2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex
);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
83 struct cgroupfs_root
{
84 struct super_block
*sb
;
87 * The bitmask of subsystems intended to be attached to this
90 unsigned long subsys_bits
;
92 /* Unique id for this hierarchy. */
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits
;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list
;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup
;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups
;
107 /* A list running through the active hierarchies */
108 struct list_head root_list
;
110 /* Hierarchy-specific flags */
113 /* The path to use for release notifications. */
114 char release_agent_path
[PATH_MAX
];
116 /* The name for this hierarchy - may be empty */
117 char name
[MAX_CGROUP_ROOT_NAMELEN
];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode
;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu
*css
;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth
;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head
;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack
[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to receive.
162 struct cgroup_event
{
164 * Cgroup which the event belongs to.
168 * Control file which the event associated.
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx
*eventfd
;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list
;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
184 wait_queue_head_t
*wqh
;
186 struct work_struct remove
;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots
);
192 static int root_count
;
194 static DEFINE_IDA(hierarchy_ida
);
195 static int next_hierarchy_id
;
196 static DEFINE_SPINLOCK(hierarchy_id_lock
);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
206 static int need_forkexit_callback __read_mostly
;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex
);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex
);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
225 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
228 /* bits in struct cgroupfs_root flags field */
230 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
236 (1 << CGRP_RELEASABLE
) |
237 (1 << CGRP_NOTIFY_ON_RELEASE
);
238 return (cgrp
->flags
& bits
) == bits
;
241 static int notify_on_release(const struct cgroup
*cgrp
)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
246 static int clone_children(const struct cgroup
*cgrp
)
248 return test_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list
);
265 static DEFINE_SPINLOCK(release_list_lock
);
266 static void cgroup_release_agent(struct work_struct
*work
);
267 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
268 static void check_for_release(struct cgroup
*cgrp
);
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link
{
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
276 struct list_head cgrp_link_list
;
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
282 struct list_head cg_link_list
;
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
293 static struct css_set init_css_set
;
294 static struct cg_cgroup_link init_css_set_link
;
296 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
297 struct cgroup_subsys_state
*css
);
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock
);
303 static int css_set_count
;
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
314 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
318 unsigned long tmp
= 0UL;
320 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
321 tmp
+= (unsigned long)css
[i
];
322 tmp
= (tmp
>> 16) ^ tmp
;
324 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
326 return &css_set_table
[index
];
329 static void free_css_set_rcu(struct rcu_head
*obj
)
331 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly
;
341 static void __put_css_set(struct css_set
*cg
, int taskexit
)
343 struct cg_cgroup_link
*link
;
344 struct cg_cgroup_link
*saved_link
;
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
350 if (atomic_add_unless(&cg
->refcount
, -1, 1))
352 write_lock(&css_set_lock
);
353 if (!atomic_dec_and_test(&cg
->refcount
)) {
354 write_unlock(&css_set_lock
);
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg
->hlist
);
362 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
364 struct cgroup
*cgrp
= link
->cgrp
;
365 list_del(&link
->cg_link_list
);
366 list_del(&link
->cgrp_link_list
);
367 if (atomic_dec_and_test(&cgrp
->count
) &&
368 notify_on_release(cgrp
)) {
370 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
371 check_for_release(cgrp
);
377 write_unlock(&css_set_lock
);
378 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
382 * refcounted get/put for css_set objects
384 static inline void get_css_set(struct css_set
*cg
)
386 atomic_inc(&cg
->refcount
);
389 static inline void put_css_set(struct css_set
*cg
)
391 __put_css_set(cg
, 0);
394 static inline void put_css_set_taskexit(struct css_set
*cg
)
396 __put_css_set(cg
, 1);
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
409 static bool compare_css_sets(struct css_set
*cg
,
410 struct css_set
*old_cg
,
411 struct cgroup
*new_cgrp
,
412 struct cgroup_subsys_state
*template[])
414 struct list_head
*l1
, *l2
;
416 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
417 /* Not all subsystems matched */
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
431 l2
= &old_cg
->cg_links
;
433 struct cg_cgroup_link
*cgl1
, *cgl2
;
434 struct cgroup
*cg1
, *cg2
;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1
== &cg
->cg_links
) {
440 BUG_ON(l2
!= &old_cg
->cg_links
);
443 BUG_ON(l2
== &old_cg
->cg_links
);
445 /* Locate the cgroups associated with these links. */
446 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
447 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1
->root
!= cg2
->root
);
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
460 if (cg1
->root
== new_cgrp
->root
) {
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
476 * oldcg: the cgroup group that we're using before the cgroup
479 * cgrp: the cgroup that we're moving into
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
484 static struct css_set
*find_existing_css_set(
485 struct css_set
*oldcg
,
487 struct cgroup_subsys_state
*template[])
490 struct cgroupfs_root
*root
= cgrp
->root
;
491 struct hlist_head
*hhead
;
492 struct hlist_node
*node
;
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
500 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
501 if (root
->subsys_bits
& (1UL << i
)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
505 template[i
] = cgrp
->subsys
[i
];
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i
] = oldcg
->subsys
[i
];
513 hhead
= css_set_hash(template);
514 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
515 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
518 /* This css_set matches what we need */
522 /* No existing cgroup group matched */
526 static void free_cg_links(struct list_head
*tmp
)
528 struct cg_cgroup_link
*link
;
529 struct cg_cgroup_link
*saved_link
;
531 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
532 list_del(&link
->cgrp_link_list
);
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
542 static int allocate_cg_links(int count
, struct list_head
*tmp
)
544 struct cg_cgroup_link
*link
;
547 for (i
= 0; i
< count
; i
++) {
548 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
553 list_add(&link
->cgrp_link_list
, tmp
);
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
564 static void link_css_set(struct list_head
*tmp_cg_links
,
565 struct css_set
*cg
, struct cgroup
*cgrp
)
567 struct cg_cgroup_link
*link
;
569 BUG_ON(list_empty(tmp_cg_links
));
570 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
574 atomic_inc(&cgrp
->count
);
575 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
580 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
590 static struct css_set
*find_css_set(
591 struct css_set
*oldcg
, struct cgroup
*cgrp
)
594 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
596 struct list_head tmp_cg_links
;
598 struct hlist_head
*hhead
;
599 struct cg_cgroup_link
*link
;
601 /* First see if we already have a cgroup group that matches
603 read_lock(&css_set_lock
);
604 res
= find_existing_css_set(oldcg
, cgrp
, template);
607 read_unlock(&css_set_lock
);
612 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
622 atomic_set(&res
->refcount
, 1);
623 INIT_LIST_HEAD(&res
->cg_links
);
624 INIT_LIST_HEAD(&res
->tasks
);
625 INIT_HLIST_NODE(&res
->hlist
);
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
631 write_lock(&css_set_lock
);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
634 struct cgroup
*c
= link
->cgrp
;
635 if (c
->root
== cgrp
->root
)
637 link_css_set(&tmp_cg_links
, res
, c
);
640 BUG_ON(!list_empty(&tmp_cg_links
));
644 /* Add this cgroup group to the hash table */
645 hhead
= css_set_hash(res
->subsys
);
646 hlist_add_head(&res
->hlist
, hhead
);
648 write_unlock(&css_set_lock
);
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
657 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
658 struct cgroupfs_root
*root
)
661 struct cgroup
*res
= NULL
;
663 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
664 read_lock(&css_set_lock
);
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
671 if (css
== &init_css_set
) {
672 res
= &root
->top_cgroup
;
674 struct cg_cgroup_link
*link
;
675 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
676 struct cgroup
*c
= link
->cgrp
;
677 if (c
->root
== root
) {
683 read_unlock(&css_set_lock
);
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
693 * A task must hold cgroup_mutex to modify cgroups.
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
722 * The task_lock() exception
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
739 * cgroup_lock - lock out any changes to cgroup structures
742 void cgroup_lock(void)
744 mutex_lock(&cgroup_mutex
);
746 EXPORT_SYMBOL_GPL(cgroup_lock
);
749 * cgroup_unlock - release lock on cgroup changes
751 * Undo the lock taken in a previous cgroup_lock() call.
753 void cgroup_unlock(void)
755 mutex_unlock(&cgroup_mutex
);
757 EXPORT_SYMBOL_GPL(cgroup_unlock
);
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
766 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
767 static struct dentry
*cgroup_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
768 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
769 static int cgroup_populate_dir(struct cgroup
*cgrp
);
770 static const struct inode_operations cgroup_dir_inode_operations
;
771 static const struct file_operations proc_cgroupstats_operations
;
773 static struct backing_dev_info cgroup_backing_dev_info
= {
775 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
778 static int alloc_css_id(struct cgroup_subsys
*ss
,
779 struct cgroup
*parent
, struct cgroup
*child
);
781 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
783 struct inode
*inode
= new_inode(sb
);
786 inode
->i_ino
= get_next_ino();
787 inode
->i_mode
= mode
;
788 inode
->i_uid
= current_fsuid();
789 inode
->i_gid
= current_fsgid();
790 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
791 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
797 * Call subsys's pre_destroy handler.
798 * This is called before css refcnt check.
800 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
802 struct cgroup_subsys
*ss
;
805 for_each_subsys(cgrp
->root
, ss
)
806 if (ss
->pre_destroy
) {
807 ret
= ss
->pre_destroy(ss
, cgrp
);
815 static void free_cgroup_rcu(struct rcu_head
*obj
)
817 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
822 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
824 /* is dentry a directory ? if so, kfree() associated cgroup */
825 if (S_ISDIR(inode
->i_mode
)) {
826 struct cgroup
*cgrp
= dentry
->d_fsdata
;
827 struct cgroup_subsys
*ss
;
828 BUG_ON(!(cgroup_is_removed(cgrp
)));
829 /* It's possible for external users to be holding css
830 * reference counts on a cgroup; css_put() needs to
831 * be able to access the cgroup after decrementing
832 * the reference count in order to know if it needs to
833 * queue the cgroup to be handled by the release
837 mutex_lock(&cgroup_mutex
);
839 * Release the subsystem state objects.
841 for_each_subsys(cgrp
->root
, ss
)
842 ss
->destroy(ss
, cgrp
);
844 cgrp
->root
->number_of_cgroups
--;
845 mutex_unlock(&cgroup_mutex
);
848 * Drop the active superblock reference that we took when we
851 deactivate_super(cgrp
->root
->sb
);
854 * if we're getting rid of the cgroup, refcount should ensure
855 * that there are no pidlists left.
857 BUG_ON(!list_empty(&cgrp
->pidlists
));
859 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
864 static int cgroup_delete(const struct dentry
*d
)
869 static void remove_dir(struct dentry
*d
)
871 struct dentry
*parent
= dget(d
->d_parent
);
874 simple_rmdir(parent
->d_inode
, d
);
878 static void cgroup_clear_directory(struct dentry
*dentry
)
880 struct list_head
*node
;
882 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
883 spin_lock(&dentry
->d_lock
);
884 node
= dentry
->d_subdirs
.next
;
885 while (node
!= &dentry
->d_subdirs
) {
886 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
888 spin_lock_nested(&d
->d_lock
, DENTRY_D_LOCK_NESTED
);
891 /* This should never be called on a cgroup
892 * directory with child cgroups */
893 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
895 spin_unlock(&d
->d_lock
);
896 spin_unlock(&dentry
->d_lock
);
898 simple_unlink(dentry
->d_inode
, d
);
900 spin_lock(&dentry
->d_lock
);
902 spin_unlock(&d
->d_lock
);
903 node
= dentry
->d_subdirs
.next
;
905 spin_unlock(&dentry
->d_lock
);
909 * NOTE : the dentry must have been dget()'ed
911 static void cgroup_d_remove_dir(struct dentry
*dentry
)
913 struct dentry
*parent
;
915 cgroup_clear_directory(dentry
);
917 parent
= dentry
->d_parent
;
918 spin_lock(&parent
->d_lock
);
919 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
920 list_del_init(&dentry
->d_u
.d_child
);
921 spin_unlock(&dentry
->d_lock
);
922 spin_unlock(&parent
->d_lock
);
927 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
928 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
929 * reference to css->refcnt. In general, this refcnt is expected to goes down
932 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
934 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
936 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
938 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
939 wake_up_all(&cgroup_rmdir_waitq
);
942 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
947 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
949 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
954 * Call with cgroup_mutex held. Drops reference counts on modules, including
955 * any duplicate ones that parse_cgroupfs_options took. If this function
956 * returns an error, no reference counts are touched.
958 static int rebind_subsystems(struct cgroupfs_root
*root
,
959 unsigned long final_bits
)
961 unsigned long added_bits
, removed_bits
;
962 struct cgroup
*cgrp
= &root
->top_cgroup
;
965 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
967 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
968 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
969 /* Check that any added subsystems are currently free */
970 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
971 unsigned long bit
= 1UL << i
;
972 struct cgroup_subsys
*ss
= subsys
[i
];
973 if (!(bit
& added_bits
))
976 * Nobody should tell us to do a subsys that doesn't exist:
977 * parse_cgroupfs_options should catch that case and refcounts
978 * ensure that subsystems won't disappear once selected.
