Merge branch 'for-2.6.39/stack-plug' into for-2.6.39/core
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob0087cf9c2c6bccaf99000fbd0bfe95257549d81b
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
219 int ret;
222 * Do the basic POSIX ACL permission checks.
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
237 * Searching includes executable on directories, else just read.
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
244 return -EACCES;
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
257 int inode_permission(struct inode *inode, int mask)
259 int retval;
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
265 * Nobody gets write access to a read-only fs.
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
272 * Nobody gets write access to an immutable file.
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
284 if (retval)
285 return retval;
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
291 return security_inode_permission(inode, mask);
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
306 int file_permission(struct file *file, int mask)
308 return inode_permission(file->f_path.dentry->d_inode, mask);
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
329 int get_write_access(struct inode * inode)
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
342 int deny_write_access(struct file * file)
344 struct inode *inode = file->f_path.dentry->d_inode;
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
354 return 0;
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
361 * Given a path increment the reference count to the dentry and the vfsmount.
363 void path_get(struct path *path)
365 mntget(path->mnt);
366 dget(path->dentry);
368 EXPORT_SYMBOL(path_get);
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
374 * Given a path decrement the reference count to the dentry and the vfsmount.
376 void path_put(struct path *path)
378 dput(path->dentry);
379 mntput(path->mnt);
381 EXPORT_SYMBOL(path_put);
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
400 static int nameidata_drop_rcu(struct nameidata *nd)
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
421 mntget(nd->path.mnt);
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt) {
460 spin_lock(&fs->lock);
461 if (nd->root.mnt != fs->root.mnt ||
462 nd->root.dentry != fs->root.dentry)
463 goto err_root;
465 spin_lock(&parent->d_lock);
466 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
467 if (!__d_rcu_to_refcount(dentry, nd->seq))
468 goto err;
470 * If the sequence check on the child dentry passed, then the child has
471 * not been removed from its parent. This means the parent dentry must
472 * be valid and able to take a reference at this point.
474 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
475 BUG_ON(!parent->d_count);
476 parent->d_count++;
477 spin_unlock(&dentry->d_lock);
478 spin_unlock(&parent->d_lock);
479 if (nd->root.mnt) {
480 path_get(&nd->root);
481 spin_unlock(&fs->lock);
483 mntget(nd->path.mnt);
485 rcu_read_unlock();
486 br_read_unlock(vfsmount_lock);
487 nd->flags &= ~LOOKUP_RCU;
488 return 0;
489 err:
490 spin_unlock(&dentry->d_lock);
491 spin_unlock(&parent->d_lock);
492 err_root:
493 if (nd->root.mnt)
494 spin_unlock(&fs->lock);
495 return -ECHILD;
498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
501 if (nd->flags & LOOKUP_RCU)
502 return nameidata_dentry_drop_rcu(nd, dentry);
503 return 0;
507 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
508 * @nd: nameidata pathwalk data to drop
509 * Returns: 0 on success, -ECHILD on failure
511 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
512 * nd->path should be the final element of the lookup, so nd->root is discarded.
513 * Must be called from rcu-walk context.
515 static int nameidata_drop_rcu_last(struct nameidata *nd)
517 struct dentry *dentry = nd->path.dentry;
519 BUG_ON(!(nd->flags & LOOKUP_RCU));
520 nd->flags &= ~LOOKUP_RCU;
521 nd->root.mnt = NULL;
522 spin_lock(&dentry->d_lock);
523 if (!__d_rcu_to_refcount(dentry, nd->seq))
524 goto err_unlock;
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
533 return 0;
535 err_unlock:
536 spin_unlock(&dentry->d_lock);
537 rcu_read_unlock();
538 br_read_unlock(vfsmount_lock);
539 return -ECHILD;
542 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
543 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
545 if (likely(nd->flags & LOOKUP_RCU))
546 return nameidata_drop_rcu_last(nd);
547 return 0;
551 * release_open_intent - free up open intent resources
552 * @nd: pointer to nameidata
554 void release_open_intent(struct nameidata *nd)
556 struct file *file = nd->intent.open.file;
558 if (file && !IS_ERR(file)) {
559 if (file->f_path.dentry == NULL)
560 put_filp(file);
561 else
562 fput(file);
566 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
568 return dentry->d_op->d_revalidate(dentry, nd);
571 static struct dentry *
572 do_revalidate(struct dentry *dentry, struct nameidata *nd)
574 int status = d_revalidate(dentry, nd);
575 if (unlikely(status <= 0)) {
577 * The dentry failed validation.
578 * If d_revalidate returned 0 attempt to invalidate
579 * the dentry otherwise d_revalidate is asking us
580 * to return a fail status.
582 if (status < 0) {
583 dput(dentry);
584 dentry = ERR_PTR(status);
585 } else if (!d_invalidate(dentry)) {
586 dput(dentry);
587 dentry = NULL;
590 return dentry;
593 static inline struct dentry *
594 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
596 int status = d_revalidate(dentry, nd);
597 if (likely(status > 0))
598 return dentry;
599 if (status == -ECHILD) {
600 if (nameidata_dentry_drop_rcu(nd, dentry))
601 return ERR_PTR(-ECHILD);
602 return do_revalidate(dentry, nd);
604 if (status < 0)
605 return ERR_PTR(status);
606 /* Don't d_invalidate in rcu-walk mode */
607 if (nameidata_dentry_drop_rcu(nd, dentry))
608 return ERR_PTR(-ECHILD);
609 if (!d_invalidate(dentry)) {
610 dput(dentry);
611 dentry = NULL;
613 return dentry;
616 static inline int need_reval_dot(struct dentry *dentry)
618 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
619 return 0;
621 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
622 return 0;
624 return 1;
628 * force_reval_path - force revalidation of a dentry
630 * In some situations the path walking code will trust dentries without
631 * revalidating them. This causes problems for filesystems that depend on
632 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
633 * (which indicates that it's possible for the dentry to go stale), force
634 * a d_revalidate call before proceeding.
636 * Returns 0 if the revalidation was successful. If the revalidation fails,
637 * either return the error returned by d_revalidate or -ESTALE if the
638 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
639 * invalidate the dentry. It's up to the caller to handle putting references
640 * to the path if necessary.
642 static int
643 force_reval_path(struct path *path, struct nameidata *nd)
645 int status;
646 struct dentry *dentry = path->dentry;
649 * only check on filesystems where it's possible for the dentry to
650 * become stale.
652 if (!need_reval_dot(dentry))
653 return 0;
655 status = d_revalidate(dentry, nd);
656 if (status > 0)
657 return 0;
659 if (!status) {
660 d_invalidate(dentry);
661 status = -ESTALE;
663 return status;
667 * Short-cut version of permission(), for calling on directories
668 * during pathname resolution. Combines parts of permission()
669 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
671 * If appropriate, check DAC only. If not appropriate, or
672 * short-cut DAC fails, then call ->permission() to do more
673 * complete permission check.
675 static inline int exec_permission(struct inode *inode, unsigned int flags)
677 int ret;
679 if (inode->i_op->permission) {
680 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
681 } else {
682 ret = acl_permission_check(inode, MAY_EXEC, flags,
683 inode->i_op->check_acl);
685 if (likely(!ret))
686 goto ok;
687 if (ret == -ECHILD)
688 return ret;
690 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
691 goto ok;
693 return ret;
695 return security_inode_exec_permission(inode, flags);
698 static __always_inline void set_root(struct nameidata *nd)
700 if (!nd->root.mnt)
701 get_fs_root(current->fs, &nd->root);
704 static int link_path_walk(const char *, struct nameidata *);
706 static __always_inline void set_root_rcu(struct nameidata *nd)
708 if (!nd->root.mnt) {
709 struct fs_struct *fs = current->fs;
710 unsigned seq;
712 do {
713 seq = read_seqcount_begin(&fs->seq);
714 nd->root = fs->root;
715 } while (read_seqcount_retry(&fs->seq, seq));
719 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
721 int ret;
723 if (IS_ERR(link))
724 goto fail;
726 if (*link == '/') {
727 set_root(nd);
728 path_put(&nd->path);
729 nd->path = nd->root;
730 path_get(&nd->root);
732 nd->inode = nd->path.dentry->d_inode;
734 ret = link_path_walk(link, nd);
735 return ret;
736 fail:
737 path_put(&nd->path);
738 return PTR_ERR(link);
741 static void path_put_conditional(struct path *path, struct nameidata *nd)
743 dput(path->dentry);
744 if (path->mnt != nd->path.mnt)
745 mntput(path->mnt);
748 static inline void path_to_nameidata(const struct path *path,
749 struct nameidata *nd)
751 if (!(nd->flags & LOOKUP_RCU)) {
752 dput(nd->path.dentry);
753 if (nd->path.mnt != path->mnt)
754 mntput(nd->path.mnt);
756 nd->path.mnt = path->mnt;
757 nd->path.dentry = path->dentry;
760 static __always_inline int
761 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
763 int error;
764 struct dentry *dentry = link->dentry;
766 BUG_ON(nd->flags & LOOKUP_RCU);
768 touch_atime(link->mnt, dentry);
769 nd_set_link(nd, NULL);
771 if (link->mnt == nd->path.mnt)
772 mntget(link->mnt);
774 nd->last_type = LAST_BIND;
775 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
776 error = PTR_ERR(*p);
777 if (!IS_ERR(*p)) {
778 char *s = nd_get_link(nd);
779 error = 0;
780 if (s)
781 error = __vfs_follow_link(nd, s);
782 else if (nd->last_type == LAST_BIND) {
783 error = force_reval_path(&nd->path, nd);
784 if (error)
785 path_put(&nd->path);
788 return error;
792 * This limits recursive symlink follows to 8, while
793 * limiting consecutive symlinks to 40.
795 * Without that kind of total limit, nasty chains of consecutive
796 * symlinks can cause almost arbitrarily long lookups.
