2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
176 static int kmem_size
= sizeof(struct kmem_cache
);
179 static struct notifier_block slab_notifier
;
183 DOWN
, /* No slab functionality available */
184 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
185 UP
, /* Everything works but does not show up in sysfs */
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock
);
191 static LIST_HEAD(slab_caches
);
194 * Tracking user of a slab.
197 unsigned long addr
; /* Called from address */
198 int cpu
; /* Was running on cpu */
199 int pid
; /* Pid context */
200 unsigned long when
; /* When did the operation occur */
203 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache
*);
207 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
208 static void sysfs_slab_remove(struct kmem_cache
*);
211 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
214 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
221 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
223 #ifdef CONFIG_SLUB_STATS
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 int slab_is_available(void)
234 return slab_state
>= UP
;
237 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
240 return s
->node
[node
];
242 return &s
->local_node
;
246 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
249 return s
->cpu_slab
[cpu
];
255 /* Verify that a pointer has an address that is valid within a slab page */
256 static inline int check_valid_pointer(struct kmem_cache
*s
,
257 struct page
*page
, const void *object
)
264 base
= page_address(page
);
265 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
266 (object
- base
) % s
->size
) {
274 * Slow version of get and set free pointer.
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
280 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
282 return *(void **)(object
+ s
->offset
);
285 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
287 *(void **)(object
+ s
->offset
) = fp
;
290 /* Loop over all objects in a slab */
291 #define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
296 #define for_each_free_object(__p, __s, __free) \
297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
299 /* Determine object index from a given position */
300 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
302 return (p
- addr
) / s
->size
;
305 static inline struct kmem_cache_order_objects
oo_make(int order
,
308 struct kmem_cache_order_objects x
= {
309 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
315 static inline int oo_order(struct kmem_cache_order_objects x
)
317 return x
.x
>> OO_SHIFT
;
320 static inline int oo_objects(struct kmem_cache_order_objects x
)
322 return x
.x
& OO_MASK
;
325 #ifdef CONFIG_SLUB_DEBUG
329 #ifdef CONFIG_SLUB_DEBUG_ON
330 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
332 static int slub_debug
;
335 static char *slub_debug_slabs
;
336 static int disable_higher_order_debug
;
341 static void print_section(char *text
, u8
*addr
, unsigned int length
)
349 for (i
= 0; i
< length
; i
++) {
351 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
354 printk(KERN_CONT
" %02x", addr
[i
]);
356 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
358 printk(KERN_CONT
" %s\n", ascii
);
365 printk(KERN_CONT
" ");
369 printk(KERN_CONT
" %s\n", ascii
);
373 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
374 enum track_item alloc
)
379 p
= object
+ s
->offset
+ sizeof(void *);
381 p
= object
+ s
->inuse
;
386 static void set_track(struct kmem_cache
*s
, void *object
,
387 enum track_item alloc
, unsigned long addr
)
389 struct track
*p
= get_track(s
, object
, alloc
);
393 p
->cpu
= smp_processor_id();
394 p
->pid
= current
->pid
;
397 memset(p
, 0, sizeof(struct track
));
400 static void init_tracking(struct kmem_cache
*s
, void *object
)
402 if (!(s
->flags
& SLAB_STORE_USER
))
405 set_track(s
, object
, TRACK_FREE
, 0UL);
406 set_track(s
, object
, TRACK_ALLOC
, 0UL);
409 static void print_track(const char *s
, struct track
*t
)
414 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
415 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
418 static void print_tracking(struct kmem_cache
*s
, void *object
)
420 if (!(s
->flags
& SLAB_STORE_USER
))
423 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
424 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
427 static void print_page_info(struct page
*page
)
429 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
434 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
440 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
442 printk(KERN_ERR
"========================================"
443 "=====================================\n");
444 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
445 printk(KERN_ERR
"----------------------------------------"
446 "-------------------------------------\n\n");
449 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
455 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
457 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
460 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
462 unsigned int off
; /* Offset of last byte */
463 u8
*addr
= page_address(page
);
465 print_tracking(s
, p
);
467 print_page_info(page
);
469 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p
, p
- addr
, get_freepointer(s
, p
));
473 print_section("Bytes b4", p
- 16, 16);
475 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
477 if (s
->flags
& SLAB_RED_ZONE
)
478 print_section("Redzone", p
+ s
->objsize
,
479 s
->inuse
- s
->objsize
);
482 off
= s
->offset
+ sizeof(void *);
486 if (s
->flags
& SLAB_STORE_USER
)
487 off
+= 2 * sizeof(struct track
);
490 /* Beginning of the filler is the free pointer */
491 print_section("Padding", p
+ off
, s
->size
- off
);
496 static void object_err(struct kmem_cache
*s
, struct page
*page
,
497 u8
*object
, char *reason
)
499 slab_bug(s
, "%s", reason
);
500 print_trailer(s
, page
, object
);
503 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
509 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
511 slab_bug(s
, "%s", buf
);
512 print_page_info(page
);
516 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
520 if (s
->flags
& __OBJECT_POISON
) {
521 memset(p
, POISON_FREE
, s
->objsize
- 1);
522 p
[s
->objsize
- 1] = POISON_END
;
525 if (s
->flags
& SLAB_RED_ZONE
)
526 memset(p
+ s
->objsize
,
527 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
528 s
->inuse
- s
->objsize
);
531 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
534 if (*start
!= (u8
)value
)
542 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
543 void *from
, void *to
)
545 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
546 memset(from
, data
, to
- from
);
549 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
550 u8
*object
, char *what
,
551 u8
*start
, unsigned int value
, unsigned int bytes
)
556 fault
= check_bytes(start
, value
, bytes
);
561 while (end
> fault
&& end
[-1] == value
)
564 slab_bug(s
, "%s overwritten", what
);
565 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault
, end
- 1, fault
[0], value
);
567 print_trailer(s
, page
, object
);
569 restore_bytes(s
, what
, value
, fault
, end
);
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
586 * Padding is extended by another word if Redzoning is enabled and
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
593 * Meta data starts here.
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
597 * C. Padding to reach required alignment boundary or at mininum
598 * one word if debugging is on to be able to detect writes
599 * before the word boundary.
601 * Padding is done using 0x5a (POISON_INUSE)
604 * Nothing is used beyond s->size.
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
608 * may be used with merged slabcaches.
611 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
613 unsigned long off
= s
->inuse
; /* The end of info */
616 /* Freepointer is placed after the object. */
617 off
+= sizeof(void *);
619 if (s
->flags
& SLAB_STORE_USER
)
620 /* We also have user information there */
621 off
+= 2 * sizeof(struct track
);
626 return check_bytes_and_report(s
, page
, p
, "Object padding",
627 p
+ off
, POISON_INUSE
, s
->size
- off
);
630 /* Check the pad bytes at the end of a slab page */
631 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
639 if (!(s
->flags
& SLAB_POISON
))
642 start
= page_address(page
);
643 length
= (PAGE_SIZE
<< compound_order(page
));
644 end
= start
+ length
;
645 remainder
= length
% s
->size
;
649 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
652 while (end
> fault
&& end
[-1] == POISON_INUSE
)
655 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
656 print_section("Padding", end
- remainder
, remainder
);
658 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
662 static int check_object(struct kmem_cache
*s
, struct page
*page
,
663 void *object
, int active
)
666 u8
*endobject
= object
+ s
->objsize
;
668 if (s
->flags
& SLAB_RED_ZONE
) {
670 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
672 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
673 endobject
, red
, s
->inuse
- s
->objsize
))
676 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
677 check_bytes_and_report(s
, page
, p
, "Alignment padding",
678 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
682 if (s
->flags
& SLAB_POISON
) {
683 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
684 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
685 POISON_FREE
, s
->objsize
- 1) ||
686 !check_bytes_and_report(s
, page
, p
, "Poison",
687 p
+ s
->objsize
- 1, POISON_END
, 1)))
690 * check_pad_bytes cleans up on its own.
692 check_pad_bytes(s
, page
, p
);
695 if (!s
->offset
&& active
)
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
704 object_err(s
, page
, p
, "Freepointer corrupt");
706 * No choice but to zap it and thus lose the remainder
707 * of the free objects in this slab. May cause
708 * another error because the object count is now wrong.
710 set_freepointer(s
, p
, NULL
);
716 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
720 VM_BUG_ON(!irqs_disabled());
722 if (!PageSlab(page
)) {
723 slab_err(s
, page
, "Not a valid slab page");
727 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
728 if (page
->objects
> maxobj
) {
729 slab_err(s
, page
, "objects %u > max %u",
730 s
->name
, page
->objects
, maxobj
);
733 if (page
->inuse
> page
->objects
) {
734 slab_err(s
, page
, "inuse %u > max %u",
735 s
->name
, page
->inuse
, page
->objects
);
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s
, page
);
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
747 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
750 void *fp
= page
->freelist
;
752 unsigned long max_objects
;
754 while (fp
&& nr
<= page
->objects
) {
757 if (!check_valid_pointer(s
, page
, fp
)) {
759 object_err(s
, page
, object
,
760 "Freechain corrupt");
761 set_freepointer(s
, object
, NULL
);
764 slab_err(s
, page
, "Freepointer corrupt");
765 page
->freelist
= NULL
;
766 page
->inuse
= page
->objects
;
767 slab_fix(s
, "Freelist cleared");
773 fp
= get_freepointer(s
, object
);
777 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
778 if (max_objects
> MAX_OBJS_PER_PAGE
)
779 max_objects
= MAX_OBJS_PER_PAGE
;
781 if (page
->objects
!= max_objects
) {
782 slab_err(s
, page
, "Wrong number of objects. Found %d but "
783 "should be %d", page
->objects
, max_objects
);
784 page
->objects
= max_objects
;
785 slab_fix(s
, "Number of objects adjusted.");
787 if (page
->inuse
!= page
->objects
- nr
) {
788 slab_err(s
, page
, "Wrong object count. Counter is %d but "
789 "counted were %d", page
->inuse
, page
->objects
- nr
);
790 page
->inuse
= page
->objects
- nr
;
791 slab_fix(s
, "Object count adjusted.");
793 return search
== NULL
;
796 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
799 if (s
->flags
& SLAB_TRACE
) {
800 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
802 alloc
? "alloc" : "free",
807 print_section("Object", (void *)object
, s
->objsize
);
814 * Tracking of fully allocated slabs for debugging purposes.