981 if (ss
->root
!= &rootnode
) {
982 /* Subsystem isn't free */
987 /* Currently we don't handle adding/removing subsystems when
988 * any child cgroups exist. This is theoretically supportable
989 * but involves complex error handling, so it's being left until
991 if (root
->number_of_cgroups
> 1)
994 /* Process each subsystem */
995 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
996 struct cgroup_subsys
*ss
= subsys
[i
];
997 unsigned long bit
= 1UL << i
;
998 if (bit
& added_bits
) {
999 /* We're binding this subsystem to this hierarchy */
1001 BUG_ON(cgrp
->subsys
[i
]);
1002 BUG_ON(!dummytop
->subsys
[i
]);
1003 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
1004 mutex_lock(&ss
->hierarchy_mutex
);
1005 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
1006 cgrp
->subsys
[i
]->cgroup
= cgrp
;
1007 list_move(&ss
->sibling
, &root
->subsys_list
);
1011 mutex_unlock(&ss
->hierarchy_mutex
);
1012 /* refcount was already taken, and we're keeping it */
1013 } else if (bit
& removed_bits
) {
1014 /* We're removing this subsystem */
1016 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1017 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1018 mutex_lock(&ss
->hierarchy_mutex
);
1020 ss
->bind(ss
, dummytop
);
1021 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1022 cgrp
->subsys
[i
] = NULL
;
1023 subsys
[i
]->root
= &rootnode
;
1024 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1025 mutex_unlock(&ss
->hierarchy_mutex
);
1026 /* subsystem is now free - drop reference on module */
1027 module_put(ss
->module
);
1028 } else if (bit
& final_bits
) {
1029 /* Subsystem state should already exist */
1031 BUG_ON(!cgrp
->subsys
[i
]);
1033 * a refcount was taken, but we already had one, so
1034 * drop the extra reference.
1036 module_put(ss
->module
);
1037 #ifdef CONFIG_MODULE_UNLOAD
1038 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1041 /* Subsystem state shouldn't exist */
1042 BUG_ON(cgrp
->subsys
[i
]);
1045 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1051 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1053 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1054 struct cgroup_subsys
*ss
;
1056 mutex_lock(&cgroup_mutex
);
1057 for_each_subsys(root
, ss
)
1058 seq_printf(seq
, ",%s", ss
->name
);
1059 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1060 seq_puts(seq
, ",noprefix");
1061 if (strlen(root
->release_agent_path
))
1062 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1063 if (clone_children(&root
->top_cgroup
))
1064 seq_puts(seq
, ",clone_children");
1065 if (strlen(root
->name
))
1066 seq_printf(seq
, ",name=%s", root
->name
);
1067 mutex_unlock(&cgroup_mutex
);
1071 struct cgroup_sb_opts
{
1072 unsigned long subsys_bits
;
1073 unsigned long flags
;
1074 char *release_agent
;
1075 bool clone_children
;
1077 /* User explicitly requested empty subsystem */
1080 struct cgroupfs_root
*new_root
;
1085 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1086 * with cgroup_mutex held to protect the subsys[] array. This function takes
1087 * refcounts on subsystems to be used, unless it returns error, in which case
1088 * no refcounts are taken.
1090 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1092 char *token
, *o
= data
;
1093 bool all_ss
= false, one_ss
= false;
1094 unsigned long mask
= (unsigned long)-1;
1096 bool module_pin_failed
= false;
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1100 #ifdef CONFIG_CPUSETS
1101 mask
= ~(1UL << cpuset_subsys_id
);
1104 memset(opts
, 0, sizeof(*opts
));
1106 while ((token
= strsep(&o
, ",")) != NULL
) {
1109 if (!strcmp(token
, "none")) {
1110 /* Explicitly have no subsystems */
1114 if (!strcmp(token
, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1121 if (!strcmp(token
, "noprefix")) {
1122 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1125 if (!strcmp(token
, "clone_children")) {
1126 opts
->clone_children
= true;
1129 if (!strncmp(token
, "release_agent=", 14)) {
1130 /* Specifying two release agents is forbidden */
1131 if (opts
->release_agent
)
1133 opts
->release_agent
=
1134 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1135 if (!opts
->release_agent
)
1139 if (!strncmp(token
, "name=", 5)) {
1140 const char *name
= token
+ 5;
1141 /* Can't specify an empty name */
1144 /* Must match [\w.-]+ */
1145 for (i
= 0; i
< strlen(name
); i
++) {
1149 if ((c
== '.') || (c
== '-') || (c
== '_'))
1153 /* Specifying two names is forbidden */
1156 opts
->name
= kstrndup(name
,
1157 MAX_CGROUP_ROOT_NAMELEN
- 1,
1165 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1166 struct cgroup_subsys
*ss
= subsys
[i
];
1169 if (strcmp(token
, ss
->name
))
1174 /* Mutually exclusive option 'all' + subsystem name */
1177 set_bit(i
, &opts
->subsys_bits
);
1182 if (i
== CGROUP_SUBSYS_COUNT
)
1187 * If the 'all' option was specified select all the subsystems,
1188 * otherwise 'all, 'none' and a subsystem name options were not
1189 * specified, let's default to 'all'
1191 if (all_ss
|| (!all_ss
&& !one_ss
&& !opts
->none
)) {
1192 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1193 struct cgroup_subsys
*ss
= subsys
[i
];
1198 set_bit(i
, &opts
->subsys_bits
);
1202 /* Consistency checks */
1205 * Option noprefix was introduced just for backward compatibility
1206 * with the old cpuset, so we allow noprefix only if mounting just
1207 * the cpuset subsystem.
1209 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1210 (opts
->subsys_bits
& mask
))
1214 /* Can't specify "none" and some subsystems */
1215 if (opts
->subsys_bits
&& opts
->none
)
1219 * We either have to specify by name or by subsystems. (So all
1220 * empty hierarchies must have a name).
1222 if (!opts
->subsys_bits
&& !opts
->name
)
1226 * Grab references on all the modules we'll need, so the subsystems
1227 * don't dance around before rebind_subsystems attaches them. This may
1228 * take duplicate reference counts on a subsystem that's already used,
1229 * but rebind_subsystems handles this case.
1231 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1232 unsigned long bit
= 1UL << i
;
1234 if (!(bit
& opts
->subsys_bits
))
1236 if (!try_module_get(subsys
[i
]->module
)) {
1237 module_pin_failed
= true;
1241 if (module_pin_failed
) {
1243 * oops, one of the modules was going away. this means that we
1244 * raced with a module_delete call, and to the user this is
1245 * essentially a "subsystem doesn't exist" case.
1247 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1248 /* drop refcounts only on the ones we took */
1249 unsigned long bit
= 1UL << i
;
1251 if (!(bit
& opts
->subsys_bits
))
1253 module_put(subsys
[i
]->module
);
1261 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1264 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1265 unsigned long bit
= 1UL << i
;
1267 if (!(bit
& subsys_bits
))
1269 module_put(subsys
[i
]->module
);
1273 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1276 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1277 struct cgroup
*cgrp
= &root
->top_cgroup
;
1278 struct cgroup_sb_opts opts
;
1280 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1281 mutex_lock(&cgroup_mutex
);
1283 /* See what subsystems are wanted */
1284 ret
= parse_cgroupfs_options(data
, &opts
);
1288 /* Don't allow flags or name to change at remount */
1289 if (opts
.flags
!= root
->flags
||
1290 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1292 drop_parsed_module_refcounts(opts
.subsys_bits
);
1296 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1298 drop_parsed_module_refcounts(opts
.subsys_bits
);
1302 /* (re)populate subsystem files */
1303 cgroup_populate_dir(cgrp
);
1305 if (opts
.release_agent
)
1306 strcpy(root
->release_agent_path
, opts
.release_agent
);
1308 kfree(opts
.release_agent
);
1310 mutex_unlock(&cgroup_mutex
);
1311 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1315 static const struct super_operations cgroup_ops
= {
1316 .statfs
= simple_statfs
,
1317 .drop_inode
= generic_delete_inode
,
1318 .show_options
= cgroup_show_options
,
1319 .remount_fs
= cgroup_remount
,
1322 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1324 INIT_LIST_HEAD(&cgrp
->sibling
);
1325 INIT_LIST_HEAD(&cgrp
->children
);
1326 INIT_LIST_HEAD(&cgrp
->css_sets
);
1327 INIT_LIST_HEAD(&cgrp
->release_list
);
1328 INIT_LIST_HEAD(&cgrp
->pidlists
);
1329 mutex_init(&cgrp
->pidlist_mutex
);
1330 INIT_LIST_HEAD(&cgrp
->event_list
);
1331 spin_lock_init(&cgrp
->event_list_lock
);
1334 static void init_cgroup_root(struct cgroupfs_root
*root
)
1336 struct cgroup
*cgrp
= &root
->top_cgroup
;
1337 INIT_LIST_HEAD(&root
->subsys_list
);
1338 INIT_LIST_HEAD(&root
->root_list
);
1339 root
->number_of_cgroups
= 1;
1341 cgrp
->top_cgroup
= cgrp
;
1342 init_cgroup_housekeeping(cgrp
);
1345 static bool init_root_id(struct cgroupfs_root
*root
)
1350 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1352 spin_lock(&hierarchy_id_lock
);
1353 /* Try to allocate the next unused ID */
1354 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1355 &root
->hierarchy_id
);
1357 /* Try again starting from 0 */
1358 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1360 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1361 } else if (ret
!= -EAGAIN
) {
1362 /* Can only get here if the 31-bit IDR is full ... */
1365 spin_unlock(&hierarchy_id_lock
);
1370 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1372 struct cgroup_sb_opts
*opts
= data
;
1373 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1375 /* If we asked for a name then it must match */
1376 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1380 * If we asked for subsystems (or explicitly for no
1381 * subsystems) then they must match
1383 if ((opts
->subsys_bits
|| opts
->none
)
1384 && (opts
->subsys_bits
!= root
->subsys_bits
))
1390 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1392 struct cgroupfs_root
*root
;
1394 if (!opts
->subsys_bits
&& !opts
->none
)
1397 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1399 return ERR_PTR(-ENOMEM
);
1401 if (!init_root_id(root
)) {
1403 return ERR_PTR(-ENOMEM
);
1405 init_cgroup_root(root
);
1407 root
->subsys_bits
= opts
->subsys_bits
;
1408 root
->flags
= opts
->flags
;
1409 if (opts
->release_agent
)
1410 strcpy(root
->release_agent_path
, opts
->release_agent
);
1412 strcpy(root
->name
, opts
->name
);
1413 if (opts
->clone_children
)
1414 set_bit(CGRP_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1418 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1423 BUG_ON(!root
->hierarchy_id
);
1424 spin_lock(&hierarchy_id_lock
);
1425 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1426 spin_unlock(&hierarchy_id_lock
);
1430 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1433 struct cgroup_sb_opts
*opts
= data
;
1435 /* If we don't have a new root, we can't set up a new sb */
1436 if (!opts
->new_root
)
1439 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1441 ret
= set_anon_super(sb
, NULL
);
1445 sb
->s_fs_info
= opts
->new_root
;
1446 opts
->new_root
->sb
= sb
;
1448 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1449 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1450 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1451 sb
->s_op
= &cgroup_ops
;
1456 static int cgroup_get_rootdir(struct super_block
*sb
)
1458 static const struct dentry_operations cgroup_dops
= {
1459 .d_iput
= cgroup_diput
,
1460 .d_delete
= cgroup_delete
,
1463 struct inode
*inode
=
1464 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1465 struct dentry
*dentry
;
1470 inode
->i_fop
= &simple_dir_operations
;
1471 inode
->i_op
= &cgroup_dir_inode_operations
;
1472 /* directories start off with i_nlink == 2 (for "." entry) */
1474 dentry
= d_alloc_root(inode
);
1479 sb
->s_root
= dentry
;
1480 /* for everything else we want ->d_op set */
1481 sb
->s_d_op
= &cgroup_dops
;
1485 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1486 int flags
, const char *unused_dev_name
,
1489 struct cgroup_sb_opts opts
;
1490 struct cgroupfs_root
*root
;
1492 struct super_block
*sb
;
1493 struct cgroupfs_root
*new_root
;
1495 /* First find the desired set of subsystems */
1496 mutex_lock(&cgroup_mutex
);
1497 ret
= parse_cgroupfs_options(data
, &opts
);
1498 mutex_unlock(&cgroup_mutex
);
1503 * Allocate a new cgroup root. We may not need it if we're
1504 * reusing an existing hierarchy.