798 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
800 void *cookie;
801 int err = -ELOOP;
803 /* We drop rcu-walk here */
804 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
805 return -ECHILD;
806 BUG_ON(inode != path->dentry->d_inode);
808 if (current->link_count >= MAX_NESTED_LINKS)
809 goto loop;
810 if (current->total_link_count >= 40)
811 goto loop;
812 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
813 cond_resched();
814 err = security_inode_follow_link(path->dentry, nd);
815 if (err)
816 goto loop;
817 current->link_count++;
818 current->total_link_count++;
819 nd->depth++;
820 err = __do_follow_link(path, nd, &cookie);
821 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
822 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
823 path_put(path);
824 current->link_count--;
825 nd->depth--;
826 return err;
827 loop:
828 path_put_conditional(path, nd);
829 path_put(&nd->path);
830 return err;
833 static int follow_up_rcu(struct path *path)
835 struct vfsmount *parent;
836 struct dentry *mountpoint;
838 parent = path->mnt->mnt_parent;
839 if (parent == path->mnt)
840 return 0;
841 mountpoint = path->mnt->mnt_mountpoint;
842 path->dentry = mountpoint;
843 path->mnt = parent;
844 return 1;
847 int follow_up(struct path *path)
849 struct vfsmount *parent;
850 struct dentry *mountpoint;
852 br_read_lock(vfsmount_lock);
853 parent = path->mnt->mnt_parent;
854 if (parent == path->mnt) {
855 br_read_unlock(vfsmount_lock);
856 return 0;
858 mntget(parent);
859 mountpoint = dget(path->mnt->mnt_mountpoint);
860 br_read_unlock(vfsmount_lock);
861 dput(path->dentry);
862 path->dentry = mountpoint;
863 mntput(path->mnt);
864 path->mnt = parent;
865 return 1;
869 * Perform an automount
870 * - return -EISDIR to tell follow_managed() to stop and return the path we
871 * were called with.
873 static int follow_automount(struct path *path, unsigned flags,
874 bool *need_mntput)
876 struct vfsmount *mnt;
877 int err;
879 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
880 return -EREMOTE;
882 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
883 * and this is the terminal part of the path.
885 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
886 return -EISDIR; /* we actually want to stop here */
888 /* We want to mount if someone is trying to open/create a file of any
889 * type under the mountpoint, wants to traverse through the mountpoint
890 * or wants to open the mounted directory.
892 * We don't want to mount if someone's just doing a stat and they've
893 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
894 * appended a '/' to the name.
896 if (!(flags & LOOKUP_FOLLOW) &&
897 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
898 LOOKUP_OPEN | LOOKUP_CREATE)))
899 return -EISDIR;
901 current->total_link_count++;
902 if (current->total_link_count >= 40)
903 return -ELOOP;
905 mnt = path->dentry->d_op->d_automount(path);
906 if (IS_ERR(mnt)) {
908 * The filesystem is allowed to return -EISDIR here to indicate
909 * it doesn't want to automount. For instance, autofs would do
910 * this so that its userspace daemon can mount on this dentry.
912 * However, we can only permit this if it's a terminal point in
913 * the path being looked up; if it wasn't then the remainder of
914 * the path is inaccessible and we should say so.
916 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
917 return -EREMOTE;
918 return PTR_ERR(mnt);
921 if (!mnt) /* mount collision */
922 return 0;
924 err = finish_automount(mnt, path);
926 switch (err) {
927 case -EBUSY:
928 /* Someone else made a mount here whilst we were busy */
929 return 0;
930 case 0:
931 dput(path->dentry);
932 if (*need_mntput)
933 mntput(path->mnt);
934 path->mnt = mnt;
935 path->dentry = dget(mnt->mnt_root);
936 *need_mntput = true;
937 return 0;
938 default:
939 return err;
945 * Handle a dentry that is managed in some way.
946 * - Flagged for transit management (autofs)
947 * - Flagged as mountpoint
948 * - Flagged as automount point
950 * This may only be called in refwalk mode.
952 * Serialization is taken care of in namespace.c
954 static int follow_managed(struct path *path, unsigned flags)
956 unsigned managed;
957 bool need_mntput = false;
958 int ret;
960 /* Given that we're not holding a lock here, we retain the value in a
961 * local variable for each dentry as we look at it so that we don't see
962 * the components of that value change under us */
963 while (managed = ACCESS_ONCE(path->dentry->d_flags),
964 managed &= DCACHE_MANAGED_DENTRY,
965 unlikely(managed != 0)) {
966 /* Allow the filesystem to manage the transit without i_mutex
967 * being held. */
968 if (managed & DCACHE_MANAGE_TRANSIT) {
969 BUG_ON(!path->dentry->d_op);
970 BUG_ON(!path->dentry->d_op->d_manage);
971 ret = path->dentry->d_op->d_manage(path->dentry,
972 false, false);
973 if (ret < 0)
974 return ret == -EISDIR ? 0 : ret;
977 /* Transit to a mounted filesystem. */
978 if (managed & DCACHE_MOUNTED) {
979 struct vfsmount *mounted = lookup_mnt(path);
980 if (mounted) {
981 dput(path->dentry);
982 if (need_mntput)
983 mntput(path->mnt);
984 path->mnt = mounted;
985 path->dentry = dget(mounted->mnt_root);
986 need_mntput = true;
987 continue;
990 /* Something is mounted on this dentry in another
991 * namespace and/or whatever was mounted there in this
992 * namespace got unmounted before we managed to get the
993 * vfsmount_lock */
996 /* Handle an automount point */
997 if (managed & DCACHE_NEED_AUTOMOUNT) {
998 ret = follow_automount(path, flags, &need_mntput);
999 if (ret < 0)
1000 return ret == -EISDIR ? 0 : ret;
1001 continue;
1004 /* We didn't change the current path point */
1005 break;
1007 return 0;
1010 int follow_down_one(struct path *path)
1012 struct vfsmount *mounted;
1014 mounted = lookup_mnt(path);
1015 if (mounted) {
1016 dput(path->dentry);
1017 mntput(path->mnt);
1018 path->mnt = mounted;
1019 path->dentry = dget(mounted->mnt_root);
1020 return 1;
1022 return 0;
1026 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1027 * meet a managed dentry and we're not walking to "..". True is returned to
1028 * continue, false to abort.
1030 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1031 struct inode **inode, bool reverse_transit)
1033 while (d_mountpoint(path->dentry)) {
1034 struct vfsmount *mounted;
1035 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1036 !reverse_transit &&
1037 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1038 return false;
1039 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1040 if (!mounted)
1041 break;
1042 path->mnt = mounted;
1043 path->dentry = mounted->mnt_root;
1044 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1045 *inode = path->dentry->d_inode;
1048 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1049 return reverse_transit;
1050 return true;
1053 static int follow_dotdot_rcu(struct nameidata *nd)
1055 struct inode *inode = nd->inode;
1057 set_root_rcu(nd);
1059 while (1) {
1060 if (nd->path.dentry == nd->root.dentry &&
1061 nd->path.mnt == nd->root.mnt) {
1062 break;
1064 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1065 struct dentry *old = nd->path.dentry;
1066 struct dentry *parent = old->d_parent;
1067 unsigned seq;
1069 seq = read_seqcount_begin(&parent->d_seq);
1070 if (read_seqcount_retry(&old->d_seq, nd->seq))
1071 return -ECHILD;
1072 inode = parent->d_inode;
1073 nd->path.dentry = parent;
1074 nd->seq = seq;
1075 break;
1077 if (!follow_up_rcu(&nd->path))
1078 break;
1079 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1080 inode = nd->path.dentry->d_inode;
1082 __follow_mount_rcu(nd, &nd->path, &inode, true);
1083 nd->inode = inode;
1085 return 0;
1089 * Follow down to the covering mount currently visible to userspace. At each
1090 * point, the filesystem owning that dentry may be queried as to whether the
1091 * caller is permitted to proceed or not.
1093 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1094 * being true).
1096 int follow_down(struct path *path, bool mounting_here)
1098 unsigned managed;
1099 int ret;
1101 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1102 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1103 /* Allow the filesystem to manage the transit without i_mutex
1104 * being held.
1106 * We indicate to the filesystem if someone is trying to mount
1107 * something here. This gives autofs the chance to deny anyone
1108 * other than its daemon the right to mount on its
1109 * superstructure.
1111 * The filesystem may sleep at this point.
1113 if (managed & DCACHE_MANAGE_TRANSIT) {
1114 BUG_ON(!path->dentry->d_op);
1115 BUG_ON(!path->dentry->d_op->d_manage);
1116 ret = path->dentry->d_op->d_manage(
1117 path->dentry, mounting_here, false);
1118 if (ret < 0)
1119 return ret == -EISDIR ? 0 : ret;
1122 /* Transit to a mounted filesystem. */
1123 if (managed & DCACHE_MOUNTED) {
1124 struct vfsmount *mounted = lookup_mnt(path);
1125 if (!mounted)
1126 break;
1127 dput(path->dentry);
1128 mntput(path->mnt);
1129 path->mnt = mounted;
1130 path->dentry = dget(mounted->mnt_root);
1131 continue;
1134 /* Don't handle automount points here */
1135 break;
1137 return 0;
1141 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1143 static void follow_mount(struct path *path)
1145 while (d_mountpoint(path->dentry)) {
1146 struct vfsmount *mounted = lookup_mnt(path);
1147 if (!mounted)
1148 break;
1149 dput(path->dentry);
1150 mntput(path->mnt);
1151 path->mnt = mounted;
1152 path->dentry = dget(mounted->mnt_root);
1156 static void follow_dotdot(struct nameidata *nd)
1158 set_root(nd);
1160 while(1) {
1161 struct dentry *old = nd->path.dentry;
1163 if (nd->path.dentry == nd->root.dentry &&
1164 nd->path.mnt == nd->root.mnt) {
1165 break;
1167 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1168 /* rare case of legitimate dget_parent()... */
1169 nd->path.dentry = dget_parent(nd->path.dentry);
1170 dput(old);
1171 break;
1173 if (!follow_up(&nd->path))
1174 break;
1176 follow_mount(&nd->path);
1177 nd->inode = nd->path.dentry->d_inode;
1181 * Allocate a dentry with name and parent, and perform a parent
1182 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1183 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1184 * have verified that no child exists while under i_mutex.
1186 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1187 struct qstr *name, struct nameidata *nd)
1189 struct inode *inode = parent->d_inode;
1190 struct dentry *dentry;
1191 struct dentry *old;
1193 /* Don't create child dentry for a dead directory. */
1194 if (unlikely(IS_DEADDIR(inode)))
1195 return ERR_PTR(-ENOENT);
1197 dentry = d_alloc(parent, name);
1198 if (unlikely(!dentry))
1199 return ERR_PTR(-ENOMEM);
1201 old = inode->i_op->lookup(inode, dentry, nd);
1202 if (unlikely(old)) {
1203 dput(dentry);
1204 dentry = old;
1206 return dentry;
1210 * It's more convoluted than I'd like it to be, but... it's still fairly
1211 * small and for now I'd prefer to have fast path as straight as possible.
1212 * It _is_ time-critical.
1214 static int do_lookup(struct nameidata *nd, struct qstr *name,
1215 struct path *path, struct inode **inode)
1217 struct vfsmount *mnt = nd->path.mnt;
1218 struct dentry *dentry, *parent = nd->path.dentry;
1219 struct inode *dir;
1220 int err;
1223 * See if the low-level filesystem might want
1224 * to use its own hash..
