MASK;
1498 __set_spte(sptep, spte);
1501 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1503 if (is_large_pte(*sptep)) {
1504 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1505 kvm_flush_remote_tlbs(vcpu->kvm);
1509 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1510 unsigned direct_access)
1512 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1513 struct kvm_mmu_page *child;
1516 * For the direct sp, if the guest pte's dirty bit
1517 * changed form clean to dirty, it will corrupt the
1518 * sp's access: allow writable in the read-only sp,
1519 * so we should update the spte at this point to get
1520 * a new sp with the correct access.
1522 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1523 if (child->role.access == direct_access)
1524 return;
1526 mmu_page_remove_parent_pte(child, sptep);
1527 __set_spte(sptep, shadow_trap_nonpresent_pte);
1528 kvm_flush_remote_tlbs(vcpu->kvm);
1532 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1533 struct kvm_mmu_page *sp)
1535 unsigned i;
1536 u64 *pt;
1537 u64 ent;
1539 pt = sp->spt;
1541 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1542 ent = pt[i];
1544 if (is_shadow_present_pte(ent)) {
1545 if (!is_last_spte(ent, sp->role.level)) {
1546 ent &= PT64_BASE_ADDR_MASK;
1547 mmu_page_remove_parent_pte(page_header(ent),
1548 &pt[i]);
1549 } else {
1550 if (is_large_pte(ent))
1551 --kvm->stat.lpages;
1552 drop_spte(kvm, &pt[i],
1553 shadow_trap_nonpresent_pte);
1556 pt[i] = shadow_trap_nonpresent_pte;
1560 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1562 mmu_page_remove_parent_pte(sp, parent_pte);
1565 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1567 int i;
1568 struct kvm_vcpu *vcpu;
1570 kvm_for_each_vcpu(i, vcpu, kvm)
1571 vcpu->arch.last_pte_updated = NULL;
1574 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1576 u64 *parent_pte;
1578 while (sp->multimapped || sp->parent_pte) {
1579 if (!sp->multimapped)
1580 parent_pte = sp->parent_pte;
1581 else {
1582 struct kvm_pte_chain *chain;
1584 chain = container_of(sp->parent_ptes.first,
1585 struct kvm_pte_chain, link);
1586 parent_pte = chain->parent_ptes[0];
1588 BUG_ON(!parent_pte);
1589 kvm_mmu_put_page(sp, parent_pte);
1590 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1594 static int mmu_zap_unsync_children(struct kvm *kvm,
1595 struct kvm_mmu_page *parent,
1596 struct list_head *invalid_list)
1598 int i, zapped = 0;
1599 struct mmu_page_path parents;
1600 struct kvm_mmu_pages pages;
1602 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1603 return 0;
1605 kvm_mmu_pages_init(parent, &parents, &pages);
1606 while (mmu_unsync_walk(parent, &pages)) {
1607 struct kvm_mmu_page *sp;
1609 for_each_sp(pages, sp, parents, i) {
1610 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1611 mmu_pages_clear_parents(&parents);
1612 zapped++;
1614 kvm_mmu_pages_init(parent, &parents, &pages);
1617 return zapped;
1620 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1621 struct list_head *invalid_list)
1623 int ret;
1625 trace_kvm_mmu_prepare_zap_page(sp);
1626 ++kvm->stat.mmu_shadow_zapped;
1627 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1628 kvm_mmu_page_unlink_children(kvm, sp);
1629 kvm_mmu_unlink_parents(kvm, sp);
1630 if (!sp->role.invalid && !sp->role.direct)
1631 unaccount_shadowed(kvm, sp->gfn);
1632 if (sp->unsync)
1633 kvm_unlink_unsync_page(kvm, sp);
1634 if (!sp->root_count) {
1635 /* Count self */
1636 ret++;
1637 list_move(&sp->link, invalid_list);
1638 } else {
1639 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1640 kvm_reload_remote_mmus(kvm);
1643 sp->role.invalid = 1;
1644 kvm_mmu_reset_last_pte_updated(kvm);
1645 return ret;
1648 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1649 struct list_head *invalid_list)
1651 struct kvm_mmu_page *sp;
1653 if (list_empty(invalid_list))
1654 return;
1656 kvm_flush_remote_tlbs(kvm);
1658 do {
1659 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1660 WARN_ON(!sp->role.invalid || sp->root_count);
1661 kvm_mmu_free_page(kvm, sp);
1662 } while (!list_empty(invalid_list));
1667 * Changing the number of mmu pages allocated to the vm
1668 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1670 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1672 int used_pages;
1673 LIST_HEAD(invalid_list);
1675 used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1676 used_pages = max(0, used_pages);
1679 * If we set the number of mmu pages to be smaller be than the
1680 * number of actived pages , we must to free some mmu pages before we
1681 * change the value
1684 if (used_pages > kvm_nr_mmu_pages) {
1685 while (used_pages > kvm_nr_mmu_pages &&
1686 !list_empty(&kvm->arch.active_mmu_pages)) {
1687 struct kvm_mmu_page *page;
1689 page = container_of(kvm->arch.active_mmu_pages.prev,
1690 struct kvm_mmu_page, link);
1691 used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
1692 &invalid_list);
1694 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1695 kvm_nr_mmu_pages = used_pages;
1696 kvm->arch.n_free_mmu_pages = 0;
1698 else
1699 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1700 - kvm->arch.n_alloc_mmu_pages;
1702 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1705 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1707 struct kvm_mmu_page *sp;
1708 struct hlist_node *node;
1709 LIST_HEAD(invalid_list);
1710 int r;
1712 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1713 r = 0;
1715 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1716 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1717 sp->role.word);
1718 r = 1;
1719 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1721 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1722 return r;
1725 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1727 struct kvm_mmu_page *sp;
1728 struct hlist_node *node;
1729 LIST_HEAD(invalid_list);
1731 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1732 pgprintk("%s: zap %lx %x\n",
1733 __func__, gfn, sp->role.word);
1734 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1736 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1739 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1741 int slot = memslot_id(kvm, gfn);
1742 struct kvm_mmu_page *sp = page_header(__pa(pte));
1744 __set_bit(slot, sp->slot_bitmap);
1747 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1749 int i;
1750 u64 *pt = sp->spt;
1752 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1753 return;
1755 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1756 if (pt[i] == shadow_notrap_nonpresent_pte)
1757 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1762 * The function is based on mtrr_type_lookup() in