1506 new_root
= cgroup_root_from_opts(&opts
);
1507 if (IS_ERR(new_root
)) {
1508 ret
= PTR_ERR(new_root
);
1511 opts
.new_root
= new_root
;
1513 /* Locate an existing or new sb for this hierarchy */
1514 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1517 cgroup_drop_root(opts
.new_root
);
1521 root
= sb
->s_fs_info
;
1523 if (root
== opts
.new_root
) {
1524 /* We used the new root structure, so this is a new hierarchy */
1525 struct list_head tmp_cg_links
;
1526 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1527 struct inode
*inode
;
1528 struct cgroupfs_root
*existing_root
;
1531 BUG_ON(sb
->s_root
!= NULL
);
1533 ret
= cgroup_get_rootdir(sb
);
1535 goto drop_new_super
;
1536 inode
= sb
->s_root
->d_inode
;
1538 mutex_lock(&inode
->i_mutex
);
1539 mutex_lock(&cgroup_mutex
);
1541 if (strlen(root
->name
)) {
1542 /* Check for name clashes with existing mounts */
1543 for_each_active_root(existing_root
) {
1544 if (!strcmp(existing_root
->name
, root
->name
)) {
1546 mutex_unlock(&cgroup_mutex
);
1547 mutex_unlock(&inode
->i_mutex
);
1548 goto drop_new_super
;
1554 * We're accessing css_set_count without locking
1555 * css_set_lock here, but that's OK - it can only be
1556 * increased by someone holding cgroup_lock, and
1557 * that's us. The worst that can happen is that we
1558 * have some link structures left over
1560 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1562 mutex_unlock(&cgroup_mutex
);
1563 mutex_unlock(&inode
->i_mutex
);
1564 goto drop_new_super
;
1567 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1568 if (ret
== -EBUSY
) {
1569 mutex_unlock(&cgroup_mutex
);
1570 mutex_unlock(&inode
->i_mutex
);
1571 free_cg_links(&tmp_cg_links
);
1572 goto drop_new_super
;
1575 * There must be no failure case after here, since rebinding
1576 * takes care of subsystems' refcounts, which are explicitly
1577 * dropped in the failure exit path.
1580 /* EBUSY should be the only error here */
1583 list_add(&root
->root_list
, &roots
);
1586 sb
->s_root
->d_fsdata
= root_cgrp
;
1587 root
->top_cgroup
.dentry
= sb
->s_root
;
1589 /* Link the top cgroup in this hierarchy into all
1590 * the css_set objects */
1591 write_lock(&css_set_lock
);
1592 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1593 struct hlist_head
*hhead
= &css_set_table
[i
];
1594 struct hlist_node
*node
;
1597 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1598 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1600 write_unlock(&css_set_lock
);
1602 free_cg_links(&tmp_cg_links
);
1604 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1605 BUG_ON(!list_empty(&root_cgrp
->children
));
1606 BUG_ON(root
->number_of_cgroups
!= 1);
1608 cgroup_populate_dir(root_cgrp
);
1609 mutex_unlock(&cgroup_mutex
);
1610 mutex_unlock(&inode
->i_mutex
);
1613 * We re-used an existing hierarchy - the new root (if
1614 * any) is not needed
1616 cgroup_drop_root(opts
.new_root
);
1617 /* no subsys rebinding, so refcounts don't change */
1618 drop_parsed_module_refcounts(opts
.subsys_bits
);
1621 kfree(opts
.release_agent
);
1623 return dget(sb
->s_root
);
1626 deactivate_locked_super(sb
);
1628 drop_parsed_module_refcounts(opts
.subsys_bits
);
1630 kfree(opts
.release_agent
);
1632 return ERR_PTR(ret
);
1635 static void cgroup_kill_sb(struct super_block
*sb
) {
1636 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1637 struct cgroup
*cgrp
= &root
->top_cgroup
;
1639 struct cg_cgroup_link
*link
;
1640 struct cg_cgroup_link
*saved_link
;
1644 BUG_ON(root
->number_of_cgroups
!= 1);
1645 BUG_ON(!list_empty(&cgrp
->children
));
1646 BUG_ON(!list_empty(&cgrp
->sibling
));
1648 mutex_lock(&cgroup_mutex
);
1650 /* Rebind all subsystems back to the default hierarchy */
1651 ret
= rebind_subsystems(root
, 0);
1652 /* Shouldn't be able to fail ... */
1656 * Release all the links from css_sets to this hierarchy's
1659 write_lock(&css_set_lock
);
1661 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1663 list_del(&link
->cg_link_list
);
1664 list_del(&link
->cgrp_link_list
);
1667 write_unlock(&css_set_lock
);
1669 if (!list_empty(&root
->root_list
)) {
1670 list_del(&root
->root_list
);
1674 mutex_unlock(&cgroup_mutex
);
1676 kill_litter_super(sb
);
1677 cgroup_drop_root(root
);
1680 static struct file_system_type cgroup_fs_type
= {
1682 .mount
= cgroup_mount
,
1683 .kill_sb
= cgroup_kill_sb
,
1686 static struct kobject
*cgroup_kobj
;
1688 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1690 return dentry
->d_fsdata
;
1693 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1695 return dentry
->d_fsdata
;
1699 * cgroup_path - generate the path of a cgroup
1700 * @cgrp: the cgroup in question
1701 * @buf: the buffer to write the path into
1702 * @buflen: the length of the buffer
1704 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1705 * reference. Writes path of cgroup into buf. Returns 0 on success,
1708 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1711 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1712 rcu_read_lock_held() ||
1713 cgroup_lock_is_held());
1715 if (!dentry
|| cgrp
== dummytop
) {
1717 * Inactive subsystems have no dentry for their root
1724 start
= buf
+ buflen
;
1728 int len
= dentry
->d_name
.len
;
1730 if ((start
-= len
) < buf
)
1731 return -ENAMETOOLONG
;
1732 memcpy(start
, dentry
->d_name
.name
, len
);
1733 cgrp
= cgrp
->parent
;
1737 dentry
= rcu_dereference_check(cgrp
->dentry
,
1738 rcu_read_lock_held() ||
1739 cgroup_lock_is_held());
1743 return -ENAMETOOLONG
;
1746 memmove(buf
, start
, buf
+ buflen
- start
);
1749 EXPORT_SYMBOL_GPL(cgroup_path
);
1752 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1753 * @cgrp: the cgroup the task is attaching to
1754 * @tsk: the task to be attached
1756 * Call holding cgroup_mutex. May take task_lock of
1757 * the task 'tsk' during call.
1759 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1762 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1763 struct cgroup
*oldcgrp
;
1765 struct css_set
*newcg
;
1766 struct cgroupfs_root
*root
= cgrp
->root
;
1768 /* Nothing to do if the task is already in that cgroup */
1769 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1770 if (cgrp
== oldcgrp
)
1773 for_each_subsys(root
, ss
) {
1774 if (ss
->can_attach
) {
1775 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1778 * Remember on which subsystem the can_attach()
1779 * failed, so that we only call cancel_attach()
1780 * against the subsystems whose can_attach()
1781 * succeeded. (See below)
1794 * Locate or allocate a new css_set for this task,
1795 * based on its final set of cgroups
1797 newcg
= find_css_set(cg
, cgrp
);
1805 if (tsk
->flags
& PF_EXITING
) {
1811 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1814 /* Update the css_set linked lists if we're using them */
1815 write_lock(&css_set_lock
);
1816 if (!list_empty(&tsk
->cg_list
))
1817 list_move(&tsk
->cg_list
, &newcg
->tasks
);
1818 write_unlock(&css_set_lock
);
1820 for_each_subsys(root
, ss
) {
1822 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1824 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1829 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1830 * is no longer empty.
1832 cgroup_wakeup_rmdir_waiter(cgrp
);
1835 for_each_subsys(root
, ss
) {
1836 if (ss
== failed_ss
)
1838 * This subsystem was the one that failed the
1839 * can_attach() check earlier, so we don't need
1840 * to call cancel_attach() against it or any
1841 * remaining subsystems.
1844 if (ss
->cancel_attach
)
1845 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1852 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1853 * @from: attach to all cgroups of a given task
1854 * @tsk: the task to be attached
1856 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
1858 struct cgroupfs_root
*root
;
1862 for_each_active_root(root
) {
1863 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
1865 retval
= cgroup_attach_task(from_cg
, tsk
);
1873 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
1876 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1877 * held. May take task_lock of task
1879 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1881 struct task_struct
*tsk
;
1882 const struct cred
*cred
= current_cred(), *tcred
;
1887 tsk
= find_task_by_vpid(pid
);
1888 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1893 tcred
= __task_cred(tsk
);
1895 cred
->euid
!= tcred
->uid
&&
1896 cred
->euid
!= tcred
->suid
) {
1900 get_task_struct(tsk
);
1904 get_task_struct(tsk
);
1907 ret
= cgroup_attach_task(cgrp
, tsk
);
1908 put_task_struct(tsk
);
1912 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1915 if (!cgroup_lock_live_group(cgrp
))
1917 ret
= attach_task_by_pid(cgrp
, pid
);
1923 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1924 * @cgrp: the cgroup to be checked for liveness
1926 * On success, returns true; the lock should be later released with
1927 * cgroup_unlock(). On failure returns false with no lock held.
1929 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1931 mutex_lock(&cgroup_mutex
);
1932 if (cgroup_is_removed(cgrp
)) {
1933 mutex_unlock(&cgroup_mutex
);
1938 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1940 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1943 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1944 if (strlen(buffer
) >= PATH_MAX
)
1946 if (!cgroup_lock_live_group(cgrp
))
1948 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1953 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1954 struct seq_file
*seq
)
1956 if (!cgroup_lock_live_group(cgrp
))
1958 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1959 seq_putc(seq
, '\n');
1964 /* A buffer size big enough for numbers or short strings */
1965 #define CGROUP_LOCAL_BUFFER_SIZE 64
1967 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1969 const char __user
*userbuf
,
1970 size_t nbytes
, loff_t
*unused_ppos
)
1972 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1978 if (nbytes
>= sizeof(buffer
))
1980 if (copy_from_user(buffer
, userbuf
, nbytes
))
1983 buffer
[nbytes
] = 0; /* nul-terminate */
1984 if (cft
->write_u64
) {
1985 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1988 retval
= cft
->write_u64(cgrp
, cft
, val
);
1990 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1993 retval
= cft
->write_s64(cgrp
, cft
, val
);
2000 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
2002 const char __user
*userbuf
,
2003 size_t nbytes
, loff_t
*unused_ppos
)
2005 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2007 size_t max_bytes
= cft
->max_write_len
;
2008 char *buffer
= local_buffer
;
2011 max_bytes
= sizeof(local_buffer
) - 1;
2012 if (nbytes
>= max_bytes
)
2014 /* Allocate a dynamic buffer if we need one */
2015 if (nbytes
>= sizeof(local_buffer
)) {
2016 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2020 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2025 buffer
[nbytes
] = 0; /* nul-terminate */
2026 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2030 if (buffer
!= local_buffer
)
2035 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2036 size_t nbytes
, loff_t
*ppos
)
2038 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2039 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2041 if (cgroup_is_removed(cgrp
))
2044 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2045 if (cft
->write_u64
|| cft
->write_s64
)
2046 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2047 if (cft
->write_string
)
2048 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2050 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2051 return ret
? ret
: nbytes
;
2056 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2058 char __user
*buf
, size_t nbytes
,
2061 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2062 u64 val
= cft
->read_u64(cgrp
, cft
);
2063 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2065 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2068 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2070 char __user
*buf
, size_t nbytes
,
2073 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2074 s64 val
= cft
->read_s64(cgrp
, cft
);
2075 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2077 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2080 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2081 size_t nbytes
, loff_t
*ppos
)
2083 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2084 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2086 if (cgroup_is_removed(cgrp
))
2090 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2092 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2094 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2099 * seqfile ops/methods for returning structured data. Currently just
2100 * supports string->u64 maps, but can be extended in future.
2103 struct cgroup_seqfile_state
{
2105 struct cgroup
*cgroup
;
2108 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2110 struct seq_file
*sf
= cb
->state
;
2111 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2114 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2116 struct cgroup_seqfile_state
*state
= m
->private;
2117 struct cftype
*cft
= state
->cft
;
2118 if (cft
->read_map
) {
2119 struct cgroup_map_cb cb
= {
2120 .fill
= cgroup_map_add
,
2123 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2125 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2128 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2130 struct seq_file
*seq
= file
->private_data
;
2131 kfree(seq
->private);
2132 return single_release(inode
, file
);
2135 static const struct file_operations cgroup_seqfile_operations
= {
2137 .write
= cgroup_file_write
,
2138 .llseek
= seq_lseek
,
2139 .release
= cgroup_seqfile_release
,
2142 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2147 err
= generic_file_open(inode
, file
);
2150 cft
= __d_cft(file
->f_dentry
);
2152 if (cft
->read_map
|| cft
->read_seq_string
) {
2153 struct cgroup_seqfile_state
*state
=
2154 kzalloc(sizeof(*state
), GFP_USER
);
2158 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2159 file
->f_op
= &cgroup_seqfile_operations
;
2160 err
= single_open(file
, cgroup_seqfile_show
, state
);
2163 } else if (cft
->open
)
2164 err
= cft
->open(inode
, file
);
2171 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2173 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2175 return cft
->release(inode
, file
);
2180 * cgroup_rename - Only allow simple rename of directories in place.
