failslab: add ability to filter slab caches
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blobcab5288736c81e4be98cafaa39e99bec2e2207fd
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162 #endif
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166 #endif
168 #define OO_SHIFT 16
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
176 static int kmem_size = sizeof(struct kmem_cache);
178 #ifdef CONFIG_SMP
179 static struct notifier_block slab_notifier;
180 #endif
182 static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
185 UP, /* Everything works but does not show up in sysfs */
186 SYSFS /* Sysfs up */
187 } slab_state = DOWN;
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock);
191 static LIST_HEAD(slab_caches);
194 * Tracking user of a slab.
196 struct track {
197 unsigned long addr; /* Called from address */
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
203 enum track_item { TRACK_ALLOC, TRACK_FREE };
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache *);
207 static int sysfs_slab_alias(struct kmem_cache *, const char *);
208 static void sysfs_slab_remove(struct kmem_cache *);
210 #else
211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
214 static inline void sysfs_slab_remove(struct kmem_cache *s)
216 kfree(s);
219 #endif
221 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
223 #ifdef CONFIG_SLUB_STATS
224 c->stat[si]++;
225 #endif
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 int slab_is_available(void)
234 return slab_state >= UP;
237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
239 #ifdef CONFIG_NUMA
240 return s->node[node];
241 #else
242 return &s->local_node;
243 #endif
246 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
248 #ifdef CONFIG_SMP
249 return s->cpu_slab[cpu];
250 #else
251 return &s->cpu_slab;
252 #endif
255 /* Verify that a pointer has an address that is valid within a slab page */
256 static inline int check_valid_pointer(struct kmem_cache *s,
257 struct page *page, const void *object)
259 void *base;
261 if (!object)
262 return 1;
264 base = page_address(page);
265 if (object < base || object >= base + page->objects * s->size ||
266 (object - base) % s->size) {
267 return 0;
270 return 1;
274 * Slow version of get and set free pointer.
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
280 static inline void *get_freepointer(struct kmem_cache *s, void *object)
282 return *(void **)(object + s->offset);
285 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
287 *(void **)(object + s->offset) = fp;
290 /* Loop over all objects in a slab */
291 #define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
293 __p += (__s)->size)
295 /* Scan freelist */
296 #define for_each_free_object(__p, __s, __free) \
297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
299 /* Determine object index from a given position */
300 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 return (p - addr) / s->size;
305 static inline struct kmem_cache_order_objects oo_make(int order,
306 unsigned long size)
308 struct kmem_cache_order_objects x = {
309 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
312 return x;
315 static inline int oo_order(struct kmem_cache_order_objects x)
317 return x.x >> OO_SHIFT;
320 static inline int oo_objects(struct kmem_cache_order_objects x)
322 return x.x & OO_MASK;
325 #ifdef CONFIG_SLUB_DEBUG
327 * Debug settings:
329 #ifdef CONFIG_SLUB_DEBUG_ON
330 static int slub_debug = DEBUG_DEFAULT_FLAGS;
331 #else
332 static int slub_debug;
333 #endif
335 static char *slub_debug_slabs;
336 static int disable_higher_order_debug;
339 * Object debugging
341 static void print_section(char *text, u8 *addr, unsigned int length)
343 int i, offset;
344 int newline = 1;
345 char ascii[17];
347 ascii[16] = 0;
349 for (i = 0; i < length; i++) {
350 if (newline) {
351 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
352 newline = 0;
354 printk(KERN_CONT " %02x", addr[i]);
355 offset = i % 16;
356 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
357 if (offset == 15) {
358 printk(KERN_CONT " %s\n", ascii);
359 newline = 1;
362 if (!newline) {
363 i %= 16;
364 while (i < 16) {
365 printk(KERN_CONT " ");
366 ascii[i] = ' ';
367 i++;
369 printk(KERN_CONT " %s\n", ascii);
373 static struct track *get_track(struct kmem_cache *s, void *object,
374 enum track_item alloc)
376 struct track *p;
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
383 return p + alloc;
386 static void set_track(struct kmem_cache *s, void *object,
387 enum track_item alloc, unsigned long addr)
389 struct track *p = get_track(s, object, alloc);
391 if (addr) {
392 p->addr = addr;
393 p->cpu = smp_processor_id();
394 p->pid = current->pid;
395 p->when = jiffies;
396 } else
397 memset(p, 0, sizeof(struct track));
400 static void init_tracking(struct kmem_cache *s, void *object)
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
405 set_track(s, object, TRACK_FREE, 0UL);
406 set_track(s, object, TRACK_ALLOC, 0UL);
409 static void print_track(const char *s, struct track *t)
411 if (!t->addr)
412 return;
414 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
415 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
418 static void print_tracking(struct kmem_cache *s, void *object)
420 if (!(s->flags & SLAB_STORE_USER))
421 return;
423 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
424 print_track("Freed", get_track(s, object, TRACK_FREE));
427 static void print_page_info(struct page *page)
429 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page, page->objects, page->inuse, page->freelist, page->flags);
434 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
436 va_list args;
437 char buf[100];
439 va_start(args, fmt);
440 vsnprintf(buf, sizeof(buf), fmt, args);
441 va_end(args);
442 printk(KERN_ERR "========================================"
443 "=====================================\n");
444 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
445 printk(KERN_ERR "----------------------------------------"
446 "-------------------------------------\n\n");
449 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
451 va_list args;
452 char buf[100];
454 va_start(args, fmt);
455 vsnprintf(buf, sizeof(buf), fmt, args);
456 va_end(args);
457 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
460 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
462 unsigned int off; /* Offset of last byte */
463 u8 *addr = page_address(page);
465 print_tracking(s, p);
467 print_page_info(page);
469 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p, p - addr, get_freepointer(s, p));
472 if (p > addr + 16)
473 print_section("Bytes b4", p - 16, 16);
475 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
477 if (s->flags & SLAB_RED_ZONE)
478 print_section("Redzone", p + s->objsize,
479 s->inuse - s->objsize);
481 if (s->offset)
482 off = s->offset + sizeof(void *);
483 else
484 off = s->inuse;
486 if (s->flags & SLAB_STORE_USER)
487 off += 2 * sizeof(struct track);
489 if (off != s->size)
490 /* Beginning of the filler is the free pointer */
491 print_section("Padding", p + off, s->size - off);
493 dump_stack();
496 static void object_err(struct kmem_cache *s, struct page *page,
497 u8 *object, char *reason)
499 slab_bug(s, "%s", reason);
500 print_trailer(s, page, object);
503 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
505 va_list args;
506 char buf[100];
508 va_start(args, fmt);
509 vsnprintf(buf, sizeof(buf), fmt, args);
510 va_end(args);
511 slab_bug(s, "%s", buf);
512 print_page_info(page);
513 dump_stack();
516 static void init_object(struct kmem_cache *s, void *object, int active)
518 u8 *p = object;
520 if (s->flags & __OBJECT_POISON) {
521 memset(p, POISON_FREE, s->objsize - 1);
522 p[s->objsize - 1] = POISON_END;
525 if (s->flags & SLAB_RED_ZONE)
526 memset(p + s->objsize,
527 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
528 s->inuse - s->objsize);
531 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
533 while (bytes) {
534 if (*start != (u8)value)
535 return start;
536 start++;
537 bytes--;
539 return NULL;
542 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
543 void *from, void *to)
545 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
546 memset(from, data, to - from);
549 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
550 u8 *object, char *what,
551 u8 *start, unsigned int value, unsigned int bytes)
553 u8 *fault;
554 u8 *end;
556 fault = check_bytes(start, value, bytes);
557 if (!fault)
558 return 1;
560 end = start + bytes;
561 while (end > fault && end[-1] == value)
562 end--;
564 slab_bug(s, "%s overwritten", what);
565 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault, end - 1, fault[0], value);
567 print_trailer(s, page, object);
569 restore_bytes(s, what, value, fault, end);
570 return 0;
574 * Object layout:
576 * object address
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
582 * 0xa5 (POISON_END)
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
586 * Padding is extended by another word if Redzoning is enabled and
587 * objsize == inuse.
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
592 * object + s->inuse
593 * Meta data starts here.
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
597 * C. Padding to reach required alignment boundary or at mininum
598 * one word if debugging is on to be able to detect writes
599 * before the word boundary.
601 * Padding is done using 0x5a (POISON_INUSE)
603 * object + s->size
604 * Nothing is used beyond s->size.
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
608 * may be used with merged slabcaches.
611 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
613 unsigned long off = s->inuse; /* The end of info */
615 if (s->offset)
616 /* Freepointer is placed after the object. */
617 off += sizeof(void *);
619 if (s->flags & SLAB_STORE_USER)
620 /* We also have user information there */
621 off += 2 * sizeof(struct track);
623 if (s->size == off)
624 return 1;
626 return check_bytes_and_report(s, page, p, "Object padding",
627 p + off, POISON_INUSE, s->size - off);
630 /* Check the pad bytes at the end of a slab page */
631 static int slab_pad_check(struct kmem_cache *s, struct page *page)
633 u8 *start;
634 u8 *fault;
635 u8 *end;
636 int length;
637 int remainder;
639 if (!(s->flags & SLAB_POISON))
640 return 1;
642 start = page_address(page);
643 length = (PAGE_SIZE << compound_order(page));
644 end = start + length;
645 remainder = length % s->size;
646 if (!remainder)
647 return 1;
649 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
650 if (!fault)
651 return 1;
652 while (end > fault && end[-1] == POISON_INUSE)
653 end--;
655 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
656 print_section("Padding", end - remainder, remainder);
658 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
659 return 0;
662 static int check_object(struct kmem_cache *s, struct page *page,
663 void *object, int active)
665 u8 *p = object;
666 u8 *endobject = object + s->objsize;
668 if (s->flags & SLAB_RED_ZONE) {
669 unsigned int red =
670 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
672 if (!check_bytes_and_report(s, page, object, "Redzone",
673 endobject, red, s->inuse - s->objsize))
674 return 0;
675 } else {
676 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
677 check_bytes_and_report(s, page, p, "Alignment padding",
678 endobject, POISON_INUSE, s->inuse - s->objsize);
682 if (s->flags & SLAB_POISON) {
683 if (!active && (s->flags & __OBJECT_POISON) &&
684 (!check_bytes_and_report(s, page, p, "Poison", p,
685 POISON_FREE, s->objsize - 1) ||
686 !check_bytes_and_report(s, page, p, "Poison",
687 p + s->objsize - 1, POISON_END, 1)))
688 return 0;
690 * check_pad_bytes cleans up on its own.
692 check_pad_bytes(s, page, p);
695 if (!s->offset && active)
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
700 return 1;
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
704 object_err(s, page, p, "Freepointer corrupt");
706 * No choice but to zap it and thus lose the remainder
707 * of the free objects in this slab. May cause
708 * another error because the object count is now wrong.