1763 * arch/x86/kernel/cpu/mtrr/generic.c
1765 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1766 u64 start, u64 end)
1768 int i;
1769 u64 base, mask;
1770 u8 prev_match, curr_match;
1771 int num_var_ranges = KVM_NR_VAR_MTRR;
1773 if (!mtrr_state->enabled)
1774 return 0xFF;
1776 /* Make end inclusive end, instead of exclusive */
1777 end--;
1779 /* Look in fixed ranges. Just return the type as per start */
1780 if (mtrr_state->have_fixed && (start < 0x100000)) {
1781 int idx;
1783 if (start < 0x80000) {
1784 idx = 0;
1785 idx += (start >> 16);
1786 return mtrr_state->fixed_ranges[idx];
1787 } else if (start < 0xC0000) {
1788 idx = 1 * 8;
1789 idx += ((start - 0x80000) >> 14);
1790 return mtrr_state->fixed_ranges[idx];
1791 } else if (start < 0x1000000) {
1792 idx = 3 * 8;
1793 idx += ((start - 0xC0000) >> 12);
1794 return mtrr_state->fixed_ranges[idx];
1799 * Look in variable ranges
1800 * Look of multiple ranges matching this address and pick type
1801 * as per MTRR precedence
1803 if (!(mtrr_state->enabled & 2))
1804 return mtrr_state->def_type;
1806 prev_match = 0xFF;
1807 for (i = 0; i < num_var_ranges; ++i) {
1808 unsigned short start_state, end_state;
1810 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1811 continue;
1813 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1814 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1815 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1816 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1818 start_state = ((start & mask) == (base & mask));
1819 end_state = ((end & mask) == (base & mask));
1820 if (start_state != end_state)
1821 return 0xFE;
1823 if ((start & mask) != (base & mask))
1824 continue;
1826 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1827 if (prev_match == 0xFF) {
1828 prev_match = curr_match;
1829 continue;
1832 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1833 curr_match == MTRR_TYPE_UNCACHABLE)
1834 return MTRR_TYPE_UNCACHABLE;
1836 if ((prev_match == MTRR_TYPE_WRBACK &&
1837 curr_match == MTRR_TYPE_WRTHROUGH) ||
1838 (prev_match == MTRR_TYPE_WRTHROUGH &&
1839 curr_match == MTRR_TYPE_WRBACK)) {
1840 prev_match = MTRR_TYPE_WRTHROUGH;
1841 curr_match = MTRR_TYPE_WRTHROUGH;
1844 if (prev_match != curr_match)
1845 return MTRR_TYPE_UNCACHABLE;
1848 if (prev_match != 0xFF)
1849 return prev_match;
1851 return mtrr_state->def_type;
1854 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1856 u8 mtrr;
1858 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1859 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1860 if (mtrr == 0xfe || mtrr == 0xff)
1861 mtrr = MTRR_TYPE_WRBACK;
1862 return mtrr;
1864 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1866 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1868 trace_kvm_mmu_unsync_page(sp);
1869 ++vcpu->kvm->stat.mmu_unsync;
1870 sp->unsync = 1;
1872 kvm_mmu_mark_parents_unsync(sp);
1873 mmu_convert_notrap(sp);
1876 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1878 struct kvm_mmu_page *s;
1879 struct hlist_node *node;
1881 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1882 if (s->unsync)
1883 continue;
1884 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1885 __kvm_unsync_page(vcpu, s);
1889 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1890 bool can_unsync)
1892 struct kvm_mmu_page *s;
1893 struct hlist_node *node;
1894 bool need_unsync = false;
1896 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1897 if (!can_unsync)
1898 return 1;
1900 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1901 return 1;
1903 if (!need_unsync && !s->unsync) {
1904 if (!oos_shadow)
1905 return 1;
1906 need_unsync = true;
1909 if (need_unsync)
1910 kvm_unsync_pages(vcpu, gfn);
1911 return 0;
1914 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1915 unsigned pte_access, int user_fault,
1916 int write_fault, int dirty, int level,
1917 gfn_t gfn, pfn_t pfn, bool speculative,
1918 bool can_unsync, bool reset_host_protection)
1920 u64 spte;
1921 int ret = 0;
1924 * We don't set the accessed bit, since we sometimes want to see
1925 * whether the guest actually used the pte (in order to detect
1926 * demand paging).
1928 spte = shadow_base_present_pte | shadow_dirty_mask;
1929 if (!speculative)
1930 spte |= shadow_accessed_mask;
1931 if (!dirty)
1932 pte_access &= ~ACC_WRITE_MASK;
1933 if (pte_access & ACC_EXEC_MASK)
1934 spte |= shadow_x_mask;
1935 else
1936 spte |= shadow_nx_mask;
1937 if (pte_access & ACC_USER_MASK)
1938 spte |= shadow_user_mask;
1939 if (level > PT_PAGE_TABLE_LEVEL)
1940 spte |= PT_PAGE_SIZE_MASK;
1941 if (tdp_enabled)
1942 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1943 kvm_is_mmio_pfn(pfn));
1945 if (reset_host_protection)
1946 spte |= SPTE_HOST_WRITEABLE;
1948 spte |= (u64)pfn << PAGE_SHIFT;
1950 if ((pte_access & ACC_WRITE_MASK)
1951 || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
1952 && !user_fault)) {
1954 if (level > PT_PAGE_TABLE_LEVEL &&
1955 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1956 ret = 1;
1957 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1958 goto done;
1961 spte |= PT_WRITABLE_MASK;
1963 if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
1964 spte &= ~PT_USER_MASK;
1967 * Optimization: for pte sync, if spte was writable the hash
1968 * lookup is unnecessary (and expensive). Write protection
1969 * is responsibility of mmu_get_page / kvm_sync_page.
1970 * Same reasoning can be applied to dirty page accounting.
1972 if (!can_unsync && is_writable_pte(*sptep))
1973 goto set_pte;
1975 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1976 pgprintk("%s: found shadow page for %lx, marking ro\n",
1977 __func__, gfn);
1978 ret = 1;
1979 pte_access &= ~ACC_WRITE_MASK;
1980 if (is_writable_pte(spte))
1981 spte &= ~PT_WRITABLE_MASK;
1985 if (pte_access & ACC_WRITE_MASK)
1986 mark_page_dirty(vcpu->kvm, gfn);
1988 set_pte:
1989 if (is_writable_pte(*sptep) && !is_writable_pte(spte))
1990 kvm_set_pfn_dirty(pfn);
1991 update_spte(sptep, spte);
1992 done:
1993 return ret;
1996 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1997 unsigned pt_access, unsigned pte_access,
1998 int user_fault, int write_fault, int dirty,
1999 int *ptwrite, int level, gfn_t gfn,
2000 pfn_t pfn, bool speculative,
2001 bool reset_host_protection)
2003 int was_rmapped = 0;
2004 int rmap_count;
2006 pgprintk("%s: spte %llx access %x write_fault %d"
2007 " user_fault %d gfn %lx\n",
2008 __func__, *sptep, pt_access,
2009 write_fault, user_fault, gfn);
2011 if (is_rmap_spte(*sptep)) {
2013 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2014 * the parent of the now unreachable PTE.