2182 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2183 struct inode
*new_dir
, struct dentry
*new_dentry
)
2185 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2187 if (new_dentry
->d_inode
)
2189 if (old_dir
!= new_dir
)
2191 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2194 static const struct file_operations cgroup_file_operations
= {
2195 .read
= cgroup_file_read
,
2196 .write
= cgroup_file_write
,
2197 .llseek
= generic_file_llseek
,
2198 .open
= cgroup_file_open
,
2199 .release
= cgroup_file_release
,
2202 static const struct inode_operations cgroup_dir_inode_operations
= {
2203 .lookup
= cgroup_lookup
,
2204 .mkdir
= cgroup_mkdir
,
2205 .rmdir
= cgroup_rmdir
,
2206 .rename
= cgroup_rename
,
2209 static struct dentry
*cgroup_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
2211 if (dentry
->d_name
.len
> NAME_MAX
)
2212 return ERR_PTR(-ENAMETOOLONG
);
2213 d_add(dentry
, NULL
);
2218 * Check if a file is a control file
2220 static inline struct cftype
*__file_cft(struct file
*file
)
2222 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2223 return ERR_PTR(-EINVAL
);
2224 return __d_cft(file
->f_dentry
);
2227 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2228 struct super_block
*sb
)
2230 struct inode
*inode
;
2234 if (dentry
->d_inode
)
2237 inode
= cgroup_new_inode(mode
, sb
);
2241 if (S_ISDIR(mode
)) {
2242 inode
->i_op
= &cgroup_dir_inode_operations
;
2243 inode
->i_fop
= &simple_dir_operations
;
2245 /* start off with i_nlink == 2 (for "." entry) */
2248 /* start with the directory inode held, so that we can
2249 * populate it without racing with another mkdir */
2250 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2251 } else if (S_ISREG(mode
)) {
2253 inode
->i_fop
= &cgroup_file_operations
;
2255 d_instantiate(dentry
, inode
);
2256 dget(dentry
); /* Extra count - pin the dentry in core */
2261 * cgroup_create_dir - create a directory for an object.
2262 * @cgrp: the cgroup we create the directory for. It must have a valid
2263 * ->parent field. And we are going to fill its ->dentry field.
2264 * @dentry: dentry of the new cgroup
2265 * @mode: mode to set on new directory.
2267 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2270 struct dentry
*parent
;
2273 parent
= cgrp
->parent
->dentry
;
2274 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2276 dentry
->d_fsdata
= cgrp
;
2277 inc_nlink(parent
->d_inode
);
2278 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2287 * cgroup_file_mode - deduce file mode of a control file
2288 * @cft: the control file in question
2290 * returns cft->mode if ->mode is not 0
2291 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2292 * returns S_IRUGO if it has only a read handler
2293 * returns S_IWUSR if it has only a write hander
2295 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2302 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2303 cft
->read_map
|| cft
->read_seq_string
)
2306 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2307 cft
->write_string
|| cft
->trigger
)
2313 int cgroup_add_file(struct cgroup
*cgrp
,
2314 struct cgroup_subsys
*subsys
,
2315 const struct cftype
*cft
)
2317 struct dentry
*dir
= cgrp
->dentry
;
2318 struct dentry
*dentry
;
2322 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2323 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2324 strcpy(name
, subsys
->name
);
2327 strcat(name
, cft
->name
);
2328 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2329 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2330 if (!IS_ERR(dentry
)) {
2331 mode
= cgroup_file_mode(cft
);
2332 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2335 dentry
->d_fsdata
= (void *)cft
;
2338 error
= PTR_ERR(dentry
);
2341 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2343 int cgroup_add_files(struct cgroup
*cgrp
,
2344 struct cgroup_subsys
*subsys
,
2345 const struct cftype cft
[],
2349 for (i
= 0; i
< count
; i
++) {
2350 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2356 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2359 * cgroup_task_count - count the number of tasks in a cgroup.
2360 * @cgrp: the cgroup in question
2362 * Return the number of tasks in the cgroup.
2364 int cgroup_task_count(const struct cgroup
*cgrp
)
2367 struct cg_cgroup_link
*link
;
2369 read_lock(&css_set_lock
);
2370 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2371 count
+= atomic_read(&link
->cg
->refcount
);
2373 read_unlock(&css_set_lock
);
2378 * Advance a list_head iterator. The iterator should be positioned at
2379 * the start of a css_set
2381 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2382 struct cgroup_iter
*it
)
2384 struct list_head
*l
= it
->cg_link
;
2385 struct cg_cgroup_link
*link
;
2388 /* Advance to the next non-empty css_set */
2391 if (l
== &cgrp
->css_sets
) {
2395 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2397 } while (list_empty(&cg
->tasks
));
2399 it
->task
= cg
->tasks
.next
;
2403 * To reduce the fork() overhead for systems that are not actually
2404 * using their cgroups capability, we don't maintain the lists running
2405 * through each css_set to its tasks until we see the list actually
2406 * used - in other words after the first call to cgroup_iter_start().
2408 * The tasklist_lock is not held here, as do_each_thread() and
2409 * while_each_thread() are protected by RCU.
2411 static void cgroup_enable_task_cg_lists(void)
2413 struct task_struct
*p
, *g
;
2414 write_lock(&css_set_lock
);
2415 use_task_css_set_links
= 1;
2416 do_each_thread(g
, p
) {
2419 * We should check if the process is exiting, otherwise
2420 * it will race with cgroup_exit() in that the list
2421 * entry won't be deleted though the process has exited.
2423 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2424 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2426 } while_each_thread(g
, p
);
2427 write_unlock(&css_set_lock
);
2430 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2433 * The first time anyone tries to iterate across a cgroup,
2434 * we need to enable the list linking each css_set to its
2435 * tasks, and fix up all existing tasks.
2437 if (!use_task_css_set_links
)
2438 cgroup_enable_task_cg_lists();
2440 read_lock(&css_set_lock
);
2441 it
->cg_link
= &cgrp
->css_sets
;
2442 cgroup_advance_iter(cgrp
, it
);
2445 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2446 struct cgroup_iter
*it
)
2448 struct task_struct
*res
;
2449 struct list_head
*l
= it
->task
;
2450 struct cg_cgroup_link
*link
;
2452 /* If the iterator cg is NULL, we have no tasks */
2455 res
= list_entry(l
, struct task_struct
, cg_list
);
2456 /* Advance iterator to find next entry */
2458 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2459 if (l
== &link
->cg
->tasks
) {
2460 /* We reached the end of this task list - move on to
2461 * the next cg_cgroup_link */
2462 cgroup_advance_iter(cgrp
, it
);
2469 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2471 read_unlock(&css_set_lock
);
2474 static inline int started_after_time(struct task_struct
*t1
,
2475 struct timespec
*time
,
2476 struct task_struct
*t2
)
2478 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2479 if (start_diff
> 0) {
2481 } else if (start_diff
< 0) {
2485 * Arbitrarily, if two processes started at the same
2486 * time, we'll say that the lower pointer value
2487 * started first. Note that t2 may have exited by now
2488 * so this may not be a valid pointer any longer, but
2489 * that's fine - it still serves to distinguish
2490 * between two tasks started (effectively) simultaneously.
2497 * This function is a callback from heap_insert() and is used to order
2499 * In this case we order the heap in descending task start time.
2501 static inline int started_after(void *p1
, void *p2
)
2503 struct task_struct
*t1
= p1
;
2504 struct task_struct
*t2
= p2
;
2505 return started_after_time(t1
, &t2
->start_time
, t2
);
2509 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2510 * @scan: struct cgroup_scanner containing arguments for the scan
2512 * Arguments include pointers to callback functions test_task() and
2514 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2515 * and if it returns true, call process_task() for it also.
2516 * The test_task pointer may be NULL, meaning always true (select all tasks).
2517 * Effectively duplicates cgroup_iter_{start,next,end}()
2518 * but does not lock css_set_lock for the call to process_task().
2519 * The struct cgroup_scanner may be embedded in any structure of the caller's
2521 * It is guaranteed that process_task() will act on every task that
2522 * is a member of the cgroup for the duration of this call. This
2523 * function may or may not call process_task() for tasks that exit
2524 * or move to a different cgroup during the call, or are forked or
2525 * move into the cgroup during the call.
2527 * Note that test_task() may be called with locks held, and may in some
2528 * situations be called multiple times for the same task, so it should
2530 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2531 * pre-allocated and will be used for heap operations (and its "gt" member will
2532 * be overwritten), else a temporary heap will be used (allocation of which
2533 * may cause this function to fail).
2535 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2538 struct cgroup_iter it
;
2539 struct task_struct
*p
, *dropped
;
2540 /* Never dereference latest_task, since it's not refcounted */
2541 struct task_struct
*latest_task
= NULL
;
2542 struct ptr_heap tmp_heap
;
2543 struct ptr_heap
*heap
;
2544 struct timespec latest_time
= { 0, 0 };
2547 /* The caller supplied our heap and pre-allocated its memory */
2549 heap
->gt
= &started_after
;
2551 /* We need to allocate our own heap memory */
2553 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2555 /* cannot allocate the heap */
2561 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2562 * to determine which are of interest, and using the scanner's
2563 * "process_task" callback to process any of them that need an update.
2564 * Since we don't want to hold any locks during the task updates,
2565 * gather tasks to be processed in a heap structure.
2566 * The heap is sorted by descending task start time.
2567 * If the statically-sized heap fills up, we overflow tasks that
2568 * started later, and in future iterations only consider tasks that
2569 * started after the latest task in the previous pass. This
2570 * guarantees forward progress and that we don't miss any tasks.
2573 cgroup_iter_start(scan
->cg
, &it
);
2574 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2576 * Only affect tasks that qualify per the caller's callback,
2577 * if he provided one
2579 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2582 * Only process tasks that started after the last task
2585 if (!started_after_time(p
, &latest_time
, latest_task
))
2587 dropped
= heap_insert(heap
, p
);
2588 if (dropped
== NULL
) {
2590 * The new task was inserted; the heap wasn't
2594 } else if (dropped
!= p
) {
2596 * The new task was inserted, and pushed out a
2600 put_task_struct(dropped
);
2603 * Else the new task was newer than anything already in
2604 * the heap and wasn't inserted
2607 cgroup_iter_end(scan
->cg
, &it
);
2610 for (i
= 0; i
< heap
->size
; i
++) {
2611 struct task_struct
*q
= heap
->ptrs
[i
];
2613 latest_time
= q
->start_time
;
2616 /* Process the task per the caller's callback */
2617 scan
->process_task(q
, scan
);
2621 * If we had to process any tasks at all, scan again
2622 * in case some of them were in the middle of forking
2623 * children that didn't get processed.
2624 * Not the most efficient way to do it, but it avoids
2625 * having to take callback_mutex in the fork path
2629 if (heap
== &tmp_heap
)
2630 heap_free(&tmp_heap
);
2635 * Stuff for reading the 'tasks'/'procs' files.
2637 * Reading this file can return large amounts of data if a cgroup has
2638 * *lots* of attached tasks. So it may need several calls to read(),
2639 * but we cannot guarantee that the information we produce is correct
2640 * unless we produce it entirely atomically.
2645 * The following two functions "fix" the issue where there are more pids
2646 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2647 * TODO: replace with a kernel-wide solution to this problem
2649 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2650 static void *pidlist_allocate(int count
)
2652 if (PIDLIST_TOO_LARGE(count
))
2653 return vmalloc(count
* sizeof(pid_t
));
2655 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2657 static void pidlist_free(void *p
)
2659 if (is_vmalloc_addr(p
))
2664 static void *pidlist_resize(void *p
, int newcount
)
2667 /* note: if new alloc fails, old p will still be valid either way */
2668 if (is_vmalloc_addr(p
)) {
2669 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2672 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2675 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2681 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2682 * If the new stripped list is sufficiently smaller and there's enough memory
2683 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2684 * number of unique elements.
2686 /* is the size difference enough that we should re-allocate the array? */
2687 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2688 static int pidlist_uniq(pid_t
**p
, int length
)
2695 * we presume the 0th element is unique, so i starts at 1. trivial
2696 * edge cases first; no work needs to be done for either
2698 if (length
== 0 || length
== 1)
2700 /* src and dest walk down the list; dest counts unique elements */
2701 for (src
= 1; src
< length
; src
++) {
2702 /* find next unique element */
2703 while (list
[src
] == list
[src
-1]) {
2708 /* dest always points to where the next unique element goes */
2709 list
[dest
] = list
[src
];
2714 * if the length difference is large enough, we want to allocate a
2715 * smaller buffer to save memory. if this fails due to out of memory,
2716 * we'll just stay with what we've got.
2718 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2719 newlist
= pidlist_resize(list
, dest
);
2726 static int cmppid(const void *a
, const void *b
)
2728 return *(pid_t
*)a
- *(pid_t
*)b
;
2732 * find the appropriate pidlist for our purpose (given procs vs tasks)
2733 * returns with the lock on that pidlist already held, and takes care
2734 * of the use count, or returns NULL with no locks held if we're out of
2737 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2738 enum cgroup_filetype type
)
2740 struct cgroup_pidlist
*l
;
2741 /* don't need task_nsproxy() if we're looking at ourself */
2742 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2745 * We can't drop the pidlist_mutex before taking the l->mutex in case
2746 * the last ref-holder is trying to remove l from the list at the same
2747 * time. Holding the pidlist_mutex precludes somebody taking whichever
2748 * list we find out from under us - compare release_pid_array().