710 set_freepointer(s, p, NULL);
711 return 0;
713 return 1;
716 static int check_slab(struct kmem_cache *s, struct page *page)
718 int maxobj;
720 VM_BUG_ON(!irqs_disabled());
722 if (!PageSlab(page)) {
723 slab_err(s, page, "Not a valid slab page");
724 return 0;
727 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
728 if (page->objects > maxobj) {
729 slab_err(s, page, "objects %u > max %u",
730 s->name, page->objects, maxobj);
731 return 0;
733 if (page->inuse > page->objects) {
734 slab_err(s, page, "inuse %u > max %u",
735 s->name, page->inuse, page->objects);
736 return 0;
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s, page);
740 return 1;
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
747 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
749 int nr = 0;
750 void *fp = page->freelist;
751 void *object = NULL;
752 unsigned long max_objects;
754 while (fp && nr <= page->objects) {
755 if (fp == search)
756 return 1;
757 if (!check_valid_pointer(s, page, fp)) {
758 if (object) {
759 object_err(s, page, object,
760 "Freechain corrupt");
761 set_freepointer(s, object, NULL);
762 break;
763 } else {
764 slab_err(s, page, "Freepointer corrupt");
765 page->freelist = NULL;
766 page->inuse = page->objects;
767 slab_fix(s, "Freelist cleared");
768 return 0;
770 break;
772 object = fp;
773 fp = get_freepointer(s, object);
774 nr++;
777 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
778 if (max_objects > MAX_OBJS_PER_PAGE)
779 max_objects = MAX_OBJS_PER_PAGE;
781 if (page->objects != max_objects) {
782 slab_err(s, page, "Wrong number of objects. Found %d but "
783 "should be %d", page->objects, max_objects);
784 page->objects = max_objects;
785 slab_fix(s, "Number of objects adjusted.");
787 if (page->inuse != page->objects - nr) {
788 slab_err(s, page, "Wrong object count. Counter is %d but "
789 "counted were %d", page->inuse, page->objects - nr);
790 page->inuse = page->objects - nr;
791 slab_fix(s, "Object count adjusted.");
793 return search == NULL;
796 static void trace(struct kmem_cache *s, struct page *page, void *object,
797 int alloc)
799 if (s->flags & SLAB_TRACE) {
800 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
801 s->name,
802 alloc ? "alloc" : "free",
803 object, page->inuse,
804 page->freelist);
806 if (!alloc)
807 print_section("Object", (void *)object, s->objsize);
809 dump_stack();
814 * Tracking of fully allocated slabs for debugging purposes.
816 static void add_full(struct kmem_cache_node *n, struct page *page)
818 spin_lock(&n->list_lock);
819 list_add(&page->lru, &n->full);
820 spin_unlock(&n->list_lock);
823 static void remove_full(struct kmem_cache *s, struct page *page)
825 struct kmem_cache_node *n;
827 if (!(s->flags & SLAB_STORE_USER))
828 return;
830 n = get_node(s, page_to_nid(page));
832 spin_lock(&n->list_lock);
833 list_del(&page->lru);
834 spin_unlock(&n->list_lock);
837 /* Tracking of the number of slabs for debugging purposes */
838 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
840 struct kmem_cache_node *n = get_node(s, node);
842 return atomic_long_read(&n->nr_slabs);
845 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
847 return atomic_long_read(&n->nr_slabs);
850 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
852 struct kmem_cache_node *n = get_node(s, node);
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
860 if (!NUMA_BUILD || n) {
861 atomic_long_inc(&n->nr_slabs);
862 atomic_long_add(objects, &n->total_objects);
865 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
867 struct kmem_cache_node *n = get_node(s, node);
869 atomic_long_dec(&n->nr_slabs);
870 atomic_long_sub(objects, &n->total_objects);
873 /* Object debug checks for alloc/free paths */
874 static void setup_object_debug(struct kmem_cache *s, struct page *page,
875 void *object)
877 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
878 return;
880 init_object(s, object, 0);
881 init_tracking(s, object);
884 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
885 void *object, unsigned long addr)
887 if (!check_slab(s, page))
888 goto bad;
890 if (!on_freelist(s, page, object)) {
891 object_err(s, page, object, "Object already allocated");
892 goto bad;
895 if (!check_valid_pointer(s, page, object)) {
896 object_err(s, page, object, "Freelist Pointer check fails");
897 goto bad;
900 if (!check_object(s, page, object, 0))
901 goto bad;
903 /* Success perform special debug activities for allocs */
904 if (s->flags & SLAB_STORE_USER)
905 set_track(s, object, TRACK_ALLOC, addr);
906 trace(s, page, object, 1);
907 init_object(s, object, 1);
908 return 1;
910 bad:
911 if (PageSlab(page)) {
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
915 * as used avoids touching the remaining objects.
917 slab_fix(s, "Marking all objects used");
918 page->inuse = page->objects;
919 page->freelist = NULL;
921 return 0;
924 static int free_debug_processing(struct kmem_cache *s, struct page *page,
925 void *object, unsigned long addr)
927 if (!check_slab(s, page))
928 goto fail;
930 if (!check_valid_pointer(s, page, object)) {
931 slab_err(s, page, "Invalid object pointer 0x%p", object);
932 goto fail;
935 if (on_freelist(s, page, object)) {
936 object_err(s, page, object, "Object already free");
937 goto fail;
940 if (!check_object(s, page, object, 1))
941 return 0;
943 if (unlikely(s != page->slab)) {
944 if (!PageSlab(page)) {
945 slab_err(s, page, "Attempt to free object(0x%p) "
946 "outside of slab", object);
947 } else if (!page->slab) {
948 printk(KERN_ERR
949 "SLUB <none>: no slab for object 0x%p.\n",
950 object);
951 dump_stack();
952 } else
953 object_err(s, page, object,
954 "page slab pointer corrupt.");
955 goto fail;
958 /* Special debug activities for freeing objects */
959 if (!PageSlubFrozen(page) && !page->freelist)
960 remove_full(s, page);
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_FREE, addr);
963 trace(s, page, object, 0);
964 init_object(s, object, 0);
965 return 1;
967 fail:
968 slab_fix(s, "Object at 0x%p not freed", object);
969 return 0;
972 static int __init setup_slub_debug(char *str)
974 slub_debug = DEBUG_DEFAULT_FLAGS;
975 if (*str++ != '=' || !*str)
977 * No options specified. Switch on full debugging.
979 goto out;
981 if (*str == ',')
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
986 goto check_slabs;
988 if (tolower(*str) == 'o') {
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
993 disable_higher_order_debug = 1;
994 goto out;
997 slub_debug = 0;
998 if (*str == '-')
1000 * Switch off all debugging measures.
1002 goto out;
1005 * Determine which debug features should be switched on
1007 for (; *str && *str != ','; str++) {
1008 switch (tolower(*str)) {
1009 case 'f':
1010 slub_debug |= SLAB_DEBUG_FREE;
1011 break;
1012 case 'z':
1013 slub_debug |= SLAB_RED_ZONE;
1014 break;
1015 case 'p':
1016 slub_debug |= SLAB_POISON;
1017 break;
1018 case 'u':
1019 slub_debug |= SLAB_STORE_USER;
1020 break;
1021 case 't':
1022 slub_debug |= SLAB_TRACE;
1023 break;
1024 case 'a':
1025 slub_debug |= SLAB_FAILSLAB;
1026 break;
1027 default:
1028 printk(KERN_ERR "slub_debug option '%c' "
1029 "unknown. skipped\n", *str);
1033 check_slabs:
1034 if (*str == ',')
1035 slub_debug_slabs = str + 1;
1036 out:
1037 return 1;
1040 __setup("slub_debug", setup_slub_debug);
1042 static unsigned long kmem_cache_flags(unsigned long objsize,
1043 unsigned long flags, const char *name,
1044 void (*ctor)(void *))
1047 * Enable debugging if selected on the kernel commandline.
1049 if (slub_debug && (!slub_debug_slabs ||
1050 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1051 flags |= slub_debug;
1053 return flags;
1055 #else
1056 static inline void setup_object_debug(struct kmem_cache *s,
1057 struct page *page, void *object) {}
1059 static inline int alloc_debug_processing(struct kmem_cache *s,
1060 struct page *page, void *object, unsigned long addr) { return 0; }
1062 static inline int free_debug_processing(struct kmem_cache *s,
1063 struct page *page, void *object, unsigned long addr) { return 0; }
1065 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1066 { return 1; }
1067 static inline int check_object(struct kmem_cache *s, struct page *page,
1068 void *object, int active) { return 1; }
1069 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1070 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1071 unsigned long flags, const char *name,
1072 void (*ctor)(void *))
1074 return flags;
1076 #define slub_debug 0
1078 #define disable_higher_order_debug 0
1080 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1081 { return 0; }
1082 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1083 { return 0; }
1084 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 int objects) {}
1086 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
1088 #endif
1091 * Slab allocation and freeing
1093 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 struct kmem_cache_order_objects oo)
1096 int order = oo_order(oo);
1098 flags |= __GFP_NOTRACK;
1100 if (node == -1)
1101 return alloc_pages(flags, order);
1102 else
1103 return alloc_pages_node(node, flags, order);
1106 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1108 struct page *page;
1109 struct kmem_cache_order_objects oo = s->oo;
1110 gfp_t alloc_gfp;
1112 flags |= s->allocflags;
1115 * Let the initial higher-order allocation fail under memory pressure
1116 * so we fall-back to the minimum order allocation.
1118 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1120 page = alloc_slab_page(alloc_gfp, node, oo);
1121 if (unlikely(!page)) {
1122 oo = s->min;
1124 * Allocation may have failed due to fragmentation.
1125 * Try a lower order alloc if possible
1127 page = alloc_slab_page(flags, node, oo);
1128 if (!page)
1129 return NULL;
1131 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1134 if (kmemcheck_enabled
1135 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1136 int pages = 1 << oo_order(oo);
1138 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1141 * Objects from caches that have a constructor don't get
1142 * cleared when they're allocated, so we need to do it here.
1144 if (s->ctor)
1145 kmemcheck_mark_uninitialized_pages(page, pages);
1146 else
1147 kmemcheck_mark_unallocated_pages(page, pages);
1150 page->objects = oo_objects(oo);
1151 mod_zone_page_state(page_zone(page),
1152 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1153 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1154 1 << oo_order(oo));
1156 return page;
1159 static void setup_object(struct kmem_cache *s, struct page *page,
1160 void *object)
1162 setup_object_debug(s, page, object);
1163 if (unlikely(s->ctor))
1164 s->ctor(object);
1167 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1169 struct page *page;
1170 void *start;
1171 void *last;
1172 void *p;
1174 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1176 page = allocate_slab(s,
1177 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1178 if (!page)
1179 goto out;
1181 inc_slabs_node(s, page_to_nid(page), page->objects);
1182 page->slab = s;
1183 page->flags |= 1 << PG_slab;
1184 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1185 SLAB_STORE_USER | SLAB_TRACE))
1186 __SetPageSlubDebug(page);
1188 start = page_address(page);
1190 if (unlikely(s->flags & SLAB_POISON))
1191 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1193 last = start;
1194 for_each_object(p, s, start, page->objects) {
1195 setup_object(s, page, last);
1196 set_freepointer(s, last, p);
1197 last = p;
1199 setup_object(s, page, last);
1200 set_freepointer(s, last, NULL);
1202 page->freelist = start;
1203 page->inuse = 0;
1204 out:
1205 return page;
1208 static void __free_slab(struct kmem_cache *s, struct page *page)
1210 int order = compound_order(page);
1211 int pages = 1 << order;
1213 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1214 void *p;
1216 slab_pad_check(s, page);
1217 for_each_object(p, s, page_address(page),
1218 page->objects)
1219 check_object(s, page, p, 0);
1220 __ClearPageSlubDebug(page);
1223 kmemcheck_free_shadow(page, compound_order(page));
1225 mod_zone_page_state(page_zone(page),
1226 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1227 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1228 -pages);
1230 __ClearPageSlab(page);
1231 reset_page_mapcount(page);
1232 if (current->reclaim_state)
1233 current->reclaim_state->reclaimed_slab += pages;
1234 __free_pages(page, order);
1237 static void rcu_free_slab(struct rcu_head *h)
1239 struct page *page;
1241 page = container_of((struct list_head *)h, struct page, lru);
1242 __free_slab(page->slab, page);
1245 static void free_slab(struct kmem_cache *s, struct page *page)
1247 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1249 * RCU free overloads the RCU head over the LRU
1251 struct rcu_head *head = (void *)&page->lru;
1253 call_rcu(head, rcu_free_slab);
1254 } else
1255 __free_slab(s, page);
1258 static void discard_slab(struct kmem_cache *s, struct page *page)
1260 dec_slabs_node(s, page_to_nid(page), page->objects);
1261 free_slab(s, page);
1265 * Per slab locking using the pagelock
1267 static __always_inline void slab_lock(struct page *page)
1269 bit_spin_lock(PG_locked, &page->flags);
1272 static __always_inline void slab_unlock(struct page *page)
1274 __bit_spin_unlock(PG_locked, &page->flags);
1277 static __always_inline int slab_trylock(struct page *page)
1279 int rc = 1;
1281 rc = bit_spin_trylock(PG_locked, &page->flags);
1282 return rc;
1286 * Management of partially allocated slabs
1288 static void add_partial(struct kmem_cache_node *n,
1289 struct page *page, int tail)
1291 spin_lock(&n->list_lock);
1292 n->nr_partial++;
1293 if (tail)
1294 list_add_tail(&page->lru, &n->partial);
1295 else
1296 list_add(&page->lru, &n->partial);
1297 spin_unlock(&n->list_lock);
1300 static void remove_partial(struct kmem_cache *s, struct page *page)
1302 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1304 spin_lock(&n->list_lock);
1305 list_del(&page->lru);
1306 n->nr_partial--;
1307 spin_unlock(&n->list_lock);
1311 * Lock slab and remove from the partial list.