2016 if (level > PT_PAGE_TABLE_LEVEL &&
2017 !is_large_pte(*sptep)) {
2018 struct kvm_mmu_page *child;
2019 u64 pte = *sptep;
2021 child = page_header(pte & PT64_BASE_ADDR_MASK);
2022 mmu_page_remove_parent_pte(child, sptep);
2023 __set_spte(sptep, shadow_trap_nonpresent_pte);
2024 kvm_flush_remote_tlbs(vcpu->kvm);
2025 } else if (pfn != spte_to_pfn(*sptep)) {
2026 pgprintk("hfn old %lx new %lx\n",
2027 spte_to_pfn(*sptep), pfn);
2028 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2029 kvm_flush_remote_tlbs(vcpu->kvm);
2030 } else
2031 was_rmapped = 1;
2034 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2035 dirty, level, gfn, pfn, speculative, true,
2036 reset_host_protection)) {
2037 if (write_fault)
2038 *ptwrite = 1;
2039 kvm_mmu_flush_tlb(vcpu);
2042 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2043 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
2044 is_large_pte(*sptep)? "2MB" : "4kB",
2045 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2046 *sptep, sptep);
2047 if (!was_rmapped && is_large_pte(*sptep))
2048 ++vcpu->kvm->stat.lpages;
2050 page_header_update_slot(vcpu->kvm, sptep, gfn);
2051 if (!was_rmapped) {
2052 rmap_count = rmap_add(vcpu, sptep, gfn);
2053 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2054 rmap_recycle(vcpu, sptep, gfn);
2056 kvm_release_pfn_clean(pfn);
2057 if (speculative) {
2058 vcpu->arch.last_pte_updated = sptep;
2059 vcpu->arch.last_pte_gfn = gfn;
2063 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2067 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2068 int level, gfn_t gfn, pfn_t pfn)
2070 struct kvm_shadow_walk_iterator iterator;
2071 struct kvm_mmu_page *sp;
2072 int pt_write = 0;
2073 gfn_t pseudo_gfn;
2075 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2076 if (iterator.level == level) {
2077 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2078 0, write, 1, &pt_write,
2079 level, gfn, pfn, false, true);
2080 ++vcpu->stat.pf_fixed;
2081 break;
2084 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2085 u64 base_addr = iterator.addr;
2087 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2088 pseudo_gfn = base_addr >> PAGE_SHIFT;
2089 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2090 iterator.level - 1,
2091 1, ACC_ALL, iterator.sptep);
2092 if (!sp) {
2093 pgprintk("nonpaging_map: ENOMEM\n");
2094 kvm_release_pfn_clean(pfn);
2095 return -ENOMEM;
2098 __set_spte(iterator.sptep,
2099 __pa(sp->spt)
2100 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2101 | shadow_user_mask | shadow_x_mask);
2104 return pt_write;
2107 static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
2109 char buf[1];
2110 void __user *hva;
2111 int r;
2113 /* Touch the page, so send SIGBUS */
2114 hva = (void __user *)gfn_to_hva(kvm, gfn);
2115 r = copy_from_user(buf, hva, 1);
2118 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2120 kvm_release_pfn_clean(pfn);
2121 if (is_hwpoison_pfn(pfn)) {
2122 kvm_send_hwpoison_signal(kvm, gfn);
2123 return 0;
2124 } else if (is_fault_pfn(pfn))
2125 return -EFAULT;
2127 return 1;
2130 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2132 int r;
2133 int level;
2134 pfn_t pfn;
2135 unsigned long mmu_seq;
2137 level = mapping_level(vcpu, gfn);
2140 * This path builds a PAE pagetable - so we can map 2mb pages at
2141 * maximum. Therefore check if the level is larger than that.
2143 if (level > PT_DIRECTORY_LEVEL)
2144 level = PT_DIRECTORY_LEVEL;
2146 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2148 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2149 smp_rmb();
2150 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2152 /* mmio */
2153 if (is_error_pfn(pfn))
2154 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2156 spin_lock(&vcpu->kvm->mmu_lock);
2157 if (mmu_notifier_retry(vcpu, mmu_seq))
2158 goto out_unlock;
2159 kvm_mmu_free_some_pages(vcpu);
2160 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2161 spin_unlock(&vcpu->kvm->mmu_lock);
2164 return r;
2166 out_unlock:
2167 spin_unlock(&vcpu->kvm->mmu_lock);
2168 kvm_release_pfn_clean(pfn);
2169 return 0;
2173 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2175 int i;
2176 struct kvm_mmu_page *sp;
2177 LIST_HEAD(invalid_list);
2179 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2180 return;
2181 spin_lock(&vcpu->kvm->mmu_lock);
2182 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2183 hpa_t root = vcpu->arch.mmu.root_hpa;
2185 sp = page_header(root);
2186 --sp->root_count;
2187 if (!sp->root_count && sp->role.invalid) {
2188 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2189 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2191 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2192 spin_unlock(&vcpu->kvm->mmu_lock);
2193 return;
2195 for (i = 0; i < 4; ++i) {
2196 hpa_t root = vcpu->arch.mmu.pae_root[i];
2198 if (root) {
2199 root &= PT64_BASE_ADDR_MASK;
2200 sp = page_header(root);
2201 --sp->root_count;
2202 if (!sp->root_count && sp->role.invalid)
2203 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2204 &invalid_list);
2206 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2208 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2209 spin_unlock(&vcpu->kvm->mmu_lock);
2210 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2213 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2215 int ret = 0;
2217 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2218 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2219 ret = 1;
2222 return ret;
2225 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2227 int i;
2228 gfn_t root_gfn;
2229 struct kvm_mmu_page *sp;
2230 int direct = 0;
2231 u64 pdptr;
2233 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
2235 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2236 hpa_t root = vcpu->arch.mmu.root_hpa;
2238 ASSERT(!VALID_PAGE(root));
2239 if (mmu_check_root(vcpu, root_gfn))
2240 return 1;
2241 if (tdp_enabled) {
2242 direct = 1;
2243 root_gfn = 0;
2245 spin_lock(&vcpu->kvm->mmu_lock);
2246 kvm_mmu_free_some_pages(vcpu);
2247 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2248 PT64_ROOT_LEVEL, direct,
2249 ACC_ALL, NULL);
2250 root = __pa(sp->spt);
2251 ++sp->root_count;
2252 spin_unlock(&vcpu->kvm->mmu_lock);
2253 vcpu->arch.mmu.root_hpa = root;
2254 return 0;
2256 direct = !is_paging(vcpu);
2257 for (i = 0; i < 4; ++i) {
2258 hpa_t root = vcpu->arch.mmu.pae_root[i];
2260 ASSERT(!VALID_PAGE(root));
2261 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2262 pdptr = kvm_pdptr_read(vcpu, i);
2263 if (!is_present_gpte(pdptr)) {
2264 vcpu->arch.mmu.pae_root[i] = 0;
2265 continue;
2267 root_gfn = pdptr >> PAGE_SHIFT;
2268 } else if (vcpu->arch.mmu.root_level == 0)
2269 root_gfn = 0;
2270 if (mmu_check_root(vcpu, root_gfn))
2271 return 1;
2272 if (tdp_enabled) {
2273 direct = 1;
2274 root_gfn = i << 30;
2276 spin_lock(&vcpu->kvm->mmu_lock);
2277 kvm_mmu_free_some_pages(vcpu);
2278 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2279 PT32_ROOT_LEVEL, direct,
2280 ACC_ALL, NULL);
2281 root = __pa(sp->spt);