2750 mutex_lock(&cgrp
->pidlist_mutex
);
2751 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2752 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2753 /* make sure l doesn't vanish out from under us */
2754 down_write(&l
->mutex
);
2755 mutex_unlock(&cgrp
->pidlist_mutex
);
2759 /* entry not found; create a new one */
2760 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2762 mutex_unlock(&cgrp
->pidlist_mutex
);
2765 init_rwsem(&l
->mutex
);
2766 down_write(&l
->mutex
);
2768 l
->key
.ns
= get_pid_ns(ns
);
2769 l
->use_count
= 0; /* don't increment here */
2772 list_add(&l
->links
, &cgrp
->pidlists
);
2773 mutex_unlock(&cgrp
->pidlist_mutex
);
2778 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2780 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2781 struct cgroup_pidlist
**lp
)
2785 int pid
, n
= 0; /* used for populating the array */
2786 struct cgroup_iter it
;
2787 struct task_struct
*tsk
;
2788 struct cgroup_pidlist
*l
;
2791 * If cgroup gets more users after we read count, we won't have
2792 * enough space - tough. This race is indistinguishable to the
2793 * caller from the case that the additional cgroup users didn't
2794 * show up until sometime later on.
2796 length
= cgroup_task_count(cgrp
);
2797 array
= pidlist_allocate(length
);
2800 /* now, populate the array */
2801 cgroup_iter_start(cgrp
, &it
);
2802 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2803 if (unlikely(n
== length
))
2805 /* get tgid or pid for procs or tasks file respectively */
2806 if (type
== CGROUP_FILE_PROCS
)
2807 pid
= task_tgid_vnr(tsk
);
2809 pid
= task_pid_vnr(tsk
);
2810 if (pid
> 0) /* make sure to only use valid results */
2813 cgroup_iter_end(cgrp
, &it
);
2815 /* now sort & (if procs) strip out duplicates */
2816 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2817 if (type
== CGROUP_FILE_PROCS
)
2818 length
= pidlist_uniq(&array
, length
);
2819 l
= cgroup_pidlist_find(cgrp
, type
);
2821 pidlist_free(array
);
2824 /* store array, freeing old if necessary - lock already held */
2825 pidlist_free(l
->list
);
2829 up_write(&l
->mutex
);
2835 * cgroupstats_build - build and fill cgroupstats
2836 * @stats: cgroupstats to fill information into
2837 * @dentry: A dentry entry belonging to the cgroup for which stats have
2840 * Build and fill cgroupstats so that taskstats can export it to user
2843 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2846 struct cgroup
*cgrp
;
2847 struct cgroup_iter it
;
2848 struct task_struct
*tsk
;
2851 * Validate dentry by checking the superblock operations,
2852 * and make sure it's a directory.
2854 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2855 !S_ISDIR(dentry
->d_inode
->i_mode
))
2859 cgrp
= dentry
->d_fsdata
;
2861 cgroup_iter_start(cgrp
, &it
);
2862 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2863 switch (tsk
->state
) {
2865 stats
->nr_running
++;
2867 case TASK_INTERRUPTIBLE
:
2868 stats
->nr_sleeping
++;
2870 case TASK_UNINTERRUPTIBLE
:
2871 stats
->nr_uninterruptible
++;
2874 stats
->nr_stopped
++;
2877 if (delayacct_is_task_waiting_on_io(tsk
))
2878 stats
->nr_io_wait
++;
2882 cgroup_iter_end(cgrp
, &it
);
2890 * seq_file methods for the tasks/procs files. The seq_file position is the
2891 * next pid to display; the seq_file iterator is a pointer to the pid
2892 * in the cgroup->l->list array.
2895 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2898 * Initially we receive a position value that corresponds to
2899 * one more than the last pid shown (or 0 on the first call or
2900 * after a seek to the start). Use a binary-search to find the
2901 * next pid to display, if any
2903 struct cgroup_pidlist
*l
= s
->private;
2904 int index
= 0, pid
= *pos
;
2907 down_read(&l
->mutex
);
2909 int end
= l
->length
;
2911 while (index
< end
) {
2912 int mid
= (index
+ end
) / 2;
2913 if (l
->list
[mid
] == pid
) {
2916 } else if (l
->list
[mid
] <= pid
)
2922 /* If we're off the end of the array, we're done */
2923 if (index
>= l
->length
)
2925 /* Update the abstract position to be the actual pid that we found */
2926 iter
= l
->list
+ index
;
2931 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2933 struct cgroup_pidlist
*l
= s
->private;
2937 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2939 struct cgroup_pidlist
*l
= s
->private;
2941 pid_t
*end
= l
->list
+ l
->length
;
2943 * Advance to the next pid in the array. If this goes off the
2955 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2957 return seq_printf(s
, "%d\n", *(int *)v
);
2961 * seq_operations functions for iterating on pidlists through seq_file -
2962 * independent of whether it's tasks or procs
2964 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2965 .start
= cgroup_pidlist_start
,
2966 .stop
= cgroup_pidlist_stop
,
2967 .next
= cgroup_pidlist_next
,
2968 .show
= cgroup_pidlist_show
,
2971 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2974 * the case where we're the last user of this particular pidlist will
2975 * have us remove it from the cgroup's list, which entails taking the
2976 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2977 * pidlist_mutex, we have to take pidlist_mutex first.
2979 mutex_lock(&l
->owner
->pidlist_mutex
);
2980 down_write(&l
->mutex
);
2981 BUG_ON(!l
->use_count
);
2982 if (!--l
->use_count
) {
2983 /* we're the last user if refcount is 0; remove and free */
2984 list_del(&l
->links
);
2985 mutex_unlock(&l
->owner
->pidlist_mutex
);
2986 pidlist_free(l
->list
);
2987 put_pid_ns(l
->key
.ns
);
2988 up_write(&l
->mutex
);
2992 mutex_unlock(&l
->owner
->pidlist_mutex
);
2993 up_write(&l
->mutex
);
2996 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2998 struct cgroup_pidlist
*l
;
2999 if (!(file
->f_mode
& FMODE_READ
))
3002 * the seq_file will only be initialized if the file was opened for
3003 * reading; hence we check if it's not null only in that case.
3005 l
= ((struct seq_file
*)file
->private_data
)->private;
3006 cgroup_release_pid_array(l
);
3007 return seq_release(inode
, file
);
3010 static const struct file_operations cgroup_pidlist_operations
= {
3012 .llseek
= seq_lseek
,
3013 .write
= cgroup_file_write
,
3014 .release
= cgroup_pidlist_release
,
3018 * The following functions handle opens on a file that displays a pidlist
3019 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3022 /* helper function for the two below it */
3023 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3025 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3026 struct cgroup_pidlist
*l
;
3029 /* Nothing to do for write-only files */
3030 if (!(file
->f_mode
& FMODE_READ
))
3033 /* have the array populated */
3034 retval
= pidlist_array_load(cgrp
, type
, &l
);
3037 /* configure file information */
3038 file
->f_op
= &cgroup_pidlist_operations
;
3040 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3042 cgroup_release_pid_array(l
);
3045 ((struct seq_file
*)file
->private_data
)->private = l
;
3048 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3050 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3052 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3054 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3057 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3060 return notify_on_release(cgrp
);
3063 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3067 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3069 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3071 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3076 * Unregister event and free resources.
3078 * Gets called from workqueue.
3080 static void cgroup_event_remove(struct work_struct
*work
)
3082 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3084 struct cgroup
*cgrp
= event
->cgrp
;
3086 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3088 eventfd_ctx_put(event
->eventfd
);
3094 * Gets called on POLLHUP on eventfd when user closes it.
3096 * Called with wqh->lock held and interrupts disabled.
3098 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3099 int sync
, void *key
)
3101 struct cgroup_event
*event
= container_of(wait
,
3102 struct cgroup_event
, wait
);
3103 struct cgroup
*cgrp
= event
->cgrp
;
3104 unsigned long flags
= (unsigned long)key
;
3106 if (flags
& POLLHUP
) {
3107 __remove_wait_queue(event
->wqh
, &event
->wait
);
3108 spin_lock(&cgrp
->event_list_lock
);
3109 list_del(&event
->list
);
3110 spin_unlock(&cgrp
->event_list_lock
);
3112 * We are in atomic context, but cgroup_event_remove() may
3113 * sleep, so we have to call it in workqueue.
3115 schedule_work(&event
->remove
);
3121 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3122 wait_queue_head_t
*wqh
, poll_table
*pt
)
3124 struct cgroup_event
*event
= container_of(pt
,
3125 struct cgroup_event
, pt
);
3128 add_wait_queue(wqh
, &event
->wait
);
3132 * Parse input and register new cgroup event handler.
3134 * Input must be in format '<event_fd> <control_fd> <args>'.
3135 * Interpretation of args is defined by control file implementation.
3137 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3140 struct cgroup_event
*event
= NULL
;
3141 unsigned int efd
, cfd
;
3142 struct file
*efile
= NULL
;
3143 struct file
*cfile
= NULL
;
3147 efd
= simple_strtoul(buffer
, &endp
, 10);
3152 cfd
= simple_strtoul(buffer
, &endp
, 10);
3153 if ((*endp
!= ' ') && (*endp
!= '\0'))
3157 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3161 INIT_LIST_HEAD(&event
->list
);
3162 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3163 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3164 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3166 efile
= eventfd_fget(efd
);
3167 if (IS_ERR(efile
)) {
3168 ret
= PTR_ERR(efile
);
3172 event
->eventfd
= eventfd_ctx_fileget(efile
);
3173 if (IS_ERR(event
->eventfd
)) {
3174 ret
= PTR_ERR(event
->eventfd
);
3184 /* the process need read permission on control file */
3185 ret
= file_permission(cfile
, MAY_READ
);
3189 event
->cft
= __file_cft(cfile
);
3190 if (IS_ERR(event
->cft
)) {
3191 ret
= PTR_ERR(event
->cft
);
3195 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3200 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3201 event
->eventfd
, buffer
);
3205 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3206 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3212 * Events should be removed after rmdir of cgroup directory, but before
3213 * destroying subsystem state objects. Let's take reference to cgroup
3214 * directory dentry to do that.
3218 spin_lock(&cgrp
->event_list_lock
);
3219 list_add(&event
->list
, &cgrp
->event_list
);
3220 spin_unlock(&cgrp
->event_list_lock
);
3231 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3232 eventfd_ctx_put(event
->eventfd
);
3234 if (!IS_ERR_OR_NULL(efile
))
3242 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3245 return clone_children(cgrp
);
3248 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3253 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3255 clear_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3260 * for the common functions, 'private' gives the type of file
3262 /* for hysterical raisins, we can't put this on the older files */
3263 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3264 static struct cftype files
[] = {
3267 .open
= cgroup_tasks_open
,
3268 .write_u64
= cgroup_tasks_write
,
3269 .release
= cgroup_pidlist_release
,
3270 .mode
= S_IRUGO
| S_IWUSR
,
3273 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3274 .open
= cgroup_procs_open
,
3275 /* .write_u64 = cgroup_procs_write, TODO */
3276 .release
= cgroup_pidlist_release
,
3280 .name
= "notify_on_release",
3281 .read_u64
= cgroup_read_notify_on_release
,
3282 .write_u64
= cgroup_write_notify_on_release
,
3285 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3286 .write_string
= cgroup_write_event_control
,
3290 .name
= "cgroup.clone_children",
3291 .read_u64
= cgroup_clone_children_read
,
3292 .write_u64
= cgroup_clone_children_write
,
3296 static struct cftype cft_release_agent
= {
3297 .name
= "release_agent",
3298 .read_seq_string
= cgroup_release_agent_show
,
3299 .write_string
= cgroup_release_agent_write
,
3300 .max_write_len
= PATH_MAX
,
3303 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3306 struct cgroup_subsys
*ss
;
3308 /* First clear out any existing files */
3309 cgroup_clear_directory(cgrp
->dentry
);
3311 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3315 if (cgrp
== cgrp
->top_cgroup
) {
3316 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3320 for_each_subsys(cgrp
->root
, ss
) {
3321 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3324 /* This cgroup is ready now */
3325 for_each_subsys(cgrp
->root
, ss
) {
3326 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3328 * Update id->css pointer and make this css visible from
3329 * CSS ID functions. This pointer will be dereferened
3330 * from RCU-read-side without locks.
3333 rcu_assign_pointer(css
->id
->css
, css
);
3339 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3340 struct cgroup_subsys
*ss
,
3341 struct cgroup
*cgrp
)
3344 atomic_set(&css
->refcnt
, 1);
3347 if (cgrp
== dummytop
)
3348 set_bit(CSS_ROOT
, &css
->flags
);
3349 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3350 cgrp
->subsys
[ss
->subsys_id
] = css
;
3353 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3355 /* We need to take each hierarchy_mutex in a consistent order */
3359 * No worry about a race with rebind_subsystems that might mess up the
3360 * locking order, since both parties are under cgroup_mutex.