1313 * Must hold list_lock.
1315 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1316 struct page *page)
1318 if (slab_trylock(page)) {
1319 list_del(&page->lru);
1320 n->nr_partial--;
1321 __SetPageSlubFrozen(page);
1322 return 1;
1324 return 0;
1328 * Try to allocate a partial slab from a specific node.
1330 static struct page *get_partial_node(struct kmem_cache_node *n)
1332 struct page *page;
1335 * Racy check. If we mistakenly see no partial slabs then we
1336 * just allocate an empty slab. If we mistakenly try to get a
1337 * partial slab and there is none available then get_partials()
1338 * will return NULL.
1340 if (!n || !n->nr_partial)
1341 return NULL;
1343 spin_lock(&n->list_lock);
1344 list_for_each_entry(page, &n->partial, lru)
1345 if (lock_and_freeze_slab(n, page))
1346 goto out;
1347 page = NULL;
1348 out:
1349 spin_unlock(&n->list_lock);
1350 return page;
1354 * Get a page from somewhere. Search in increasing NUMA distances.
1356 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1358 #ifdef CONFIG_NUMA
1359 struct zonelist *zonelist;
1360 struct zoneref *z;
1361 struct zone *zone;
1362 enum zone_type high_zoneidx = gfp_zone(flags);
1363 struct page *page;
1366 * The defrag ratio allows a configuration of the tradeoffs between
1367 * inter node defragmentation and node local allocations. A lower
1368 * defrag_ratio increases the tendency to do local allocations
1369 * instead of attempting to obtain partial slabs from other nodes.
1371 * If the defrag_ratio is set to 0 then kmalloc() always
1372 * returns node local objects. If the ratio is higher then kmalloc()
1373 * may return off node objects because partial slabs are obtained
1374 * from other nodes and filled up.
1376 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1377 * defrag_ratio = 1000) then every (well almost) allocation will
1378 * first attempt to defrag slab caches on other nodes. This means
1379 * scanning over all nodes to look for partial slabs which may be
1380 * expensive if we do it every time we are trying to find a slab
1381 * with available objects.
1383 if (!s->remote_node_defrag_ratio ||
1384 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1385 return NULL;
1387 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1388 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1389 struct kmem_cache_node *n;
1391 n = get_node(s, zone_to_nid(zone));
1393 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1394 n->nr_partial > s->min_partial) {
1395 page = get_partial_node(n);
1396 if (page)
1397 return page;
1400 #endif
1401 return NULL;
1405 * Get a partial page, lock it and return it.
1407 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1409 struct page *page;
1410 int searchnode = (node == -1) ? numa_node_id() : node;
1412 page = get_partial_node(get_node(s, searchnode));
1413 if (page || (flags & __GFP_THISNODE))
1414 return page;
1416 return get_any_partial(s, flags);
1420 * Move a page back to the lists.
1422 * Must be called with the slab lock held.
1424 * On exit the slab lock will have been dropped.
1426 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1428 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1429 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1431 __ClearPageSlubFrozen(page);
1432 if (page->inuse) {
1434 if (page->freelist) {
1435 add_partial(n, page, tail);
1436 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1437 } else {
1438 stat(c, DEACTIVATE_FULL);
1439 if (SLABDEBUG && PageSlubDebug(page) &&
1440 (s->flags & SLAB_STORE_USER))
1441 add_full(n, page);
1443 slab_unlock(page);
1444 } else {
1445 stat(c, DEACTIVATE_EMPTY);
1446 if (n->nr_partial < s->min_partial) {
1448 * Adding an empty slab to the partial slabs in order
1449 * to avoid page allocator overhead. This slab needs
1450 * to come after the other slabs with objects in
1451 * so that the others get filled first. That way the
1452 * size of the partial list stays small.
1454 * kmem_cache_shrink can reclaim any empty slabs from
1455 * the partial list.
1457 add_partial(n, page, 1);
1458 slab_unlock(page);
1459 } else {
1460 slab_unlock(page);
1461 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1462 discard_slab(s, page);
1468 * Remove the cpu slab
1470 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1472 struct page *page = c->page;
1473 int tail = 1;
1475 if (page->freelist)
1476 stat(c, DEACTIVATE_REMOTE_FREES);
1478 * Merge cpu freelist into slab freelist. Typically we get here
1479 * because both freelists are empty. So this is unlikely
1480 * to occur.
1482 while (unlikely(c->freelist)) {
1483 void **object;
1485 tail = 0; /* Hot objects. Put the slab first */
1487 /* Retrieve object from cpu_freelist */
1488 object = c->freelist;
1489 c->freelist = c->freelist[c->offset];
1491 /* And put onto the regular freelist */
1492 object[c->offset] = page->freelist;
1493 page->freelist = object;
1494 page->inuse--;
1496 c->page = NULL;
1497 unfreeze_slab(s, page, tail);
1500 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1502 stat(c, CPUSLAB_FLUSH);
1503 slab_lock(c->page);
1504 deactivate_slab(s, c);
1508 * Flush cpu slab.
1510 * Called from IPI handler with interrupts disabled.
1512 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1514 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1516 if (likely(c && c->page))
1517 flush_slab(s, c);
1520 static void flush_cpu_slab(void *d)
1522 struct kmem_cache *s = d;
1524 __flush_cpu_slab(s, smp_processor_id());
1527 static void flush_all(struct kmem_cache *s)
1529 on_each_cpu(flush_cpu_slab, s, 1);
1533 * Check if the objects in a per cpu structure fit numa
1534 * locality expectations.
1536 static inline int node_match(struct kmem_cache_cpu *c, int node)
1538 #ifdef CONFIG_NUMA
1539 if (node != -1 && c->node != node)
1540 return 0;
1541 #endif
1542 return 1;
1545 static int count_free(struct page *page)
1547 return page->objects - page->inuse;
1550 static unsigned long count_partial(struct kmem_cache_node *n,
1551 int (*get_count)(struct page *))
1553 unsigned long flags;
1554 unsigned long x = 0;
1555 struct page *page;
1557 spin_lock_irqsave(&n->list_lock, flags);
1558 list_for_each_entry(page, &n->partial, lru)
1559 x += get_count(page);
1560 spin_unlock_irqrestore(&n->list_lock, flags);
1561 return x;
1564 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1566 #ifdef CONFIG_SLUB_DEBUG
1567 return atomic_long_read(&n->total_objects);
1568 #else
1569 return 0;
1570 #endif
1573 static noinline void
1574 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1576 int node;
1578 printk(KERN_WARNING
1579 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1580 nid, gfpflags);
1581 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1582 "default order: %d, min order: %d\n", s->name, s->objsize,
1583 s->size, oo_order(s->oo), oo_order(s->min));
1585 if (oo_order(s->min) > get_order(s->objsize))
1586 printk(KERN_WARNING " %s debugging increased min order, use "
1587 "slub_debug=O to disable.\n", s->name);
1589 for_each_online_node(node) {
1590 struct kmem_cache_node *n = get_node(s, node);
1591 unsigned long nr_slabs;
1592 unsigned long nr_objs;
1593 unsigned long nr_free;
1595 if (!n)
1596 continue;
1598 nr_free = count_partial(n, count_free);
1599 nr_slabs = node_nr_slabs(n);
1600 nr_objs = node_nr_objs(n);
1602 printk(KERN_WARNING
1603 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1604 node, nr_slabs, nr_objs, nr_free);
1609 * Slow path. The lockless freelist is empty or we need to perform
1610 * debugging duties.
1612 * Interrupts are disabled.
1614 * Processing is still very fast if new objects have been freed to the
1615 * regular freelist. In that case we simply take over the regular freelist
1616 * as the lockless freelist and zap the regular freelist.
1618 * If that is not working then we fall back to the partial lists. We take the
1619 * first element of the freelist as the object to allocate now and move the
1620 * rest of the freelist to the lockless freelist.
1622 * And if we were unable to get a new slab from the partial slab lists then
1623 * we need to allocate a new slab. This is the slowest path since it involves
1624 * a call to the page allocator and the setup of a new slab.
1626 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1627 unsigned long addr, struct kmem_cache_cpu *c)
1629 void **object;
1630 struct page *new;
1632 /* We handle __GFP_ZERO in the caller */
1633 gfpflags &= ~__GFP_ZERO;
1635 if (!c->page)
1636 goto new_slab;
1638 slab_lock(c->page);
1639 if (unlikely(!node_match(c, node)))
1640 goto another_slab;
1642 stat(c, ALLOC_REFILL);
1644 load_freelist:
1645 object = c->page->freelist;
1646 if (unlikely(!object))
1647 goto another_slab;
1648 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1649 goto debug;
1651 c->freelist = object[c->offset];
1652 c->page->inuse = c->page->objects;
1653 c->page->freelist = NULL;
1654 c->node = page_to_nid(c->page);
1655 unlock_out:
1656 slab_unlock(c->page);
1657 stat(c, ALLOC_SLOWPATH);
1658 return object;
1660 another_slab:
1661 deactivate_slab(s, c);
1663 new_slab:
1664 new = get_partial(s, gfpflags, node);
1665 if (new) {
1666 c->page = new;
1667 stat(c, ALLOC_FROM_PARTIAL);
1668 goto load_freelist;
1671 if (gfpflags & __GFP_WAIT)
1672 local_irq_enable();
1674 new = new_slab(s, gfpflags, node);
1676 if (gfpflags & __GFP_WAIT)
1677 local_irq_disable();
1679 if (new) {
1680 c = get_cpu_slab(s, smp_processor_id());
1681 stat(c, ALLOC_SLAB);
1682 if (c->page)
1683 flush_slab(s, c);
1684 slab_lock(new);
1685 __SetPageSlubFrozen(new);
1686 c->page = new;
1687 goto load_freelist;
1689 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1690 slab_out_of_memory(s, gfpflags, node);
1691 return NULL;
1692 debug:
1693 if (!alloc_debug_processing(s, c->page, object, addr))
1694 goto another_slab;
1696 c->page->inuse++;
1697 c->page->freelist = object[c->offset];
1698 c->node = -1;
1699 goto unlock_out;
1703 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1704 * have the fastpath folded into their functions. So no function call
1705 * overhead for requests that can be satisfied on the fastpath.
1707 * The fastpath works by first checking if the lockless freelist can be used.
1708 * If not then __slab_alloc is called for slow processing.
1710 * Otherwise we can simply pick the next object from the lockless free list.