1226 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1227 err = parent->d_op->d_hash(parent, nd->inode, name);
1228 if (err < 0)
1229 return err;
1233 * Rename seqlock is not required here because in the off chance
1234 * of a false negative due to a concurrent rename, we're going to
1235 * do the non-racy lookup, below.
1237 if (nd->flags & LOOKUP_RCU) {
1238 unsigned seq;
1240 *inode = nd->inode;
1241 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1242 if (!dentry) {
1243 if (nameidata_drop_rcu(nd))
1244 return -ECHILD;
1245 goto need_lookup;
1247 /* Memory barrier in read_seqcount_begin of child is enough */
1248 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1249 return -ECHILD;
1251 nd->seq = seq;
1252 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1253 dentry = do_revalidate_rcu(dentry, nd);
1254 if (!dentry)
1255 goto need_lookup;
1256 if (IS_ERR(dentry))
1257 goto fail;
1258 if (!(nd->flags & LOOKUP_RCU))
1259 goto done;
1261 path->mnt = mnt;
1262 path->dentry = dentry;
1263 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1264 return 0;
1265 if (nameidata_drop_rcu(nd))
1266 return -ECHILD;
1267 /* fallthru */
1269 dentry = __d_lookup(parent, name);
1270 if (!dentry)
1271 goto need_lookup;
1272 found:
1273 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1274 dentry = do_revalidate(dentry, nd);
1275 if (!dentry)
1276 goto need_lookup;
1277 if (IS_ERR(dentry))
1278 goto fail;
1280 done:
1281 path->mnt = mnt;
1282 path->dentry = dentry;
1283 err = follow_managed(path, nd->flags);
1284 if (unlikely(err < 0)) {
1285 path_put_conditional(path, nd);
1286 return err;
1288 *inode = path->dentry->d_inode;
1289 return 0;
1291 need_lookup:
1292 dir = parent->d_inode;
1293 BUG_ON(nd->inode != dir);
1295 mutex_lock(&dir->i_mutex);
1297 * First re-do the cached lookup just in case it was created
1298 * while we waited for the directory semaphore, or the first
1299 * lookup failed due to an unrelated rename.
1301 * This could use version numbering or similar to avoid unnecessary
1302 * cache lookups, but then we'd have to do the first lookup in the
1303 * non-racy way. However in the common case here, everything should
1304 * be hot in cache, so would it be a big win?
1306 dentry = d_lookup(parent, name);
1307 if (likely(!dentry)) {
1308 dentry = d_alloc_and_lookup(parent, name, nd);
1309 mutex_unlock(&dir->i_mutex);
1310 if (IS_ERR(dentry))
1311 goto fail;
1312 goto done;
1315 * Uhhuh! Nasty case: the cache was re-populated while
1316 * we waited on the semaphore. Need to revalidate.
1318 mutex_unlock(&dir->i_mutex);
1319 goto found;
1321 fail:
1322 return PTR_ERR(dentry);
1326 * Name resolution.
1327 * This is the basic name resolution function, turning a pathname into
1328 * the final dentry. We expect 'base' to be positive and a directory.
1330 * Returns 0 and nd will have valid dentry and mnt on success.
1331 * Returns error and drops reference to input namei data on failure.
1333 static int link_path_walk(const char *name, struct nameidata *nd)
1335 struct path next;
1336 int err;
1337 unsigned int lookup_flags = nd->flags;
1339 while (*name=='/')
1340 name++;
1341 if (!*name)
1342 goto return_reval;
1344 if (nd->depth)
1345 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1347 /* At this point we know we have a real path component. */
1348 for(;;) {
1349 struct inode *inode;
1350 unsigned long hash;
1351 struct qstr this;
1352 unsigned int c;
1354 nd->flags |= LOOKUP_CONTINUE;
1355 if (nd->flags & LOOKUP_RCU) {
1356 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1357 if (err == -ECHILD) {
1358 if (nameidata_drop_rcu(nd))
1359 return -ECHILD;
1360 goto exec_again;
1362 } else {
1363 exec_again:
1364 err = exec_permission(nd->inode, 0);
1366 if (err)
1367 break;
1369 this.name = name;
1370 c = *(const unsigned char *)name;
1372 hash = init_name_hash();
1373 do {
1374 name++;
1375 hash = partial_name_hash(c, hash);
1376 c = *(const unsigned char *)name;
1377 } while (c && (c != '/'));
1378 this.len = name - (const char *) this.name;
1379 this.hash = end_name_hash(hash);
1381 /* remove trailing slashes? */
1382 if (!c)
1383 goto last_component;
1384 while (*++name == '/');
1385 if (!*name)
1386 goto last_with_slashes;
1389 * "." and ".." are special - ".." especially so because it has
1390 * to be able to know about the current root directory and
1391 * parent relationships.
1393 if (this.name[0] == '.') switch (this.len) {
1394 default:
1395 break;
1396 case 2:
1397 if (this.name[1] != '.')
1398 break;
1399 if (nd->flags & LOOKUP_RCU) {
1400 if (follow_dotdot_rcu(nd))
1401 return -ECHILD;
1402 } else
1403 follow_dotdot(nd);
1404 /* fallthrough */
1405 case 1:
1406 continue;
1408 /* This does the actual lookups.. */
1409 err = do_lookup(nd, &this, &next, &inode);
1410 if (err)
1411 break;
1412 err = -ENOENT;
1413 if (!inode)
1414 goto out_dput;
1416 if (inode->i_op->follow_link) {
1417 err = do_follow_link(inode, &next, nd);
1418 if (err)
1419 goto return_err;
1420 nd->inode = nd->path.dentry->d_inode;
1421 err = -ENOENT;
1422 if (!nd->inode)
1423 break;
1424 } else {
1425 path_to_nameidata(&next, nd);
1426 nd->inode = inode;
1428 err = -ENOTDIR;
1429 if (!nd->inode->i_op->lookup)
1430 break;
1431 continue;
1432 /* here ends the main loop */
1434 last_with_slashes:
1435 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1436 last_component:
1437 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1438 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1439 if (lookup_flags & LOOKUP_PARENT)
1440 goto lookup_parent;
1441 if (this.name[0] == '.') switch (this.len) {
1442 default:
1443 break;
1444 case 2:
1445 if (this.name[1] != '.')
1446 break;
1447 if (nd->flags & LOOKUP_RCU) {
1448 if (follow_dotdot_rcu(nd))
1449 return -ECHILD;
1450 } else
1451 follow_dotdot(nd);
1452 /* fallthrough */
1453 case 1:
1454 goto return_reval;
1456 err = do_lookup(nd, &this, &next, &inode);
1457 if (err)
1458 break;
1459 if (inode && unlikely(inode->i_op->follow_link) &&
1460 (lookup_flags & LOOKUP_FOLLOW)) {
1461 err = do_follow_link(inode, &next, nd);
1462 if (err)
1463 goto return_err;
1464 nd->inode = nd->path.dentry->d_inode;
1465 } else {
1466 path_to_nameidata(&next, nd);
1467 nd->inode = inode;
1469 err = -ENOENT;
1470 if (!nd->inode)
1471 break;
1472 if (lookup_flags & LOOKUP_DIRECTORY) {
1473 err = -ENOTDIR;
1474 if (!nd->inode->i_op->lookup)
1475 break;
1477 goto return_base;
1478 lookup_parent:
1479 nd->last = this;
1480 nd->last_type = LAST_NORM;
1481 if (this.name[0] != '.')
1482 goto return_base;
1483 if (this.len == 1)
1484 nd->last_type = LAST_DOT;
1485 else if (this.len == 2 && this.name[1] == '.')
1486 nd->last_type = LAST_DOTDOT;
1487 else
1488 goto return_base;
1489 return_reval:
1491 * We bypassed the ordinary revalidation routines.
1492 * We may need to check the cached dentry for staleness.
1494 if (need_reval_dot(nd->path.dentry)) {
1495 if (nameidata_drop_rcu_last_maybe(nd))
1496 return -ECHILD;
1497 /* Note: we do not d_invalidate() */
1498 err = d_revalidate(nd->path.dentry, nd);
1499 if (!err)
1500 err = -ESTALE;
1501 if (err < 0)
1502 break;
1503 return 0;
1505 return_base:
1506 if (nameidata_drop_rcu_last_maybe(nd))
1507 return -ECHILD;
1508 return 0;
1509 out_dput:
1510 if (!(nd->flags & LOOKUP_RCU))
1511 path_put_conditional(&next, nd);
1512 break;
1514 if (!(nd->flags & LOOKUP_RCU))
1515 path_put(&nd->path);
1516 return_err:
1517 return err;
1520 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1522 current->total_link_count = 0;
1524 return link_path_walk(name, nd);
1527 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1529 current->total_link_count = 0;
1531 return link_path_walk(name, nd);
1534 static int path_walk(const char *name, struct nameidata *nd)
1536 struct path save = nd->path;
1537 int result;
1539 current->total_link_count = 0;
1541 /* make sure the stuff we saved doesn't go away */
1542 path_get(&save);
1544 result = link_path_walk(name, nd);
1545 if (result == -ESTALE) {
1546 /* nd->path had been dropped */
1547 current->total_link_count = 0;
1548 nd->path = save;
1549 path_get(&nd->path);
1550 nd->flags |= LOOKUP_REVAL;
1551 result = link_path_walk(name, nd);
1554 path_put(&save);
1556 return result;
1559 static void path_finish_rcu(struct nameidata *nd)
1561 if (nd->flags & LOOKUP_RCU) {
1562 /* RCU dangling. Cancel it. */
1563 nd->flags &= ~LOOKUP_RCU;
1564 nd->root.mnt = NULL;
1565 rcu_read_unlock();
1566 br_read_unlock(vfsmount_lock);
1568 if (nd->file)
1569 fput(nd->file);
1572 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1574 int retval = 0;
1575 int fput_needed;
1576 struct file *file;
1578 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1579 nd->flags = flags | LOOKUP_RCU;
1580 nd->depth = 0;
1581 nd->root.mnt = NULL;
1582 nd->file = NULL;
1584 if (*name=='/') {
1585 struct fs_struct *fs = current->fs;
1586 unsigned seq;
1588 br_read_lock(vfsmount_lock);
1589 rcu_read_lock();
1591 do {
1592 seq = read_seqcount_begin(&fs->seq);
1593 nd->root = fs->root;
1594 nd->path = nd->root;
1595 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1596 } while (read_seqcount_retry(&fs->seq, seq));
1598 } else if (dfd == AT_FDCWD) {
1599 struct fs_struct *fs = current->fs;
1600 unsigned seq;
1602 br_read_lock(vfsmount_lock);
1603 rcu_read_lock();
1605 do {
1606 seq = read_seqcount_begin(&fs->seq);
1607 nd->path = fs->pwd;
1608 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1609 } while (read_seqcount_retry(&fs->seq, seq));
1611 } else {
1612 struct dentry *dentry;
1614 file = fget_light(dfd, &fput_needed);
1615 retval = -EBADF;
1616 if (!file)
1617 goto out_fail;
1619 dentry = file->f_path.dentry;
1621 retval = -ENOTDIR;
1622 if (!S_ISDIR(dentry->d_inode->i_mode))
1623 goto fput_fail;
1625 retval = file_permission(file, MAY_EXEC);
1626 if (retval)
1627 goto fput_fail;
1629 nd->path = file->f_path;
1630 if (fput_needed)
1631 nd->file = file;
1633 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1634 br_read_lock(vfsmount_lock);
1635 rcu_read_lock();
1637 nd->inode = nd->path.dentry->d_inode;
1638 return 0;
1640 fput_fail:
1641 fput_light(file, fput_needed);
1642 out_fail:
1643 return retval;
1646 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1648 int retval = 0;
1649 int fput_needed;
1650 struct file *file;
1652 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1653 nd->flags = flags;
1654 nd->depth = 0;
1655 nd->root.mnt = NULL;
1657 if (*name=='/') {
1658 set_root(nd);
1659 nd->path = nd->root;
1660 path_get(&nd->root);
1661 } else if (dfd == AT_FDCWD) {
1662 get_fs_pwd(current->fs, &nd->path);
1663 } else {
1664 struct dentry *dentry;
1666 file = fget_light(dfd, &fput_needed);
1667 retval = -EBADF;
1668 if (!file)
1669 goto out_fail;
1671 dentry = file->f_path.dentry;
1673 retval = -ENOTDIR;
1674 if (!S_ISDIR(dentry->d_inode->i_mode))
1675 goto fput_fail;
1677 retval = file_permission(file, MAY_EXEC);
1678 if (retval)
1679 goto fput_fail;
1681 nd->path = file->f_path;
1682 path_get(&file->f_path);
1684 fput_light(file, fput_needed);
1686 nd->inode = nd->path.dentry->d_inode;
1687 return 0;
1689 fput_fail:
1690 fput_light(file, fput_needed);
1691 out_fail:
1692 return retval;
1695 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1696 static int do_path_lookup(int dfd, const char *name,
1697 unsigned int flags, struct nameidata *nd)
1699 int retval;
1702 * Path walking is largely split up into 2 different synchronisation
1703 * schemes, rcu-walk and ref-walk (explained in
1704 * Documentation/filesystems/path-lookup.txt). These share much of the
1705 * path walk code, but some things particularly setup, cleanup, and
1706 * following mounts are sufficiently divergent that functions are
1707 * duplicated. Typically there is a function foo(), and its RCU
1708 * analogue, foo_rcu().