816 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
818 spin_lock(&n
->list_lock
);
819 list_add(&page
->lru
, &n
->full
);
820 spin_unlock(&n
->list_lock
);
823 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
825 struct kmem_cache_node
*n
;
827 if (!(s
->flags
& SLAB_STORE_USER
))
830 n
= get_node(s
, page_to_nid(page
));
832 spin_lock(&n
->list_lock
);
833 list_del(&page
->lru
);
834 spin_unlock(&n
->list_lock
);
837 /* Tracking of the number of slabs for debugging purposes */
838 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
840 struct kmem_cache_node
*n
= get_node(s
, node
);
842 return atomic_long_read(&n
->nr_slabs
);
845 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
847 return atomic_long_read(&n
->nr_slabs
);
850 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
852 struct kmem_cache_node
*n
= get_node(s
, node
);
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
860 if (!NUMA_BUILD
|| n
) {
861 atomic_long_inc(&n
->nr_slabs
);
862 atomic_long_add(objects
, &n
->total_objects
);
865 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
867 struct kmem_cache_node
*n
= get_node(s
, node
);
869 atomic_long_dec(&n
->nr_slabs
);
870 atomic_long_sub(objects
, &n
->total_objects
);
873 /* Object debug checks for alloc/free paths */
874 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
877 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
880 init_object(s
, object
, 0);
881 init_tracking(s
, object
);
884 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
885 void *object
, unsigned long addr
)
887 if (!check_slab(s
, page
))
890 if (!on_freelist(s
, page
, object
)) {
891 object_err(s
, page
, object
, "Object already allocated");
895 if (!check_valid_pointer(s
, page
, object
)) {
896 object_err(s
, page
, object
, "Freelist Pointer check fails");
900 if (!check_object(s
, page
, object
, 0))
903 /* Success perform special debug activities for allocs */
904 if (s
->flags
& SLAB_STORE_USER
)
905 set_track(s
, object
, TRACK_ALLOC
, addr
);
906 trace(s
, page
, object
, 1);
907 init_object(s
, object
, 1);
911 if (PageSlab(page
)) {
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
915 * as used avoids touching the remaining objects.
917 slab_fix(s
, "Marking all objects used");
918 page
->inuse
= page
->objects
;
919 page
->freelist
= NULL
;
924 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
925 void *object
, unsigned long addr
)
927 if (!check_slab(s
, page
))
930 if (!check_valid_pointer(s
, page
, object
)) {
931 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
935 if (on_freelist(s
, page
, object
)) {
936 object_err(s
, page
, object
, "Object already free");
940 if (!check_object(s
, page
, object
, 1))
943 if (unlikely(s
!= page
->slab
)) {
944 if (!PageSlab(page
)) {
945 slab_err(s
, page
, "Attempt to free object(0x%p) "
946 "outside of slab", object
);
947 } else if (!page
->slab
) {
949 "SLUB <none>: no slab for object 0x%p.\n",
953 object_err(s
, page
, object
,
954 "page slab pointer corrupt.");
958 /* Special debug activities for freeing objects */
959 if (!PageSlubFrozen(page
) && !page
->freelist
)
960 remove_full(s
, page
);
961 if (s
->flags
& SLAB_STORE_USER
)
962 set_track(s
, object
, TRACK_FREE
, addr
);
963 trace(s
, page
, object
, 0);
964 init_object(s
, object
, 0);
968 slab_fix(s
, "Object at 0x%p not freed", object
);
972 static int __init
setup_slub_debug(char *str
)
974 slub_debug
= DEBUG_DEFAULT_FLAGS
;
975 if (*str
++ != '=' || !*str
)
977 * No options specified. Switch on full debugging.
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
988 if (tolower(*str
) == 'o') {
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
993 disable_higher_order_debug
= 1;
1000 * Switch off all debugging measures.
1005 * Determine which debug features should be switched on
1007 for (; *str
&& *str
!= ','; str
++) {
1008 switch (tolower(*str
)) {
1010 slub_debug
|= SLAB_DEBUG_FREE
;
1013 slub_debug
|= SLAB_RED_ZONE
;
1016 slub_debug
|= SLAB_POISON
;
1019 slub_debug
|= SLAB_STORE_USER
;
1022 slub_debug
|= SLAB_TRACE
;
1025 slub_debug
|= SLAB_FAILSLAB
;
1028 printk(KERN_ERR
"slub_debug option '%c' "
1029 "unknown. skipped\n", *str
);
1035 slub_debug_slabs
= str
+ 1;
1040 __setup("slub_debug", setup_slub_debug
);
1042 static unsigned long kmem_cache_flags(unsigned long objsize
,
1043 unsigned long flags
, const char *name
,
1044 void (*ctor
)(void *))
1047 * Enable debugging if selected on the kernel commandline.
1049 if (slub_debug
&& (!slub_debug_slabs
||
1050 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1051 flags
|= slub_debug
;
1056 static inline void setup_object_debug(struct kmem_cache
*s
,
1057 struct page
*page
, void *object
) {}
1059 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1060 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1062 static inline int free_debug_processing(struct kmem_cache
*s
,
1063 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1065 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1067 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1068 void *object
, int active
) { return 1; }
1069 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1070 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1071 unsigned long flags
, const char *name
,
1072 void (*ctor
)(void *))
1076 #define slub_debug 0
1078 #define disable_higher_order_debug 0
1080 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1082 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1084 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1086 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1091 * Slab allocation and freeing
1093 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1094 struct kmem_cache_order_objects oo
)
1096 int order
= oo_order(oo
);
1098 flags
|= __GFP_NOTRACK
;
1101 return alloc_pages(flags
, order
);
1103 return alloc_pages_node(node
, flags
, order
);
1106 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1109 struct kmem_cache_order_objects oo
= s
->oo
;
1112 flags
|= s
->allocflags
;
1115 * Let the initial higher-order allocation fail under memory pressure
1116 * so we fall-back to the minimum order allocation.
1118 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1120 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1121 if (unlikely(!page
)) {
1124 * Allocation may have failed due to fragmentation.
1125 * Try a lower order alloc if possible
1127 page
= alloc_slab_page(flags
, node
, oo
);
1131 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1134 if (kmemcheck_enabled
1135 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1136 int pages
= 1 << oo_order(oo
);
1138 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1141 * Objects from caches that have a constructor don't get
1142 * cleared when they're allocated, so we need to do it here.
1145 kmemcheck_mark_uninitialized_pages(page
, pages
);
1147 kmemcheck_mark_unallocated_pages(page
, pages
);
1150 page
->objects
= oo_objects(oo
);
1151 mod_zone_page_state(page_zone(page
),
1152 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1153 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1159 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1162 setup_object_debug(s
, page
, object
);
1163 if (unlikely(s
->ctor
))
1167 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1174 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1176 page
= allocate_slab(s
,
1177 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1181 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1183 page
->flags
|= 1 << PG_slab
;
1184 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1185 SLAB_STORE_USER
| SLAB_TRACE
))
1186 __SetPageSlubDebug(page
);
1188 start
= page_address(page
);
1190 if (unlikely(s
->flags
& SLAB_POISON
))
1191 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1194 for_each_object(p
, s
, start
, page
->objects
) {
1195 setup_object(s
, page
, last
);
1196 set_freepointer(s
, last
, p
);
1199 setup_object(s
, page
, last
);
1200 set_freepointer(s
, last
, NULL
);
1202 page
->freelist
= start
;
1208 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1210 int order
= compound_order(page
);
1211 int pages
= 1 << order
;
1213 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1216 slab_pad_check(s
, page
);
1217 for_each_object(p
, s
, page_address(page
),
1219 check_object(s
, page
, p
, 0);
1220 __ClearPageSlubDebug(page
);
1223 kmemcheck_free_shadow(page
, compound_order(page
));
1225 mod_zone_page_state(page_zone(page
),
1226 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1227 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1230 __ClearPageSlab(page
);
1231 reset_page_mapcount(page
);
1232 if (current
->reclaim_state
)
1233 current
->reclaim_state
->reclaimed_slab
+= pages
;
1234 __free_pages(page
, order
);
1237 static void rcu_free_slab(struct rcu_head
*h
)
1241 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1242 __free_slab(page
->slab
, page
);
1245 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1247 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1249 * RCU free overloads the RCU head over the LRU
1251 struct rcu_head
*head
= (void *)&page
->lru
;
1253 call_rcu(head
, rcu_free_slab
);
1255 __free_slab(s
, page
);
1258 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1260 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1265 * Per slab locking using the pagelock
1267 static __always_inline
void slab_lock(struct page
*page
)
1269 bit_spin_lock(PG_locked
, &page
->flags
);
1272 static __always_inline
void slab_unlock(struct page
*page
)
1274 __bit_spin_unlock(PG_locked
, &page
->flags
);
1277 static __always_inline
int slab_trylock(struct page
*page
)
1281 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1286 * Management of partially allocated slabs
1288 static void add_partial(struct kmem_cache_node
*n
,
1289 struct page
*page
, int tail
)
1291 spin_lock(&n
->list_lock
);
1294 list_add_tail(&page
->lru
, &n
->partial
);
1296 list_add(&page
->lru
, &n
->partial
);
1297 spin_unlock(&n
->list_lock
);
1300 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1302 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1304 spin_lock(&n
->list_lock
);
1305 list_del(&page
->lru
);
1307 spin_unlock(&n
->list_lock
);
1311 * Lock slab and remove from the partial list.
1313 * Must hold list_lock.
1315 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1318 if (slab_trylock(page
)) {
1319 list_del(&page
->lru
);
1321 __SetPageSlubFrozen(page
);
1328 * Try to allocate a partial slab from a specific node.
1330 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1335 * Racy check. If we mistakenly see no partial slabs then we
1336 * just allocate an empty slab. If we mistakenly try to get a
1337 * partial slab and there is none available then get_partials()
1340 if (!n
|| !n
->nr_partial
)
1343 spin_lock(&n
->list_lock
);
1344 list_for_each_entry(page
, &n
->partial
, lru
)
1345 if (lock_and_freeze_slab(n
, page
))
1349 spin_unlock(&n
->list_lock
);
1354 * Get a page from somewhere. Search in increasing NUMA distances.
1356 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1359 struct zonelist
*zonelist
;
1362 enum zone_type high_zoneidx
= gfp_zone(flags
);
1366 * The defrag ratio allows a configuration of the tradeoffs between
1367 * inter node defragmentation and node local allocations. A lower
1368 * defrag_ratio increases the tendency to do local allocations
1369 * instead of attempting to obtain partial slabs from other nodes.
1371 * If the defrag_ratio is set to 0 then kmalloc() always
1372 * returns node local objects. If the ratio is higher then kmalloc()
1373 * may return off node objects because partial slabs are obtained
1374 * from other nodes and filled up.
1376 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1377 * defrag_ratio = 1000) then every (well almost) allocation will
1378 * first attempt to defrag slab caches on other nodes. This means
1379 * scanning over all nodes to look for partial slabs which may be
1380 * expensive if we do it every time we are trying to find a slab
1381 * with available objects.
1383 if (!s
->remote_node_defrag_ratio
||
1384 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1387 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1388 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1389 struct kmem_cache_node
*n
;
1391 n
= get_node(s
, zone_to_nid(zone
));
1393 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1394 n
->nr_partial
> s
->min_partial
) {
1395 page
= get_partial_node(n
);
1405 * Get a partial page, lock it and return it.
1407 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1410 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1412 page
= get_partial_node(get_node(s
, searchnode
));
1413 if (page
|| (flags
& __GFP_THISNODE
))
1416 return get_any_partial(s
, flags
);
1420 * Move a page back to the lists.
1422 * Must be called with the slab lock held.
1424 * On exit the slab lock will have been dropped.
1426 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1428 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1429 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1431 __ClearPageSlubFrozen(page
);
1434 if (page
->freelist
) {
1435 add_partial(n
, page
, tail
);
1436 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1438 stat(c
, DEACTIVATE_FULL
);
1439 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1440 (s
->flags
& SLAB_STORE_USER
))
1445 stat(c
, DEACTIVATE_EMPTY
);
1446 if (n
->nr_partial
< s
->min_partial
) {
1448 * Adding an empty slab to the partial slabs in order
1449 * to avoid page allocator overhead. This slab needs
1450 * to come after the other slabs with objects in
1451 * so that the others get filled first. That way the
1452 * size of the partial list stays small.