2282 ++sp->root_count;
2283 spin_unlock(&vcpu->kvm->mmu_lock);
2285 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2287 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2288 return 0;
2291 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2293 int i;
2294 struct kvm_mmu_page *sp;
2296 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2297 return;
2298 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2299 hpa_t root = vcpu->arch.mmu.root_hpa;
2300 sp = page_header(root);
2301 mmu_sync_children(vcpu, sp);
2302 return;
2304 for (i = 0; i < 4; ++i) {
2305 hpa_t root = vcpu->arch.mmu.pae_root[i];
2307 if (root && VALID_PAGE(root)) {
2308 root &= PT64_BASE_ADDR_MASK;
2309 sp = page_header(root);
2310 mmu_sync_children(vcpu, sp);
2315 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2317 spin_lock(&vcpu->kvm->mmu_lock);
2318 mmu_sync_roots(vcpu);
2319 spin_unlock(&vcpu->kvm->mmu_lock);
2322 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2323 u32 access, u32 *error)
2325 if (error)
2326 *error = 0;
2327 return vaddr;
2330 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2331 u32 error_code)
2333 gfn_t gfn;
2334 int r;
2336 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2337 r = mmu_topup_memory_caches(vcpu);
2338 if (r)
2339 return r;
2341 ASSERT(vcpu);
2342 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2344 gfn = gva >> PAGE_SHIFT;
2346 return nonpaging_map(vcpu, gva & PAGE_MASK,
2347 error_code & PFERR_WRITE_MASK, gfn);
2350 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2351 u32 error_code)
2353 pfn_t pfn;
2354 int r;
2355 int level;
2356 gfn_t gfn = gpa >> PAGE_SHIFT;
2357 unsigned long mmu_seq;
2359 ASSERT(vcpu);
2360 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2362 r = mmu_topup_memory_caches(vcpu);
2363 if (r)
2364 return r;
2366 level = mapping_level(vcpu, gfn);
2368 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2370 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2371 smp_rmb();
2372 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2373 if (is_error_pfn(pfn))
2374 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2375 spin_lock(&vcpu->kvm->mmu_lock);
2376 if (mmu_notifier_retry(vcpu, mmu_seq))
2377 goto out_unlock;
2378 kvm_mmu_free_some_pages(vcpu);
2379 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2380 level, gfn, pfn);
2381 spin_unlock(&vcpu->kvm->mmu_lock);
2383 return r;
2385 out_unlock:
2386 spin_unlock(&vcpu->kvm->mmu_lock);
2387 kvm_release_pfn_clean(pfn);
2388 return 0;
2391 static void nonpaging_free(struct kvm_vcpu *vcpu)
2393 mmu_free_roots(vcpu);
2396 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2398 struct kvm_mmu *context = &vcpu->arch.mmu;
2400 context->new_cr3 = nonpaging_new_cr3;
2401 context->page_fault = nonpaging_page_fault;
2402 context->gva_to_gpa = nonpaging_gva_to_gpa;
2403 context->free = nonpaging_free;
2404 context->prefetch_page = nonpaging_prefetch_page;
2405 context->sync_page = nonpaging_sync_page;
2406 context->invlpg = nonpaging_invlpg;
2407 context->root_level = 0;
2408 context->shadow_root_level = PT32E_ROOT_LEVEL;
2409 context->root_hpa = INVALID_PAGE;
2410 return 0;
2413 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2415 ++vcpu->stat.tlb_flush;
2416 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2419 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2421 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2422 mmu_free_roots(vcpu);
2425 static void inject_page_fault(struct kvm_vcpu *vcpu,
2426 u64 addr,
2427 u32 err_code)
2429 kvm_inject_page_fault(vcpu, addr, err_code);
2432 static void paging_free(struct kvm_vcpu *vcpu)
2434 nonpaging_free(vcpu);
2437 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2439 int bit7;
2441 bit7 = (gpte >> 7) & 1;
2442 return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2445 #define PTTYPE 64
2446 #include "paging_tmpl.h"
2447 #undef PTTYPE
2449 #define PTTYPE 32
2450 #include "paging_tmpl.h"
2451 #undef PTTYPE
2453 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2455 struct kvm_mmu *context = &vcpu->arch.mmu;
2456 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2457 u64 exb_bit_rsvd = 0;
2459 if (!is_nx(vcpu))
2460 exb_bit_rsvd = rsvd_bits(63, 63);
2461 switch (level) {
2462 case PT32_ROOT_LEVEL:
2463 /* no rsvd bits for 2 level 4K page table entries */
2464 context->rsvd_bits_mask[0][1] = 0;
2465 context->rsvd_bits_mask[0][0] = 0;
2466 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2468 if (!is_pse(vcpu)) {
2469 context->rsvd_bits_mask[1][1] = 0;
2470 break;
2473 if (is_cpuid_PSE36())
2474 /* 36bits PSE 4MB page */
2475 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2476 else
2477 /* 32 bits PSE 4MB page */
2478 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2479 break;
2480 case PT32E_ROOT_LEVEL:
2481 context->rsvd_bits_mask[0][2] =
2482 rsvd_bits(maxphyaddr, 63) |
2483 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2484 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2485 rsvd_bits(maxphyaddr, 62); /* PDE */
2486 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2487 rsvd_bits(maxphyaddr, 62); /* PTE */
2488 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2489 rsvd_bits(maxphyaddr, 62) |
2490 rsvd_bits(13, 20); /* large page */
2491 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2492 break;
2493 case PT64_ROOT_LEVEL:
2494 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2495 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2496 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2497 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2498 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2499 rsvd_bits(maxphyaddr, 51);
2500 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2501 rsvd_bits(maxphyaddr, 51);
2502 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2503 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2504 rsvd_bits(maxphyaddr, 51) |
2505 rsvd_bits(13, 29);
2506 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2507 rsvd_bits(maxphyaddr, 51) |
2508 rsvd_bits(13, 20); /* large page */
2509 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2510 break;
2514 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2516 struct kvm_mmu *context = &vcpu->arch.mmu;
2518 ASSERT(is_pae(vcpu));
2519 context->new_cr3 = paging_new_cr3;
2520 context->page_fault = paging64_page_fault;
2521 context->gva_to_gpa = paging64_gva_to_gpa;
2522 context->prefetch_page = paging64_prefetch_page;
2523 context->sync_page = paging64_sync_page;
2524 context->invlpg = paging64_invlpg;
2525 context->free = paging_free;
2526 context->root_level = level;
2527 context->shadow_root_level = level;
2528 context->root_hpa = INVALID_PAGE;
2529 return 0;
2532 static int paging64_init_context(struct kvm_vcpu *vcpu)
2534 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2535 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2538 static int paging32_init_context(struct kvm_vcpu *vcpu)
2540 struct kvm_mmu *context = &vcpu->arch.mmu;
2542 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2543 context->new_cr3 = paging_new_cr3;