1710 * -ECHILD is the error number of choice (just to avoid clashes) that
1711 * is returned if some aspect of an rcu-walk fails. Such an error must
1712 * be handled by restarting a traditional ref-walk (which will always
1713 * be able to complete).
1715 retval = path_init_rcu(dfd, name, flags, nd);
1716 if (unlikely(retval))
1717 return retval;
1718 retval = path_walk_rcu(name, nd);
1719 path_finish_rcu(nd);
1720 if (nd->root.mnt) {
1721 path_put(&nd->root);
1722 nd->root.mnt = NULL;
1725 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1726 /* slower, locked walk */
1727 if (retval == -ESTALE)
1728 flags |= LOOKUP_REVAL;
1729 retval = path_init(dfd, name, flags, nd);
1730 if (unlikely(retval))
1731 return retval;
1732 retval = path_walk(name, nd);
1733 if (nd->root.mnt) {
1734 path_put(&nd->root);
1735 nd->root.mnt = NULL;
1739 if (likely(!retval)) {
1740 if (unlikely(!audit_dummy_context())) {
1741 if (nd->path.dentry && nd->inode)
1742 audit_inode(name, nd->path.dentry);
1746 return retval;
1749 int path_lookup(const char *name, unsigned int flags,
1750 struct nameidata *nd)
1752 return do_path_lookup(AT_FDCWD, name, flags, nd);
1755 int kern_path(const char *name, unsigned int flags, struct path *path)
1757 struct nameidata nd;
1758 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1759 if (!res)
1760 *path = nd.path;
1761 return res;
1765 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1766 * @dentry: pointer to dentry of the base directory
1767 * @mnt: pointer to vfs mount of the base directory
1768 * @name: pointer to file name
1769 * @flags: lookup flags
1770 * @nd: pointer to nameidata
1772 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1773 const char *name, unsigned int flags,
1774 struct nameidata *nd)
1776 int retval;
1778 /* same as do_path_lookup */
1779 nd->last_type = LAST_ROOT;
1780 nd->flags = flags;
1781 nd->depth = 0;
1783 nd->path.dentry = dentry;
1784 nd->path.mnt = mnt;
1785 path_get(&nd->path);
1786 nd->root = nd->path;
1787 path_get(&nd->root);
1788 nd->inode = nd->path.dentry->d_inode;
1790 retval = path_walk(name, nd);
1791 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1792 nd->inode))
1793 audit_inode(name, nd->path.dentry);
1795 path_put(&nd->root);
1796 nd->root.mnt = NULL;
1798 return retval;
1801 static struct dentry *__lookup_hash(struct qstr *name,
1802 struct dentry *base, struct nameidata *nd)
1804 struct inode *inode = base->d_inode;
1805 struct dentry *dentry;
1806 int err;
1808 err = exec_permission(inode, 0);
1809 if (err)
1810 return ERR_PTR(err);
1813 * See if the low-level filesystem might want
1814 * to use its own hash..
1816 if (base->d_flags & DCACHE_OP_HASH) {
1817 err = base->d_op->d_hash(base, inode, name);
1818 dentry = ERR_PTR(err);
1819 if (err < 0)
1820 goto out;
1824 * Don't bother with __d_lookup: callers are for creat as
1825 * well as unlink, so a lot of the time it would cost
1826 * a double lookup.
1828 dentry = d_lookup(base, name);
1830 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1831 dentry = do_revalidate(dentry, nd);
1833 if (!dentry)
1834 dentry = d_alloc_and_lookup(base, name, nd);
1835 out:
1836 return dentry;
1840 * Restricted form of lookup. Doesn't follow links, single-component only,
1841 * needs parent already locked. Doesn't follow mounts.
1842 * SMP-safe.
1844 static struct dentry *lookup_hash(struct nameidata *nd)
1846 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1849 static int __lookup_one_len(const char *name, struct qstr *this,
1850 struct dentry *base, int len)
1852 unsigned long hash;
1853 unsigned int c;
1855 this->name = name;
1856 this->len = len;
1857 if (!len)
1858 return -EACCES;
1860 hash = init_name_hash();
1861 while (len--) {
1862 c = *(const unsigned char *)name++;
1863 if (c == '/' || c == '\0')
1864 return -EACCES;
1865 hash = partial_name_hash(c, hash);
1867 this->hash = end_name_hash(hash);
1868 return 0;
1872 * lookup_one_len - filesystem helper to lookup single pathname component
1873 * @name: pathname component to lookup
1874 * @base: base directory to lookup from
1875 * @len: maximum length @len should be interpreted to
1877 * Note that this routine is purely a helper for filesystem usage and should
1878 * not be called by generic code. Also note that by using this function the
1879 * nameidata argument is passed to the filesystem methods and a filesystem
1880 * using this helper needs to be prepared for that.
1882 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1884 int err;
1885 struct qstr this;
1887 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1889 err = __lookup_one_len(name, &this, base, len);
1890 if (err)
1891 return ERR_PTR(err);
1893 return __lookup_hash(&this, base, NULL);
1896 int user_path_at(int dfd, const char __user *name, unsigned flags,
1897 struct path *path)
1899 struct nameidata nd;
1900 char *tmp = getname(name);
1901 int err = PTR_ERR(tmp);
1902 if (!IS_ERR(tmp)) {
1904 BUG_ON(flags & LOOKUP_PARENT);
1906 err = do_path_lookup(dfd, tmp, flags, &nd);
1907 putname(tmp);
1908 if (!err)
1909 *path = nd.path;
1911 return err;
1914 static int user_path_parent(int dfd, const char __user *path,
1915 struct nameidata *nd, char **name)
1917 char *s = getname(path);
1918 int error;
1920 if (IS_ERR(s))
1921 return PTR_ERR(s);
1923 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1924 if (error)
1925 putname(s);
1926 else
1927 *name = s;
1929 return error;
1933 * It's inline, so penalty for filesystems that don't use sticky bit is
1934 * minimal.
1936 static inline int check_sticky(struct inode *dir, struct inode *inode)
1938 uid_t fsuid = current_fsuid();
1940 if (!(dir->i_mode & S_ISVTX))
1941 return 0;
1942 if (inode->i_uid == fsuid)
1943 return 0;
1944 if (dir->i_uid == fsuid)
1945 return 0;
1946 return !capable(CAP_FOWNER);
1950 * Check whether we can remove a link victim from directory dir, check
1951 * whether the type of victim is right.
1952 * 1. We can't do it if dir is read-only (done in permission())
1953 * 2. We should have write and exec permissions on dir
1954 * 3. We can't remove anything from append-only dir
1955 * 4. We can't do anything with immutable dir (done in permission())
1956 * 5. If the sticky bit on dir is set we should either
1957 * a. be owner of dir, or
1958 * b. be owner of victim, or
1959 * c. have CAP_FOWNER capability
1960 * 6. If the victim is append-only or immutable we can't do antyhing with
1961 * links pointing to it.
1962 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1963 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1964 * 9. We can't remove a root or mountpoint.
1965 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1966 * nfs_async_unlink().
1968 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1970 int error;
1972 if (!victim->d_inode)
1973 return -ENOENT;
1975 BUG_ON(victim->d_parent->d_inode != dir);
1976 audit_inode_child(victim, dir);
1978 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1979 if (error)
1980 return error;
1981 if (IS_APPEND(dir))
1982 return -EPERM;
1983 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1984 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1985 return -EPERM;
1986 if (isdir) {
1987 if (!S_ISDIR(victim->d_inode->i_mode))
1988 return -ENOTDIR;
1989 if (IS_ROOT(victim))
1990 return -EBUSY;
1991 } else if (S_ISDIR(victim->d_inode->i_mode))
1992 return -EISDIR;
1993 if (IS_DEADDIR(dir))
1994 return -ENOENT;
1995 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1996 return -EBUSY;
1997 return 0;
2000 /* Check whether we can create an object with dentry child in directory
2001 * dir.