1454 * kmem_cache_shrink can reclaim any empty slabs from
1457 add_partial(n
, page
, 1);
1461 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1462 discard_slab(s
, page
);
1468 * Remove the cpu slab
1470 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1472 struct page
*page
= c
->page
;
1476 stat(c
, DEACTIVATE_REMOTE_FREES
);
1478 * Merge cpu freelist into slab freelist. Typically we get here
1479 * because both freelists are empty. So this is unlikely
1482 while (unlikely(c
->freelist
)) {
1485 tail
= 0; /* Hot objects. Put the slab first */
1487 /* Retrieve object from cpu_freelist */
1488 object
= c
->freelist
;
1489 c
->freelist
= c
->freelist
[c
->offset
];
1491 /* And put onto the regular freelist */
1492 object
[c
->offset
] = page
->freelist
;
1493 page
->freelist
= object
;
1497 unfreeze_slab(s
, page
, tail
);
1500 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1502 stat(c
, CPUSLAB_FLUSH
);
1504 deactivate_slab(s
, c
);
1510 * Called from IPI handler with interrupts disabled.
1512 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1514 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1516 if (likely(c
&& c
->page
))
1520 static void flush_cpu_slab(void *d
)
1522 struct kmem_cache
*s
= d
;
1524 __flush_cpu_slab(s
, smp_processor_id());
1527 static void flush_all(struct kmem_cache
*s
)
1529 on_each_cpu(flush_cpu_slab
, s
, 1);
1533 * Check if the objects in a per cpu structure fit numa
1534 * locality expectations.
1536 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1539 if (node
!= -1 && c
->node
!= node
)
1545 static int count_free(struct page
*page
)
1547 return page
->objects
- page
->inuse
;
1550 static unsigned long count_partial(struct kmem_cache_node
*n
,
1551 int (*get_count
)(struct page
*))
1553 unsigned long flags
;
1554 unsigned long x
= 0;
1557 spin_lock_irqsave(&n
->list_lock
, flags
);
1558 list_for_each_entry(page
, &n
->partial
, lru
)
1559 x
+= get_count(page
);
1560 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1564 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1566 #ifdef CONFIG_SLUB_DEBUG
1567 return atomic_long_read(&n
->total_objects
);
1573 static noinline
void
1574 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1579 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1581 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1582 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1583 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1585 if (oo_order(s
->min
) > get_order(s
->objsize
))
1586 printk(KERN_WARNING
" %s debugging increased min order, use "
1587 "slub_debug=O to disable.\n", s
->name
);
1589 for_each_online_node(node
) {
1590 struct kmem_cache_node
*n
= get_node(s
, node
);
1591 unsigned long nr_slabs
;
1592 unsigned long nr_objs
;
1593 unsigned long nr_free
;
1598 nr_free
= count_partial(n
, count_free
);
1599 nr_slabs
= node_nr_slabs(n
);
1600 nr_objs
= node_nr_objs(n
);
1603 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1604 node
, nr_slabs
, nr_objs
, nr_free
);
1609 * Slow path. The lockless freelist is empty or we need to perform
1612 * Interrupts are disabled.
1614 * Processing is still very fast if new objects have been freed to the
1615 * regular freelist. In that case we simply take over the regular freelist
1616 * as the lockless freelist and zap the regular freelist.
1618 * If that is not working then we fall back to the partial lists. We take the
1619 * first element of the freelist as the object to allocate now and move the
1620 * rest of the freelist to the lockless freelist.
1622 * And if we were unable to get a new slab from the partial slab lists then
1623 * we need to allocate a new slab. This is the slowest path since it involves
1624 * a call to the page allocator and the setup of a new slab.
1626 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1627 unsigned long addr
, struct kmem_cache_cpu
*c
)
1632 /* We handle __GFP_ZERO in the caller */
1633 gfpflags
&= ~__GFP_ZERO
;
1639 if (unlikely(!node_match(c
, node
)))
1642 stat(c
, ALLOC_REFILL
);
1645 object
= c
->page
->freelist
;
1646 if (unlikely(!object
))
1648 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1651 c
->freelist
= object
[c
->offset
];
1652 c
->page
->inuse
= c
->page
->objects
;
1653 c
->page
->freelist
= NULL
;
1654 c
->node
= page_to_nid(c
->page
);
1656 slab_unlock(c
->page
);
1657 stat(c
, ALLOC_SLOWPATH
);
1661 deactivate_slab(s
, c
);
1664 new = get_partial(s
, gfpflags
, node
);
1667 stat(c
, ALLOC_FROM_PARTIAL
);
1671 if (gfpflags
& __GFP_WAIT
)
1674 new = new_slab(s
, gfpflags
, node
);
1676 if (gfpflags
& __GFP_WAIT
)
1677 local_irq_disable();
1680 c
= get_cpu_slab(s
, smp_processor_id());
1681 stat(c
, ALLOC_SLAB
);
1685 __SetPageSlubFrozen(new);
1689 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1690 slab_out_of_memory(s
, gfpflags
, node
);
1693 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1697 c
->page
->freelist
= object
[c
->offset
];
1703 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1704 * have the fastpath folded into their functions. So no function call
1705 * overhead for requests that can be satisfied on the fastpath.
1707 * The fastpath works by first checking if the lockless freelist can be used.
1708 * If not then __slab_alloc is called for slow processing.
1710 * Otherwise we can simply pick the next object from the lockless free list.
1712 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1713 gfp_t gfpflags
, int node
, unsigned long addr
)
1716 struct kmem_cache_cpu
*c
;
1717 unsigned long flags
;
1718 unsigned int objsize
;
1720 gfpflags
&= gfp_allowed_mask
;
1722 lockdep_trace_alloc(gfpflags
);
1723 might_sleep_if(gfpflags
& __GFP_WAIT
);
1725 if (should_failslab(s
->objsize
, gfpflags
, s
->flags
))
1728 local_irq_save(flags
);
1729 c
= get_cpu_slab(s
, smp_processor_id());
1730 objsize
= c
->objsize
;
1731 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1733 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1736 object
= c
->freelist
;
1737 c
->freelist
= object
[c
->offset
];
1738 stat(c
, ALLOC_FASTPATH
);
1740 local_irq_restore(flags
);
1742 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
1743 memset(object
, 0, objsize
);
1745 kmemcheck_slab_alloc(s
, gfpflags
, object
, c
->objsize
);
1746 kmemleak_alloc_recursive(object
, objsize
, 1, s
->flags
, gfpflags
);
1751 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1753 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1755 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1759 EXPORT_SYMBOL(kmem_cache_alloc
);
1761 #ifdef CONFIG_TRACING
1762 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1764 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1766 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1770 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1772 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1774 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1775 s
->objsize
, s
->size
, gfpflags
, node
);
1779 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1782 #ifdef CONFIG_TRACING
1783 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1787 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1789 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1793 * Slow patch handling. This may still be called frequently since objects
1794 * have a longer lifetime than the cpu slabs in most processing loads.
1796 * So we still attempt to reduce cache line usage. Just take the slab
1797 * lock and free the item. If there is no additional partial page
1798 * handling required then we can return immediately.
1800 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1801 void *x
, unsigned long addr
, unsigned int offset
)
1804 void **object
= (void *)x
;
1805 struct kmem_cache_cpu
*c
;
1807 c
= get_cpu_slab(s
, raw_smp_processor_id());
1808 stat(c
, FREE_SLOWPATH
);
1811 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1815 prior
= object
[offset
] = page
->freelist
;
1816 page
->freelist
= object
;
1819 if (unlikely(PageSlubFrozen(page
))) {
1820 stat(c
, FREE_FROZEN
);
1824 if (unlikely(!page
->inuse
))
1828 * Objects left in the slab. If it was not on the partial list before
1831 if (unlikely(!prior
)) {
1832 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1833 stat(c
, FREE_ADD_PARTIAL
);
1843 * Slab still on the partial list.
1845 remove_partial(s
, page
);
1846 stat(c
, FREE_REMOVE_PARTIAL
);
1850 discard_slab(s
, page
);
1854 if (!free_debug_processing(s
, page
, x
, addr
))
1860 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1861 * can perform fastpath freeing without additional function calls.
1863 * The fastpath is only possible if we are freeing to the current cpu slab
1864 * of this processor. This typically the case if we have just allocated
1867 * If fastpath is not possible then fall back to __slab_free where we deal
1868 * with all sorts of special processing.
1870 static __always_inline
void slab_free(struct kmem_cache
*s
,
1871 struct page
*page
, void *x
, unsigned long addr
)
1873 void **object
= (void *)x
;
1874 struct kmem_cache_cpu
*c
;
1875 unsigned long flags
;
1877 kmemleak_free_recursive(x
, s
->flags
);
1878 local_irq_save(flags
);
1879 c
= get_cpu_slab(s
, smp_processor_id());
1880 kmemcheck_slab_free(s
, object
, c
->objsize
);
1881 debug_check_no_locks_freed(object
, c
->objsize
);
1882 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1883 debug_check_no_obj_freed(object
, c
->objsize
);
1884 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1885 object
[c
->offset
] = c
->freelist
;
1886 c
->freelist
= object
;
1887 stat(c
, FREE_FASTPATH
);
1889 __slab_free(s
, page
, x
, addr
, c
->offset
);
1891 local_irq_restore(flags
);
1894 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1898 page
= virt_to_head_page(x
);
1900 slab_free(s
, page
, x
, _RET_IP_
);
1902 trace_kmem_cache_free(_RET_IP_
, x
);
1904 EXPORT_SYMBOL(kmem_cache_free
);
1906 /* Figure out on which slab page the object resides */
1907 static struct page
*get_object_page(const void *x
)
1909 struct page
*page
= virt_to_head_page(x
);
1911 if (!PageSlab(page
))
1918 * Object placement in a slab is made very easy because we always start at
1919 * offset 0. If we tune the size of the object to the alignment then we can
1920 * get the required alignment by putting one properly sized object after
1923 * Notice that the allocation order determines the sizes of the per cpu
1924 * caches. Each processor has always one slab available for allocations.
1925 * Increasing the allocation order reduces the number of times that slabs
1926 * must be moved on and off the partial lists and is therefore a factor in
1931 * Mininum / Maximum order of slab pages. This influences locking overhead
1932 * and slab fragmentation. A higher order reduces the number of partial slabs
1933 * and increases the number of allocations possible without having to
1934 * take the list_lock.
1936 static int slub_min_order
;
1937 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1938 static int slub_min_objects
;
1941 * Merge control. If this is set then no merging of slab caches will occur.
1942 * (Could be removed. This was introduced to pacify the merge skeptics.)
1944 static int slub_nomerge
;
1947 * Calculate the order of allocation given an slab object size.
1949 * The order of allocation has significant impact on performance and other
1950 * system components. Generally order 0 allocations should be preferred since
1951 * order 0 does not cause fragmentation in the page allocator. Larger objects
1952 * be problematic to put into order 0 slabs because there may be too much
1953 * unused space left. We go to a higher order if more than 1/16th of the slab
1956 * In order to reach satisfactory performance we must ensure that a minimum
1957 * number of objects is in one slab. Otherwise we may generate too much
1958 * activity on the partial lists which requires taking the list_lock. This is
1959 * less a concern for large slabs though which are rarely used.