3362 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3363 struct cgroup_subsys
*ss
= subsys
[i
];
3366 if (ss
->root
== root
)
3367 mutex_lock(&ss
->hierarchy_mutex
);
3371 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3375 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3376 struct cgroup_subsys
*ss
= subsys
[i
];
3379 if (ss
->root
== root
)
3380 mutex_unlock(&ss
->hierarchy_mutex
);
3385 * cgroup_create - create a cgroup
3386 * @parent: cgroup that will be parent of the new cgroup
3387 * @dentry: dentry of the new cgroup
3388 * @mode: mode to set on new inode
3390 * Must be called with the mutex on the parent inode held
3392 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3395 struct cgroup
*cgrp
;
3396 struct cgroupfs_root
*root
= parent
->root
;
3398 struct cgroup_subsys
*ss
;
3399 struct super_block
*sb
= root
->sb
;
3401 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3405 /* Grab a reference on the superblock so the hierarchy doesn't
3406 * get deleted on unmount if there are child cgroups. This
3407 * can be done outside cgroup_mutex, since the sb can't
3408 * disappear while someone has an open control file on the
3410 atomic_inc(&sb
->s_active
);
3412 mutex_lock(&cgroup_mutex
);
3414 init_cgroup_housekeeping(cgrp
);
3416 cgrp
->parent
= parent
;
3417 cgrp
->root
= parent
->root
;
3418 cgrp
->top_cgroup
= parent
->top_cgroup
;
3420 if (notify_on_release(parent
))
3421 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3423 if (clone_children(parent
))
3424 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3426 for_each_subsys(root
, ss
) {
3427 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3433 init_cgroup_css(css
, ss
, cgrp
);
3435 err
= alloc_css_id(ss
, parent
, cgrp
);
3439 /* At error, ->destroy() callback has to free assigned ID. */
3440 if (clone_children(parent
) && ss
->post_clone
)
3441 ss
->post_clone(ss
, cgrp
);
3444 cgroup_lock_hierarchy(root
);
3445 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3446 cgroup_unlock_hierarchy(root
);
3447 root
->number_of_cgroups
++;
3449 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3453 /* The cgroup directory was pre-locked for us */
3454 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3456 err
= cgroup_populate_dir(cgrp
);
3457 /* If err < 0, we have a half-filled directory - oh well ;) */
3459 mutex_unlock(&cgroup_mutex
);
3460 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3466 cgroup_lock_hierarchy(root
);
3467 list_del(&cgrp
->sibling
);
3468 cgroup_unlock_hierarchy(root
);
3469 root
->number_of_cgroups
--;
3473 for_each_subsys(root
, ss
) {
3474 if (cgrp
->subsys
[ss
->subsys_id
])
3475 ss
->destroy(ss
, cgrp
);
3478 mutex_unlock(&cgroup_mutex
);
3480 /* Release the reference count that we took on the superblock */
3481 deactivate_super(sb
);
3487 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3489 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3491 /* the vfs holds inode->i_mutex already */
3492 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3495 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3497 /* Check the reference count on each subsystem. Since we
3498 * already established that there are no tasks in the
3499 * cgroup, if the css refcount is also 1, then there should
3500 * be no outstanding references, so the subsystem is safe to
3501 * destroy. We scan across all subsystems rather than using
3502 * the per-hierarchy linked list of mounted subsystems since
3503 * we can be called via check_for_release() with no
3504 * synchronization other than RCU, and the subsystem linked
3505 * list isn't RCU-safe */
3508 * We won't need to lock the subsys array, because the subsystems
3509 * we're concerned about aren't going anywhere since our cgroup root
3510 * has a reference on them.
3512 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3513 struct cgroup_subsys
*ss
= subsys
[i
];
3514 struct cgroup_subsys_state
*css
;
3515 /* Skip subsystems not present or not in this hierarchy */
3516 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3518 css
= cgrp
->subsys
[ss
->subsys_id
];
3519 /* When called from check_for_release() it's possible
3520 * that by this point the cgroup has been removed
3521 * and the css deleted. But a false-positive doesn't
3522 * matter, since it can only happen if the cgroup
3523 * has been deleted and hence no longer needs the
3524 * release agent to be called anyway. */
3525 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3532 * Atomically mark all (or else none) of the cgroup's CSS objects as
3533 * CSS_REMOVED. Return true on success, or false if the cgroup has
3534 * busy subsystems. Call with cgroup_mutex held
3537 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3539 struct cgroup_subsys
*ss
;
3540 unsigned long flags
;
3541 bool failed
= false;
3542 local_irq_save(flags
);
3543 for_each_subsys(cgrp
->root
, ss
) {
3544 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3547 /* We can only remove a CSS with a refcnt==1 */
3548 refcnt
= atomic_read(&css
->refcnt
);
3555 * Drop the refcnt to 0 while we check other
3556 * subsystems. This will cause any racing
3557 * css_tryget() to spin until we set the
3558 * CSS_REMOVED bits or abort
3560 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3566 for_each_subsys(cgrp
->root
, ss
) {
3567 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3570 * Restore old refcnt if we previously managed
3571 * to clear it from 1 to 0
3573 if (!atomic_read(&css
->refcnt
))
3574 atomic_set(&css
->refcnt
, 1);
3576 /* Commit the fact that the CSS is removed */
3577 set_bit(CSS_REMOVED
, &css
->flags
);
3580 local_irq_restore(flags
);
3584 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3586 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3588 struct cgroup
*parent
;
3590 struct cgroup_event
*event
, *tmp
;
3593 /* the vfs holds both inode->i_mutex already */
3595 mutex_lock(&cgroup_mutex
);
3596 if (atomic_read(&cgrp
->count
) != 0) {
3597 mutex_unlock(&cgroup_mutex
);
3600 if (!list_empty(&cgrp
->children
)) {
3601 mutex_unlock(&cgroup_mutex
);
3604 mutex_unlock(&cgroup_mutex
);
3607 * In general, subsystem has no css->refcnt after pre_destroy(). But
3608 * in racy cases, subsystem may have to get css->refcnt after
3609 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3610 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3611 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3612 * and subsystem's reference count handling. Please see css_get/put
3613 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3615 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3618 * Call pre_destroy handlers of subsys. Notify subsystems
3619 * that rmdir() request comes.
3621 ret
= cgroup_call_pre_destroy(cgrp
);
3623 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3627 mutex_lock(&cgroup_mutex
);
3628 parent
= cgrp
->parent
;
3629 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3630 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3631 mutex_unlock(&cgroup_mutex
);
3634 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3635 if (!cgroup_clear_css_refs(cgrp
)) {
3636 mutex_unlock(&cgroup_mutex
);
3638 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3639 * prepare_to_wait(), we need to check this flag.
3641 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3643 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3644 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3645 if (signal_pending(current
))
3649 /* NO css_tryget() can success after here. */
3650 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3651 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3653 spin_lock(&release_list_lock
);
3654 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3655 if (!list_empty(&cgrp
->release_list
))
3656 list_del_init(&cgrp
->release_list
);
3657 spin_unlock(&release_list_lock
);
3659 cgroup_lock_hierarchy(cgrp
->root
);
3660 /* delete this cgroup from parent->children */
3661 list_del_init(&cgrp
->sibling
);
3662 cgroup_unlock_hierarchy(cgrp
->root
);
3664 d
= dget(cgrp
->dentry
);
3666 cgroup_d_remove_dir(d
);
3669 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3670 check_for_release(parent
);
3673 * Unregister events and notify userspace.
3674 * Notify userspace about cgroup removing only after rmdir of cgroup
3675 * directory to avoid race between userspace and kernelspace
3677 spin_lock(&cgrp
->event_list_lock
);
3678 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3679 list_del(&event
->list
);
3680 remove_wait_queue(event
->wqh
, &event
->wait
);
3681 eventfd_signal(event
->eventfd
, 1);
3682 schedule_work(&event
->remove
);
3684 spin_unlock(&cgrp
->event_list_lock
);
3686 mutex_unlock(&cgroup_mutex
);
3690 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3692 struct cgroup_subsys_state
*css
;
3694 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3696 /* Create the top cgroup state for this subsystem */
3697 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3698 ss
->root
= &rootnode
;
3699 css
= ss
->create(ss
, dummytop
);
3700 /* We don't handle early failures gracefully */
3701 BUG_ON(IS_ERR(css
));
3702 init_cgroup_css(css
, ss
, dummytop
);
3704 /* Update the init_css_set to contain a subsys
3705 * pointer to this state - since the subsystem is
3706 * newly registered, all tasks and hence the
3707 * init_css_set is in the subsystem's top cgroup. */
3708 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3710 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3712 /* At system boot, before all subsystems have been
3713 * registered, no tasks have been forked, so we don't
3714 * need to invoke fork callbacks here. */
3715 BUG_ON(!list_empty(&init_task
.tasks
));
3717 mutex_init(&ss
->hierarchy_mutex
);
3718 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3721 /* this function shouldn't be used with modular subsystems, since they
3722 * need to register a subsys_id, among other things */
3727 * cgroup_load_subsys: load and register a modular subsystem at runtime
3728 * @ss: the subsystem to load
3730 * This function should be called in a modular subsystem's initcall. If the
3731 * subsystem is built as a module, it will be assigned a new subsys_id and set
3732 * up for use. If the subsystem is built-in anyway, work is delegated to the
3733 * simpler cgroup_init_subsys.
3735 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3738 struct cgroup_subsys_state
*css
;
3740 /* check name and function validity */
3741 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3742 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3746 * we don't support callbacks in modular subsystems. this check is
3747 * before the ss->module check for consistency; a subsystem that could
3748 * be a module should still have no callbacks even if the user isn't
3749 * compiling it as one.
3751 if (ss
->fork
|| ss
->exit
)
3755 * an optionally modular subsystem is built-in: we want to do nothing,
3756 * since cgroup_init_subsys will have already taken care of it.
3758 if (ss
->module
== NULL
) {
3759 /* a few sanity checks */
3760 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3761 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3766 * need to register a subsys id before anything else - for example,
3767 * init_cgroup_css needs it.
3769 mutex_lock(&cgroup_mutex
);
3770 /* find the first empty slot in the array */
3771 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3772 if (subsys
[i
] == NULL
)
3775 if (i
== CGROUP_SUBSYS_COUNT
) {
3776 /* maximum number of subsystems already registered! */
3777 mutex_unlock(&cgroup_mutex
);
3780 /* assign ourselves the subsys_id */
3785 * no ss->create seems to need anything important in the ss struct, so
3786 * this can happen first (i.e. before the rootnode attachment).
3788 css
= ss
->create(ss
, dummytop
);
3790 /* failure case - need to deassign the subsys[] slot. */
3792 mutex_unlock(&cgroup_mutex
);
3793 return PTR_ERR(css
);
3796 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3797 ss
->root
= &rootnode
;
3799 /* our new subsystem will be attached to the dummy hierarchy. */
3800 init_cgroup_css(css
, ss
, dummytop
);
3801 /* init_idr must be after init_cgroup_css because it sets css->id. */
3803 int ret
= cgroup_init_idr(ss
, css
);
3805 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3806 ss
->destroy(ss
, dummytop
);
3808 mutex_unlock(&cgroup_mutex
);
3814 * Now we need to entangle the css into the existing css_sets. unlike
3815 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3816 * will need a new pointer to it; done by iterating the css_set_table.
3817 * furthermore, modifying the existing css_sets will corrupt the hash
3818 * table state, so each changed css_set will need its hash recomputed.
3819 * this is all done under the css_set_lock.
3821 write_lock(&css_set_lock
);
3822 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3824 struct hlist_node
*node
, *tmp
;
3825 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3827 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3828 /* skip entries that we already rehashed */
3829 if (cg
->subsys
[ss
->subsys_id
])
3831 /* remove existing entry */
3832 hlist_del(&cg
->hlist
);
3834 cg
->subsys
[ss
->subsys_id
] = css
;
3835 /* recompute hash and restore entry */
3836 new_bucket
= css_set_hash(cg
->subsys
);
3837 hlist_add_head(&cg
->hlist
, new_bucket
);
3840 write_unlock(&css_set_lock
);
3842 mutex_init(&ss
->hierarchy_mutex
);
3843 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3847 mutex_unlock(&cgroup_mutex
);
3850 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3853 * cgroup_unload_subsys: unload a modular subsystem
3854 * @ss: the subsystem to unload
3856 * This function should be called in a modular subsystem's exitcall. When this
3857 * function is invoked, the refcount on the subsystem's module will be 0, so
3858 * the subsystem will not be attached to any hierarchy.
3860 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3862 struct cg_cgroup_link
*link
;
3863 struct hlist_head
*hhead
;
3865 BUG_ON(ss
->module
== NULL
);
3868 * we shouldn't be called if the subsystem is in use, and the use of
3869 * try_module_get in parse_cgroupfs_options should ensure that it
3870 * doesn't start being used while we're killing it off.
3872 BUG_ON(ss
->root
!= &rootnode
);
3874 mutex_lock(&cgroup_mutex
);
3875 /* deassign the subsys_id */
3876 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3877 subsys
[ss
->subsys_id
] = NULL
;
3879 /* remove subsystem from rootnode's list of subsystems */
3880 list_del_init(&ss
->sibling
);
3883 * disentangle the css from all css_sets attached to the dummytop. as
3884 * in loading, we need to pay our respects to the hashtable gods.