2002 * 1. We can't do it if child already exists (open has special treatment for
2003 * this case, but since we are inlined it's OK)
2004 * 2. We can't do it if dir is read-only (done in permission())
2005 * 3. We should have write and exec permissions on dir
2006 * 4. We can't do it if dir is immutable (done in permission())
2008 static inline int may_create(struct inode *dir, struct dentry *child)
2010 if (child->d_inode)
2011 return -EEXIST;
2012 if (IS_DEADDIR(dir))
2013 return -ENOENT;
2014 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2018 * p1 and p2 should be directories on the same fs.
2020 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2022 struct dentry *p;
2024 if (p1 == p2) {
2025 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2026 return NULL;
2029 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2031 p = d_ancestor(p2, p1);
2032 if (p) {
2033 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2034 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2035 return p;
2038 p = d_ancestor(p1, p2);
2039 if (p) {
2040 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2041 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2042 return p;
2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2047 return NULL;
2050 void unlock_rename(struct dentry *p1, struct dentry *p2)
2052 mutex_unlock(&p1->d_inode->i_mutex);
2053 if (p1 != p2) {
2054 mutex_unlock(&p2->d_inode->i_mutex);
2055 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2059 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2060 struct nameidata *nd)
2062 int error = may_create(dir, dentry);
2064 if (error)
2065 return error;
2067 if (!dir->i_op->create)
2068 return -EACCES; /* shouldn't it be ENOSYS? */
2069 mode &= S_IALLUGO;
2070 mode |= S_IFREG;
2071 error = security_inode_create(dir, dentry, mode);
2072 if (error)
2073 return error;
2074 error = dir->i_op->create(dir, dentry, mode, nd);
2075 if (!error)
2076 fsnotify_create(dir, dentry);
2077 return error;
2080 int may_open(struct path *path, int acc_mode, int flag)
2082 struct dentry *dentry = path->dentry;
2083 struct inode *inode = dentry->d_inode;
2084 int error;
2086 if (!inode)
2087 return -ENOENT;
2089 switch (inode->i_mode & S_IFMT) {
2090 case S_IFLNK:
2091 return -ELOOP;
2092 case S_IFDIR:
2093 if (acc_mode & MAY_WRITE)
2094 return -EISDIR;
2095 break;
2096 case S_IFBLK:
2097 case S_IFCHR:
2098 if (path->mnt->mnt_flags & MNT_NODEV)
2099 return -EACCES;
2100 /*FALLTHRU*/
2101 case S_IFIFO:
2102 case S_IFSOCK:
2103 flag &= ~O_TRUNC;
2104 break;
2107 error = inode_permission(inode, acc_mode);
2108 if (error)
2109 return error;
2112 * An append-only file must be opened in append mode for writing.
2114 if (IS_APPEND(inode)) {
2115 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2116 return -EPERM;
2117 if (flag & O_TRUNC)
2118 return -EPERM;
2121 /* O_NOATIME can only be set by the owner or superuser */
2122 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2123 return -EPERM;
2126 * Ensure there are no outstanding leases on the file.
2128 return break_lease(inode, flag);
2131 static int handle_truncate(struct file *filp)
2133 struct path *path = &filp->f_path;
2134 struct inode *inode = path->dentry->d_inode;
2135 int error = get_write_access(inode);
2136 if (error)
2137 return error;
2139 * Refuse to truncate files with mandatory locks held on them.
2141 error = locks_verify_locked(inode);
2142 if (!error)
2143 error = security_path_truncate(path);
2144 if (!error) {
2145 error = do_truncate(path->dentry, 0,
2146 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2147 filp);
2149 put_write_access(inode);
2150 return error;
2154 * Be careful about ever adding any more callers of this
2155 * function. Its flags must be in the namei format, not
2156 * what get passed to sys_open().
2158 static int __open_namei_create(struct nameidata *nd, struct path *path,
2159 int open_flag, int mode)
2161 int error;
2162 struct dentry *dir = nd->path.dentry;
2164 if (!IS_POSIXACL(dir->d_inode))
2165 mode &= ~current_umask();
2166 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2167 if (error)
2168 goto out_unlock;
2169 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2170 out_unlock:
2171 mutex_unlock(&dir->d_inode->i_mutex);
2172 dput(nd->path.dentry);
2173 nd->path.dentry = path->dentry;
2175 if (error)
2176 return error;
2177 /* Don't check for write permission, don't truncate */
2178 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2182 * Note that while the flag value (low two bits) for sys_open means:
2183 * 00 - read-only
2184 * 01 - write-only
2185 * 10 - read-write
2186 * 11 - special
2187 * it is changed into
2188 * 00 - no permissions needed
2189 * 01 - read-permission
2190 * 10 - write-permission
2191 * 11 - read-write
2192 * for the internal routines (ie open_namei()/follow_link() etc)
2193 * This is more logical, and also allows the 00 "no perm needed"
2194 * to be used for symlinks (where the permissions are checked
2195 * later).
2198 static inline int open_to_namei_flags(int flag)
2200 if ((flag+1) & O_ACCMODE)
2201 flag++;
2202 return flag;
2205 static int open_will_truncate(int flag, struct inode *inode)
2208 * We'll never write to the fs underlying
2209 * a device file.
2211 if (special_file(inode->i_mode))
2212 return 0;
2213 return (flag & O_TRUNC);
2216 static struct file *finish_open(struct nameidata *nd,
2217 int open_flag, int acc_mode)
2219 struct file *filp;
2220 int will_truncate;
2221 int error;
2223 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2224 if (will_truncate) {
2225 error = mnt_want_write(nd->path.mnt);
2226 if (error)
2227 goto exit;
2229 error = may_open(&nd->path, acc_mode, open_flag);
2230 if (error) {
2231 if (will_truncate)
2232 mnt_drop_write(nd->path.mnt);
2233 goto exit;
2235 filp = nameidata_to_filp(nd);
2236 if (!IS_ERR(filp)) {
2237 error = ima_file_check(filp, acc_mode);
2238 if (error) {
2239 fput(filp);
2240 filp = ERR_PTR(error);
2243 if (!IS_ERR(filp)) {
2244 if (will_truncate) {
2245 error = handle_truncate(filp);
2246 if (error) {
2247 fput(filp);
2248 filp = ERR_PTR(error);
2253 * It is now safe to drop the mnt write
2254 * because the filp has had a write taken
2255 * on its behalf.
2257 if (will_truncate)
2258 mnt_drop_write(nd->path.mnt);
2259 path_put(&nd->path);
2260 return filp;
2262 exit:
2263 path_put(&nd->path);
2264 return ERR_PTR(error);
2268 * Handle O_CREAT case for do_filp_open
2270 static struct file *do_last(struct nameidata *nd, struct path *path,
2271 int open_flag, int acc_mode,
2272 int mode, const char *pathname)
2274 struct dentry *dir = nd->path.dentry;
2275 struct file *filp;
2276 int error = -EISDIR;
2278 switch (nd->last_type) {
2279 case LAST_DOTDOT:
2280 follow_dotdot(nd);
2281 dir = nd->path.dentry;
2282 case LAST_DOT:
2283 if (need_reval_dot(dir)) {
2284 int status = d_revalidate(nd->path.dentry, nd);
2285 if (!status)
2286 status = -ESTALE;
2287 if (status < 0) {
2288 error = status;
2289 goto exit;
2292 /* fallthrough */
2293 case LAST_ROOT:
2294 goto exit;
2295 case LAST_BIND:
2296 audit_inode(pathname, dir);
2297 goto ok;
2300 /* trailing slashes? */
2301 if (nd->last.name[nd->last.len])
2302 goto exit;
2304 mutex_lock(&dir->d_inode->i_mutex);
2306 path->dentry = lookup_hash(nd);
2307 path->mnt = nd->path.mnt;
2309 error = PTR_ERR(path->dentry);
2310 if (IS_ERR(path->dentry)) {
2311 mutex_unlock(&dir->d_inode->i_mutex);
2312 goto exit;
2315 if (IS_ERR(nd->intent.open.file)) {
2316 error = PTR_ERR(nd->intent.open.file);
2317 goto exit_mutex_unlock;
2320 /* Negative dentry, just create the file */
2321 if (!path->dentry->d_inode) {
2323 * This write is needed to ensure that a
2324 * ro->rw transition does not occur between
2325 * the time when the file is created and when
2326 * a permanent write count is taken through
2327 * the 'struct file' in nameidata_to_filp().
2329 error = mnt_want_write(nd->path.mnt);
2330 if (error)
2331 goto exit_mutex_unlock;
2332 error = __open_namei_create(nd, path, open_flag, mode);
2333 if (error) {
2334 mnt_drop_write(nd->path.mnt);
2335 goto exit;
2337 filp = nameidata_to_filp(nd);
2338 mnt_drop_write(nd->path.mnt);
2339 path_put(&nd->path);
2340 if (!IS_ERR(filp)) {
2341 error = ima_file_check(filp, acc_mode);
2342 if (error) {
2343 fput(filp);
2344 filp = ERR_PTR(error);
2347 return filp;
2351 * It already exists.
2353 mutex_unlock(&dir->d_inode->i_mutex);
2354 audit_inode(pathname, path->dentry);
2356 error = -EEXIST;
2357 if (open_flag & O_EXCL)
2358 goto exit_dput;
2360 error = follow_managed(path, nd->flags);
2361 if (error < 0)
2362 goto exit_dput;
2364 error = -ENOENT;
2365 if (!path->dentry->d_inode)
2366 goto exit_dput;
2368 if (path->dentry->d_inode->i_op->follow_link)
2369 return NULL;
2371 path_to_nameidata(path, nd);
2372 nd->inode = path->dentry->d_inode;
2373 error = -EISDIR;
2374 if (S_ISDIR(nd->inode->i_mode))
2375 goto exit;
2377 filp = finish_open(nd, open_flag, acc_mode);
2378 return filp;
2380 exit_mutex_unlock:
2381 mutex_unlock(&dir->d_inode->i_mutex);
2382 exit_dput:
2383 path_put_conditional(path, nd);
2384 exit:
2385 path_put(&nd->path);
2386 return ERR_PTR(error);
2390 * Note that the low bits of the passed in "open_flag"
2391 * are not the same as in the local variable "flag". See
2392 * open_to_namei_flags() for more details.
2394 struct file *do_filp_open(int dfd, const char *pathname,
2395 int open_flag, int mode, int acc_mode)
2397 struct file *filp;
2398 struct nameidata nd;
2399 int error;
2400 struct path path;
2401 int count = 0;
2402 int flag = open_to_namei_flags(open_flag);
2403 int flags;
2405 if (!(open_flag & O_CREAT))
2406 mode = 0;
2408 /* Must never be set by userspace */
2409 open_flag &= ~FMODE_NONOTIFY;
2412 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2413 * check for O_DSYNC if the need any syncing at all we enforce it's
2414 * always set instead of having to deal with possibly weird behaviour
2415 * for malicious applications setting only __O_SYNC.