1961 * slub_max_order specifies the order where we begin to stop considering the
1962 * number of objects in a slab as critical. If we reach slub_max_order then
1963 * we try to keep the page order as low as possible. So we accept more waste
1964 * of space in favor of a small page order.
1966 * Higher order allocations also allow the placement of more objects in a
1967 * slab and thereby reduce object handling overhead. If the user has
1968 * requested a higher mininum order then we start with that one instead of
1969 * the smallest order which will fit the object.
1971 static inline int slab_order(int size
, int min_objects
,
1972 int max_order
, int fract_leftover
)
1976 int min_order
= slub_min_order
;
1978 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1979 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1981 for (order
= max(min_order
,
1982 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1983 order
<= max_order
; order
++) {
1985 unsigned long slab_size
= PAGE_SIZE
<< order
;
1987 if (slab_size
< min_objects
* size
)
1990 rem
= slab_size
% size
;
1992 if (rem
<= slab_size
/ fract_leftover
)
2000 static inline int calculate_order(int size
)
2008 * Attempt to find best configuration for a slab. This
2009 * works by first attempting to generate a layout with
2010 * the best configuration and backing off gradually.
2012 * First we reduce the acceptable waste in a slab. Then
2013 * we reduce the minimum objects required in a slab.
2015 min_objects
= slub_min_objects
;
2017 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2018 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
2019 min_objects
= min(min_objects
, max_objects
);
2021 while (min_objects
> 1) {
2023 while (fraction
>= 4) {
2024 order
= slab_order(size
, min_objects
,
2025 slub_max_order
, fraction
);
2026 if (order
<= slub_max_order
)
2034 * We were unable to place multiple objects in a slab. Now
2035 * lets see if we can place a single object there.
2037 order
= slab_order(size
, 1, slub_max_order
, 1);
2038 if (order
<= slub_max_order
)
2042 * Doh this slab cannot be placed using slub_max_order.
2044 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2045 if (order
< MAX_ORDER
)
2051 * Figure out what the alignment of the objects will be.
2053 static unsigned long calculate_alignment(unsigned long flags
,
2054 unsigned long align
, unsigned long size
)
2057 * If the user wants hardware cache aligned objects then follow that
2058 * suggestion if the object is sufficiently large.
2060 * The hardware cache alignment cannot override the specified
2061 * alignment though. If that is greater then use it.
2063 if (flags
& SLAB_HWCACHE_ALIGN
) {
2064 unsigned long ralign
= cache_line_size();
2065 while (size
<= ralign
/ 2)
2067 align
= max(align
, ralign
);
2070 if (align
< ARCH_SLAB_MINALIGN
)
2071 align
= ARCH_SLAB_MINALIGN
;
2073 return ALIGN(align
, sizeof(void *));
2076 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
2077 struct kmem_cache_cpu
*c
)
2082 c
->offset
= s
->offset
/ sizeof(void *);
2083 c
->objsize
= s
->objsize
;
2084 #ifdef CONFIG_SLUB_STATS
2085 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
2090 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2093 spin_lock_init(&n
->list_lock
);
2094 INIT_LIST_HEAD(&n
->partial
);
2095 #ifdef CONFIG_SLUB_DEBUG
2096 atomic_long_set(&n
->nr_slabs
, 0);
2097 atomic_long_set(&n
->total_objects
, 0);
2098 INIT_LIST_HEAD(&n
->full
);
2104 * Per cpu array for per cpu structures.
2106 * The per cpu array places all kmem_cache_cpu structures from one processor
2107 * close together meaning that it becomes possible that multiple per cpu
2108 * structures are contained in one cacheline. This may be particularly
2109 * beneficial for the kmalloc caches.
2111 * A desktop system typically has around 60-80 slabs. With 100 here we are
2112 * likely able to get per cpu structures for all caches from the array defined
2113 * here. We must be able to cover all kmalloc caches during bootstrap.
2115 * If the per cpu array is exhausted then fall back to kmalloc
2116 * of individual cachelines. No sharing is possible then.
2118 #define NR_KMEM_CACHE_CPU 100
2120 static DEFINE_PER_CPU(struct kmem_cache_cpu
[NR_KMEM_CACHE_CPU
],
2123 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2124 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2126 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2127 int cpu
, gfp_t flags
)
2129 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2132 per_cpu(kmem_cache_cpu_free
, cpu
) =
2133 (void *)c
->freelist
;
2135 /* Table overflow: So allocate ourselves */
2137 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2138 flags
, cpu_to_node(cpu
));
2143 init_kmem_cache_cpu(s
, c
);
2147 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2149 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2150 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2154 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2155 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2158 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2162 for_each_online_cpu(cpu
) {
2163 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2166 s
->cpu_slab
[cpu
] = NULL
;
2167 free_kmem_cache_cpu(c
, cpu
);
2172 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2176 for_each_online_cpu(cpu
) {
2177 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2182 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2184 free_kmem_cache_cpus(s
);
2187 s
->cpu_slab
[cpu
] = c
;
2193 * Initialize the per cpu array.
2195 static void init_alloc_cpu_cpu(int cpu
)
2199 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2202 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2203 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2205 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2208 static void __init
init_alloc_cpu(void)
2212 for_each_online_cpu(cpu
)
2213 init_alloc_cpu_cpu(cpu
);
2217 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2218 static inline void init_alloc_cpu(void) {}
2220 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2222 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2229 * No kmalloc_node yet so do it by hand. We know that this is the first
2230 * slab on the node for this slabcache. There are no concurrent accesses
2233 * Note that this function only works on the kmalloc_node_cache
2234 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2235 * memory on a fresh node that has no slab structures yet.
2237 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2240 struct kmem_cache_node
*n
;
2241 unsigned long flags
;
2243 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2245 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2248 if (page_to_nid(page
) != node
) {
2249 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2251 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2252 "in order to be able to continue\n");
2257 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2259 kmalloc_caches
->node
[node
] = n
;
2260 #ifdef CONFIG_SLUB_DEBUG
2261 init_object(kmalloc_caches
, n
, 1);
2262 init_tracking(kmalloc_caches
, n
);
2264 init_kmem_cache_node(n
, kmalloc_caches
);
2265 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2268 * lockdep requires consistent irq usage for each lock
2269 * so even though there cannot be a race this early in
2270 * the boot sequence, we still disable irqs.
2272 local_irq_save(flags
);
2273 add_partial(n
, page
, 0);
2274 local_irq_restore(flags
);
2277 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2281 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2282 struct kmem_cache_node
*n
= s
->node
[node
];
2283 if (n
&& n
!= &s
->local_node
)
2284 kmem_cache_free(kmalloc_caches
, n
);
2285 s
->node
[node
] = NULL
;
2289 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2294 if (slab_state
>= UP
)
2295 local_node
= page_to_nid(virt_to_page(s
));
2299 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2300 struct kmem_cache_node
*n
;
2302 if (local_node
== node
)
2305 if (slab_state
== DOWN
) {
2306 early_kmem_cache_node_alloc(gfpflags
, node
);
2309 n
= kmem_cache_alloc_node(kmalloc_caches
,
2313 free_kmem_cache_nodes(s
);
2319 init_kmem_cache_node(n
, s
);
2324 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2328 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2330 init_kmem_cache_node(&s
->local_node
, s
);
2335 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2337 if (min
< MIN_PARTIAL
)
2339 else if (min
> MAX_PARTIAL
)
2341 s
->min_partial
= min
;
2345 * calculate_sizes() determines the order and the distribution of data within
2348 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2350 unsigned long flags
= s
->flags
;
2351 unsigned long size
= s
->objsize
;
2352 unsigned long align
= s
->align
;
2356 * Round up object size to the next word boundary. We can only
2357 * place the free pointer at word boundaries and this determines
2358 * the possible location of the free pointer.
2360 size
= ALIGN(size
, sizeof(void *));
2362 #ifdef CONFIG_SLUB_DEBUG
2364 * Determine if we can poison the object itself. If the user of
2365 * the slab may touch the object after free or before allocation
2366 * then we should never poison the object itself.
2368 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2370 s
->flags
|= __OBJECT_POISON
;
2372 s
->flags
&= ~__OBJECT_POISON
;
2376 * If we are Redzoning then check if there is some space between the
2377 * end of the object and the free pointer. If not then add an
2378 * additional word to have some bytes to store Redzone information.
2380 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2381 size
+= sizeof(void *);
2385 * With that we have determined the number of bytes in actual use
2386 * by the object. This is the potential offset to the free pointer.
2390 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2393 * Relocate free pointer after the object if it is not
2394 * permitted to overwrite the first word of the object on
2397 * This is the case if we do RCU, have a constructor or
2398 * destructor or are poisoning the objects.
2401 size
+= sizeof(void *);
2404 #ifdef CONFIG_SLUB_DEBUG
2405 if (flags
& SLAB_STORE_USER
)
2407 * Need to store information about allocs and frees after
2410 size
+= 2 * sizeof(struct track
);
2412 if (flags
& SLAB_RED_ZONE
)
2414 * Add some empty padding so that we can catch
2415 * overwrites from earlier objects rather than let
2416 * tracking information or the free pointer be
2417 * corrupted if a user writes before the start
2420 size
+= sizeof(void *);
2424 * Determine the alignment based on various parameters that the
2425 * user specified and the dynamic determination of cache line size
2428 align
= calculate_alignment(flags
, align
, s
->objsize
);
2432 * SLUB stores one object immediately after another beginning from
2433 * offset 0. In order to align the objects we have to simply size
2434 * each object to conform to the alignment.
2436 size
= ALIGN(size
, align
);
2438 if (forced_order
>= 0)
2439 order
= forced_order
;
2441 order
= calculate_order(size
);
2448 s
->allocflags
|= __GFP_COMP
;
2450 if (s
->flags
& SLAB_CACHE_DMA
)
2451 s
->allocflags
|= SLUB_DMA
;
2453 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2454 s
->allocflags
|= __GFP_RECLAIMABLE
;
2457 * Determine the number of objects per slab
2459 s
->oo
= oo_make(order
, size
);
2460 s
->min
= oo_make(get_order(size
), size
);
2461 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2464 return !!oo_objects(s
->oo
);
2468 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2469 const char *name
, size_t size
,
2470 size_t align
, unsigned long flags
,
2471 void (*ctor
)(void *))
2473 memset(s
, 0, kmem_size
);
2478 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2480 if (!calculate_sizes(s
, -1))
2482 if (disable_higher_order_debug
) {
2484 * Disable debugging flags that store metadata if the min slab
2487 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2488 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2490 if (!calculate_sizes(s
, -1))
2496 * The larger the object size is, the more pages we want on the partial
2497 * list to avoid pounding the page allocator excessively.
2499 set_min_partial(s
, ilog2(s
->size
));
2502 s
->remote_node_defrag_ratio
= 1000;
2504 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2507 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2509 free_kmem_cache_nodes(s
);
2511 if (flags
& SLAB_PANIC
)
2512 panic("Cannot create slab %s size=%lu realsize=%u "
2513 "order=%u offset=%u flags=%lx\n",
2514 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2520 * Check if a given pointer is valid
2522 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2526 page
= get_object_page(object
);
2528 if (!page
|| s
!= page
->slab
)
2529 /* No slab or wrong slab */
2532 if (!check_valid_pointer(s
, page
, object
))
2536 * We could also check if the object is on the slabs freelist.