3886 write_lock(&css_set_lock
);
3887 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3888 struct css_set
*cg
= link
->cg
;
3890 hlist_del(&cg
->hlist
);
3891 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3892 cg
->subsys
[ss
->subsys_id
] = NULL
;
3893 hhead
= css_set_hash(cg
->subsys
);
3894 hlist_add_head(&cg
->hlist
, hhead
);
3896 write_unlock(&css_set_lock
);
3899 * remove subsystem's css from the dummytop and free it - need to free
3900 * before marking as null because ss->destroy needs the cgrp->subsys
3901 * pointer to find their state. note that this also takes care of
3902 * freeing the css_id.
3904 ss
->destroy(ss
, dummytop
);
3905 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3907 mutex_unlock(&cgroup_mutex
);
3909 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3912 * cgroup_init_early - cgroup initialization at system boot
3914 * Initialize cgroups at system boot, and initialize any
3915 * subsystems that request early init.
3917 int __init
cgroup_init_early(void)
3920 atomic_set(&init_css_set
.refcount
, 1);
3921 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3922 INIT_LIST_HEAD(&init_css_set
.tasks
);
3923 INIT_HLIST_NODE(&init_css_set
.hlist
);
3925 init_cgroup_root(&rootnode
);
3927 init_task
.cgroups
= &init_css_set
;
3929 init_css_set_link
.cg
= &init_css_set
;
3930 init_css_set_link
.cgrp
= dummytop
;
3931 list_add(&init_css_set_link
.cgrp_link_list
,
3932 &rootnode
.top_cgroup
.css_sets
);
3933 list_add(&init_css_set_link
.cg_link_list
,
3934 &init_css_set
.cg_links
);
3936 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3937 INIT_HLIST_HEAD(&css_set_table
[i
]);
3939 /* at bootup time, we don't worry about modular subsystems */
3940 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3941 struct cgroup_subsys
*ss
= subsys
[i
];
3944 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3945 BUG_ON(!ss
->create
);
3946 BUG_ON(!ss
->destroy
);
3947 if (ss
->subsys_id
!= i
) {
3948 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3949 ss
->name
, ss
->subsys_id
);
3954 cgroup_init_subsys(ss
);
3960 * cgroup_init - cgroup initialization
3962 * Register cgroup filesystem and /proc file, and initialize
3963 * any subsystems that didn't request early init.
3965 int __init
cgroup_init(void)
3969 struct hlist_head
*hhead
;
3971 err
= bdi_init(&cgroup_backing_dev_info
);
3975 /* at bootup time, we don't worry about modular subsystems */
3976 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3977 struct cgroup_subsys
*ss
= subsys
[i
];
3978 if (!ss
->early_init
)
3979 cgroup_init_subsys(ss
);
3981 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3984 /* Add init_css_set to the hash table */
3985 hhead
= css_set_hash(init_css_set
.subsys
);
3986 hlist_add_head(&init_css_set
.hlist
, hhead
);
3987 BUG_ON(!init_root_id(&rootnode
));
3989 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
3995 err
= register_filesystem(&cgroup_fs_type
);
3997 kobject_put(cgroup_kobj
);
4001 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4005 bdi_destroy(&cgroup_backing_dev_info
);
4011 * proc_cgroup_show()
4012 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4013 * - Used for /proc/<pid>/cgroup.
4014 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4015 * doesn't really matter if tsk->cgroup changes after we read it,
4016 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4017 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4018 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4019 * cgroup to top_cgroup.
4022 /* TODO: Use a proper seq_file iterator */
4023 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
4026 struct task_struct
*tsk
;
4029 struct cgroupfs_root
*root
;
4032 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4038 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4044 mutex_lock(&cgroup_mutex
);
4046 for_each_active_root(root
) {
4047 struct cgroup_subsys
*ss
;
4048 struct cgroup
*cgrp
;
4051 seq_printf(m
, "%d:", root
->hierarchy_id
);
4052 for_each_subsys(root
, ss
)
4053 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4054 if (strlen(root
->name
))
4055 seq_printf(m
, "%sname=%s", count
? "," : "",
4058 cgrp
= task_cgroup_from_root(tsk
, root
);
4059 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4067 mutex_unlock(&cgroup_mutex
);
4068 put_task_struct(tsk
);
4075 static int cgroup_open(struct inode
*inode
, struct file
*file
)
4077 struct pid
*pid
= PROC_I(inode
)->pid
;
4078 return single_open(file
, proc_cgroup_show
, pid
);
4081 const struct file_operations proc_cgroup_operations
= {
4082 .open
= cgroup_open
,
4084 .llseek
= seq_lseek
,
4085 .release
= single_release
,
4088 /* Display information about each subsystem and each hierarchy */
4089 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4093 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4095 * ideally we don't want subsystems moving around while we do this.
4096 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4097 * subsys/hierarchy state.
4099 mutex_lock(&cgroup_mutex
);
4100 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4101 struct cgroup_subsys
*ss
= subsys
[i
];
4104 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4105 ss
->name
, ss
->root
->hierarchy_id
,
4106 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4108 mutex_unlock(&cgroup_mutex
);
4112 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4114 return single_open(file
, proc_cgroupstats_show
, NULL
);
4117 static const struct file_operations proc_cgroupstats_operations
= {
4118 .open
= cgroupstats_open
,
4120 .llseek
= seq_lseek
,
4121 .release
= single_release
,
4125 * cgroup_fork - attach newly forked task to its parents cgroup.
4126 * @child: pointer to task_struct of forking parent process.
4128 * Description: A task inherits its parent's cgroup at fork().
4130 * A pointer to the shared css_set was automatically copied in
4131 * fork.c by dup_task_struct(). However, we ignore that copy, since
4132 * it was not made under the protection of RCU or cgroup_mutex, so
4133 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4134 * have already changed current->cgroups, allowing the previously
4135 * referenced cgroup group to be removed and freed.
4137 * At the point that cgroup_fork() is called, 'current' is the parent
4138 * task, and the passed argument 'child' points to the child task.
4140 void cgroup_fork(struct task_struct
*child
)
4143 child
->cgroups
= current
->cgroups
;
4144 get_css_set(child
->cgroups
);
4145 task_unlock(current
);
4146 INIT_LIST_HEAD(&child
->cg_list
);
4150 * cgroup_fork_callbacks - run fork callbacks
4151 * @child: the new task
4153 * Called on a new task very soon before adding it to the
4154 * tasklist. No need to take any locks since no-one can
4155 * be operating on this task.
4157 void cgroup_fork_callbacks(struct task_struct
*child
)
4159 if (need_forkexit_callback
) {
4162 * forkexit callbacks are only supported for builtin
4163 * subsystems, and the builtin section of the subsys array is
4164 * immutable, so we don't need to lock the subsys array here.
4166 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4167 struct cgroup_subsys
*ss
= subsys
[i
];
4169 ss
->fork(ss
, child
);
4175 * cgroup_post_fork - called on a new task after adding it to the task list
4176 * @child: the task in question
4178 * Adds the task to the list running through its css_set if necessary.
4179 * Has to be after the task is visible on the task list in case we race
4180 * with the first call to cgroup_iter_start() - to guarantee that the
4181 * new task ends up on its list.
4183 void cgroup_post_fork(struct task_struct
*child
)
4185 if (use_task_css_set_links
) {
4186 write_lock(&css_set_lock
);
4188 if (list_empty(&child
->cg_list
))
4189 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4191 write_unlock(&css_set_lock
);
4195 * cgroup_exit - detach cgroup from exiting task
4196 * @tsk: pointer to task_struct of exiting process
4197 * @run_callback: run exit callbacks?
4199 * Description: Detach cgroup from @tsk and release it.
4201 * Note that cgroups marked notify_on_release force every task in
4202 * them to take the global cgroup_mutex mutex when exiting.
4203 * This could impact scaling on very large systems. Be reluctant to
4204 * use notify_on_release cgroups where very high task exit scaling
4205 * is required on large systems.
4207 * the_top_cgroup_hack:
4209 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4211 * We call cgroup_exit() while the task is still competent to
4212 * handle notify_on_release(), then leave the task attached to the
4213 * root cgroup in each hierarchy for the remainder of its exit.
4215 * To do this properly, we would increment the reference count on
4216 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4217 * code we would add a second cgroup function call, to drop that
4218 * reference. This would just create an unnecessary hot spot on
4219 * the top_cgroup reference count, to no avail.
4221 * Normally, holding a reference to a cgroup without bumping its
4222 * count is unsafe. The cgroup could go away, or someone could
4223 * attach us to a different cgroup, decrementing the count on
4224 * the first cgroup that we never incremented. But in this case,
4225 * top_cgroup isn't going away, and either task has PF_EXITING set,
4226 * which wards off any cgroup_attach_task() attempts, or task is a failed
4227 * fork, never visible to cgroup_attach_task.
4229 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4235 * Unlink from the css_set task list if necessary.
4236 * Optimistically check cg_list before taking
4239 if (!list_empty(&tsk
->cg_list
)) {
4240 write_lock(&css_set_lock
);
4241 if (!list_empty(&tsk
->cg_list
))
4242 list_del_init(&tsk
->cg_list
);
4243 write_unlock(&css_set_lock
);
4246 /* Reassign the task to the init_css_set. */
4249 tsk
->cgroups
= &init_css_set
;
4251 if (run_callbacks
&& need_forkexit_callback
) {
4253 * modular subsystems can't use callbacks, so no need to lock
4256 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4257 struct cgroup_subsys
*ss
= subsys
[i
];
4259 struct cgroup
*old_cgrp
=
4260 rcu_dereference_raw(cg
->subsys
[i
])->cgroup
;
4261 struct cgroup
*cgrp
= task_cgroup(tsk
, i
);
4262 ss
->exit(ss
, cgrp
, old_cgrp
, tsk
);
4269 put_css_set_taskexit(cg
);
4273 * cgroup_clone - clone the cgroup the given subsystem is attached to
4274 * @tsk: the task to be moved
4275 * @subsys: the given subsystem
4276 * @nodename: the name for the new cgroup
4278 * Duplicate the current cgroup in the hierarchy that the given
4279 * subsystem is attached to, and move this task into the new
4282 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4285 struct dentry
*dentry
;
4287 struct cgroup
*parent
, *child
;
4288 struct inode
*inode
;
4290 struct cgroupfs_root
*root
;
4291 struct cgroup_subsys
*ss
;
4293 /* We shouldn't be called by an unregistered subsystem */
4294 BUG_ON(!subsys
->active
);
4296 /* First figure out what hierarchy and cgroup we're dealing
4297 * with, and pin them so we can drop cgroup_mutex */
4298 mutex_lock(&cgroup_mutex
);
4300 root
= subsys
->root
;
4301 if (root
== &rootnode
) {
4302 mutex_unlock(&cgroup_mutex
);
4306 /* Pin the hierarchy */
4307 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4308 /* We race with the final deactivate_super() */
4309 mutex_unlock(&cgroup_mutex
);
4313 /* Keep the cgroup alive */
4315 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4320 mutex_unlock(&cgroup_mutex
);
4322 /* Now do the VFS work to create a cgroup */
4323 inode
= parent
->dentry
->d_inode
;
4325 /* Hold the parent directory mutex across this operation to
4326 * stop anyone else deleting the new cgroup */
4327 mutex_lock(&inode
->i_mutex
);
4328 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4329 if (IS_ERR(dentry
)) {
4331 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4333 ret
= PTR_ERR(dentry
);
4337 /* Create the cgroup directory, which also creates the cgroup */
4338 ret
= vfs_mkdir(inode
, dentry
, 0755);
4339 child
= __d_cgrp(dentry
);
4343 "Failed to create cgroup %s: %d\n", nodename
,
4348 /* The cgroup now exists. Retake cgroup_mutex and check
4349 * that we're still in the same state that we thought we
4351 mutex_lock(&cgroup_mutex
);
4352 if ((root
!= subsys
->root
) ||
4353 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4354 /* Aargh, we raced ... */
4355 mutex_unlock(&inode
->i_mutex
);
4358 deactivate_super(root
->sb
);
4359 /* The cgroup is still accessible in the VFS, but
4360 * we're not going to try to rmdir() it at this
4363 "Race in cgroup_clone() - leaking cgroup %s\n",
4368 /* do any required auto-setup */
4369 for_each_subsys(root
, ss
) {
4371 ss
->post_clone(ss
, child
);
4374 /* All seems fine. Finish by moving the task into the new cgroup */
4375 ret
= cgroup_attach_task(child
, tsk
);
4376 mutex_unlock(&cgroup_mutex
);
4379 mutex_unlock(&inode
->i_mutex
);
4381 mutex_lock(&cgroup_mutex
);
4383 mutex_unlock(&cgroup_mutex
);
4384 deactivate_super(root
->sb
);
4389 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4390 * @cgrp: the cgroup in question
4391 * @task: the task in question
4393 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4396 * If we are sending in dummytop, then presumably we are creating
4397 * the top cgroup in the subsystem.
4399 * Called only by the ns (nsproxy) cgroup.