2417 if (open_flag & __O_SYNC)
2418 open_flag |= O_DSYNC;
2420 if (!acc_mode)
2421 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2423 /* O_TRUNC implies we need access checks for write permissions */
2424 if (open_flag & O_TRUNC)
2425 acc_mode |= MAY_WRITE;
2427 /* Allow the LSM permission hook to distinguish append
2428 access from general write access. */
2429 if (open_flag & O_APPEND)
2430 acc_mode |= MAY_APPEND;
2432 flags = LOOKUP_OPEN;
2433 if (open_flag & O_CREAT) {
2434 flags |= LOOKUP_CREATE;
2435 if (open_flag & O_EXCL)
2436 flags |= LOOKUP_EXCL;
2438 if (open_flag & O_DIRECTORY)
2439 flags |= LOOKUP_DIRECTORY;
2440 if (!(open_flag & O_NOFOLLOW))
2441 flags |= LOOKUP_FOLLOW;
2443 filp = get_empty_filp();
2444 if (!filp)
2445 return ERR_PTR(-ENFILE);
2447 filp->f_flags = open_flag;
2448 nd.intent.open.file = filp;
2449 nd.intent.open.flags = flag;
2450 nd.intent.open.create_mode = mode;
2452 if (open_flag & O_CREAT)
2453 goto creat;
2455 /* !O_CREAT, simple open */
2456 error = do_path_lookup(dfd, pathname, flags, &nd);
2457 if (unlikely(error))
2458 goto out_filp;
2459 error = -ELOOP;
2460 if (!(nd.flags & LOOKUP_FOLLOW)) {
2461 if (nd.inode->i_op->follow_link)
2462 goto out_path;
2464 error = -ENOTDIR;
2465 if (nd.flags & LOOKUP_DIRECTORY) {
2466 if (!nd.inode->i_op->lookup)
2467 goto out_path;
2469 audit_inode(pathname, nd.path.dentry);
2470 filp = finish_open(&nd, open_flag, acc_mode);
2471 release_open_intent(&nd);
2472 return filp;
2474 creat:
2475 /* OK, have to create the file. Find the parent. */
2476 error = path_init_rcu(dfd, pathname,
2477 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2478 if (error)
2479 goto out_filp;
2480 error = path_walk_rcu(pathname, &nd);
2481 path_finish_rcu(&nd);
2482 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2483 /* slower, locked walk */
2484 if (error == -ESTALE) {
2485 reval:
2486 flags |= LOOKUP_REVAL;
2488 error = path_init(dfd, pathname,
2489 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2490 if (error)
2491 goto out_filp;
2493 error = path_walk_simple(pathname, &nd);
2495 if (unlikely(error))
2496 goto out_filp;
2497 if (unlikely(!audit_dummy_context()))
2498 audit_inode(pathname, nd.path.dentry);
2501 * We have the parent and last component.
2503 nd.flags = flags;
2504 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2505 while (unlikely(!filp)) { /* trailing symlink */
2506 struct path link = path;
2507 struct inode *linki = link.dentry->d_inode;
2508 void *cookie;
2509 error = -ELOOP;
2510 if (!(nd.flags & LOOKUP_FOLLOW))
2511 goto exit_dput;
2512 if (count++ == 32)
2513 goto exit_dput;
2515 * This is subtle. Instead of calling do_follow_link() we do
2516 * the thing by hands. The reason is that this way we have zero
2517 * link_count and path_walk() (called from ->follow_link)
2518 * honoring LOOKUP_PARENT. After that we have the parent and
2519 * last component, i.e. we are in the same situation as after
2520 * the first path_walk(). Well, almost - if the last component
2521 * is normal we get its copy stored in nd->last.name and we will
2522 * have to putname() it when we are done. Procfs-like symlinks
2523 * just set LAST_BIND.
2525 nd.flags |= LOOKUP_PARENT;
2526 error = security_inode_follow_link(link.dentry, &nd);
2527 if (error)
2528 goto exit_dput;
2529 error = __do_follow_link(&link, &nd, &cookie);
2530 if (unlikely(error)) {
2531 if (!IS_ERR(cookie) && linki->i_op->put_link)
2532 linki->i_op->put_link(link.dentry, &nd, cookie);
2533 /* nd.path had been dropped */
2534 nd.path = link;
2535 goto out_path;
2537 nd.flags &= ~LOOKUP_PARENT;
2538 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2539 if (linki->i_op->put_link)
2540 linki->i_op->put_link(link.dentry, &nd, cookie);
2541 path_put(&link);
2543 out:
2544 if (nd.root.mnt)
2545 path_put(&nd.root);
2546 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2547 goto reval;
2548 release_open_intent(&nd);
2549 return filp;
2551 exit_dput:
2552 path_put_conditional(&path, &nd);
2553 out_path:
2554 path_put(&nd.path);
2555 out_filp:
2556 filp = ERR_PTR(error);
2557 goto out;
2561 * filp_open - open file and return file pointer
2563 * @filename: path to open
2564 * @flags: open flags as per the open(2) second argument
2565 * @mode: mode for the new file if O_CREAT is set, else ignored
2567 * This is the helper to open a file from kernelspace if you really
2568 * have to. But in generally you should not do this, so please move
2569 * along, nothing to see here..
2571 struct file *filp_open(const char *filename, int flags, int mode)
2573 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2575 EXPORT_SYMBOL(filp_open);
2578 * lookup_create - lookup a dentry, creating it if it doesn't exist
2579 * @nd: nameidata info
2580 * @is_dir: directory flag
2582 * Simple function to lookup and return a dentry and create it
2583 * if it doesn't exist. Is SMP-safe.
2585 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2587 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2589 struct dentry *dentry = ERR_PTR(-EEXIST);
2591 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2593 * Yucky last component or no last component at all?
2594 * (foo/., foo/.., /////)
2596 if (nd->last_type != LAST_NORM)
2597 goto fail;
2598 nd->flags &= ~LOOKUP_PARENT;
2599 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2600 nd->intent.open.flags = O_EXCL;
2603 * Do the final lookup.
2605 dentry = lookup_hash(nd);
2606 if (IS_ERR(dentry))
2607 goto fail;
2609 if (dentry->d_inode)
2610 goto eexist;
2612 * Special case - lookup gave negative, but... we had foo/bar/
2613 * From the vfs_mknod() POV we just have a negative dentry -
2614 * all is fine. Let's be bastards - you had / on the end, you've
2615 * been asking for (non-existent) directory. -ENOENT for you.
2617 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2618 dput(dentry);
2619 dentry = ERR_PTR(-ENOENT);
2621 return dentry;
2622 eexist:
2623 dput(dentry);
2624 dentry = ERR_PTR(-EEXIST);
2625 fail:
2626 return dentry;
2628 EXPORT_SYMBOL_GPL(lookup_create);
2630 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2632 int error = may_create(dir, dentry);
2634 if (error)
2635 return error;
2637 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2638 return -EPERM;
2640 if (!dir->i_op->mknod)
2641 return -EPERM;
2643 error = devcgroup_inode_mknod(mode, dev);
2644 if (error)
2645 return error;
2647 error = security_inode_mknod(dir, dentry, mode, dev);
2648 if (error)
2649 return error;
2651 error = dir->i_op->mknod(dir, dentry, mode, dev);
2652 if (!error)
2653 fsnotify_create(dir, dentry);
2654 return error;
2657 static int may_mknod(mode_t mode)
2659 switch (mode & S_IFMT) {
2660 case S_IFREG:
2661 case S_IFCHR:
2662 case S_IFBLK:
2663 case S_IFIFO:
2664 case S_IFSOCK:
2665 case 0: /* zero mode translates to S_IFREG */
2666 return 0;
2667 case S_IFDIR:
2668 return -EPERM;
2669 default:
2670 return -EINVAL;
2674 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2675 unsigned, dev)
2677 int error;
2678 char *tmp;
2679 struct dentry *dentry;
2680 struct nameidata nd;
2682 if (S_ISDIR(mode))
2683 return -EPERM;
2685 error = user_path_parent(dfd, filename, &nd, &tmp);
2686 if (error)
2687 return error;
2689 dentry = lookup_create(&nd, 0);
2690 if (IS_ERR(dentry)) {
2691 error = PTR_ERR(dentry);
2692 goto out_unlock;
2694 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2695 mode &= ~current_umask();
2696 error = may_mknod(mode);
2697 if (error)
2698 goto out_dput;
2699 error = mnt_want_write(nd.path.mnt);
2700 if (error)
2701 goto out_dput;
2702 error = security_path_mknod(&nd.path, dentry, mode, dev);
2703 if (error)
2704 goto out_drop_write;
2705 switch (mode & S_IFMT) {
2706 case 0: case S_IFREG:
2707 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2708 break;
2709 case S_IFCHR: case S_IFBLK:
2710 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2711 new_decode_dev(dev));
2712 break;
2713 case S_IFIFO: case S_IFSOCK:
2714 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2715 break;
2717 out_drop_write:
2718 mnt_drop_write(nd.path.mnt);
2719 out_dput:
2720 dput(dentry);
2721 out_unlock:
2722 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2723 path_put(&nd.path);
2724 putname(tmp);
2726 return error;
2729 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2731 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2734 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2736 int error = may_create(dir, dentry);
2738 if (error)
2739 return error;
2741 if (!dir->i_op->mkdir)
2742 return -EPERM;
2744 mode &= (S_IRWXUGO|S_ISVTX);
2745 error = security_inode_mkdir(dir, dentry, mode);
2746 if (error)
2747 return error;
2749 error = dir->i_op->mkdir(dir, dentry, mode);
2750 if (!error)
2751 fsnotify_mkdir(dir, dentry);
2752 return error;
2755 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2757 int error = 0;
2758 char * tmp;
2759 struct dentry *dentry;
2760 struct nameidata nd;
2762 error = user_path_parent(dfd, pathname, &nd, &tmp);
2763 if (error)
2764 goto out_err;
2766 dentry = lookup_create(&nd, 1);
2767 error = PTR_ERR(dentry);
2768 if (IS_ERR(dentry))
2769 goto out_unlock;
2771 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2772 mode &= ~current_umask();
2773 error = mnt_want_write(nd.path.mnt);
2774 if (error)
2775 goto out_dput;
2776 error = security_path_mkdir(&nd.path, dentry, mode);
2777 if (error)
2778 goto out_drop_write;
2779 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2780 out_drop_write:
2781 mnt_drop_write(nd.path.mnt);
2782 out_dput:
2783 dput(dentry);
2784 out_unlock:
2785 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2786 path_put(&nd.path);
2787 putname(tmp);
2788 out_err:
2789 return error;
2792 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2794 return sys_mkdirat(AT_FDCWD, pathname, mode);
2798 * We try to drop the dentry early: we should have
2799 * a usage count of 2 if we're the only user of this
2800 * dentry, and if that is true (possibly after pruning
2801 * the dcache), then we drop the dentry now.