2537 * But this would be too expensive and it seems that the main
2538 * purpose of kmem_ptr_valid() is to check if the object belongs
2539 * to a certain slab.
2543 EXPORT_SYMBOL(kmem_ptr_validate
);
2546 * Determine the size of a slab object
2548 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2552 EXPORT_SYMBOL(kmem_cache_size
);
2554 const char *kmem_cache_name(struct kmem_cache
*s
)
2558 EXPORT_SYMBOL(kmem_cache_name
);
2560 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2563 #ifdef CONFIG_SLUB_DEBUG
2564 void *addr
= page_address(page
);
2566 DECLARE_BITMAP(map
, page
->objects
);
2568 bitmap_zero(map
, page
->objects
);
2569 slab_err(s
, page
, "%s", text
);
2571 for_each_free_object(p
, s
, page
->freelist
)
2572 set_bit(slab_index(p
, s
, addr
), map
);
2574 for_each_object(p
, s
, addr
, page
->objects
) {
2576 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2577 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2579 print_tracking(s
, p
);
2587 * Attempt to free all partial slabs on a node.
2589 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2591 unsigned long flags
;
2592 struct page
*page
, *h
;
2594 spin_lock_irqsave(&n
->list_lock
, flags
);
2595 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2597 list_del(&page
->lru
);
2598 discard_slab(s
, page
);
2601 list_slab_objects(s
, page
,
2602 "Objects remaining on kmem_cache_close()");
2605 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2609 * Release all resources used by a slab cache.
2611 static inline int kmem_cache_close(struct kmem_cache
*s
)
2617 /* Attempt to free all objects */
2618 free_kmem_cache_cpus(s
);
2619 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2620 struct kmem_cache_node
*n
= get_node(s
, node
);
2623 if (n
->nr_partial
|| slabs_node(s
, node
))
2626 free_kmem_cache_nodes(s
);
2631 * Close a cache and release the kmem_cache structure
2632 * (must be used for caches created using kmem_cache_create)
2634 void kmem_cache_destroy(struct kmem_cache
*s
)
2636 down_write(&slub_lock
);
2640 up_write(&slub_lock
);
2641 if (kmem_cache_close(s
)) {
2642 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2643 "still has objects.\n", s
->name
, __func__
);
2646 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2648 sysfs_slab_remove(s
);
2650 up_write(&slub_lock
);
2652 EXPORT_SYMBOL(kmem_cache_destroy
);
2654 /********************************************************************
2656 *******************************************************************/
2658 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2659 EXPORT_SYMBOL(kmalloc_caches
);
2661 static int __init
setup_slub_min_order(char *str
)
2663 get_option(&str
, &slub_min_order
);
2668 __setup("slub_min_order=", setup_slub_min_order
);
2670 static int __init
setup_slub_max_order(char *str
)
2672 get_option(&str
, &slub_max_order
);
2673 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2678 __setup("slub_max_order=", setup_slub_max_order
);
2680 static int __init
setup_slub_min_objects(char *str
)
2682 get_option(&str
, &slub_min_objects
);
2687 __setup("slub_min_objects=", setup_slub_min_objects
);
2689 static int __init
setup_slub_nomerge(char *str
)
2695 __setup("slub_nomerge", setup_slub_nomerge
);
2697 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2698 const char *name
, int size
, gfp_t gfp_flags
)
2700 unsigned int flags
= 0;
2702 if (gfp_flags
& SLUB_DMA
)
2703 flags
= SLAB_CACHE_DMA
;
2706 * This function is called with IRQs disabled during early-boot on
2707 * single CPU so there's no need to take slub_lock here.
2709 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2713 list_add(&s
->list
, &slab_caches
);
2715 if (sysfs_slab_add(s
))
2720 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2723 #ifdef CONFIG_ZONE_DMA
2724 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2726 static void sysfs_add_func(struct work_struct
*w
)
2728 struct kmem_cache
*s
;
2730 down_write(&slub_lock
);
2731 list_for_each_entry(s
, &slab_caches
, list
) {
2732 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2733 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2737 up_write(&slub_lock
);
2740 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2742 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2744 struct kmem_cache
*s
;
2747 unsigned long slabflags
;
2749 s
= kmalloc_caches_dma
[index
];
2753 /* Dynamically create dma cache */
2754 if (flags
& __GFP_WAIT
)
2755 down_write(&slub_lock
);
2757 if (!down_write_trylock(&slub_lock
))
2761 if (kmalloc_caches_dma
[index
])
2764 realsize
= kmalloc_caches
[index
].objsize
;
2765 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2766 (unsigned int)realsize
);
2767 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2770 * Must defer sysfs creation to a workqueue because we don't know
2771 * what context we are called from. Before sysfs comes up, we don't
2772 * need to do anything because our sysfs initcall will start by
2773 * adding all existing slabs to sysfs.
2775 slabflags
= SLAB_CACHE_DMA
|SLAB_NOTRACK
;
2776 if (slab_state
>= SYSFS
)
2777 slabflags
|= __SYSFS_ADD_DEFERRED
;
2779 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2780 realsize
, ARCH_KMALLOC_MINALIGN
, slabflags
, NULL
)) {
2786 list_add(&s
->list
, &slab_caches
);
2787 kmalloc_caches_dma
[index
] = s
;
2789 if (slab_state
>= SYSFS
)
2790 schedule_work(&sysfs_add_work
);
2793 up_write(&slub_lock
);
2795 return kmalloc_caches_dma
[index
];
2800 * Conversion table for small slabs sizes / 8 to the index in the
2801 * kmalloc array. This is necessary for slabs < 192 since we have non power
2802 * of two cache sizes there. The size of larger slabs can be determined using
2805 static s8 size_index
[24] = {
2832 static inline int size_index_elem(size_t bytes
)
2834 return (bytes
- 1) / 8;
2837 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2843 return ZERO_SIZE_PTR
;
2845 index
= size_index
[size_index_elem(size
)];
2847 index
= fls(size
- 1);
2849 #ifdef CONFIG_ZONE_DMA
2850 if (unlikely((flags
& SLUB_DMA
)))
2851 return dma_kmalloc_cache(index
, flags
);
2854 return &kmalloc_caches
[index
];
2857 void *__kmalloc(size_t size
, gfp_t flags
)
2859 struct kmem_cache
*s
;
2862 if (unlikely(size
> SLUB_MAX_SIZE
))
2863 return kmalloc_large(size
, flags
);
2865 s
= get_slab(size
, flags
);
2867 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2870 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2872 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2876 EXPORT_SYMBOL(__kmalloc
);
2878 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2883 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2884 page
= alloc_pages_node(node
, flags
, get_order(size
));
2886 ptr
= page_address(page
);
2888 kmemleak_alloc(ptr
, size
, 1, flags
);
2893 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2895 struct kmem_cache
*s
;
2898 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2899 ret
= kmalloc_large_node(size
, flags
, node
);
2901 trace_kmalloc_node(_RET_IP_
, ret
,
2902 size
, PAGE_SIZE
<< get_order(size
),
2908 s
= get_slab(size
, flags
);
2910 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2913 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2915 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2919 EXPORT_SYMBOL(__kmalloc_node
);
2922 size_t ksize(const void *object
)
2925 struct kmem_cache
*s
;
2927 if (unlikely(object
== ZERO_SIZE_PTR
))
2930 page
= virt_to_head_page(object
);
2932 if (unlikely(!PageSlab(page
))) {
2933 WARN_ON(!PageCompound(page
));
2934 return PAGE_SIZE
<< compound_order(page
);
2938 #ifdef CONFIG_SLUB_DEBUG
2940 * Debugging requires use of the padding between object
2941 * and whatever may come after it.
2943 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2948 * If we have the need to store the freelist pointer
2949 * back there or track user information then we can
2950 * only use the space before that information.
2952 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2955 * Else we can use all the padding etc for the allocation
2959 EXPORT_SYMBOL(ksize
);
2961 void kfree(const void *x
)
2964 void *object
= (void *)x
;
2966 trace_kfree(_RET_IP_
, x
);
2968 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2971 page
= virt_to_head_page(x
);
2972 if (unlikely(!PageSlab(page
))) {
2973 BUG_ON(!PageCompound(page
));
2978 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2980 EXPORT_SYMBOL(kfree
);
2983 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2984 * the remaining slabs by the number of items in use. The slabs with the
2985 * most items in use come first. New allocations will then fill those up
2986 * and thus they can be removed from the partial lists.
2988 * The slabs with the least items are placed last. This results in them
2989 * being allocated from last increasing the chance that the last objects
2990 * are freed in them.
2992 int kmem_cache_shrink(struct kmem_cache
*s
)
2996 struct kmem_cache_node
*n
;
2999 int objects
= oo_objects(s
->max
);
3000 struct list_head
*slabs_by_inuse
=
3001 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3002 unsigned long flags
;
3004 if (!slabs_by_inuse
)
3008 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3009 n
= get_node(s
, node
);
3014 for (i
= 0; i
< objects
; i
++)
3015 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3017 spin_lock_irqsave(&n
->list_lock
, flags
);
3020 * Build lists indexed by the items in use in each slab.
3022 * Note that concurrent frees may occur while we hold the
3023 * list_lock. page->inuse here is the upper limit.
3025 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3026 if (!page
->inuse
&& slab_trylock(page
)) {
3028 * Must hold slab lock here because slab_free
3029 * may have freed the last object and be
3030 * waiting to release the slab.
3032 list_del(&page
->lru
);
3035 discard_slab(s
, page
);
3037 list_move(&page
->lru
,
3038 slabs_by_inuse
+ page
->inuse
);
3043 * Rebuild the partial list with the slabs filled up most
3044 * first and the least used slabs at the end.
3046 for (i
= objects
- 1; i
>= 0; i
--)
3047 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3049 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3052 kfree(slabs_by_inuse
);
3055 EXPORT_SYMBOL(kmem_cache_shrink
);
3057 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3058 static int slab_mem_going_offline_callback(void *arg
)
3060 struct kmem_cache
*s
;
3062 down_read(&slub_lock
);
3063 list_for_each_entry(s
, &slab_caches
, list
)
3064 kmem_cache_shrink(s
);
3065 up_read(&slub_lock
);
3070 static void slab_mem_offline_callback(void *arg
)
3072 struct kmem_cache_node
*n
;
3073 struct kmem_cache
*s
;
3074 struct memory_notify
*marg
= arg
;
3077 offline_node
= marg
->status_change_nid
;
3080 * If the node still has available memory. we need kmem_cache_node
3083 if (offline_node
< 0)
3086 down_read(&slub_lock
);
3087 list_for_each_entry(s
, &slab_caches
, list
) {
3088 n
= get_node(s
, offline_node
);
3091 * if n->nr_slabs > 0, slabs still exist on the node
3092 * that is going down. We were unable to free them,
3093 * and offline_pages() function shoudn't call this
3094 * callback. So, we must fail.
3096 BUG_ON(slabs_node(s
, offline_node
));
3098 s
->node
[offline_node
] = NULL
;
3099 kmem_cache_free(kmalloc_caches
, n
);
3102 up_read(&slub_lock
);
3105 static int slab_mem_going_online_callback(void *arg
)
3107 struct kmem_cache_node
*n
;
3108 struct kmem_cache
*s
;
3109 struct memory_notify
*marg
= arg
;
3110 int nid
= marg
->status_change_nid
;
3114 * If the node's memory is already available, then kmem_cache_node is
3115 * already created. Nothing to do.