1712 static __always_inline void *slab_alloc(struct kmem_cache *s,
1713 gfp_t gfpflags, int node, unsigned long addr)
1715 void **object;
1716 struct kmem_cache_cpu *c;
1717 unsigned long flags;
1718 unsigned int objsize;
1720 gfpflags &= gfp_allowed_mask;
1722 lockdep_trace_alloc(gfpflags);
1723 might_sleep_if(gfpflags & __GFP_WAIT);
1725 if (should_failslab(s->objsize, gfpflags, s->flags))
1726 return NULL;
1728 local_irq_save(flags);
1729 c = get_cpu_slab(s, smp_processor_id());
1730 objsize = c->objsize;
1731 if (unlikely(!c->freelist || !node_match(c, node)))
1733 object = __slab_alloc(s, gfpflags, node, addr, c);
1735 else {
1736 object = c->freelist;
1737 c->freelist = object[c->offset];
1738 stat(c, ALLOC_FASTPATH);
1740 local_irq_restore(flags);
1742 if (unlikely(gfpflags & __GFP_ZERO) && object)
1743 memset(object, 0, objsize);
1745 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1746 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1748 return object;
1751 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1753 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1755 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1757 return ret;
1759 EXPORT_SYMBOL(kmem_cache_alloc);
1761 #ifdef CONFIG_TRACING
1762 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1764 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1766 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1767 #endif
1769 #ifdef CONFIG_NUMA
1770 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1772 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1774 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1775 s->objsize, s->size, gfpflags, node);
1777 return ret;
1779 EXPORT_SYMBOL(kmem_cache_alloc_node);
1780 #endif
1782 #ifdef CONFIG_TRACING
1783 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1784 gfp_t gfpflags,
1785 int node)
1787 return slab_alloc(s, gfpflags, node, _RET_IP_);
1789 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1790 #endif
1793 * Slow patch handling. This may still be called frequently since objects
1794 * have a longer lifetime than the cpu slabs in most processing loads.
1796 * So we still attempt to reduce cache line usage. Just take the slab
1797 * lock and free the item. If there is no additional partial page
1798 * handling required then we can return immediately.
1800 static void __slab_free(struct kmem_cache *s, struct page *page,
1801 void *x, unsigned long addr, unsigned int offset)
1803 void *prior;
1804 void **object = (void *)x;
1805 struct kmem_cache_cpu *c;
1807 c = get_cpu_slab(s, raw_smp_processor_id());
1808 stat(c, FREE_SLOWPATH);
1809 slab_lock(page);
1811 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1812 goto debug;
1814 checks_ok:
1815 prior = object[offset] = page->freelist;
1816 page->freelist = object;
1817 page->inuse--;
1819 if (unlikely(PageSlubFrozen(page))) {
1820 stat(c, FREE_FROZEN);
1821 goto out_unlock;
1824 if (unlikely(!page->inuse))
1825 goto slab_empty;
1828 * Objects left in the slab. If it was not on the partial list before
1829 * then add it.
1831 if (unlikely(!prior)) {
1832 add_partial(get_node(s, page_to_nid(page)), page, 1);
1833 stat(c, FREE_ADD_PARTIAL);
1836 out_unlock:
1837 slab_unlock(page);
1838 return;
1840 slab_empty:
1841 if (prior) {
1843 * Slab still on the partial list.
1845 remove_partial(s, page);
1846 stat(c, FREE_REMOVE_PARTIAL);
1848 slab_unlock(page);
1849 stat(c, FREE_SLAB);
1850 discard_slab(s, page);
1851 return;
1853 debug:
1854 if (!free_debug_processing(s, page, x, addr))
1855 goto out_unlock;
1856 goto checks_ok;
1860 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1861 * can perform fastpath freeing without additional function calls.
1863 * The fastpath is only possible if we are freeing to the current cpu slab
1864 * of this processor. This typically the case if we have just allocated
1865 * the item before.
1867 * If fastpath is not possible then fall back to __slab_free where we deal
1868 * with all sorts of special processing.
1870 static __always_inline void slab_free(struct kmem_cache *s,
1871 struct page *page, void *x, unsigned long addr)
1873 void **object = (void *)x;
1874 struct kmem_cache_cpu *c;
1875 unsigned long flags;
1877 kmemleak_free_recursive(x, s->flags);
1878 local_irq_save(flags);
1879 c = get_cpu_slab(s, smp_processor_id());
1880 kmemcheck_slab_free(s, object, c->objsize);
1881 debug_check_no_locks_freed(object, c->objsize);
1882 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1883 debug_check_no_obj_freed(object, c->objsize);
1884 if (likely(page == c->page && c->node >= 0)) {
1885 object[c->offset] = c->freelist;
1886 c->freelist = object;
1887 stat(c, FREE_FASTPATH);
1888 } else
1889 __slab_free(s, page, x, addr, c->offset);
1891 local_irq_restore(flags);
1894 void kmem_cache_free(struct kmem_cache *s, void *x)
1896 struct page *page;
1898 page = virt_to_head_page(x);
1900 slab_free(s, page, x, _RET_IP_);
1902 trace_kmem_cache_free(_RET_IP_, x);
1904 EXPORT_SYMBOL(kmem_cache_free);
1906 /* Figure out on which slab page the object resides */
1907 static struct page *get_object_page(const void *x)
1909 struct page *page = virt_to_head_page(x);
1911 if (!PageSlab(page))
1912 return NULL;
1914 return page;
1918 * Object placement in a slab is made very easy because we always start at
1919 * offset 0. If we tune the size of the object to the alignment then we can
1920 * get the required alignment by putting one properly sized object after
1921 * another.
1923 * Notice that the allocation order determines the sizes of the per cpu
1924 * caches. Each processor has always one slab available for allocations.
1925 * Increasing the allocation order reduces the number of times that slabs
1926 * must be moved on and off the partial lists and is therefore a factor in
1927 * locking overhead.
1931 * Mininum / Maximum order of slab pages. This influences locking overhead
1932 * and slab fragmentation. A higher order reduces the number of partial slabs
1933 * and increases the number of allocations possible without having to
1934 * take the list_lock.
1936 static int slub_min_order;
1937 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1938 static int slub_min_objects;
1941 * Merge control. If this is set then no merging of slab caches will occur.
1942 * (Could be removed. This was introduced to pacify the merge skeptics.)
1944 static int slub_nomerge;
1947 * Calculate the order of allocation given an slab object size.
1949 * The order of allocation has significant impact on performance and other
1950 * system components. Generally order 0 allocations should be preferred since
1951 * order 0 does not cause fragmentation in the page allocator. Larger objects
1952 * be problematic to put into order 0 slabs because there may be too much
1953 * unused space left. We go to a higher order if more than 1/16th of the slab
1954 * would be wasted.
1956 * In order to reach satisfactory performance we must ensure that a minimum
1957 * number of objects is in one slab. Otherwise we may generate too much
1958 * activity on the partial lists which requires taking the list_lock. This is
1959 * less a concern for large slabs though which are rarely used.
1961 * slub_max_order specifies the order where we begin to stop considering the
1962 * number of objects in a slab as critical. If we reach slub_max_order then
1963 * we try to keep the page order as low as possible. So we accept more waste
1964 * of space in favor of a small page order.
1966 * Higher order allocations also allow the placement of more objects in a
1967 * slab and thereby reduce object handling overhead. If the user has
1968 * requested a higher mininum order then we start with that one instead of
1969 * the smallest order which will fit the object.
1971 static inline int slab_order(int size, int min_objects,
1972 int max_order, int fract_leftover)
1974 int order;
1975 int rem;
1976 int min_order = slub_min_order;
1978 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1979 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1981 for (order = max(min_order,
1982 fls(min_objects * size - 1) - PAGE_SHIFT);
1983 order <= max_order; order++) {
1985 unsigned long slab_size = PAGE_SIZE << order;
1987 if (slab_size < min_objects * size)
1988 continue;
1990 rem = slab_size % size;
1992 if (rem <= slab_size / fract_leftover)
1993 break;
1997 return order;
2000 static inline int calculate_order(int size)
2002 int order;
2003 int min_objects;
2004 int fraction;
2005 int max_objects;
2008 * Attempt to find best configuration for a slab. This
2009 * works by first attempting to generate a layout with
2010 * the best configuration and backing off gradually.
2012 * First we reduce the acceptable waste in a slab. Then
2013 * we reduce the minimum objects required in a slab.
2015 min_objects = slub_min_objects;
2016 if (!min_objects)
2017 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2018 max_objects = (PAGE_SIZE << slub_max_order)/size;
2019 min_objects = min(min_objects, max_objects);
2021 while (min_objects > 1) {
2022 fraction = 16;
2023 while (fraction >= 4) {
2024 order = slab_order(size, min_objects,
2025 slub_max_order, fraction);
2026 if (order <= slub_max_order)
2027 return order;
2028 fraction /= 2;
2030 min_objects--;
2034 * We were unable to place multiple objects in a slab. Now
2035 * lets see if we can place a single object there.
2037 order = slab_order(size, 1, slub_max_order, 1);
2038 if (order <= slub_max_order)
2039 return order;
2042 * Doh this slab cannot be placed using slub_max_order.
2044 order = slab_order(size, 1, MAX_ORDER, 1);
2045 if (order < MAX_ORDER)
2046 return order;
2047 return -ENOSYS;
2051 * Figure out what the alignment of the objects will be.
2053 static unsigned long calculate_alignment(unsigned long flags,
2054 unsigned long align, unsigned long size)
2057 * If the user wants hardware cache aligned objects then follow that
2058 * suggestion if the object is sufficiently large.
2060 * The hardware cache alignment cannot override the specified
2061 * alignment though. If that is greater then use it.
2063 if (flags & SLAB_HWCACHE_ALIGN) {
2064 unsigned long ralign = cache_line_size();
2065 while (size <= ralign / 2)
2066 ralign /= 2;
2067 align = max(align, ralign);
2070 if (align < ARCH_SLAB_MINALIGN)
2071 align = ARCH_SLAB_MINALIGN;
2073 return ALIGN(align, sizeof(void *));
2076 static void init_kmem_cache_cpu(struct kmem_cache *s,
2077 struct kmem_cache_cpu *c)
2079 c->page = NULL;
2080 c->freelist = NULL;
2081 c->node = 0;
2082 c->offset = s->offset / sizeof(void *);
2083 c->objsize = s->objsize;
2084 #ifdef CONFIG_SLUB_STATS
2085 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2086 #endif
2089 static void
2090 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2092 n->nr_partial = 0;
2093 spin_lock_init(&n->list_lock);
2094 INIT_LIST_HEAD(&n->partial);
2095 #ifdef CONFIG_SLUB_DEBUG
2096 atomic_long_set(&n->nr_slabs, 0);
2097 atomic_long_set(&n->total_objects, 0);
2098 INIT_LIST_HEAD(&n->full);
2099 #endif
2102 #ifdef CONFIG_SMP
2104 * Per cpu array for per cpu structures.
2106 * The per cpu array places all kmem_cache_cpu structures from one processor
2107 * close together meaning that it becomes possible that multiple per cpu
2108 * structures are contained in one cacheline. This may be particularly
2109 * beneficial for the kmalloc caches.
2111 * A desktop system typically has around 60-80 slabs. With 100 here we are
2112 * likely able to get per cpu structures for all caches from the array defined
2113 * here. We must be able to cover all kmalloc caches during bootstrap.
2115 * If the per cpu array is exhausted then fall back to kmalloc
2116 * of individual cachelines. No sharing is possible then.