2544 context->page_fault = paging32_page_fault;
2545 context->gva_to_gpa = paging32_gva_to_gpa;
2546 context->free = paging_free;
2547 context->prefetch_page = paging32_prefetch_page;
2548 context->sync_page = paging32_sync_page;
2549 context->invlpg = paging32_invlpg;
2550 context->root_level = PT32_ROOT_LEVEL;
2551 context->shadow_root_level = PT32E_ROOT_LEVEL;
2552 context->root_hpa = INVALID_PAGE;
2553 return 0;
2556 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2558 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2559 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2562 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2564 struct kvm_mmu *context = &vcpu->arch.mmu;
2566 context->new_cr3 = nonpaging_new_cr3;
2567 context->page_fault = tdp_page_fault;
2568 context->free = nonpaging_free;
2569 context->prefetch_page = nonpaging_prefetch_page;
2570 context->sync_page = nonpaging_sync_page;
2571 context->invlpg = nonpaging_invlpg;
2572 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2573 context->root_hpa = INVALID_PAGE;
2575 if (!is_paging(vcpu)) {
2576 context->gva_to_gpa = nonpaging_gva_to_gpa;
2577 context->root_level = 0;
2578 } else if (is_long_mode(vcpu)) {
2579 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2580 context->gva_to_gpa = paging64_gva_to_gpa;
2581 context->root_level = PT64_ROOT_LEVEL;
2582 } else if (is_pae(vcpu)) {
2583 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2584 context->gva_to_gpa = paging64_gva_to_gpa;
2585 context->root_level = PT32E_ROOT_LEVEL;
2586 } else {
2587 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2588 context->gva_to_gpa = paging32_gva_to_gpa;
2589 context->root_level = PT32_ROOT_LEVEL;
2592 return 0;
2595 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2597 int r;
2599 ASSERT(vcpu);
2600 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2602 if (!is_paging(vcpu))
2603 r = nonpaging_init_context(vcpu);
2604 else if (is_long_mode(vcpu))
2605 r = paging64_init_context(vcpu);
2606 else if (is_pae(vcpu))
2607 r = paging32E_init_context(vcpu);
2608 else
2609 r = paging32_init_context(vcpu);
2611 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2612 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2614 return r;
2617 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2619 vcpu->arch.update_pte.pfn = bad_pfn;
2621 if (tdp_enabled)
2622 return init_kvm_tdp_mmu(vcpu);
2623 else
2624 return init_kvm_softmmu(vcpu);
2627 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2629 ASSERT(vcpu);
2630 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2631 /* mmu.free() should set root_hpa = INVALID_PAGE */
2632 vcpu->arch.mmu.free(vcpu);
2635 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2637 destroy_kvm_mmu(vcpu);
2638 return init_kvm_mmu(vcpu);
2640 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2642 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2644 int r;
2646 r = mmu_topup_memory_caches(vcpu);
2647 if (r)
2648 goto out;
2649 r = mmu_alloc_roots(vcpu);
2650 spin_lock(&vcpu->kvm->mmu_lock);
2651 mmu_sync_roots(vcpu);
2652 spin_unlock(&vcpu->kvm->mmu_lock);
2653 if (r)
2654 goto out;
2655 /* set_cr3() should ensure TLB has been flushed */
2656 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2657 out:
2658 return r;
2660 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2662 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2664 mmu_free_roots(vcpu);
2667 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2668 struct kvm_mmu_page *sp,
2669 u64 *spte)
2671 u64 pte;
2672 struct kvm_mmu_page *child;
2674 pte = *spte;
2675 if (is_shadow_present_pte(pte)) {
2676 if (is_last_spte(pte, sp->role.level))
2677 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2678 else {
2679 child = page_header(pte & PT64_BASE_ADDR_MASK);
2680 mmu_page_remove_parent_pte(child, spte);
2683 __set_spte(spte, shadow_trap_nonpresent_pte);
2684 if (is_large_pte(pte))
2685 --vcpu->kvm->stat.lpages;
2688 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2689 struct kvm_mmu_page *sp,
2690 u64 *spte,
2691 const void *new)
2693 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2694 ++vcpu->kvm->stat.mmu_pde_zapped;
2695 return;
2698 if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
2699 return;
2701 ++vcpu->kvm->stat.mmu_pte_updated;
2702 if (!sp->role.cr4_pae)
2703 paging32_update_pte(vcpu, sp, spte, new);
2704 else
2705 paging64_update_pte(vcpu, sp, spte, new);
2708 static bool need_remote_flush(u64 old, u64 new)
2710 if (!is_shadow_present_pte(old))
2711 return false;
2712 if (!is_shadow_present_pte(new))
2713 return true;
2714 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2715 return true;
2716 old ^= PT64_NX_MASK;
2717 new ^= PT64_NX_MASK;
2718 return (old & ~new & PT64_PERM_MASK) != 0;
2721 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
2722 bool remote_flush, bool local_flush)
2724 if (zap_page)
2725 return;
2727 if (remote_flush)
2728 kvm_flush_remote_tlbs(vcpu->kvm);
2729 else if (local_flush)
2730 kvm_mmu_flush_tlb(vcpu);
2733 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2735 u64 *spte = vcpu->arch.last_pte_updated;
2737 return !!(spte && (*spte & shadow_accessed_mask));
2740 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2741 u64 gpte)
2743 gfn_t gfn;
2744 pfn_t pfn;
2746 if (!is_present_gpte(gpte))
2747 return;
2748 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2750 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2751 smp_rmb();
2752 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2754 if (is_error_pfn(pfn)) {
2755 kvm_release_pfn_clean(pfn);
2756 return;
2758 vcpu->arch.update_pte.gfn = gfn;
2759 vcpu->arch.update_pte.pfn = pfn;
2762 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 u64 *spte = vcpu->arch.last_pte_updated;
2766 if (spte
2767 && vcpu->arch.last_pte_gfn == gfn
2768 && shadow_accessed_mask
2769 && !(*spte & shadow_accessed_mask)
2770 && is_shadow_present_pte(*spte))
2771 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2774 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2775 const u8 *new, int bytes,
2776 bool guest_initiated)
2778 gfn_t gfn = gpa >> PAGE_SHIFT;
2779 union kvm_mmu_page_role mask = { .word = 0 };
2780 struct kvm_mmu_page *sp;
2781 struct hlist_node *node;
2782 LIST_HEAD(invalid_list);
2783 u64 entry, gentry;
2784 u64 *spte;
2785 unsigned offset = offset_in_page(gpa);
2786 unsigned pte_size;
2787 unsigned page_offset;
2788 unsigned misaligned;
2789 unsigned quadrant;
2790 int level;
2791 int flooded = 0;
2792 int npte;
2793 int r;
2794 int invlpg_counter;
2795 bool remote_flush, local_flush, zap_page;
2797 zap_page = remote_flush = local_flush = false;
2799 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2801 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
2804 * Assume that the pte write on a page table of the same type
2805 * as the current vcpu paging mode. This is nearly always true
2806 * (might be false while changing modes). Note it is verified later
2807 * by update_pte().