3121 * We are bringing a node online. No memory is available yet. We must
3122 * allocate a kmem_cache_node structure in order to bring the node
3125 down_read(&slub_lock
);
3126 list_for_each_entry(s
, &slab_caches
, list
) {
3128 * XXX: kmem_cache_alloc_node will fallback to other nodes
3129 * since memory is not yet available from the node that
3132 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
3137 init_kmem_cache_node(n
, s
);
3141 up_read(&slub_lock
);
3145 static int slab_memory_callback(struct notifier_block
*self
,
3146 unsigned long action
, void *arg
)
3151 case MEM_GOING_ONLINE
:
3152 ret
= slab_mem_going_online_callback(arg
);
3154 case MEM_GOING_OFFLINE
:
3155 ret
= slab_mem_going_offline_callback(arg
);
3158 case MEM_CANCEL_ONLINE
:
3159 slab_mem_offline_callback(arg
);
3162 case MEM_CANCEL_OFFLINE
:
3166 ret
= notifier_from_errno(ret
);
3172 #endif /* CONFIG_MEMORY_HOTPLUG */
3174 /********************************************************************
3175 * Basic setup of slabs
3176 *******************************************************************/
3178 void __init
kmem_cache_init(void)
3187 * Must first have the slab cache available for the allocations of the
3188 * struct kmem_cache_node's. There is special bootstrap code in
3189 * kmem_cache_open for slab_state == DOWN.
3191 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3192 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3193 kmalloc_caches
[0].refcount
= -1;
3196 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3199 /* Able to allocate the per node structures */
3200 slab_state
= PARTIAL
;
3202 /* Caches that are not of the two-to-the-power-of size */
3203 if (KMALLOC_MIN_SIZE
<= 32) {
3204 create_kmalloc_cache(&kmalloc_caches
[1],
3205 "kmalloc-96", 96, GFP_NOWAIT
);
3208 if (KMALLOC_MIN_SIZE
<= 64) {
3209 create_kmalloc_cache(&kmalloc_caches
[2],
3210 "kmalloc-192", 192, GFP_NOWAIT
);
3214 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3215 create_kmalloc_cache(&kmalloc_caches
[i
],
3216 "kmalloc", 1 << i
, GFP_NOWAIT
);
3222 * Patch up the size_index table if we have strange large alignment
3223 * requirements for the kmalloc array. This is only the case for
3224 * MIPS it seems. The standard arches will not generate any code here.
3226 * Largest permitted alignment is 256 bytes due to the way we
3227 * handle the index determination for the smaller caches.
3229 * Make sure that nothing crazy happens if someone starts tinkering
3230 * around with ARCH_KMALLOC_MINALIGN
3232 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3233 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3235 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3236 int elem
= size_index_elem(i
);
3237 if (elem
>= ARRAY_SIZE(size_index
))
3239 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3242 if (KMALLOC_MIN_SIZE
== 64) {
3244 * The 96 byte size cache is not used if the alignment
3247 for (i
= 64 + 8; i
<= 96; i
+= 8)
3248 size_index
[size_index_elem(i
)] = 7;
3249 } else if (KMALLOC_MIN_SIZE
== 128) {
3251 * The 192 byte sized cache is not used if the alignment
3252 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3255 for (i
= 128 + 8; i
<= 192; i
+= 8)
3256 size_index
[size_index_elem(i
)] = 8;
3261 /* Provide the correct kmalloc names now that the caches are up */
3262 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3263 kmalloc_caches
[i
]. name
=
3264 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3267 register_cpu_notifier(&slab_notifier
);
3268 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3269 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3271 kmem_size
= sizeof(struct kmem_cache
);
3275 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3276 " CPUs=%d, Nodes=%d\n",
3277 caches
, cache_line_size(),
3278 slub_min_order
, slub_max_order
, slub_min_objects
,
3279 nr_cpu_ids
, nr_node_ids
);
3282 void __init
kmem_cache_init_late(void)
3287 * Find a mergeable slab cache
3289 static int slab_unmergeable(struct kmem_cache
*s
)
3291 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3298 * We may have set a slab to be unmergeable during bootstrap.
3300 if (s
->refcount
< 0)
3306 static struct kmem_cache
*find_mergeable(size_t size
,
3307 size_t align
, unsigned long flags
, const char *name
,
3308 void (*ctor
)(void *))
3310 struct kmem_cache
*s
;
3312 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3318 size
= ALIGN(size
, sizeof(void *));
3319 align
= calculate_alignment(flags
, align
, size
);
3320 size
= ALIGN(size
, align
);
3321 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3323 list_for_each_entry(s
, &slab_caches
, list
) {
3324 if (slab_unmergeable(s
))
3330 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3333 * Check if alignment is compatible.
3334 * Courtesy of Adrian Drzewiecki
3336 if ((s
->size
& ~(align
- 1)) != s
->size
)
3339 if (s
->size
- size
>= sizeof(void *))
3347 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3348 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3350 struct kmem_cache
*s
;
3355 down_write(&slub_lock
);
3356 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3362 * Adjust the object sizes so that we clear
3363 * the complete object on kzalloc.
3365 s
->objsize
= max(s
->objsize
, (int)size
);
3368 * And then we need to update the object size in the
3369 * per cpu structures
3371 for_each_online_cpu(cpu
)
3372 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3374 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3375 up_write(&slub_lock
);
3377 if (sysfs_slab_alias(s
, name
)) {
3378 down_write(&slub_lock
);
3380 up_write(&slub_lock
);
3386 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3388 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3389 size
, align
, flags
, ctor
)) {
3390 list_add(&s
->list
, &slab_caches
);
3391 up_write(&slub_lock
);
3392 if (sysfs_slab_add(s
)) {
3393 down_write(&slub_lock
);
3395 up_write(&slub_lock
);
3403 up_write(&slub_lock
);
3406 if (flags
& SLAB_PANIC
)
3407 panic("Cannot create slabcache %s\n", name
);
3412 EXPORT_SYMBOL(kmem_cache_create
);
3416 * Use the cpu notifier to insure that the cpu slabs are flushed when
3419 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3420 unsigned long action
, void *hcpu
)
3422 long cpu
= (long)hcpu
;
3423 struct kmem_cache
*s
;
3424 unsigned long flags
;
3427 case CPU_UP_PREPARE
:
3428 case CPU_UP_PREPARE_FROZEN
:
3429 init_alloc_cpu_cpu(cpu
);
3430 down_read(&slub_lock
);
3431 list_for_each_entry(s
, &slab_caches
, list
)
3432 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3434 up_read(&slub_lock
);
3437 case CPU_UP_CANCELED
:
3438 case CPU_UP_CANCELED_FROZEN
:
3440 case CPU_DEAD_FROZEN
:
3441 down_read(&slub_lock
);
3442 list_for_each_entry(s
, &slab_caches
, list
) {
3443 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3445 local_irq_save(flags
);
3446 __flush_cpu_slab(s
, cpu
);
3447 local_irq_restore(flags
);
3448 free_kmem_cache_cpu(c
, cpu
);
3449 s
->cpu_slab
[cpu
] = NULL
;
3451 up_read(&slub_lock
);
3459 static struct notifier_block __cpuinitdata slab_notifier
= {
3460 .notifier_call
= slab_cpuup_callback
3465 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3467 struct kmem_cache
*s
;
3470 if (unlikely(size
> SLUB_MAX_SIZE
))
3471 return kmalloc_large(size
, gfpflags
);
3473 s
= get_slab(size
, gfpflags
);
3475 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3478 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3480 /* Honor the call site pointer we recieved. */
3481 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3486 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3487 int node
, unsigned long caller
)
3489 struct kmem_cache
*s
;
3492 if (unlikely(size
> SLUB_MAX_SIZE
))
3493 return kmalloc_large_node(size
, gfpflags
, node
);
3495 s
= get_slab(size
, gfpflags
);
3497 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3500 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3502 /* Honor the call site pointer we recieved. */
3503 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3508 #ifdef CONFIG_SLUB_DEBUG
3509 static int count_inuse(struct page
*page
)
3514 static int count_total(struct page
*page
)
3516 return page
->objects
;
3519 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3523 void *addr
= page_address(page
);
3525 if (!check_slab(s
, page
) ||
3526 !on_freelist(s
, page
, NULL
))
3529 /* Now we know that a valid freelist exists */
3530 bitmap_zero(map
, page
->objects
);
3532 for_each_free_object(p
, s
, page
->freelist
) {
3533 set_bit(slab_index(p
, s
, addr
), map
);
3534 if (!check_object(s
, page
, p
, 0))
3538 for_each_object(p
, s
, addr
, page
->objects
)
3539 if (!test_bit(slab_index(p
, s
, addr
), map
))
3540 if (!check_object(s
, page
, p
, 1))
3545 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3548 if (slab_trylock(page
)) {
3549 validate_slab(s
, page
, map
);
3552 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3555 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3556 if (!PageSlubDebug(page
))
3557 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3558 "on slab 0x%p\n", s
->name
, page
);
3560 if (PageSlubDebug(page
))
3561 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3562 "slab 0x%p\n", s
->name
, page
);
3566 static int validate_slab_node(struct kmem_cache
*s
,
3567 struct kmem_cache_node
*n
, unsigned long *map
)
3569 unsigned long count
= 0;
3571 unsigned long flags
;
3573 spin_lock_irqsave(&n
->list_lock
, flags
);
3575 list_for_each_entry(page
, &n
->partial
, lru
) {
3576 validate_slab_slab(s
, page
, map
);
3579 if (count
!= n
->nr_partial
)
3580 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3581 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3583 if (!(s
->flags
& SLAB_STORE_USER
))
3586 list_for_each_entry(page
, &n
->full
, lru
) {
3587 validate_slab_slab(s
, page
, map
);
3590 if (count
!= atomic_long_read(&n
->nr_slabs
))
3591 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3592 "counter=%ld\n", s
->name
, count
,
3593 atomic_long_read(&n
->nr_slabs
));
3596 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3600 static long validate_slab_cache(struct kmem_cache
*s
)
3603 unsigned long count
= 0;
3604 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3605 sizeof(unsigned long), GFP_KERNEL
);
3611 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3612 struct kmem_cache_node
*n
= get_node(s
, node
);
3614 count
+= validate_slab_node(s
, n
, map
);
3620 #ifdef SLUB_RESILIENCY_TEST
3621 static void resiliency_test(void)
3625 printk(KERN_ERR
"SLUB resiliency testing\n");
3626 printk(KERN_ERR
"-----------------------\n");
3627 printk(KERN_ERR
"A. Corruption after allocation\n");
3629 p
= kzalloc(16, GFP_KERNEL
);
3631 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3632 " 0x12->0x%p\n\n", p
+ 16);
3634 validate_slab_cache(kmalloc_caches
+ 4);
3636 /* Hmmm... The next two are dangerous */
3637 p
= kzalloc(32, GFP_KERNEL
);
3638 p
[32 + sizeof(void *)] = 0x34;
3639 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3640 " 0x34 -> -0x%p\n", p
);
3642 "If allocated object is overwritten then not detectable\n\n");
3644 validate_slab_cache(kmalloc_caches
+ 5);
3645 p
= kzalloc(64, GFP_KERNEL
);
3646 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3648 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3651 "If allocated object is overwritten then not detectable\n\n");
3652 validate_slab_cache(kmalloc_caches
+ 6);
3654 printk(KERN_ERR
"\nB. Corruption after free\n");
3655 p
= kzalloc(128, GFP_KERNEL
);
3658 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3659 validate_slab_cache(kmalloc_caches
+ 7);
3661 p
= kzalloc(256, GFP_KERNEL
);
3664 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3666 validate_slab_cache(kmalloc_caches
+ 8);
3668 p
= kzalloc(512, GFP_KERNEL
);
3671 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3672 validate_slab_cache(kmalloc_caches
+ 9);
3675 static void resiliency_test(void) {};
3679 * Generate lists of code addresses where slabcache objects are allocated
3684 unsigned long count
;
3691 DECLARE_BITMAP(cpus
, NR_CPUS
);
3697 unsigned long count
;
3698 struct location
*loc
;
3701 static void free_loc_track(struct loc_track
*t
)
3704 free_pages((unsigned long)t
->loc
,
3705 get_order(sizeof(struct location
) * t
->max
));
3708 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3713 order
= get_order(sizeof(struct location
) * max
);
3715 l
= (void *)__get_free_pages(flags
, order
);
3720 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3728 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3729 const struct track
*track
)
3731 long start
, end
, pos
;
3733 unsigned long caddr
;
3734 unsigned long age
= jiffies
- track
->when
;
3740 pos
= start
+ (end
- start
+ 1) / 2;
3743 * There is nothing at "end". If we end up there
3744 * we need to add something to before end.