2118 #define NR_KMEM_CACHE_CPU 100
2120 static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
2121 kmem_cache_cpu);
2123 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2124 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2126 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2127 int cpu, gfp_t flags)
2129 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2131 if (c)
2132 per_cpu(kmem_cache_cpu_free, cpu) =
2133 (void *)c->freelist;
2134 else {
2135 /* Table overflow: So allocate ourselves */
2136 c = kmalloc_node(
2137 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2138 flags, cpu_to_node(cpu));
2139 if (!c)
2140 return NULL;
2143 init_kmem_cache_cpu(s, c);
2144 return c;
2147 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2149 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2150 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2151 kfree(c);
2152 return;
2154 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2155 per_cpu(kmem_cache_cpu_free, cpu) = c;
2158 static void free_kmem_cache_cpus(struct kmem_cache *s)
2160 int cpu;
2162 for_each_online_cpu(cpu) {
2163 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2165 if (c) {
2166 s->cpu_slab[cpu] = NULL;
2167 free_kmem_cache_cpu(c, cpu);
2172 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2174 int cpu;
2176 for_each_online_cpu(cpu) {
2177 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2179 if (c)
2180 continue;
2182 c = alloc_kmem_cache_cpu(s, cpu, flags);
2183 if (!c) {
2184 free_kmem_cache_cpus(s);
2185 return 0;
2187 s->cpu_slab[cpu] = c;
2189 return 1;
2193 * Initialize the per cpu array.
2195 static void init_alloc_cpu_cpu(int cpu)
2197 int i;
2199 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2200 return;
2202 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2203 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2205 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2208 static void __init init_alloc_cpu(void)
2210 int cpu;
2212 for_each_online_cpu(cpu)
2213 init_alloc_cpu_cpu(cpu);
2216 #else
2217 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2218 static inline void init_alloc_cpu(void) {}
2220 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2222 init_kmem_cache_cpu(s, &s->cpu_slab);
2223 return 1;
2225 #endif
2227 #ifdef CONFIG_NUMA
2229 * No kmalloc_node yet so do it by hand. We know that this is the first
2230 * slab on the node for this slabcache. There are no concurrent accesses
2231 * possible.
2233 * Note that this function only works on the kmalloc_node_cache
2234 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2235 * memory on a fresh node that has no slab structures yet.
2237 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2239 struct page *page;
2240 struct kmem_cache_node *n;
2241 unsigned long flags;
2243 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2245 page = new_slab(kmalloc_caches, gfpflags, node);
2247 BUG_ON(!page);
2248 if (page_to_nid(page) != node) {
2249 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2250 "node %d\n", node);
2251 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2252 "in order to be able to continue\n");
2255 n = page->freelist;
2256 BUG_ON(!n);
2257 page->freelist = get_freepointer(kmalloc_caches, n);
2258 page->inuse++;
2259 kmalloc_caches->node[node] = n;
2260 #ifdef CONFIG_SLUB_DEBUG
2261 init_object(kmalloc_caches, n, 1);
2262 init_tracking(kmalloc_caches, n);
2263 #endif
2264 init_kmem_cache_node(n, kmalloc_caches);
2265 inc_slabs_node(kmalloc_caches, node, page->objects);
2268 * lockdep requires consistent irq usage for each lock
2269 * so even though there cannot be a race this early in
2270 * the boot sequence, we still disable irqs.
2272 local_irq_save(flags);
2273 add_partial(n, page, 0);
2274 local_irq_restore(flags);
2277 static void free_kmem_cache_nodes(struct kmem_cache *s)
2279 int node;
2281 for_each_node_state(node, N_NORMAL_MEMORY) {
2282 struct kmem_cache_node *n = s->node[node];
2283 if (n && n != &s->local_node)
2284 kmem_cache_free(kmalloc_caches, n);
2285 s->node[node] = NULL;
2289 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2291 int node;
2292 int local_node;
2294 if (slab_state >= UP)
2295 local_node = page_to_nid(virt_to_page(s));
2296 else
2297 local_node = 0;
2299 for_each_node_state(node, N_NORMAL_MEMORY) {
2300 struct kmem_cache_node *n;
2302 if (local_node == node)
2303 n = &s->local_node;
2304 else {
2305 if (slab_state == DOWN) {
2306 early_kmem_cache_node_alloc(gfpflags, node);
2307 continue;
2309 n = kmem_cache_alloc_node(kmalloc_caches,
2310 gfpflags, node);
2312 if (!n) {
2313 free_kmem_cache_nodes(s);
2314 return 0;
2318 s->node[node] = n;
2319 init_kmem_cache_node(n, s);
2321 return 1;
2323 #else
2324 static void free_kmem_cache_nodes(struct kmem_cache *s)
2328 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2330 init_kmem_cache_node(&s->local_node, s);
2331 return 1;
2333 #endif
2335 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2337 if (min < MIN_PARTIAL)
2338 min = MIN_PARTIAL;
2339 else if (min > MAX_PARTIAL)
2340 min = MAX_PARTIAL;
2341 s->min_partial = min;
2345 * calculate_sizes() determines the order and the distribution of data within
2346 * a slab object.
2348 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2350 unsigned long flags = s->flags;
2351 unsigned long size = s->objsize;
2352 unsigned long align = s->align;
2353 int order;
2356 * Round up object size to the next word boundary. We can only
2357 * place the free pointer at word boundaries and this determines
2358 * the possible location of the free pointer.
2360 size = ALIGN(size, sizeof(void *));
2362 #ifdef CONFIG_SLUB_DEBUG
2364 * Determine if we can poison the object itself. If the user of
2365 * the slab may touch the object after free or before allocation
2366 * then we should never poison the object itself.
2368 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2369 !s->ctor)
2370 s->flags |= __OBJECT_POISON;
2371 else
2372 s->flags &= ~__OBJECT_POISON;
2376 * If we are Redzoning then check if there is some space between the
2377 * end of the object and the free pointer. If not then add an
2378 * additional word to have some bytes to store Redzone information.
2380 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2381 size += sizeof(void *);
2382 #endif
2385 * With that we have determined the number of bytes in actual use
2386 * by the object. This is the potential offset to the free pointer.
2388 s->inuse = size;
2390 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2391 s->ctor)) {
2393 * Relocate free pointer after the object if it is not
2394 * permitted to overwrite the first word of the object on
2395 * kmem_cache_free.
2397 * This is the case if we do RCU, have a constructor or
2398 * destructor or are poisoning the objects.
2400 s->offset = size;
2401 size += sizeof(void *);
2404 #ifdef CONFIG_SLUB_DEBUG
2405 if (flags & SLAB_STORE_USER)
2407 * Need to store information about allocs and frees after
2408 * the object.
2410 size += 2 * sizeof(struct track);
2412 if (flags & SLAB_RED_ZONE)
2414 * Add some empty padding so that we can catch
2415 * overwrites from earlier objects rather than let
2416 * tracking information or the free pointer be
2417 * corrupted if a user writes before the start
2418 * of the object.
2420 size += sizeof(void *);
2421 #endif
2424 * Determine the alignment based on various parameters that the
2425 * user specified and the dynamic determination of cache line size
2426 * on bootup.
2428 align = calculate_alignment(flags, align, s->objsize);
2429 s->align = align;
2432 * SLUB stores one object immediately after another beginning from
2433 * offset 0. In order to align the objects we have to simply size
2434 * each object to conform to the alignment.
2436 size = ALIGN(size, align);
2437 s->size = size;
2438 if (forced_order >= 0)
2439 order = forced_order;
2440 else
2441 order = calculate_order(size);
2443 if (order < 0)
2444 return 0;
2446 s->allocflags = 0;
2447 if (order)
2448 s->allocflags |= __GFP_COMP;
2450 if (s->flags & SLAB_CACHE_DMA)
2451 s->allocflags |= SLUB_DMA;
2453 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2454 s->allocflags |= __GFP_RECLAIMABLE;
2457 * Determine the number of objects per slab
2459 s->oo = oo_make(order, size);
2460 s->min = oo_make(get_order(size), size);
2461 if (oo_objects(s->oo) > oo_objects(s->max))
2462 s->max = s->oo;
2464 return !!oo_objects(s->oo);
2468 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2469 const char *name, size_t size,
2470 size_t align, unsigned long flags,
2471 void (*ctor)(void *))
2473 memset(s, 0, kmem_size);
2474 s->name = name;
2475 s->ctor = ctor;
2476 s->objsize = size;
2477 s->align = align;
2478 s->flags = kmem_cache_flags(size, flags, name, ctor);
2480 if (!calculate_sizes(s, -1))
2481 goto error;
2482 if (disable_higher_order_debug) {
2484 * Disable debugging flags that store metadata if the min slab
2485 * order increased.
2487 if (get_order(s->size) > get_order(s->objsize)) {
2488 s->flags &= ~DEBUG_METADATA_FLAGS;
2489 s->offset = 0;
2490 if (!calculate_sizes(s, -1))
2491 goto error;
2496 * The larger the object size is, the more pages we want on the partial
2497 * list to avoid pounding the page allocator excessively.
2499 set_min_partial(s, ilog2(s->size));
2500 s->refcount = 1;
2501 #ifdef CONFIG_NUMA
2502 s->remote_node_defrag_ratio = 1000;
2503 #endif
2504 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2505 goto error;
2507 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2508 return 1;
2509 free_kmem_cache_nodes(s);
2510 error:
2511 if (flags & SLAB_PANIC)
2512 panic("Cannot create slab %s size=%lu realsize=%u "
2513 "order=%u offset=%u flags=%lx\n",
2514 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2515 s->offset, flags);
2516 return 0;
2520 * Check if a given pointer is valid
2522 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2524 struct page *page;
2526 page = get_object_page(object);
2528 if (!page || s != page->slab)
2529 /* No slab or wrong slab */
2530 return 0;
2532 if (!check_valid_pointer(s, page, object))
2533 return 0;
2536 * We could also check if the object is on the slabs freelist.
2537 * But this would be too expensive and it seems that the main
2538 * purpose of kmem_ptr_valid() is to check if the object belongs
2539 * to a certain slab.
2541 return 1;
2543 EXPORT_SYMBOL(kmem_ptr_validate);
2546 * Determine the size of a slab object
2548 unsigned int kmem_cache_size(struct kmem_cache *s)
2550 return s->objsize;
2552 EXPORT_SYMBOL(kmem_cache_size);
2554 const char *kmem_cache_name(struct kmem_cache *s)
2556 return s->name;
2558 EXPORT_SYMBOL(kmem_cache_name);
2560 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2561 const char *text)
2563 #ifdef CONFIG_SLUB_DEBUG
2564 void *addr = page_address(page);
2565 void *p;
2566 DECLARE_BITMAP(map, page->objects);
2568 bitmap_zero(map, page->objects);
2569 slab_err(s, page, "%s", text);
2570 slab_lock(page);
2571 for_each_free_object(p, s, page->freelist)
2572 set_bit(slab_index(p, s, addr), map);
2574 for_each_object(p, s, addr, page->objects) {
2576 if (!test_bit(slab_index(p, s, addr), map)) {
2577 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2578 p, p - addr);
2579 print_tracking(s, p);
2582 slab_unlock(page);
2583 #endif
2587 * Attempt to free all partial slabs on a node.
2589 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2591 unsigned long flags;
2592 struct page *page, *h;
2594 spin_lock_irqsave(&n->list_lock, flags);
2595 list_for_each_entry_safe(page, h, &n->partial, lru) {
2596 if (!page->inuse) {
2597 list_del(&page->lru);
2598 discard_slab(s, page);
2599 n->nr_partial--;
2600 } else {
2601 list_slab_objects(s, page,
2602 "Objects remaining on kmem_cache_close()");
2605 spin_unlock_irqrestore(&n->list_lock, flags);
2609 * Release all resources used by a slab cache.