2809 if ((is_pae(vcpu) && bytes == 4) || !new) {
2810 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2811 if (is_pae(vcpu)) {
2812 gpa &= ~(gpa_t)7;
2813 bytes = 8;
2815 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
2816 if (r)
2817 gentry = 0;
2818 new = (const u8 *)&gentry;
2821 switch (bytes) {
2822 case 4:
2823 gentry = *(const u32 *)new;
2824 break;
2825 case 8:
2826 gentry = *(const u64 *)new;
2827 break;
2828 default:
2829 gentry = 0;
2830 break;
2833 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
2834 spin_lock(&vcpu->kvm->mmu_lock);
2835 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
2836 gentry = 0;
2837 kvm_mmu_access_page(vcpu, gfn);
2838 kvm_mmu_free_some_pages(vcpu);
2839 ++vcpu->kvm->stat.mmu_pte_write;
2840 kvm_mmu_audit(vcpu, "pre pte write");
2841 if (guest_initiated) {
2842 if (gfn == vcpu->arch.last_pt_write_gfn
2843 && !last_updated_pte_accessed(vcpu)) {
2844 ++vcpu->arch.last_pt_write_count;
2845 if (vcpu->arch.last_pt_write_count >= 3)
2846 flooded = 1;
2847 } else {
2848 vcpu->arch.last_pt_write_gfn = gfn;
2849 vcpu->arch.last_pt_write_count = 1;
2850 vcpu->arch.last_pte_updated = NULL;
2854 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
2855 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
2856 pte_size = sp->role.cr4_pae ? 8 : 4;
2857 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2858 misaligned |= bytes < 4;
2859 if (misaligned || flooded) {
2861 * Misaligned accesses are too much trouble to fix
2862 * up; also, they usually indicate a page is not used
2863 * as a page table.
2865 * If we're seeing too many writes to a page,
2866 * it may no longer be a page table, or we may be
2867 * forking, in which case it is better to unmap the
2868 * page.
2870 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2871 gpa, bytes, sp->role.word);
2872 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2873 &invalid_list);
2874 ++vcpu->kvm->stat.mmu_flooded;
2875 continue;
2877 page_offset = offset;
2878 level = sp->role.level;
2879 npte = 1;
2880 if (!sp->role.cr4_pae) {
2881 page_offset <<= 1; /* 32->64 */
2883 * A 32-bit pde maps 4MB while the shadow pdes map
2884 * only 2MB. So we need to double the offset again
2885 * and zap two pdes instead of one.
2887 if (level == PT32_ROOT_LEVEL) {
2888 page_offset &= ~7; /* kill rounding error */
2889 page_offset <<= 1;
2890 npte = 2;
2892 quadrant = page_offset >> PAGE_SHIFT;
2893 page_offset &= ~PAGE_MASK;
2894 if (quadrant != sp->role.quadrant)
2895 continue;
2897 local_flush = true;
2898 spte = &sp->spt[page_offset / sizeof(*spte)];
2899 while (npte--) {
2900 entry = *spte;
2901 mmu_pte_write_zap_pte(vcpu, sp, spte);
2902 if (gentry &&
2903 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
2904 & mask.word))
2905 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
2906 if (!remote_flush && need_remote_flush(entry, *spte))
2907 remote_flush = true;
2908 ++spte;
2911 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
2912 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2913 kvm_mmu_audit(vcpu, "post pte write");
2914 spin_unlock(&vcpu->kvm->mmu_lock);
2915 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2916 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2917 vcpu->arch.update_pte.pfn = bad_pfn;
2921 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2923 gpa_t gpa;
2924 int r;
2926 if (tdp_enabled)
2927 return 0;
2929 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2931 spin_lock(&vcpu->kvm->mmu_lock);
2932 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2933 spin_unlock(&vcpu->kvm->mmu_lock);
2934 return r;
2936 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2938 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2940 int free_pages;
2941 LIST_HEAD(invalid_list);
2943 free_pages = vcpu->kvm->arch.n_free_mmu_pages;
2944 while (free_pages < KVM_REFILL_PAGES &&
2945 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2946 struct kvm_mmu_page *sp;
2948 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2949 struct kvm_mmu_page, link);
2950 free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2951 &invalid_list);
2952 ++vcpu->kvm->stat.mmu_recycled;
2954 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2957 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2959 int r;
2960 enum emulation_result er;
2962 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2963 if (r < 0)
2964 goto out;
2966 if (!r) {
2967 r = 1;
2968 goto out;
2971 r = mmu_topup_memory_caches(vcpu);
2972 if (r)
2973 goto out;
2975 er = emulate_instruction(vcpu, cr2, error_code, 0);
2977 switch (er) {
2978 case EMULATE_DONE:
2979 return 1;
2980 case EMULATE_DO_MMIO:
2981 ++vcpu->stat.mmio_exits;
2982 /* fall through */
2983 case EMULATE_FAIL:
2984 return 0;
2985 default:
2986 BUG();
2988 out:
2989 return r;
2991 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2993 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2995 vcpu->arch.mmu.invlpg(vcpu, gva);
2996 kvm_mmu_flush_tlb(vcpu);
2997 ++vcpu->stat.invlpg;
2999 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3001 void kvm_enable_tdp(void)
3003 tdp_enabled = true;
3005 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3007 void kvm_disable_tdp(void)
3009 tdp_enabled = false;
3011 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3013 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3015 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3018 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3020 struct page *page;
3021 int i;
3023 ASSERT(vcpu);
3026 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3027 * Therefore we need to allocate shadow page tables in the first
3028 * 4GB of memory, which happens to fit the DMA32 zone.