3749 caddr
= t
->loc
[pos
].addr
;
3750 if (track
->addr
== caddr
) {
3756 if (age
< l
->min_time
)
3758 if (age
> l
->max_time
)
3761 if (track
->pid
< l
->min_pid
)
3762 l
->min_pid
= track
->pid
;
3763 if (track
->pid
> l
->max_pid
)
3764 l
->max_pid
= track
->pid
;
3766 cpumask_set_cpu(track
->cpu
,
3767 to_cpumask(l
->cpus
));
3769 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3773 if (track
->addr
< caddr
)
3780 * Not found. Insert new tracking element.
3782 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3788 (t
->count
- pos
) * sizeof(struct location
));
3791 l
->addr
= track
->addr
;
3795 l
->min_pid
= track
->pid
;
3796 l
->max_pid
= track
->pid
;
3797 cpumask_clear(to_cpumask(l
->cpus
));
3798 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3799 nodes_clear(l
->nodes
);
3800 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3804 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3805 struct page
*page
, enum track_item alloc
)
3807 void *addr
= page_address(page
);
3808 DECLARE_BITMAP(map
, page
->objects
);
3811 bitmap_zero(map
, page
->objects
);
3812 for_each_free_object(p
, s
, page
->freelist
)
3813 set_bit(slab_index(p
, s
, addr
), map
);
3815 for_each_object(p
, s
, addr
, page
->objects
)
3816 if (!test_bit(slab_index(p
, s
, addr
), map
))
3817 add_location(t
, s
, get_track(s
, p
, alloc
));
3820 static int list_locations(struct kmem_cache
*s
, char *buf
,
3821 enum track_item alloc
)
3825 struct loc_track t
= { 0, 0, NULL
};
3828 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3830 return sprintf(buf
, "Out of memory\n");
3832 /* Push back cpu slabs */
3835 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3836 struct kmem_cache_node
*n
= get_node(s
, node
);
3837 unsigned long flags
;
3840 if (!atomic_long_read(&n
->nr_slabs
))
3843 spin_lock_irqsave(&n
->list_lock
, flags
);
3844 list_for_each_entry(page
, &n
->partial
, lru
)
3845 process_slab(&t
, s
, page
, alloc
);
3846 list_for_each_entry(page
, &n
->full
, lru
)
3847 process_slab(&t
, s
, page
, alloc
);
3848 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3851 for (i
= 0; i
< t
.count
; i
++) {
3852 struct location
*l
= &t
.loc
[i
];
3854 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3856 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3859 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3861 len
+= sprintf(buf
+ len
, "<not-available>");
3863 if (l
->sum_time
!= l
->min_time
) {
3864 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3866 (long)div_u64(l
->sum_time
, l
->count
),
3869 len
+= sprintf(buf
+ len
, " age=%ld",
3872 if (l
->min_pid
!= l
->max_pid
)
3873 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3874 l
->min_pid
, l
->max_pid
);
3876 len
+= sprintf(buf
+ len
, " pid=%ld",
3879 if (num_online_cpus() > 1 &&
3880 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3881 len
< PAGE_SIZE
- 60) {
3882 len
+= sprintf(buf
+ len
, " cpus=");
3883 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3884 to_cpumask(l
->cpus
));
3887 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3888 len
< PAGE_SIZE
- 60) {
3889 len
+= sprintf(buf
+ len
, " nodes=");
3890 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3894 len
+= sprintf(buf
+ len
, "\n");
3899 len
+= sprintf(buf
, "No data\n");
3903 enum slab_stat_type
{
3904 SL_ALL
, /* All slabs */
3905 SL_PARTIAL
, /* Only partially allocated slabs */
3906 SL_CPU
, /* Only slabs used for cpu caches */
3907 SL_OBJECTS
, /* Determine allocated objects not slabs */
3908 SL_TOTAL
/* Determine object capacity not slabs */
3911 #define SO_ALL (1 << SL_ALL)
3912 #define SO_PARTIAL (1 << SL_PARTIAL)
3913 #define SO_CPU (1 << SL_CPU)
3914 #define SO_OBJECTS (1 << SL_OBJECTS)
3915 #define SO_TOTAL (1 << SL_TOTAL)
3917 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3918 char *buf
, unsigned long flags
)
3920 unsigned long total
= 0;
3923 unsigned long *nodes
;
3924 unsigned long *per_cpu
;
3926 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3929 per_cpu
= nodes
+ nr_node_ids
;
3931 if (flags
& SO_CPU
) {
3934 for_each_possible_cpu(cpu
) {
3935 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3937 if (!c
|| c
->node
< 0)
3941 if (flags
& SO_TOTAL
)
3942 x
= c
->page
->objects
;
3943 else if (flags
& SO_OBJECTS
)
3949 nodes
[c
->node
] += x
;
3955 if (flags
& SO_ALL
) {
3956 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3957 struct kmem_cache_node
*n
= get_node(s
, node
);
3959 if (flags
& SO_TOTAL
)
3960 x
= atomic_long_read(&n
->total_objects
);
3961 else if (flags
& SO_OBJECTS
)
3962 x
= atomic_long_read(&n
->total_objects
) -
3963 count_partial(n
, count_free
);
3966 x
= atomic_long_read(&n
->nr_slabs
);
3971 } else if (flags
& SO_PARTIAL
) {
3972 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3973 struct kmem_cache_node
*n
= get_node(s
, node
);
3975 if (flags
& SO_TOTAL
)
3976 x
= count_partial(n
, count_total
);
3977 else if (flags
& SO_OBJECTS
)
3978 x
= count_partial(n
, count_inuse
);
3985 x
= sprintf(buf
, "%lu", total
);
3987 for_each_node_state(node
, N_NORMAL_MEMORY
)
3989 x
+= sprintf(buf
+ x
, " N%d=%lu",
3993 return x
+ sprintf(buf
+ x
, "\n");
3996 static int any_slab_objects(struct kmem_cache
*s
)
4000 for_each_online_node(node
) {
4001 struct kmem_cache_node
*n
= get_node(s
, node
);
4006 if (atomic_long_read(&n
->total_objects
))
4012 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4013 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4015 struct slab_attribute
{
4016 struct attribute attr
;
4017 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4018 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4021 #define SLAB_ATTR_RO(_name) \
4022 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4024 #define SLAB_ATTR(_name) \
4025 static struct slab_attribute _name##_attr = \
4026 __ATTR(_name, 0644, _name##_show, _name##_store)
4028 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4030 return sprintf(buf
, "%d\n", s
->size
);
4032 SLAB_ATTR_RO(slab_size
);
4034 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4036 return sprintf(buf
, "%d\n", s
->align
);
4038 SLAB_ATTR_RO(align
);
4040 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4042 return sprintf(buf
, "%d\n", s
->objsize
);
4044 SLAB_ATTR_RO(object_size
);
4046 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4048 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4050 SLAB_ATTR_RO(objs_per_slab
);
4052 static ssize_t
order_store(struct kmem_cache
*s
,
4053 const char *buf
, size_t length
)
4055 unsigned long order
;
4058 err
= strict_strtoul(buf
, 10, &order
);
4062 if (order
> slub_max_order
|| order
< slub_min_order
)
4065 calculate_sizes(s
, order
);
4069 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4071 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4075 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4077 return sprintf(buf
, "%lu\n", s
->min_partial
);
4080 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4086 err
= strict_strtoul(buf
, 10, &min
);
4090 set_min_partial(s
, min
);
4093 SLAB_ATTR(min_partial
);
4095 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4098 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
4100 return n
+ sprintf(buf
+ n
, "\n");
4106 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4108 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4110 SLAB_ATTR_RO(aliases
);
4112 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4114 return show_slab_objects(s
, buf
, SO_ALL
);
4116 SLAB_ATTR_RO(slabs
);
4118 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4120 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4122 SLAB_ATTR_RO(partial
);
4124 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4126 return show_slab_objects(s
, buf
, SO_CPU
);
4128 SLAB_ATTR_RO(cpu_slabs
);
4130 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4132 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4134 SLAB_ATTR_RO(objects
);
4136 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4138 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4140 SLAB_ATTR_RO(objects_partial
);
4142 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4144 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4146 SLAB_ATTR_RO(total_objects
);
4148 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4150 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4153 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4154 const char *buf
, size_t length
)
4156 s
->flags
&= ~SLAB_DEBUG_FREE
;
4158 s
->flags
|= SLAB_DEBUG_FREE
;
4161 SLAB_ATTR(sanity_checks
);
4163 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4165 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4168 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4171 s
->flags
&= ~SLAB_TRACE
;
4173 s
->flags
|= SLAB_TRACE
;
4178 #ifdef CONFIG_FAILSLAB
4179 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4181 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4184 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4187 s
->flags
&= ~SLAB_FAILSLAB
;
4189 s
->flags
|= SLAB_FAILSLAB
;
4192 SLAB_ATTR(failslab
);
4195 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4197 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4200 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4201 const char *buf
, size_t length
)
4203 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4205 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4208 SLAB_ATTR(reclaim_account
);
4210 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4212 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4214 SLAB_ATTR_RO(hwcache_align
);
4216 #ifdef CONFIG_ZONE_DMA
4217 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4219 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4221 SLAB_ATTR_RO(cache_dma
);
4224 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4226 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4228 SLAB_ATTR_RO(destroy_by_rcu
);
4230 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4232 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4235 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4236 const char *buf
, size_t length
)
4238 if (any_slab_objects(s
))
4241 s
->flags
&= ~SLAB_RED_ZONE
;
4243 s
->flags
|= SLAB_RED_ZONE
;
4244 calculate_sizes(s
, -1);
4247 SLAB_ATTR(red_zone
);
4249 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4251 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4254 static ssize_t
poison_store(struct kmem_cache
*s
,
4255 const char *buf
, size_t length
)
4257 if (any_slab_objects(s
))
4260 s
->flags
&= ~SLAB_POISON
;
4262 s
->flags
|= SLAB_POISON
;
4263 calculate_sizes(s
, -1);
4268 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4270 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4273 static ssize_t
store_user_store(struct kmem_cache
*s
,
4274 const char *buf
, size_t length
)
4276 if (any_slab_objects(s
))
4279 s
->flags
&= ~SLAB_STORE_USER
;
4281 s
->flags