2803 * A low-level filesystem can, if it choses, legally
2804 * do a
2806 * if (!d_unhashed(dentry))
2807 * return -EBUSY;
2809 * if it cannot handle the case of removing a directory
2810 * that is still in use by something else..
2812 void dentry_unhash(struct dentry *dentry)
2814 dget(dentry);
2815 shrink_dcache_parent(dentry);
2816 spin_lock(&dentry->d_lock);
2817 if (dentry->d_count == 2)
2818 __d_drop(dentry);
2819 spin_unlock(&dentry->d_lock);
2822 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2824 int error = may_delete(dir, dentry, 1);
2826 if (error)
2827 return error;
2829 if (!dir->i_op->rmdir)
2830 return -EPERM;
2832 mutex_lock(&dentry->d_inode->i_mutex);
2833 dentry_unhash(dentry);
2834 if (d_mountpoint(dentry))
2835 error = -EBUSY;
2836 else {
2837 error = security_inode_rmdir(dir, dentry);
2838 if (!error) {
2839 error = dir->i_op->rmdir(dir, dentry);
2840 if (!error) {
2841 dentry->d_inode->i_flags |= S_DEAD;
2842 dont_mount(dentry);
2846 mutex_unlock(&dentry->d_inode->i_mutex);
2847 if (!error) {
2848 d_delete(dentry);
2850 dput(dentry);
2852 return error;
2855 static long do_rmdir(int dfd, const char __user *pathname)
2857 int error = 0;
2858 char * name;
2859 struct dentry *dentry;
2860 struct nameidata nd;
2862 error = user_path_parent(dfd, pathname, &nd, &name);
2863 if (error)
2864 return error;
2866 switch(nd.last_type) {
2867 case LAST_DOTDOT:
2868 error = -ENOTEMPTY;
2869 goto exit1;
2870 case LAST_DOT:
2871 error = -EINVAL;
2872 goto exit1;
2873 case LAST_ROOT:
2874 error = -EBUSY;
2875 goto exit1;
2878 nd.flags &= ~LOOKUP_PARENT;
2880 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2881 dentry = lookup_hash(&nd);
2882 error = PTR_ERR(dentry);
2883 if (IS_ERR(dentry))
2884 goto exit2;
2885 error = mnt_want_write(nd.path.mnt);
2886 if (error)
2887 goto exit3;
2888 error = security_path_rmdir(&nd.path, dentry);
2889 if (error)
2890 goto exit4;
2891 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2892 exit4:
2893 mnt_drop_write(nd.path.mnt);
2894 exit3:
2895 dput(dentry);
2896 exit2:
2897 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2898 exit1:
2899 path_put(&nd.path);
2900 putname(name);
2901 return error;
2904 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2906 return do_rmdir(AT_FDCWD, pathname);
2909 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2911 int error = may_delete(dir, dentry, 0);
2913 if (error)
2914 return error;
2916 if (!dir->i_op->unlink)
2917 return -EPERM;
2919 mutex_lock(&dentry->d_inode->i_mutex);
2920 if (d_mountpoint(dentry))
2921 error = -EBUSY;
2922 else {
2923 error = security_inode_unlink(dir, dentry);
2924 if (!error) {
2925 error = dir->i_op->unlink(dir, dentry);
2926 if (!error)
2927 dont_mount(dentry);
2930 mutex_unlock(&dentry->d_inode->i_mutex);
2932 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2933 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2934 fsnotify_link_count(dentry->d_inode);
2935 d_delete(dentry);
2938 return error;
2942 * Make sure that the actual truncation of the file will occur outside its
2943 * directory's i_mutex. Truncate can take a long time if there is a lot of
2944 * writeout happening, and we don't want to prevent access to the directory
2945 * while waiting on the I/O.
2947 static long do_unlinkat(int dfd, const char __user *pathname)
2949 int error;
2950 char *name;
2951 struct dentry *dentry;
2952 struct nameidata nd;
2953 struct inode *inode = NULL;
2955 error = user_path_parent(dfd, pathname, &nd, &name);
2956 if (error)
2957 return error;
2959 error = -EISDIR;
2960 if (nd.last_type != LAST_NORM)
2961 goto exit1;
2963 nd.flags &= ~LOOKUP_PARENT;
2965 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2966 dentry = lookup_hash(&nd);
2967 error = PTR_ERR(dentry);
2968 if (!IS_ERR(dentry)) {
2969 /* Why not before? Because we want correct error value */
2970 if (nd.last.name[nd.last.len])
2971 goto slashes;
2972 inode = dentry->d_inode;
2973 if (inode)
2974 ihold(inode);
2975 error = mnt_want_write(nd.path.mnt);
2976 if (error)
2977 goto exit2;
2978 error = security_path_unlink(&nd.path, dentry);
2979 if (error)
2980 goto exit3;
2981 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2982 exit3:
2983 mnt_drop_write(nd.path.mnt);
2984 exit2:
2985 dput(dentry);
2987 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2988 if (inode)
2989 iput(inode); /* truncate the inode here */
2990 exit1:
2991 path_put(&nd.path);
2992 putname(name);
2993 return error;
2995 slashes:
2996 error = !dentry->d_inode ? -ENOENT :
2997 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2998 goto exit2;
3001 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3003 if ((flag & ~AT_REMOVEDIR) != 0)
3004 return -EINVAL;
3006 if (flag & AT_REMOVEDIR)
3007 return do_rmdir(dfd, pathname);
3009 return do_unlinkat(dfd, pathname);
3012 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3014 return do_unlinkat(AT_FDCWD, pathname);
3017 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3019 int error = may_create(dir, dentry);
3021 if (error)
3022 return error;
3024 if (!dir->i_op->symlink)
3025 return -EPERM;
3027 error = security_inode_symlink(dir, dentry, oldname);
3028 if (error)
3029 return error;
3031 error = dir->i_op->symlink(dir, dentry, oldname);
3032 if (!error)
3033 fsnotify_create(dir, dentry);
3034 return error;
3037 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3038 int, newdfd, const char __user *, newname)
3040 int error;
3041 char *from;
3042 char *to;
3043 struct dentry *dentry;
3044 struct nameidata nd;
3046 from = getname(oldname);
3047 if (IS_ERR(from))
3048 return PTR_ERR(from);
3050 error = user_path_parent(newdfd, newname, &nd, &to);
3051 if (error)
3052 goto out_putname;
3054 dentry = lookup_create(&nd, 0);
3055 error = PTR_ERR(dentry);
3056 if (IS_ERR(dentry))
3057 goto out_unlock;
3059 error = mnt_want_write(nd.path.mnt);
3060 if (error)
3061 goto out_dput;
3062 error = security_path_symlink(&nd.path, dentry, from);
3063 if (error)
3064 goto out_drop_write;
3065 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3066 out_drop_write:
3067 mnt_drop_write(nd.path.mnt);
3068 out_dput:
3069 dput(dentry);
3070 out_unlock:
3071 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3072 path_put(&nd.path);
3073 putname(to);
3074 out_putname:
3075 putname(from);
3076 return error;
3079 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3081 return sys_symlinkat(oldname, AT_FDCWD, newname);
3084 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3086 struct inode *inode = old_dentry->d_inode;
3087 int error;
3089 if (!inode)
3090 return -ENOENT;
3092 error = may_create(dir, new_dentry);
3093 if (error)
3094 return error;
3096 if (dir->i_sb != inode->i_sb)
3097 return -EXDEV;
3100 * A link to an append-only or immutable file cannot be created.
3102 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3103 return -EPERM;
3104 if (!dir->i_op->link)
3105 return -EPERM;
3106 if (S_ISDIR(inode->i_mode))
3107 return -EPERM;
3109 error = security_inode_link(old_dentry, dir, new_dentry);
3110 if (error)
3111 return error;
3113 mutex_lock(&inode->i_mutex);
3114 error = dir->i_op->link(old_dentry, dir, new_dentry);
3115 mutex_unlock(&inode->i_mutex);
3116 if (!error)
3117 fsnotify_link(dir, inode, new_dentry);
3118 return error;
3122 * Hardlinks are often used in delicate situations. We avoid
3123 * security-related surprises by not following symlinks on the
3124 * newname. --KAB
3126 * We don't follow them on the oldname either to be compatible
3127 * with linux 2.0, and to avoid hard-linking to directories
3128 * and other special files. --ADM
3130 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3131 int, newdfd, const char __user *, newname, int, flags)
3133 struct dentry *new_dentry;
3134 struct nameidata nd;
3135 struct path old_path;
3136 int error;
3137 char *to;
3139 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3140 return -EINVAL;
3142 error = user_path_at(olddfd, oldname,
3143 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3144 &old_path);
3145 if (error)
3146 return error;
3148 error = user_path_parent(newdfd, newname, &nd, &to);
3149 if (error)
3150 goto out;
3151 error = -EXDEV;
3152 if (old_path.mnt != nd.path.mnt)
3153 goto out_release;
3154 new_dentry = lookup_create(&nd, 0);
3155 error = PTR_ERR(new_dentry);
3156 if (IS_ERR(new_dentry))
3157 goto out_unlock;
3158 error = mnt_want_write(nd.path.mnt);
3159 if (error)
3160 goto out_dput;
3161 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3162 if (error)
3163 goto out_drop_write;
3164 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3165 out_drop_write:
3166 mnt_drop_write(nd.path.mnt);
3167 out_dput:
3168 dput(new_dentry);
3169 out_unlock:
3170 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3171 out_release:
3172 path_put(&nd.path);
3173 putname(to);
3174 out:
3175 path_put(&old_path);
3177 return error;
3180 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3182 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3186 * The worst of all namespace operations - renaming directory. "Perverted"
3187 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3188 * Problems:
3189 * a) we can get into loop creation. Check is done in is_subdir().
3190 * b) race potential - two innocent renames can create a loop together.
3191 * That's where 4.4 screws up. Current fix: serialization on
3192 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3193 * story.
3194 * c) we have to lock _three_ objects - parents and victim (if it exists).
3195 * And that - after we got ->i_mutex on parents (until then we don't know
3196 * whether the target exists). Solution: try to be smart with locking
3197 * order for inodes. We rely on the fact that tree topology may change
3198 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3199 * move will be locked. Thus we can rank directories by the tree
3200 * (ancestors first) and rank all non-directories after them.
3201 * That works since everybody except rename does "lock parent, lookup,
3202 * lock child" and rename is under ->s_vfs_rename_mutex.
3203 * HOWEVER, it relies on the assumption that any object with ->lookup()
3204 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3205 * we'd better make sure that there's no link(2) for them.