3030 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3031 if (!page)
3032 return -ENOMEM;
3034 vcpu->arch.mmu.pae_root = page_address(page);
3035 for (i = 0; i < 4; ++i)
3036 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3038 return 0;
3041 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3043 ASSERT(vcpu);
3044 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3046 return alloc_mmu_pages(vcpu);
3049 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3051 ASSERT(vcpu);
3052 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3054 return init_kvm_mmu(vcpu);
3057 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3059 ASSERT(vcpu);
3061 destroy_kvm_mmu(vcpu);
3062 free_mmu_pages(vcpu);
3063 mmu_free_memory_caches(vcpu);
3066 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3068 struct kvm_mmu_page *sp;
3070 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3071 int i;
3072 u64 *pt;
3074 if (!test_bit(slot, sp->slot_bitmap))
3075 continue;
3077 pt = sp->spt;
3078 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3079 /* avoid RMW */
3080 if (is_writable_pte(pt[i]))
3081 pt[i] &= ~PT_WRITABLE_MASK;
3083 kvm_flush_remote_tlbs(kvm);
3086 void kvm_mmu_zap_all(struct kvm *kvm)
3088 struct kvm_mmu_page *sp, *node;
3089 LIST_HEAD(invalid_list);
3091 spin_lock(&kvm->mmu_lock);
3092 restart:
3093 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3094 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3095 goto restart;
3097 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3098 spin_unlock(&kvm->mmu_lock);
3101 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3102 struct list_head *invalid_list)
3104 struct kvm_mmu_page *page;
3106 page = container_of(kvm->arch.active_mmu_pages.prev,
3107 struct kvm_mmu_page, link);
3108 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3111 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3113 struct kvm *kvm;
3114 struct kvm *kvm_freed = NULL;
3115 int cache_count = 0;
3117 spin_lock(&kvm_lock);
3119 list_for_each_entry(kvm, &vm_list, vm_list) {
3120 int npages, idx, freed_pages;
3121 LIST_HEAD(invalid_list);
3123 idx = srcu_read_lock(&kvm->srcu);
3124 spin_lock(&kvm->mmu_lock);
3125 npages = kvm->arch.n_alloc_mmu_pages -
3126 kvm->arch.n_free_mmu_pages;
3127 cache_count += npages;
3128 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
3129 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3130 &invalid_list);
3131 cache_count -= freed_pages;
3132 kvm_freed = kvm;
3134 nr_to_scan--;
3136 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3137 spin_unlock(&kvm->mmu_lock);
3138 srcu_read_unlock(&kvm->srcu, idx);
3140 if (kvm_freed)
3141 list_move_tail(&kvm_freed->vm_list, &vm_list);
3143 spin_unlock(&kvm_lock);
3145 return cache_count;
3148 static struct shrinker mmu_shrinker = {
3149 .shrink = mmu_shrink,
3150 .seeks = DEFAULT_SEEKS * 10,
3153 static void mmu_destroy_caches(void)
3155 if (pte_chain_cache)
3156 kmem_cache_destroy(pte_chain_cache);
3157 if (rmap_desc_cache)
3158 kmem_cache_destroy(rmap_desc_cache);
3159 if (mmu_page_header_cache)
3160 kmem_cache_destroy(mmu_page_header_cache);
3163 void kvm_mmu_module_exit(void)
3165 mmu_destroy_caches();
3166 unregister_shrinker(&mmu_shrinker);
3169 int kvm_mmu_module_init(void)
3171 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3172 sizeof(struct kvm_pte_chain),
3173 0, 0, NULL);
3174 if (!pte_chain_cache)
3175 goto nomem;
3176 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3177 sizeof(struct kvm_rmap_desc),
3178 0, 0, NULL);
3179 if (!rmap_desc_cache)
3180 goto nomem;
3182 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3183 sizeof(struct kvm_mmu_page),
3184 0, 0, NULL);
3185 if (!mmu_page_header_cache)
3186 goto nomem;
3188 register_shrinker(&mmu_shrinker);
3190 return 0;
3192 nomem:
3193 mmu_destroy_caches();
3194 return -ENOMEM;
3198 * Caculate mmu pages needed for kvm.
3200 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3202 int i;
3203 unsigned int nr_mmu_pages;
3204 unsigned int nr_pages = 0;
3205 struct kvm_memslots *slots;
3207 slots = kvm_memslots(kvm);
3209 for (i = 0; i < slots->nmemslots; i++)
3210 nr_pages += slots->memslots[i].npages;
3212 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3213 nr_mmu_pages = max(nr_mmu_pages,
3214 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3216 return nr_mmu_pages;
3219 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3220 unsigned len)
3222 if (len > buffer->len)
3223 return NULL;
3224 return buffer->ptr;
3227 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3228 unsigned len)
3230 void *ret;
3232 ret = pv_mmu_peek_buffer(buffer, len);
3233 if (!ret)
3234 return ret;
3235 buffer->ptr += len;
3236 buffer->len -= len;
3237 buffer->processed += len;
3238 return ret;
3241 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3242 gpa_t addr, gpa_t value)
3244 int bytes = 8;
3245 int r;
3247 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3248 bytes = 4;
3250 r = mmu_topup_memory_caches(vcpu);
3251 if (r)
3252 return r;
3254 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3255 return -EFAULT;
3257 return 1;
3260 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3262 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3263 return 1;
3266 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3268 spin_lock(&vcpu->kvm->mmu_lock);
3269 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3270 spin_unlock(&vcpu->kvm->mmu_lock);
3271 return 1;
3274 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3275 struct kvm_pv_mmu_op_buffer *buffer)
3277 struct kvm_mmu_op_header *header;
3279 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3280 if (!header)
3281 return 0;
3282 switch (header->op) {
3283 case KVM_MMU_OP_WRITE_PTE: {
3284 struct kvm_mmu_op_write_pte *wpte;
3286 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3287 if (!wpte)
3288 return 0;
3289 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3290 wpte->pte_val);
3292 case KVM_MMU_OP_FLUSH_TLB: {
3293 struct kvm_mmu_op_flush_tlb *ftlb;
3295 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3296 if (!ftlb)
3297 return 0;
3298 return kvm_pv_mmu_flush_tlb(vcpu);
3300 case KVM_MMU_OP_RELEASE_PT: {
3301 struct kvm_mmu_op_release_pt *rpt;
3303 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3304 if (!rpt)
3305 return 0;
3306 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3308 default: return 0;
3312 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3313 gpa_t addr, unsigned long *ret)
3315 int r;
3316 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3318 buffer->ptr = buffer->buf;
3319 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3320 buffer->processed = 0;
3322 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3323 if (r)
3324 goto out;
3326 while (buffer->len) {
3327 r = kvm_pv_mmu_op_one(vcpu, buffer);
3328 if (r < 0)
3329 goto out;
3330 if (r == 0)