|= SLAB_STORE_USER
;
4282 calculate_sizes(s
, -1);
4285 SLAB_ATTR(store_user
);
4287 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4292 static ssize_t
validate_store(struct kmem_cache
*s
,
4293 const char *buf
, size_t length
)
4297 if (buf
[0] == '1') {
4298 ret
= validate_slab_cache(s
);
4304 SLAB_ATTR(validate
);
4306 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4311 static ssize_t
shrink_store(struct kmem_cache
*s
,
4312 const char *buf
, size_t length
)
4314 if (buf
[0] == '1') {
4315 int rc
= kmem_cache_shrink(s
);
4325 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4327 if (!(s
->flags
& SLAB_STORE_USER
))
4329 return list_locations(s
, buf
, TRACK_ALLOC
);
4331 SLAB_ATTR_RO(alloc_calls
);
4333 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4335 if (!(s
->flags
& SLAB_STORE_USER
))
4337 return list_locations(s
, buf
, TRACK_FREE
);
4339 SLAB_ATTR_RO(free_calls
);
4342 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4344 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4347 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4348 const char *buf
, size_t length
)
4350 unsigned long ratio
;
4353 err
= strict_strtoul(buf
, 10, &ratio
);
4358 s
->remote_node_defrag_ratio
= ratio
* 10;
4362 SLAB_ATTR(remote_node_defrag_ratio
);
4365 #ifdef CONFIG_SLUB_STATS
4366 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4368 unsigned long sum
= 0;
4371 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4376 for_each_online_cpu(cpu
) {
4377 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4383 len
= sprintf(buf
, "%lu", sum
);
4386 for_each_online_cpu(cpu
) {
4387 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4388 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4392 return len
+ sprintf(buf
+ len
, "\n");
4395 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4399 for_each_online_cpu(cpu
)
4400 get_cpu_slab(s
, cpu
)->stat
[si
] = 0;
4403 #define STAT_ATTR(si, text) \
4404 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4406 return show_stat(s, buf, si); \
4408 static ssize_t text##_store(struct kmem_cache *s, \
4409 const char *buf, size_t length) \
4411 if (buf[0] != '0') \
4413 clear_stat(s, si); \
4418 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4419 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4420 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4421 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4422 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4423 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4424 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4425 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4426 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4427 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4428 STAT_ATTR(FREE_SLAB
, free_slab
);
4429 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4430 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4431 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4432 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4433 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4434 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4435 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4438 static struct attribute
*slab_attrs
[] = {
4439 &slab_size_attr
.attr
,
4440 &object_size_attr
.attr
,
4441 &objs_per_slab_attr
.attr
,
4443 &min_partial_attr
.attr
,
4445 &objects_partial_attr
.attr
,
4446 &total_objects_attr
.attr
,
4449 &cpu_slabs_attr
.attr
,
4453 &sanity_checks_attr
.attr
,
4455 &hwcache_align_attr
.attr
,
4456 &reclaim_account_attr
.attr
,
4457 &destroy_by_rcu_attr
.attr
,
4458 &red_zone_attr
.attr
,
4460 &store_user_attr
.attr
,
4461 &validate_attr
.attr
,
4463 &alloc_calls_attr
.attr
,
4464 &free_calls_attr
.attr
,
4465 #ifdef CONFIG_ZONE_DMA
4466 &cache_dma_attr
.attr
,
4469 &remote_node_defrag_ratio_attr
.attr
,
4471 #ifdef CONFIG_SLUB_STATS
4472 &alloc_fastpath_attr
.attr
,
4473 &alloc_slowpath_attr
.attr
,
4474 &free_fastpath_attr
.attr
,
4475 &free_slowpath_attr
.attr
,
4476 &free_frozen_attr
.attr
,
4477 &free_add_partial_attr
.attr
,
4478 &free_remove_partial_attr
.attr
,
4479 &alloc_from_partial_attr
.attr
,
4480 &alloc_slab_attr
.attr
,
4481 &alloc_refill_attr
.attr
,
4482 &free_slab_attr
.attr
,
4483 &cpuslab_flush_attr
.attr
,
4484 &deactivate_full_attr
.attr
,
4485 &deactivate_empty_attr
.attr
,
4486 &deactivate_to_head_attr
.attr
,
4487 &deactivate_to_tail_attr
.attr
,
4488 &deactivate_remote_frees_attr
.attr
,
4489 &order_fallback_attr
.attr
,
4491 #ifdef CONFIG_FAILSLAB
4492 &failslab_attr
.attr
,
4498 static struct attribute_group slab_attr_group
= {
4499 .attrs
= slab_attrs
,
4502 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4503 struct attribute
*attr
,
4506 struct slab_attribute
*attribute
;
4507 struct kmem_cache
*s
;
4510 attribute
= to_slab_attr(attr
);
4513 if (!attribute
->show
)
4516 err
= attribute
->show(s
, buf
);
4521 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4522 struct attribute
*attr
,
4523 const char *buf
, size_t len
)
4525 struct slab_attribute
*attribute
;
4526 struct kmem_cache
*s
;
4529 attribute
= to_slab_attr(attr
);
4532 if (!attribute
->store
)
4535 err
= attribute
->store(s
, buf
, len
);
4540 static void kmem_cache_release(struct kobject
*kobj
)
4542 struct kmem_cache
*s
= to_slab(kobj
);
4547 static struct sysfs_ops slab_sysfs_ops
= {
4548 .show
= slab_attr_show
,
4549 .store
= slab_attr_store
,
4552 static struct kobj_type slab_ktype
= {
4553 .sysfs_ops
= &slab_sysfs_ops
,
4554 .release
= kmem_cache_release
4557 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4559 struct kobj_type
*ktype
= get_ktype(kobj
);
4561 if (ktype
== &slab_ktype
)
4566 static struct kset_uevent_ops slab_uevent_ops
= {
4567 .filter
= uevent_filter
,
4570 static struct kset
*slab_kset
;
4572 #define ID_STR_LENGTH 64
4574 /* Create a unique string id for a slab cache:
4576 * Format :[flags-]size
4578 static char *create_unique_id(struct kmem_cache
*s
)
4580 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4587 * First flags affecting slabcache operations. We will only
4588 * get here for aliasable slabs so we do not need to support
4589 * too many flags. The flags here must cover all flags that
4590 * are matched during merging to guarantee that the id is
4593 if (s
->flags
& SLAB_CACHE_DMA
)
4595 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4597 if (s
->flags
& SLAB_DEBUG_FREE
)
4599 if (!(s
->flags
& SLAB_NOTRACK
))
4603 p
+= sprintf(p
, "%07d", s
->size
);
4604 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4608 static int sysfs_slab_add(struct kmem_cache
*s
)
4614 if (slab_state
< SYSFS
)
4615 /* Defer until later */
4618 unmergeable
= slab_unmergeable(s
);
4621 * Slabcache can never be merged so we can use the name proper.
4622 * This is typically the case for debug situations. In that
4623 * case we can catch duplicate names easily.
4625 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4629 * Create a unique name for the slab as a target
4632 name
= create_unique_id(s
);
4635 s
->kobj
.kset
= slab_kset
;
4636 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4638 kobject_put(&s
->kobj
);
4642 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4644 kobject_del(&s
->kobj
);
4645 kobject_put(&s
->kobj
);
4648 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4650 /* Setup first alias */
4651 sysfs_slab_alias(s
, s
->name
);
4657 static void sysfs_slab_remove(struct kmem_cache
*s
)
4659 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4660 kobject_del(&s
->kobj
);
4661 kobject_put(&s
->kobj
);
4665 * Need to buffer aliases during bootup until sysfs becomes
4666 * available lest we lose that information.
4668 struct saved_alias
{
4669 struct kmem_cache
*s
;
4671 struct saved_alias
*next
;
4674 static struct saved_alias
*alias_list
;
4676 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4678 struct saved_alias
*al
;
4680 if (slab_state
== SYSFS
) {
4682 * If we have a leftover link then remove it.
4684 sysfs_remove_link(&slab_kset
->kobj
, name
);
4685 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4688 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4694 al
->next
= alias_list
;
4699 static int __init
slab_sysfs_init(void)
4701 struct kmem_cache
*s
;
4704 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4706 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4712 list_for_each_entry(s
, &slab_caches
, list
) {
4713 err
= sysfs_slab_add(s
);
4715 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4716 " to sysfs\n", s
->name
);
4719 while (alias_list
) {
4720 struct saved_alias
*al
= alias_list
;
4722 alias_list
= alias_list
->next
;
4723 err
= sysfs_slab_alias(al
->s
, al
->name
);
4725 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4726 " %s to sysfs\n", s
->name
);
4734 __initcall(slab_sysfs_init
);
4738 * The /proc/slabinfo ABI
4740 #ifdef CONFIG_SLABINFO
4741 static void print_slabinfo_header(struct seq_file
*m
)
4743 seq_puts(m
, "slabinfo - version: 2.1\n");
4744 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4745 "<objperslab> <pagesperslab>");
4746 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4747 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4751 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4755 down_read(&slub_lock
);
4757 print_slabinfo_header(m
);
4759 return seq_list_start(&slab_caches
, *pos
);
4762 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4764 return seq_list_next(p
, &slab_caches
, pos
);
4767 static void s_stop(struct seq_file
*m
, void *p
)
4769 up_read(&slub_lock
);
4772 static int s_show(struct seq_file
*m
, void *p
)
4774 unsigned long nr_partials
= 0;
4775 unsigned long nr_slabs
= 0;
4776 unsigned long nr_inuse
= 0;
4777 unsigned long nr_objs
= 0;
4778 unsigned long nr_free
= 0;
4779 struct kmem_cache
*s
;
4782 s
= list_entry(p
, struct kmem_cache
, list
);
4784 for_each_online_node(node
) {
4785 struct kmem_cache_node
*n
= get_node(s
, node
);
4790 nr_partials
+= n
->nr_partial
;
4791 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4792 nr_objs
+= atomic_long_read(&n
->total_objects
);
4793 nr_free
+= count_partial(n
, count_free
);
4796 nr_inuse
= nr_objs
- nr_free
;
4798 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4799 nr_objs
, s
->size
, oo_objects(s
->oo
),
4800 (1 << oo_order(s
->oo
)));
4801 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4802 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4808 static const struct seq_operations slabinfo_op
= {
4815 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4817 return seq_open(file
, &slabinfo_op
);
4820 static const struct file_operations proc_slabinfo_operations
= {
4821 .open
= slabinfo_open
,
4823 .llseek
= seq_lseek
,
4824 .release
= seq_release
,
4827 static int __init
slab_proc_init(void)
4829 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4832 module_init(slab_proc_init
);
4833 #endif /* CONFIG_SLABINFO */