4401 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4404 struct cgroup
*target
;
4406 if (cgrp
== dummytop
)
4409 target
= task_cgroup_from_root(task
, cgrp
->root
);
4410 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4411 cgrp
= cgrp
->parent
;
4412 ret
= (cgrp
== target
);
4416 static void check_for_release(struct cgroup
*cgrp
)
4418 /* All of these checks rely on RCU to keep the cgroup
4419 * structure alive */
4420 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4421 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4422 /* Control Group is currently removeable. If it's not
4423 * already queued for a userspace notification, queue
4425 int need_schedule_work
= 0;
4426 spin_lock(&release_list_lock
);
4427 if (!cgroup_is_removed(cgrp
) &&
4428 list_empty(&cgrp
->release_list
)) {
4429 list_add(&cgrp
->release_list
, &release_list
);
4430 need_schedule_work
= 1;
4432 spin_unlock(&release_list_lock
);
4433 if (need_schedule_work
)
4434 schedule_work(&release_agent_work
);
4438 /* Caller must verify that the css is not for root cgroup */
4439 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4441 struct cgroup
*cgrp
= css
->cgroup
;
4444 val
= atomic_sub_return(count
, &css
->refcnt
);
4446 if (notify_on_release(cgrp
)) {
4447 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4448 check_for_release(cgrp
);
4450 cgroup_wakeup_rmdir_waiter(cgrp
);
4453 WARN_ON_ONCE(val
< 1);
4455 EXPORT_SYMBOL_GPL(__css_put
);
4458 * Notify userspace when a cgroup is released, by running the
4459 * configured release agent with the name of the cgroup (path
4460 * relative to the root of cgroup file system) as the argument.
4462 * Most likely, this user command will try to rmdir this cgroup.
4464 * This races with the possibility that some other task will be
4465 * attached to this cgroup before it is removed, or that some other
4466 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4467 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4468 * unused, and this cgroup will be reprieved from its death sentence,
4469 * to continue to serve a useful existence. Next time it's released,
4470 * we will get notified again, if it still has 'notify_on_release' set.
4472 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4473 * means only wait until the task is successfully execve()'d. The
4474 * separate release agent task is forked by call_usermodehelper(),
4475 * then control in this thread returns here, without waiting for the
4476 * release agent task. We don't bother to wait because the caller of
4477 * this routine has no use for the exit status of the release agent
4478 * task, so no sense holding our caller up for that.
4480 static void cgroup_release_agent(struct work_struct
*work
)
4482 BUG_ON(work
!= &release_agent_work
);
4483 mutex_lock(&cgroup_mutex
);
4484 spin_lock(&release_list_lock
);
4485 while (!list_empty(&release_list
)) {
4486 char *argv
[3], *envp
[3];
4488 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4489 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4492 list_del_init(&cgrp
->release_list
);
4493 spin_unlock(&release_list_lock
);
4494 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4497 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4499 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4504 argv
[i
++] = agentbuf
;
4505 argv
[i
++] = pathbuf
;
4509 /* minimal command environment */
4510 envp
[i
++] = "HOME=/";
4511 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4514 /* Drop the lock while we invoke the usermode helper,
4515 * since the exec could involve hitting disk and hence
4516 * be a slow process */
4517 mutex_unlock(&cgroup_mutex
);
4518 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4519 mutex_lock(&cgroup_mutex
);
4523 spin_lock(&release_list_lock
);
4525 spin_unlock(&release_list_lock
);
4526 mutex_unlock(&cgroup_mutex
);
4529 static int __init
cgroup_disable(char *str
)
4534 while ((token
= strsep(&str
, ",")) != NULL
) {
4538 * cgroup_disable, being at boot time, can't know about module
4539 * subsystems, so we don't worry about them.
4541 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4542 struct cgroup_subsys
*ss
= subsys
[i
];
4544 if (!strcmp(token
, ss
->name
)) {
4546 printk(KERN_INFO
"Disabling %s control group"
4547 " subsystem\n", ss
->name
);
4554 __setup("cgroup_disable=", cgroup_disable
);
4557 * Functons for CSS ID.
4561 *To get ID other than 0, this should be called when !cgroup_is_removed().
4563 unsigned short css_id(struct cgroup_subsys_state
*css
)
4565 struct css_id
*cssid
;
4568 * This css_id() can return correct value when somone has refcnt
4569 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4570 * it's unchanged until freed.
4572 cssid
= rcu_dereference_check(css
->id
,
4573 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4579 EXPORT_SYMBOL_GPL(css_id
);
4581 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4583 struct css_id
*cssid
;
4585 cssid
= rcu_dereference_check(css
->id
,
4586 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4589 return cssid
->depth
;
4592 EXPORT_SYMBOL_GPL(css_depth
);
4595 * css_is_ancestor - test "root" css is an ancestor of "child"
4596 * @child: the css to be tested.
4597 * @root: the css supporsed to be an ancestor of the child.
4599 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4600 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4601 * But, considering usual usage, the csses should be valid objects after test.
4602 * Assuming that the caller will do some action to the child if this returns
4603 * returns true, the caller must take "child";s reference count.
4604 * If "child" is valid object and this returns true, "root" is valid, too.
4607 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4608 const struct cgroup_subsys_state
*root
)
4610 struct css_id
*child_id
;
4611 struct css_id
*root_id
;
4615 child_id
= rcu_dereference(child
->id
);
4616 root_id
= rcu_dereference(root
->id
);
4619 || (child_id
->depth
< root_id
->depth
)
4620 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4626 static void __free_css_id_cb(struct rcu_head
*head
)
4630 id
= container_of(head
, struct css_id
, rcu_head
);
4634 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4636 struct css_id
*id
= css
->id
;
4637 /* When this is called before css_id initialization, id can be NULL */
4641 BUG_ON(!ss
->use_id
);
4643 rcu_assign_pointer(id
->css
, NULL
);
4644 rcu_assign_pointer(css
->id
, NULL
);
4645 spin_lock(&ss
->id_lock
);
4646 idr_remove(&ss
->idr
, id
->id
);
4647 spin_unlock(&ss
->id_lock
);
4648 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4650 EXPORT_SYMBOL_GPL(free_css_id
);
4653 * This is called by init or create(). Then, calls to this function are
4654 * always serialized (By cgroup_mutex() at create()).
4657 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4659 struct css_id
*newid
;
4660 int myid
, error
, size
;
4662 BUG_ON(!ss
->use_id
);
4664 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4665 newid
= kzalloc(size
, GFP_KERNEL
);
4667 return ERR_PTR(-ENOMEM
);
4669 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4673 spin_lock(&ss
->id_lock
);
4674 /* Don't use 0. allocates an ID of 1-65535 */
4675 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4676 spin_unlock(&ss
->id_lock
);
4678 /* Returns error when there are no free spaces for new ID.*/
4683 if (myid
> CSS_ID_MAX
)
4687 newid
->depth
= depth
;
4691 spin_lock(&ss
->id_lock
);
4692 idr_remove(&ss
->idr
, myid
);
4693 spin_unlock(&ss
->id_lock
);
4696 return ERR_PTR(error
);
4700 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4701 struct cgroup_subsys_state
*rootcss
)
4703 struct css_id
*newid
;
4705 spin_lock_init(&ss
->id_lock
);
4708 newid
= get_new_cssid(ss
, 0);
4710 return PTR_ERR(newid
);
4712 newid
->stack
[0] = newid
->id
;
4713 newid
->css
= rootcss
;
4714 rootcss
->id
= newid
;
4718 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4719 struct cgroup
*child
)
4721 int subsys_id
, i
, depth
= 0;
4722 struct cgroup_subsys_state
*parent_css
, *child_css
;
4723 struct css_id
*child_id
, *parent_id
;
4725 subsys_id
= ss
->subsys_id
;
4726 parent_css
= parent
->subsys
[subsys_id
];
4727 child_css
= child
->subsys
[subsys_id
];
4728 parent_id
= parent_css
->id
;
4729 depth
= parent_id
->depth
+ 1;
4731 child_id
= get_new_cssid(ss
, depth
);
4732 if (IS_ERR(child_id
))
4733 return PTR_ERR(child_id
);
4735 for (i
= 0; i
< depth
; i
++)
4736 child_id
->stack
[i
] = parent_id
->stack
[i
];
4737 child_id
->stack
[depth
] = child_id
->id
;
4739 * child_id->css pointer will be set after this cgroup is available
4740 * see cgroup_populate_dir()
4742 rcu_assign_pointer(child_css
->id
, child_id
);
4748 * css_lookup - lookup css by id
4749 * @ss: cgroup subsys to be looked into.
4752 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4753 * NULL if not. Should be called under rcu_read_lock()
4755 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4757 struct css_id
*cssid
= NULL
;
4759 BUG_ON(!ss
->use_id
);
4760 cssid
= idr_find(&ss
->idr
, id
);
4762 if (unlikely(!cssid
))
4765 return rcu_dereference(cssid
->css
);
4767 EXPORT_SYMBOL_GPL(css_lookup
);
4770 * css_get_next - lookup next cgroup under specified hierarchy.
4771 * @ss: pointer to subsystem
4772 * @id: current position of iteration.
4773 * @root: pointer to css. search tree under this.
4774 * @foundid: position of found object.
4776 * Search next css under the specified hierarchy of rootid. Calling under
4777 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4779 struct cgroup_subsys_state
*
4780 css_get_next(struct cgroup_subsys
*ss
, int id
,
4781 struct cgroup_subsys_state
*root
, int *foundid
)
4783 struct cgroup_subsys_state
*ret
= NULL
;
4786 int rootid
= css_id(root
);
4787 int depth
= css_depth(root
);
4792 BUG_ON(!ss
->use_id
);
4793 /* fill start point for scan */
4797 * scan next entry from bitmap(tree), tmpid is updated after
4800 spin_lock(&ss
->id_lock
);
4801 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4802 spin_unlock(&ss
->id_lock
);
4806 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4807 ret
= rcu_dereference(tmp
->css
);
4813 /* continue to scan from next id */
4820 * get corresponding css from file open on cgroupfs directory
4822 struct cgroup_subsys_state
*cgroup_css_from_dir(struct file
*f
, int id
)
4824 struct cgroup
*cgrp
;
4825 struct inode
*inode
;
4826 struct cgroup_subsys_state
*css
;
4828 inode
= f
->f_dentry
->d_inode
;
4829 /* check in cgroup filesystem dir */
4830 if (inode
->i_op
!= &cgroup_dir_inode_operations
)
4831 return ERR_PTR(-EBADF
);
4833 if (id
< 0 || id
>= CGROUP_SUBSYS_COUNT
)
4834 return ERR_PTR(-EINVAL
);
4837 cgrp
= __d_cgrp(f
->f_dentry
);
4838 css
= cgrp
->subsys
[id
];
4839 return css
? css
: ERR_PTR(-ENOENT
);
4842 #ifdef CONFIG_CGROUP_DEBUG
4843 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4844 struct cgroup
*cont
)
4846 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4849 return ERR_PTR(-ENOMEM
);
4854 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4856 kfree(cont
->subsys
[debug_subsys_id
]);
4859 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4861 return atomic_read(&cont
->count
);
4864 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4866 return cgroup_task_count(cont
);
4869 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4871 return (u64
)(unsigned long)current
->cgroups
;
4874 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4880 count
= atomic_read(¤t
->cgroups
->refcount
);
4885 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4887 struct seq_file
*seq
)
4889 struct cg_cgroup_link
*link
;
4892 read_lock(&css_set_lock
);
4894 cg
= rcu_dereference(current
->cgroups
);
4895 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4896 struct cgroup
*c
= link
->cgrp
;
4900 name
= c
->dentry
->d_name
.name
;
4903 seq_printf(seq
, "Root %d group %s\n",
4904 c
->root
->hierarchy_id
, name
);
4907 read_unlock(&css_set_lock
);
4911 #define MAX_TASKS_SHOWN_PER_CSS 25
4912 static int cgroup_css_links_read(struct cgroup
*cont
,
4914 struct seq_file
*seq
)
4916 struct cg_cgroup_link
*link
;
4918 read_lock(&css_set_lock
);
4919 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4920 struct css_set
*cg
= link
->cg
;
4921 struct task_struct
*task
;
4923 seq_printf(seq
, "css_set %p\n", cg
);
4924 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4925 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4926 seq_puts(seq
, " ...\n");
4929 seq_printf(seq
, " task %d\n",
4930 task_pid_vnr(task
));
4934 read_unlock(&css_set_lock
);
4938 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4940 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4943 static struct cftype debug_files
[] = {
4945 .name
= "cgroup_refcount",
4946 .read_u64
= cgroup_refcount_read
,
4949 .name
= "taskcount",
4950 .read_u64
= debug_taskcount_read
,
4954 .name
= "current_css_set",
4955 .read_u64
= current_css_set_read
,
4959 .name
= "current_css_set_refcount",
4960 .read_u64
= current_css_set_refcount_read
,
4964 .name
= "current_css_set_cg_links",
4965 .read_seq_string
= current_css_set_cg_links_read
,
4969 .name
= "cgroup_css_links",
4970 .read_seq_string
= cgroup_css_links_read
,
4974 .name
= "releasable",
4975 .read_u64
= releasable_read
,
4979 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4981 return cgroup_add_files(cont
, ss
, debug_files
,
4982 ARRAY_SIZE(debug_files
));
4985 struct cgroup_subsys debug_subsys
= {
4987 .create
= debug_create
,
4988 .destroy
= debug_destroy
,
4989 .populate
= debug_populate
,
4990 .subsys_id
= debug_subsys_id
,
4992 #endif /* CONFIG_CGROUP_DEBUG */