3331 break;
3334 r = 1;
3335 out:
3336 *ret = buffer->processed;
3337 return r;
3340 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3342 struct kvm_shadow_walk_iterator iterator;
3343 int nr_sptes = 0;
3345 spin_lock(&vcpu->kvm->mmu_lock);
3346 for_each_shadow_entry(vcpu, addr, iterator) {
3347 sptes[iterator.level-1] = *iterator.sptep;
3348 nr_sptes++;
3349 if (!is_shadow_present_pte(*iterator.sptep))
3350 break;
3352 spin_unlock(&vcpu->kvm->mmu_lock);
3354 return nr_sptes;
3356 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3358 #ifdef AUDIT
3360 static const char *audit_msg;
3362 static gva_t canonicalize(gva_t gva)
3364 #ifdef CONFIG_X86_64
3365 gva = (long long)(gva << 16) >> 16;
3366 #endif
3367 return gva;
3371 typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
3373 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3374 inspect_spte_fn fn)
3376 int i;
3378 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3379 u64 ent = sp->spt[i];
3381 if (is_shadow_present_pte(ent)) {
3382 if (!is_last_spte(ent, sp->role.level)) {
3383 struct kvm_mmu_page *child;
3384 child = page_header(ent & PT64_BASE_ADDR_MASK);
3385 __mmu_spte_walk(kvm, child, fn);
3386 } else
3387 fn(kvm, &sp->spt[i]);
3392 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3394 int i;
3395 struct kvm_mmu_page *sp;
3397 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3398 return;
3399 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3400 hpa_t root = vcpu->arch.mmu.root_hpa;
3401 sp = page_header(root);
3402 __mmu_spte_walk(vcpu->kvm, sp, fn);
3403 return;
3405 for (i = 0; i < 4; ++i) {
3406 hpa_t root = vcpu->arch.mmu.pae_root[i];
3408 if (root && VALID_PAGE(root)) {
3409 root &= PT64_BASE_ADDR_MASK;
3410 sp = page_header(root);
3411 __mmu_spte_walk(vcpu->kvm, sp, fn);
3414 return;
3417 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3418 gva_t va, int level)
3420 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3421 int i;
3422 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3424 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3425 u64 ent = pt[i];
3427 if (ent == shadow_trap_nonpresent_pte)
3428 continue;
3430 va = canonicalize(va);
3431 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3432 audit_mappings_page(vcpu, ent, va, level - 1);
3433 else {
3434 gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
3435 gfn_t gfn = gpa >> PAGE_SHIFT;
3436 pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3437 hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3439 if (is_error_pfn(pfn)) {
3440 kvm_release_pfn_clean(pfn);
3441 continue;
3444 if (is_shadow_present_pte(ent)
3445 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3446 printk(KERN_ERR "xx audit error: (%s) levels %d"
3447 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3448 audit_msg, vcpu->arch.mmu.root_level,
3449 va, gpa, hpa, ent,
3450 is_shadow_present_pte(ent));
3451 else if (ent == shadow_notrap_nonpresent_pte
3452 && !is_error_hpa(hpa))
3453 printk(KERN_ERR "audit: (%s) notrap shadow,"
3454 " valid guest gva %lx\n", audit_msg, va);
3455 kvm_release_pfn_clean(pfn);
3461 static void audit_mappings(struct kvm_vcpu *vcpu)
3463 unsigned i;
3465 if (vcpu->arch.mmu.root_level == 4)
3466 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3467 else
3468 for (i = 0; i < 4; ++i)
3469 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3470 audit_mappings_page(vcpu,
3471 vcpu->arch.mmu.pae_root[i],
3472 i << 30,
3476 static int count_rmaps(struct kvm_vcpu *vcpu)
3478 struct kvm *kvm = vcpu->kvm;
3479 struct kvm_memslots *slots;
3480 int nmaps = 0;
3481 int i, j, k, idx;
3483 idx = srcu_read_lock(&kvm->srcu);
3484 slots = kvm_memslots(kvm);
3485 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3486 struct kvm_memory_slot *m = &slots->memslots[i];
3487 struct kvm_rmap_desc *d;
3489 for (j = 0; j < m->npages; ++j) {
3490 unsigned long *rmapp = &m->rmap[j];
3492 if (!*rmapp)
3493 continue;
3494 if (!(*rmapp & 1)) {
3495 ++nmaps;
3496 continue;
3498 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3499 while (d) {
3500 for (k = 0; k < RMAP_EXT; ++k)
3501 if (d->sptes[k])
3502 ++nmaps;
3503 else
3504 break;
3505 d = d->more;
3509 srcu_read_unlock(&kvm->srcu, idx);
3510 return nmaps;
3513 void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
3515 unsigned long *rmapp;
3516 struct kvm_mmu_page *rev_sp;
3517 gfn_t gfn;
3519 if (is_writable_pte(*sptep)) {
3520 rev_sp = page_header(__pa(sptep));
3521 gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
3523 if (!gfn_to_memslot(kvm, gfn)) {
3524 if (!printk_ratelimit())
3525 return;
3526 printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3527 audit_msg, gfn);
3528 printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3529 audit_msg, (long int)(sptep - rev_sp->spt),
3530 rev_sp->gfn);
3531 dump_stack();
3532 return;
3535 rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
3536 if (!*rmapp) {
3537 if (!printk_ratelimit())
3538 return;
3539 printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3540 audit_msg, *sptep);
3541 dump_stack();
3547 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3549 mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3552 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3554 struct kvm_mmu_page *sp;
3555 int i;
3557 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3558 u64 *pt = sp->spt;
3560 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3561 continue;
3563 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3564 u64 ent = pt[i];
3566 if (!(ent & PT_PRESENT_MASK))
3567 continue;
3568 if (!is_writable_pte(ent))
3569 continue;
3570 inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
3573 return;
3576 static void audit_rmap(struct kvm_vcpu *vcpu)
3578 check_writable_mappings_rmap(vcpu);
3579 count_rmaps(vcpu);
3582 static void audit_write_protection(struct kvm_vcpu *vcpu)
3584 struct kvm_mmu_page *sp;
3585 struct kvm_memory_slot *slot;
3586 unsigned long *rmapp;
3587 u64 *spte;
3588 gfn_t gfn;
3590 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3591 if (sp->role.direct)
3592 continue;
3593 if (sp->unsync)
3594 continue;
3596 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
3597 rmapp = &slot->rmap[gfn - slot->base_gfn];
3599 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3600 while (spte) {
3601 if (is_writable_pte(*spte))
3602 printk(KERN_ERR "%s: (%s) shadow page has "
3603 "writable mappings: gfn %lx role %x\n",
3604 __func__, audit_msg, sp->gfn,
3605 sp->role.word);
3606 spte = rmap_next(vcpu->kvm, rmapp, spte);
3611 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3613 int olddbg = dbg;
3615 dbg = 0;
3616 audit_msg = msg;
3617 audit_rmap(vcpu);
3618 audit_write_protection(vcpu);
3619 if (strcmp("pre pte write", audit_msg) != 0)
3620 audit_mappings(vcpu);
3621 audit_writable_sptes_have_rmaps(vcpu);
3622 dbg = olddbg;
3625 #endif