3206 * d) some filesystems don't support opened-but-unlinked directories,
3207 * either because of layout or because they are not ready to deal with
3208 * all cases correctly. The latter will be fixed (taking this sort of
3209 * stuff into VFS), but the former is not going away. Solution: the same
3210 * trick as in rmdir().
3211 * e) conversion from fhandle to dentry may come in the wrong moment - when
3212 * we are removing the target. Solution: we will have to grab ->i_mutex
3213 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3214 * ->i_mutex on parents, which works but leads to some truly excessive
3215 * locking].
3217 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3218 struct inode *new_dir, struct dentry *new_dentry)
3220 int error = 0;
3221 struct inode *target;
3224 * If we are going to change the parent - check write permissions,
3225 * we'll need to flip '..'.
3227 if (new_dir != old_dir) {
3228 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3229 if (error)
3230 return error;
3233 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3234 if (error)
3235 return error;
3237 target = new_dentry->d_inode;
3238 if (target)
3239 mutex_lock(&target->i_mutex);
3240 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3241 error = -EBUSY;
3242 else {
3243 if (target)
3244 dentry_unhash(new_dentry);
3245 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3247 if (target) {
3248 if (!error) {
3249 target->i_flags |= S_DEAD;
3250 dont_mount(new_dentry);
3252 mutex_unlock(&target->i_mutex);
3253 if (d_unhashed(new_dentry))
3254 d_rehash(new_dentry);
3255 dput(new_dentry);
3257 if (!error)
3258 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3259 d_move(old_dentry,new_dentry);
3260 return error;
3263 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3264 struct inode *new_dir, struct dentry *new_dentry)
3266 struct inode *target;
3267 int error;
3269 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3270 if (error)
3271 return error;
3273 dget(new_dentry);
3274 target = new_dentry->d_inode;
3275 if (target)
3276 mutex_lock(&target->i_mutex);
3277 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3278 error = -EBUSY;
3279 else
3280 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3281 if (!error) {
3282 if (target)
3283 dont_mount(new_dentry);
3284 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3285 d_move(old_dentry, new_dentry);
3287 if (target)
3288 mutex_unlock(&target->i_mutex);
3289 dput(new_dentry);
3290 return error;
3293 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3294 struct inode *new_dir, struct dentry *new_dentry)
3296 int error;
3297 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3298 const unsigned char *old_name;
3300 if (old_dentry->d_inode == new_dentry->d_inode)
3301 return 0;
3303 error = may_delete(old_dir, old_dentry, is_dir);
3304 if (error)
3305 return error;
3307 if (!new_dentry->d_inode)
3308 error = may_create(new_dir, new_dentry);
3309 else
3310 error = may_delete(new_dir, new_dentry, is_dir);
3311 if (error)
3312 return error;
3314 if (!old_dir->i_op->rename)
3315 return -EPERM;
3317 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3319 if (is_dir)
3320 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3321 else
3322 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3323 if (!error)
3324 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3325 new_dentry->d_inode, old_dentry);
3326 fsnotify_oldname_free(old_name);
3328 return error;
3331 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3332 int, newdfd, const char __user *, newname)
3334 struct dentry *old_dir, *new_dir;
3335 struct dentry *old_dentry, *new_dentry;
3336 struct dentry *trap;
3337 struct nameidata oldnd, newnd;
3338 char *from;
3339 char *to;
3340 int error;
3342 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3343 if (error)
3344 goto exit;
3346 error = user_path_parent(newdfd, newname, &newnd, &to);
3347 if (error)
3348 goto exit1;
3350 error = -EXDEV;
3351 if (oldnd.path.mnt != newnd.path.mnt)
3352 goto exit2;
3354 old_dir = oldnd.path.dentry;
3355 error = -EBUSY;
3356 if (oldnd.last_type != LAST_NORM)
3357 goto exit2;
3359 new_dir = newnd.path.dentry;
3360 if (newnd.last_type != LAST_NORM)
3361 goto exit2;
3363 oldnd.flags &= ~LOOKUP_PARENT;
3364 newnd.flags &= ~LOOKUP_PARENT;
3365 newnd.flags |= LOOKUP_RENAME_TARGET;
3367 trap = lock_rename(new_dir, old_dir);
3369 old_dentry = lookup_hash(&oldnd);
3370 error = PTR_ERR(old_dentry);
3371 if (IS_ERR(old_dentry))
3372 goto exit3;
3373 /* source must exist */
3374 error = -ENOENT;
3375 if (!old_dentry->d_inode)
3376 goto exit4;
3377 /* unless the source is a directory trailing slashes give -ENOTDIR */
3378 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3379 error = -ENOTDIR;
3380 if (oldnd.last.name[oldnd.last.len])
3381 goto exit4;
3382 if (newnd.last.name[newnd.last.len])
3383 goto exit4;
3385 /* source should not be ancestor of target */
3386 error = -EINVAL;
3387 if (old_dentry == trap)
3388 goto exit4;
3389 new_dentry = lookup_hash(&newnd);
3390 error = PTR_ERR(new_dentry);
3391 if (IS_ERR(new_dentry))
3392 goto exit4;
3393 /* target should not be an ancestor of source */
3394 error = -ENOTEMPTY;
3395 if (new_dentry == trap)
3396 goto exit5;
3398 error = mnt_want_write(oldnd.path.mnt);
3399 if (error)
3400 goto exit5;
3401 error = security_path_rename(&oldnd.path, old_dentry,
3402 &newnd.path, new_dentry);
3403 if (error)
3404 goto exit6;
3405 error = vfs_rename(old_dir->d_inode, old_dentry,
3406 new_dir->d_inode, new_dentry);
3407 exit6:
3408 mnt_drop_write(oldnd.path.mnt);
3409 exit5:
3410 dput(new_dentry);
3411 exit4:
3412 dput(old_dentry);
3413 exit3:
3414 unlock_rename(new_dir, old_dir);
3415 exit2:
3416 path_put(&newnd.path);
3417 putname(to);
3418 exit1:
3419 path_put(&oldnd.path);
3420 putname(from);
3421 exit:
3422 return error;
3425 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3427 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3430 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3432 int len;
3434 len = PTR_ERR(link);
3435 if (IS_ERR(link))
3436 goto out;
3438 len = strlen(link);
3439 if (len > (unsigned) buflen)
3440 len = buflen;
3441 if (copy_to_user(buffer, link, len))
3442 len = -EFAULT;
3443 out:
3444 return len;
3448 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3449 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3450 * using) it for any given inode is up to filesystem.
3452 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3454 struct nameidata nd;
3455 void *cookie;
3456 int res;
3458 nd.depth = 0;
3459 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3460 if (IS_ERR(cookie))
3461 return PTR_ERR(cookie);
3463 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3464 if (dentry->d_inode->i_op->put_link)
3465 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3466 return res;
3469 int vfs_follow_link(struct nameidata *nd, const char *link)
3471 return __vfs_follow_link(nd, link);
3474 /* get the link contents into pagecache */
3475 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3477 char *kaddr;
3478 struct page *page;
3479 struct address_space *mapping = dentry->d_inode->i_mapping;
3480 page = read_mapping_page(mapping, 0, NULL);
3481 if (IS_ERR(page))
3482 return (char*)page;
3483 *ppage = page;
3484 kaddr = kmap(page);
3485 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3486 return kaddr;
3489 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3491 struct page *page = NULL;
3492 char *s = page_getlink(dentry, &page);
3493 int res = vfs_readlink(dentry,buffer,buflen,s);
3494 if (page) {
3495 kunmap(page);
3496 page_cache_release(page);
3498 return res;
3501 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3503 struct page *page = NULL;
3504 nd_set_link(nd, page_getlink(dentry, &page));
3505 return page;
3508 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3510 struct page *page = cookie;
3512 if (page) {
3513 kunmap(page);
3514 page_cache_release(page);
3519 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3521 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3523 struct address_space *mapping = inode->i_mapping;
3524 struct page *page;
3525 void *fsdata;
3526 int err;
3527 char *kaddr;
3528 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3529 if (nofs)
3530 flags |= AOP_FLAG_NOFS;
3532 retry:
3533 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3534 flags, &page, &fsdata);
3535 if (err)
3536 goto fail;
3538 kaddr = kmap_atomic(page, KM_USER0);
3539 memcpy(kaddr, symname, len-1);
3540 kunmap_atomic(kaddr, KM_USER0);
3542 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3543 page, fsdata);
3544 if (err < 0)
3545 goto fail;
3546 if (err < len-1)
3547 goto retry;
3549 mark_inode_dirty(inode);
3550 return 0;
3551 fail:
3552 return err;
3555 int page_symlink(struct inode *inode, const char *symname, int len)
3557 return __page_symlink(inode, symname, len,
3558 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3561 const struct inode_operations page_symlink_inode_operations = {
3562 .readlink = generic_readlink,
3563 .follow_link = page_follow_link_light,
3564 .put_link = page_put_link,
3567 EXPORT_SYMBOL(user_path_at);
3568 EXPORT_SYMBOL(follow_down_one);
3569 EXPORT_SYMBOL(follow_down);
3570 EXPORT_SYMBOL(follow_up);
3571 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3572 EXPORT_SYMBOL(getname);
3573 EXPORT_SYMBOL(lock_rename);
3574 EXPORT_SYMBOL(lookup_one_len);
3575 EXPORT_SYMBOL(page_follow_link_light);
3576 EXPORT_SYMBOL(page_put_link);
3577 EXPORT_SYMBOL(page_readlink);
3578 EXPORT_SYMBOL(__page_symlink);
3579 EXPORT_SYMBOL(page_symlink);
3580 EXPORT_SYMBOL(page_symlink_inode_operations);
3581 EXPORT_SYMBOL(path_lookup);
3582 EXPORT_SYMBOL(kern_path);
3583 EXPORT_SYMBOL(vfs_path_lookup);
3584 EXPORT_SYMBOL(inode_permission);
3585 EXPORT_SYMBOL(file_permission);
3586 EXPORT_SYMBOL(unlock_rename);
3587 EXPORT_SYMBOL(vfs_create);
3588 EXPORT_SYMBOL(vfs_follow_link);
3589 EXPORT_SYMBOL(vfs_link);
3590 EXPORT_SYMBOL(vfs_mkdir);
3591 EXPORT_SYMBOL(vfs_mknod);
3592 EXPORT_SYMBOL(generic_permission);
3593 EXPORT_SYMBOL(vfs_readlink);
3594 EXPORT_SYMBOL(vfs_rename);
3595 EXPORT_SYMBOL(vfs_rmdir);
3596 EXPORT_SYMBOL(vfs_symlink);
3597 EXPORT_SYMBOL(vfs_unlink);
3598 EXPORT_SYMBOL(dentry_unhash);
3599 EXPORT_SYMBOL(generic_readlink);