2611 static inline int kmem_cache_close(struct kmem_cache *s)
2613 int node;
2615 flush_all(s);
2617 /* Attempt to free all objects */
2618 free_kmem_cache_cpus(s);
2619 for_each_node_state(node, N_NORMAL_MEMORY) {
2620 struct kmem_cache_node *n = get_node(s, node);
2622 free_partial(s, n);
2623 if (n->nr_partial || slabs_node(s, node))
2624 return 1;
2626 free_kmem_cache_nodes(s);
2627 return 0;
2631 * Close a cache and release the kmem_cache structure
2632 * (must be used for caches created using kmem_cache_create)
2634 void kmem_cache_destroy(struct kmem_cache *s)
2636 down_write(&slub_lock);
2637 s->refcount--;
2638 if (!s->refcount) {
2639 list_del(&s->list);
2640 up_write(&slub_lock);
2641 if (kmem_cache_close(s)) {
2642 printk(KERN_ERR "SLUB %s: %s called for cache that "
2643 "still has objects.\n", s->name, __func__);
2644 dump_stack();
2646 if (s->flags & SLAB_DESTROY_BY_RCU)
2647 rcu_barrier();
2648 sysfs_slab_remove(s);
2649 } else
2650 up_write(&slub_lock);
2652 EXPORT_SYMBOL(kmem_cache_destroy);
2654 /********************************************************************
2655 * Kmalloc subsystem
2656 *******************************************************************/
2658 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2659 EXPORT_SYMBOL(kmalloc_caches);
2661 static int __init setup_slub_min_order(char *str)
2663 get_option(&str, &slub_min_order);
2665 return 1;
2668 __setup("slub_min_order=", setup_slub_min_order);
2670 static int __init setup_slub_max_order(char *str)
2672 get_option(&str, &slub_max_order);
2673 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2675 return 1;
2678 __setup("slub_max_order=", setup_slub_max_order);
2680 static int __init setup_slub_min_objects(char *str)
2682 get_option(&str, &slub_min_objects);
2684 return 1;
2687 __setup("slub_min_objects=", setup_slub_min_objects);
2689 static int __init setup_slub_nomerge(char *str)
2691 slub_nomerge = 1;
2692 return 1;
2695 __setup("slub_nomerge", setup_slub_nomerge);
2697 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2698 const char *name, int size, gfp_t gfp_flags)
2700 unsigned int flags = 0;
2702 if (gfp_flags & SLUB_DMA)
2703 flags = SLAB_CACHE_DMA;
2706 * This function is called with IRQs disabled during early-boot on
2707 * single CPU so there's no need to take slub_lock here.
2709 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2710 flags, NULL))
2711 goto panic;
2713 list_add(&s->list, &slab_caches);
2715 if (sysfs_slab_add(s))
2716 goto panic;
2717 return s;
2719 panic:
2720 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2723 #ifdef CONFIG_ZONE_DMA
2724 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2726 static void sysfs_add_func(struct work_struct *w)
2728 struct kmem_cache *s;
2730 down_write(&slub_lock);
2731 list_for_each_entry(s, &slab_caches, list) {
2732 if (s->flags & __SYSFS_ADD_DEFERRED) {
2733 s->flags &= ~__SYSFS_ADD_DEFERRED;
2734 sysfs_slab_add(s);
2737 up_write(&slub_lock);
2740 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2742 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2744 struct kmem_cache *s;
2745 char *text;
2746 size_t realsize;
2747 unsigned long slabflags;
2749 s = kmalloc_caches_dma[index];
2750 if (s)
2751 return s;
2753 /* Dynamically create dma cache */
2754 if (flags & __GFP_WAIT)
2755 down_write(&slub_lock);
2756 else {
2757 if (!down_write_trylock(&slub_lock))
2758 goto out;
2761 if (kmalloc_caches_dma[index])
2762 goto unlock_out;
2764 realsize = kmalloc_caches[index].objsize;
2765 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2766 (unsigned int)realsize);
2767 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2770 * Must defer sysfs creation to a workqueue because we don't know
2771 * what context we are called from. Before sysfs comes up, we don't
2772 * need to do anything because our sysfs initcall will start by
2773 * adding all existing slabs to sysfs.
2775 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2776 if (slab_state >= SYSFS)
2777 slabflags |= __SYSFS_ADD_DEFERRED;
2779 if (!s || !text || !kmem_cache_open(s, flags, text,
2780 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2781 kfree(s);
2782 kfree(text);
2783 goto unlock_out;
2786 list_add(&s->list, &slab_caches);
2787 kmalloc_caches_dma[index] = s;
2789 if (slab_state >= SYSFS)
2790 schedule_work(&sysfs_add_work);
2792 unlock_out:
2793 up_write(&slub_lock);
2794 out:
2795 return kmalloc_caches_dma[index];
2797 #endif
2800 * Conversion table for small slabs sizes / 8 to the index in the
2801 * kmalloc array. This is necessary for slabs < 192 since we have non power
2802 * of two cache sizes there. The size of larger slabs can be determined using
2803 * fls.
2805 static s8 size_index[24] = {
2806 3, /* 8 */
2807 4, /* 16 */
2808 5, /* 24 */
2809 5, /* 32 */
2810 6, /* 40 */
2811 6, /* 48 */
2812 6, /* 56 */
2813 6, /* 64 */
2814 1, /* 72 */
2815 1, /* 80 */
2816 1, /* 88 */
2817 1, /* 96 */
2818 7, /* 104 */
2819 7, /* 112 */
2820 7, /* 120 */
2821 7, /* 128 */
2822 2, /* 136 */
2823 2, /* 144 */
2824 2, /* 152 */
2825 2, /* 160 */
2826 2, /* 168 */
2827 2, /* 176 */
2828 2, /* 184 */
2829 2 /* 192 */
2832 static inline int size_index_elem(size_t bytes)
2834 return (bytes - 1) / 8;
2837 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2839 int index;
2841 if (size <= 192) {
2842 if (!size)
2843 return ZERO_SIZE_PTR;
2845 index = size_index[size_index_elem(size)];
2846 } else
2847 index = fls(size - 1);
2849 #ifdef CONFIG_ZONE_DMA
2850 if (unlikely((flags & SLUB_DMA)))
2851 return dma_kmalloc_cache(index, flags);
2853 #endif
2854 return &kmalloc_caches[index];
2857 void *__kmalloc(size_t size, gfp_t flags)
2859 struct kmem_cache *s;
2860 void *ret;
2862 if (unlikely(size > SLUB_MAX_SIZE))
2863 return kmalloc_large(size, flags);
2865 s = get_slab(size, flags);
2867 if (unlikely(ZERO_OR_NULL_PTR(s)))
2868 return s;
2870 ret = slab_alloc(s, flags, -1, _RET_IP_);
2872 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2874 return ret;
2876 EXPORT_SYMBOL(__kmalloc);
2878 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2880 struct page *page;
2881 void *ptr = NULL;
2883 flags |= __GFP_COMP | __GFP_NOTRACK;
2884 page = alloc_pages_node(node, flags, get_order(size));
2885 if (page)
2886 ptr = page_address(page);
2888 kmemleak_alloc(ptr, size, 1, flags);
2889 return ptr;
2892 #ifdef CONFIG_NUMA
2893 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2895 struct kmem_cache *s;
2896 void *ret;
2898 if (unlikely(size > SLUB_MAX_SIZE)) {
2899 ret = kmalloc_large_node(size, flags, node);
2901 trace_kmalloc_node(_RET_IP_, ret,
2902 size, PAGE_SIZE << get_order(size),
2903 flags, node);
2905 return ret;
2908 s = get_slab(size, flags);
2910 if (unlikely(ZERO_OR_NULL_PTR(s)))
2911 return s;
2913 ret = slab_alloc(s, flags, node, _RET_IP_);
2915 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2917 return ret;
2919 EXPORT_SYMBOL(__kmalloc_node);
2920 #endif
2922 size_t ksize(const void *object)
2924 struct page *page;
2925 struct kmem_cache *s;
2927 if (unlikely(object == ZERO_SIZE_PTR))
2928 return 0;
2930 page = virt_to_head_page(object);
2932 if (unlikely(!PageSlab(page))) {
2933 WARN_ON(!PageCompound(page));
2934 return PAGE_SIZE << compound_order(page);
2936 s = page->slab;
2938 #ifdef CONFIG_SLUB_DEBUG
2940 * Debugging requires use of the padding between object
2941 * and whatever may come after it.
2943 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2944 return s->objsize;
2946 #endif
2948 * If we have the need to store the freelist pointer
2949 * back there or track user information then we can
2950 * only use the space before that information.
2952 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2953 return s->inuse;
2955 * Else we can use all the padding etc for the allocation
2957 return s->size;
2959 EXPORT_SYMBOL(ksize);
2961 void kfree(const void *x)
2963 struct page *page;
2964 void *object = (void *)x;
2966 trace_kfree(_RET_IP_, x);
2968 if (unlikely(ZERO_OR_NULL_PTR(x)))
2969 return;
2971 page = virt_to_head_page(x);
2972 if (unlikely(!PageSlab(page))) {
2973 BUG_ON(!PageCompound(page));
2974 kmemleak_free(x);
2975 put_page(page);
2976 return;
2978 slab_free(page->slab, page, object, _RET_IP_);
2980 EXPORT_SYMBOL(kfree);
2983 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2984 * the remaining slabs by the number of items in use. The slabs with the
2985 * most items in use come first. New allocations will then fill those up
2986 * and thus they can be removed from the partial lists.
2988 * The slabs with the least items are placed last. This results in them
2989 * being allocated from last increasing the chance that the last objects
2990 * are freed in them.
2992 int kmem_cache_shrink(struct kmem_cache *s)
2994 int node;
2995 int i;
2996 struct kmem_cache_node *n;
2997 struct page *page;
2998 struct page *t;
2999 int objects = oo_objects(s->max);
3000 struct list_head *slabs_by_inuse =
3001 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3002 unsigned long flags;
3004 if (!slabs_by_inuse)
3005 return -ENOMEM;
3007 flush_all(s);
3008 for_each_node_state(node, N_NORMAL_MEMORY) {
3009 n = get_node(s, node);
3011 if (!n->nr_partial)
3012 continue;
3014 for (i = 0; i < objects; i++)
3015 INIT_LIST_HEAD(slabs_by_inuse + i);
3017 spin_lock_irqsave(&n->list_lock, flags);
3020 * Build lists indexed by the items in use in each slab.
3022 * Note that concurrent frees may occur while we hold the
3023 * list_lock. page->inuse here is the upper limit.
3025 list_for_each_entry_safe(page, t, &n->partial, lru) {
3026 if (!page->inuse && slab_trylock(page)) {
3028 * Must hold slab lock here because slab_free
3029 * may have freed the last object and be
3030 * waiting to release the slab.
3032 list_del(&page->lru);
3033 n->nr_partial--;
3034 slab_unlock(page);
3035 discard_slab(s, page);
3036 } else {
3037 list_move(&page->lru,
3038 slabs_by_inuse + page->inuse);
3043 * Rebuild the partial list with the slabs filled up most
3044 * first and the least used slabs at the end.
3046 for (i = objects - 1; i >= 0; i--)
3047 list_splice(slabs_by_inuse + i, n->partial.prev);
3049 spin_unlock_irqrestore(&n->list_lock, flags);
3052 kfree(slabs_by_inuse);
3053 return 0;
3055 EXPORT_SYMBOL(kmem_cache_shrink);
3057 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3058 static int slab_mem_going_offline_callback(void *arg)
3060 struct kmem_cache *s;
3062 down_read(&slub_lock);
3063 list_for_each_entry(s, &slab_caches, list)
3064 kmem_cache_shrink(s);
3065 up_read(&slub_lock);
3067 return 0;
3070 static void slab_mem_offline_callback(void *arg)
3072 struct kmem_cache_node *n;
3073 struct kmem_cache *s;
3074 struct memory_notify *marg = arg;
3075 int offline_node;
3077 offline_node = marg->status_change_nid;
3080 * If the node still has available memory. we need kmem_cache_node
3081 * for it yet.
3083 if (offline_node < 0)
3084 return;
3086 down_read(&slub_lock);
3087 list_for_each_entry(s, &slab_caches, list) {
3088 n = get_node(s, offline_node);
3089 if (n) {
3091 * if n->nr_slabs > 0, slabs still exist on the node
3092 * that is going down. We were unable to free them,
3093 * and offline_pages() function shoudn't call this
3094 * callback. So, we must fail.
3096 BUG_ON(slabs_node(s, offline_node));
3098 s->node[offline_node] = NULL;
3099 kmem_cache_free(kmalloc_caches, n);
3102 up_read(&slub_lock);
3105 static int slab_mem_going_online_callback(void *arg)
3107 struct kmem_cache_node *n;
3108 struct kmem_cache *s;
3109 struct memory_notify *marg = arg;
3110 int nid = marg->status_change_nid;
3111 int ret = 0;
3114 * If the node's memory is already available, then kmem_cache_node is
3115 * already created. Nothing to do.
3117 if (nid < 0)
3118 return 0;
3121 * We are bringing a node online. No memory is available yet. We must
3122 * allocate a kmem_cache_node structure in order to bring the node
3123 * online.
3125 down_read(&slub_lock);
3126 list_for_each_entry(s, &slab_caches, list) {
3128 * XXX: kmem_cache_alloc_node will fallback to other nodes
3129 * since memory is not yet available from the node that
3130 * is brought up.
3132 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3133 if (!n) {
3134 ret = -ENOMEM;
3135 goto out;
3137 init_kmem_cache_node(n, s);
3138 s->node[nid] = n;
3140 out:
3141 up_read(&slub_lock);
3142 return ret;
3145 static int slab_memory_callback(struct notifier_block *self,
3146 unsigned long action, void *arg)
3148 int ret = 0;
3150 switch (action) {
3151 case MEM_GOING_ONLINE:
3152 ret = slab_mem_going_online_callback(arg);
3153 break;
3154 case MEM_GOING_OFFLINE:
3155 ret = slab_mem_going_offline_callback(arg);
3156 break;
3157 case MEM_OFFLINE:
3158 case MEM_CANCEL_ONLINE:
3159 slab_mem_offline_callback(arg);
3160 break;
3161 case MEM_ONLINE:
3162 case MEM_CANCEL_OFFLINE:
3163 break;
3165 if (ret)
3166 ret = notifier_from_errno(ret);
3167 else
3168 ret = NOTIFY_OK;
3169 return ret;
3172 #endif /* CONFIG_MEMORY_HOTPLUG */
3174 /********************************************************************
3175 * Basic setup of slabs
3176 *******************************************************************/
3178 void __init kmem_cache_init(void)
3180 int i;
3181 int caches = 0;
3183 init_alloc_cpu();
3185 #ifdef CONFIG_NUMA
3187 * Must first have the slab cache available for the allocations of the
3188 * struct kmem_cache_node's. There is special bootstrap code in
3189 * kmem_cache_open for slab_state == DOWN.
3191 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3192 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3193 kmalloc_caches[0].refcount = -1;
3194 caches++;
3196 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3197 #endif
3199 /* Able to allocate the per node structures */
3200 slab_state = PARTIAL;
3202 /* Caches that are not of the two-to-the-power-of size */
3203 if (KMALLOC_MIN_SIZE <= 32) {
3204 create_kmalloc_cache(&kmalloc_caches[1],
3205 "kmalloc-96", 96, GFP_NOWAIT);
3206 caches++;
3208 if (KMALLOC_MIN_SIZE <= 64) {
3209 create_kmalloc_cache(&kmalloc_caches[2],
3210 "kmalloc-192", 192, GFP_NOWAIT);
3211 caches++;
3214 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3215 create_kmalloc_cache(&kmalloc_caches[i],
3216 "kmalloc", 1 << i, GFP_NOWAIT);
3217 caches++;
3222 * Patch up the size_index table if we have strange large alignment
3223 * requirements for the kmalloc array. This is only the case for
3224 * MIPS it seems. The standard arches will not generate any code here.
3226 * Largest permitted alignment is 256 bytes due to the way we
3227 * handle the index determination for the smaller caches.
3229 * Make sure that nothing crazy happens if someone starts tinkering
3230 * around with ARCH_KMALLOC_MINALIGN
3232 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3233 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3235 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3236 int elem = size_index_elem(i);
3237 if (elem >= ARRAY_SIZE(size_index))
3238 break;
3239 size_index[elem] = KMALLOC_SHIFT_LOW;
3242 if (KMALLOC_MIN_SIZE == 64) {
3244 * The 96 byte size cache is not used if the alignment
3245 * is 64 byte.
3247 for (i = 64 + 8; i <= 96; i += 8)
3248 size_index[size_index_elem(i)] = 7;
3249 } else if (KMALLOC_MIN_SIZE == 128) {
3251 * The 192 byte sized cache is not used if the alignment
3252 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3253 * instead.
3255 for (i = 128 + 8; i <= 192; i += 8)
3256 size_index[size_index_elem(i)] = 8;
3259 slab_state = UP;
3261 /* Provide the correct kmalloc names now that the caches are up */
3262 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3263 kmalloc_caches[i]. name =
3264 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3266 #ifdef CONFIG_SMP
3267 register_cpu_notifier(&slab_notifier);
3268 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3269 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3270 #else
3271 kmem_size = sizeof(struct kmem_cache);
3272 #endif
3274 printk(KERN_INFO
3275 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3276 " CPUs=%d, Nodes=%d\n",
3277 caches, cache_line_size(),
3278 slub_min_order, slub_max_order, slub_min_objects,
3279 nr_cpu_ids, nr_node_ids);
3282 void __init kmem_cache_init_late(void)
3287 * Find a mergeable slab cache
3289 static int slab_unmergeable(struct kmem_cache *s)
3291 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3292 return 1;
3294 if (s->ctor)
3295 return 1;
3298 * We may have set a slab to be unmergeable during bootstrap.
3300 if (s->refcount < 0)
3301 return 1;
3303 return 0;
3306 static struct kmem_cache *find_mergeable(size_t size,
3307 size_t align, unsigned long flags, const char *name,
3308 void (*ctor)(void *))
3310 struct kmem_cache *s;
3312 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3313 return NULL;
3315 if (ctor)
3316 return NULL;
3318 size = ALIGN(size, sizeof(void *));
3319 align = calculate_alignment(flags, align, size);
3320 size = ALIGN(size, align);
3321 flags = kmem_cache_flags(size, flags, name, NULL);
3323 list_for_each_entry(s, &slab_caches, list) {
3324 if (slab_unmergeable(s))
3325 continue;
3327 if (size > s->size)
3328 continue;
3330 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3331 continue;
3333 * Check if alignment is compatible.
3334 * Courtesy of Adrian Drzewiecki
3336 if ((s->size & ~(align - 1)) != s->size)
3337 continue;
3339 if (s->size - size >= sizeof(void *))
3340 continue;
3342 return s;
3344 return NULL;
3347 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3348 size_t align, unsigned long flags, void (*ctor)(void *))
3350 struct kmem_cache *s;
3352 if (WARN_ON(!name))
3353 return NULL;
3355 down_write(&slub_lock);
3356 s = find_mergeable(size, align, flags, name, ctor);
3357 if (s) {
3358 int cpu;
3360 s->refcount++;
3362 * Adjust the object sizes so that we clear
3363 * the complete object on kzalloc.
3365 s->objsize = max(s->objsize, (int)size);
3368 * And then we need to update the object size in the
3369 * per cpu structures
3371 for_each_online_cpu(cpu)
3372 get_cpu_slab(s, cpu)->objsize = s->objsize;
3374 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3375 up_write(&slub_lock);
3377 if (sysfs_slab_alias(s, name)) {
3378 down_write(&slub_lock);
3379 s->refcount--;
3380 up_write(&slub_lock);
3381 goto err;
3383 return s;
3386 s = kmalloc(kmem_size, GFP_KERNEL);
3387 if (s) {
3388 if (kmem_cache_open(s, GFP_KERNEL, name,
3389 size, align, flags, ctor)) {
3390 list_add(&s->list, &slab_caches);
3391 up_write(&slub_lock);
3392 if (sysfs_slab_add(s)) {
3393 down_write(&slub_lock);
3394 list_del(&s->list);
3395 up_write(&slub_lock);
3396 kfree(s);
3397 goto err;
3399 return s;
3401 kfree(s);
3403 up_write(&slub_lock);
3405 err:
3406 if (flags & SLAB_PANIC)
3407 panic("Cannot create slabcache %s\n", name);
3408 else
3409 s = NULL;
3410 return s;
3412 EXPORT_SYMBOL(kmem_cache_create);
3414 #ifdef CONFIG_SMP
3416 * Use the cpu notifier to insure that the cpu slabs are flushed when
3417 * necessary.
3419 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3420 unsigned long action, void *hcpu)
3422 long cpu = (long)hcpu;
3423 struct kmem_cache *s;
3424 unsigned long flags;
3426 switch (action) {
3427 case CPU_UP_PREPARE:
3428 case CPU_UP_PREPARE_FROZEN:
3429 init_alloc_cpu_cpu(cpu);
3430 down_read(&slub_lock);
3431 list_for_each_entry(s, &slab_caches, list)
3432 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3433 GFP_KERNEL);
3434 up_read(&slub_lock);
3435 break;
3437 case CPU_UP_CANCELED:
3438 case CPU_UP_CANCELED_FROZEN:
3439 case CPU_DEAD:
3440 case CPU_DEAD_FROZEN:
3441 down_read(&slub_lock);
3442 list_for_each_entry(s, &slab_caches, list) {
3443 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3445 local_irq_save(flags);
3446 __flush_cpu_slab(s, cpu);
3447 local_irq_restore(flags);
3448 free_kmem_cache_cpu(c, cpu);
3449 s->cpu_slab[cpu] = NULL;
3451 up_read(&slub_lock);
3452 break;
3453 default:
3454 break;
3456 return NOTIFY_OK;
3459 static struct notifier_block __cpuinitdata slab_notifier = {
3460 .notifier_call = slab_cpuup_callback
3463 #endif
3465 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3467 struct kmem_cache *s;
3468 void *ret;
3470 if (unlikely(size > SLUB_MAX_SIZE))
3471 return kmalloc_large(size, gfpflags);
3473 s = get_slab(size, gfpflags);
3475 if (unlikely(ZERO_OR_NULL_PTR(s)))
3476 return s;
3478 ret = slab_alloc(s, gfpflags, -1, caller);
3480 /* Honor the call site pointer we recieved. */
3481 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3483 return ret;
3486 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3487 int node, unsigned long caller)
3489 struct kmem_cache *s;
3490 void *ret;
3492 if (unlikely(size > SLUB_MAX_SIZE))
3493 return kmalloc_large_node(size, gfpflags, node);
3495 s = get_slab(size, gfpflags);
3497 if (unlikely(ZERO_OR_NULL_PTR(s)))
3498 return s;
3500 ret = slab_alloc(s, gfpflags, node, caller);
3502 /* Honor the call site pointer we recieved. */
3503 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3505 return ret;
3508 #ifdef CONFIG_SLUB_DEBUG
3509 static int count_inuse(struct page *page)
3511 return page->inuse;
3514 static int count_total(struct page *page)
3516 return page->objects;
3519 static int validate_slab(struct kmem_cache *s, struct page *page,
3520 unsigned long *map)
3522 void *p;
3523 void *addr = page_address(page);
3525 if (!check_slab(s, page) ||
3526 !on_freelist(s, page, NULL))
3527 return 0;
3529 /* Now we know that a valid freelist exists */
3530 bitmap_zero(map, page->objects);
3532 for_each_free_object(p, s, page->freelist) {
3533 set_bit(slab_index(p, s, addr), map);
3534 if (!check_object(s, page, p, 0))
3535 return 0;
3538 for_each_object(p, s, addr, page->objects)
3539 if (!test_bit(slab_index(p, s, addr), map))
3540 if (!check_object(s, page, p, 1))
3541 return 0;
3542 return 1;
3545 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3546 unsigned long *map)
3548 if (slab_trylock(page)) {
3549 validate_slab(s, page, map);
3550 slab_unlock(page);
3551 } else
3552 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3553 s->name, page);
3555 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3556 if (!PageSlubDebug(page))
3557 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3558 "on slab 0x%p\n", s->name, page);
3559 } else {
3560 if (PageSlubDebug(page))
3561 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3562 "slab 0x%p\n", s->name, page);
3566 static int validate_slab_node(struct kmem_cache *s,
3567 struct kmem_cache_node *n, unsigned long *map)
3569 unsigned long count = 0;
3570 struct page *page;
3571 unsigned long flags;
3573 spin_lock_irqsave(&n->list_lock, flags);
3575 list_for_each_entry(page, &n->partial, lru) {
3576 validate_slab_slab(s, page, map);
3577 count++;
3579 if (count != n->nr_partial)
3580 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3581 "counter=%ld\n", s->name, count, n->nr_partial);
3583 if (!(s->flags & SLAB_STORE_USER))
3584 goto out;
3586 list_for_each_entry(page, &n->full, lru) {
3587 validate_slab_slab(s, page, map);
3588 count++;
3590 if (count != atomic_long_read(&n->nr_slabs))
3591 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3592 "counter=%ld\n", s->name, count,
3593 atomic_long_read(&n->nr_slabs));
3595 out:
3596 spin_unlock_irqrestore(&n->list_lock, flags);
3597 return count;
3600 static long validate_slab_cache(struct kmem_cache *s)
3602 int node;
3603 unsigned long count = 0;
3604 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3605 sizeof(unsigned long), GFP_KERNEL);
3607 if (!map)
3608 return -ENOMEM;
3610 flush_all(s);
3611 for_each_node_state(node, N_NORMAL_MEMORY) {
3612 struct kmem_cache_node *n = get_node(s, node);
3614 count += validate_slab_node(s, n, map);
3616 kfree(map);
3617 return count;
3620 #ifdef SLUB_RESILIENCY_TEST
3621 static void resiliency_test(void)
3623 u8 *p;
3625 printk(KERN_ERR "SLUB resiliency testing\n");
3626 printk(KERN_ERR "-----------------------\n");
3627 printk(KERN_ERR "A. Corruption after allocation\n");
3629 p = kzalloc(16, GFP_KERNEL);
3630 p[16] = 0x12;
3631 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3632 " 0x12->0x%p\n\n", p + 16);
3634 validate_slab_cache(kmalloc_caches + 4);
3636 /* Hmmm... The next two are dangerous */
3637 p = kzalloc(32, GFP_KERNEL);
3638 p[32 + sizeof(void *)] = 0x34;
3639 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3640 " 0x34 -> -0x%p\n", p);
3641 printk(KERN_ERR
3642 "If allocated object is overwritten then not detectable\n\n");
3644 validate_slab_cache(kmalloc_caches + 5);
3645 p = kzalloc(64, GFP_KERNEL);
3646 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3647 *p = 0x56;
3648 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3650 printk(KERN_ERR
3651 "If allocated object is overwritten then not detectable\n\n");
3652 validate_slab_cache(kmalloc_caches + 6);
3654 printk(KERN_ERR "\nB. Corruption after free\n");
3655 p = kzalloc(128, GFP_KERNEL);
3656 kfree(p);
3657 *p = 0x78;
3658 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3659 validate_slab_cache(kmalloc_caches + 7);
3661 p = kzalloc(256, GFP_KERNEL);
3662 kfree(p);
3663 p[50] = 0x9a;
3664 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3666 validate_slab_cache(kmalloc_caches + 8);
3668 p = kzalloc(512, GFP_KERNEL);
3669 kfree(p);
3670 p[512] = 0xab;
3671 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3672 validate_slab_cache(kmalloc_caches + 9);
3674 #else
3675 static void resiliency_test(void) {};
3676 #endif
3679 * Generate lists of code addresses where slabcache objects are allocated
3680 * and freed.
3683 struct location {
3684 unsigned long count;
3685 unsigned long addr;
3686 long long sum_time;
3687 long min_time;
3688 long max_time;
3689 long min_pid;
3690 long max_pid;
3691 DECLARE_BITMAP(cpus, NR_CPUS);
3692 nodemask_t nodes;
3695 struct loc_track {
3696 unsigned long max;
3697 unsigned long count;
3698 struct location *loc;
3701 static void free_loc_track(struct loc_track *t)
3703 if (t->max)
3704 free_pages((unsigned long)t->loc,
3705 get_order(sizeof(struct location) * t->max));
3708 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3710 struct location *l;
3711 int order;
3713 order = get_order(sizeof(struct location) * max);
3715 l = (void *)__get_free_pages(flags, order);
3716 if (!l)
3717 return 0;
3719 if (t->count) {
3720 memcpy(l, t->loc, sizeof(struct location) * t->count);
3721 free_loc_track(t);
3723 t->max = max;
3724 t->loc = l;
3725 return 1;
3728 static int add_location(struct loc_track *t, struct kmem_cache *s,
3729 const struct track *track)
3731 long start, end, pos;
3732 struct location *l;
3733 unsigned long caddr;
3734 unsigned long age = jiffies - track->when;
3736 start = -1;
3737 end = t->count;
3739 for ( ; ; ) {
3740 pos = start + (end - start + 1) / 2;
3743 * There is nothing at "end". If we end up there
3744 * we need to add something to before end.
3746 if (pos == end)
3747 break;
3749 caddr = t->loc[pos].addr;
3750 if (track->addr == caddr) {
3752 l = &t->loc[pos];
3753 l->count++;
3754 if (track->when) {
3755 l->sum_time += age;
3756 if (age < l->min_time)
3757 l->min_time = age;
3758 if (age > l->max_time)
3759 l->max_time = age;
3761 if (track->pid < l->min_pid)
3762 l->min_pid = track->pid;
3763 if (track->pid > l->max_pid)
3764 l->max_pid = track->pid;
3766 cpumask_set_cpu(track->cpu,
3767 to_cpumask(l->cpus));
3769 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3770 return 1;
3773 if (track->addr < caddr)
3774 end = pos;
3775 else
3776 start = pos;
3780 * Not found. Insert new tracking element.
3782 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3783 return 0;
3785 l = t->loc + pos;
3786 if (pos < t->count)
3787 memmove(l + 1, l,
3788 (t->count - pos) * sizeof(struct location));
3789 t->count++;
3790 l->count = 1;
3791 l->addr = track->addr;
3792 l->sum_time = age;
3793 l->min_time = age;
3794 l->max_time = age;
3795 l->min_pid = track->pid;
3796 l->max_pid = track->pid;
3797 cpumask_clear(to_cpumask(l->cpus));
3798 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3799 nodes_clear(l->nodes);
3800 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3801 return 1;
3804 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3805 struct page *page, enum track_item alloc)
3807 void *addr = page_address(page);
3808 DECLARE_BITMAP(map, page->objects);
3809 void *p;
3811 bitmap_zero(map, page->objects);
3812 for_each_free_object(p, s, page->freelist)
3813 set_bit(slab_index(p, s, addr), map);
3815 for_each_object(p, s, addr, page->objects)
3816 if (!test_bit(slab_index(p, s, addr), map))
3817 add_location(t, s, get_track(s, p, alloc));
3820 static int list_locations(struct kmem_cache *s, char *buf,
3821 enum track_item alloc)
3823 int len = 0;
3824 unsigned long i;
3825 struct loc_track t = { 0, 0, NULL };
3826 int node;
3828 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3829 GFP_TEMPORARY))
3830 return sprintf(buf, "Out of memory\n");
3832 /* Push back cpu slabs */
3833 flush_all(s);
3835 for_each_node_state(node, N_NORMAL_MEMORY) {
3836 struct kmem_cache_node *n = get_node(s, node);
3837 unsigned long flags;
3838 struct page *page;
3840 if (!atomic_long_read(&n->nr_slabs))
3841 continue;
3843 spin_lock_irqsave(&n->list_lock, flags);
3844 list_for_each_entry(page, &n->partial, lru)
3845 process_slab(&t, s, page, alloc);
3846 list_for_each_entry(page, &n->full, lru)
3847 process_slab(&t, s, page, alloc);
3848 spin_unlock_irqrestore(&n->list_lock, flags);
3851 for (i = 0; i < t.count; i++) {
3852 struct location *l = &t.loc[i];
3854 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3855 break;
3856 len += sprintf(buf + len, "%7ld ", l->count);
3858 if (l->addr)
3859 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3860 else
3861 len += sprintf(buf + len, "<not-available>");
3863 if (l->sum_time != l->min_time) {
3864 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3865 l->min_time,
3866 (long)div_u64(l->sum_time, l->count),
3867 l->max_time);
3868 } else
3869 len += sprintf(buf + len, " age=%ld",
3870 l->min_time);
3872 if (l->min_pid != l->max_pid)
3873 len += sprintf(buf + len, " pid=%ld-%ld",
3874 l->min_pid, l->max_pid);
3875 else
3876 len += sprintf(buf + len, " pid=%ld",
3877 l->min_pid);
3879 if (num_online_cpus() > 1 &&
3880 !cpumask_empty(to_cpumask(l->cpus)) &&
3881 len < PAGE_SIZE - 60) {
3882 len += sprintf(buf + len, " cpus=");
3883 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3884 to_cpumask(l->cpus));
3887 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3888 len < PAGE_SIZE - 60) {
3889 len += sprintf(buf + len, " nodes=");
3890 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3891 l->nodes);
3894 len += sprintf(buf + len, "\n");
3897 free_loc_track(&t);
3898 if (!t.count)
3899 len += sprintf(buf, "No data\n");
3900 return len;
3903 enum slab_stat_type {
3904 SL_ALL, /* All slabs */
3905 SL_PARTIAL, /* Only partially allocated slabs */
3906 SL_CPU, /* Only slabs used for cpu caches */
3907 SL_OBJECTS, /* Determine allocated objects not slabs */
3908 SL_TOTAL /* Determine object capacity not slabs */
3911 #define SO_ALL (1 << SL_ALL)
3912 #define SO_PARTIAL (1 << SL_PARTIAL)
3913 #define SO_CPU (1 << SL_CPU)
3914 #define SO_OBJECTS (1 << SL_OBJECTS)
3915 #define SO_TOTAL (1 << SL_TOTAL)
3917 static ssize_t show_slab_objects(struct kmem_cache *s,
3918 char *buf, unsigned long flags)
3920 unsigned long total = 0;
3921 int node;
3922 int x;
3923 unsigned long *nodes;
3924 unsigned long *per_cpu;
3926 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3927 if (!nodes)
3928 return -ENOMEM;
3929 per_cpu = nodes + nr_node_ids;
3931 if (flags & SO_CPU) {
3932 int cpu;
3934 for_each_possible_cpu(cpu) {
3935 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3937 if (!c || c->node < 0)
3938 continue;
3940 if (c->page) {
3941 if (flags & SO_TOTAL)
3942 x = c->page->objects;
3943 else if (flags & SO_OBJECTS)
3944 x = c->page->inuse;
3945 else
3946 x = 1;
3948 total += x;
3949 nodes[c->node] += x;
3951 per_cpu[c->node]++;
3955 if (flags & SO_ALL) {
3956 for_each_node_state(node, N_NORMAL_MEMORY) {
3957 struct kmem_cache_node *n = get_node(s, node);
3959 if (flags & SO_TOTAL)
3960 x = atomic_long_read(&n->total_objects);
3961 else if (flags & SO_OBJECTS)
3962 x = atomic_long_read(&n->total_objects) -
3963 count_partial(n, count_free);
3965 else
3966 x = atomic_long_read(&n->nr_slabs);
3967 total += x;
3968 nodes[node] += x;
3971 } else if (flags & SO_PARTIAL) {
3972 for_each_node_state(node, N_NORMAL_MEMORY) {
3973 struct kmem_cache_node *n = get_node(s, node);
3975 if (flags & SO_TOTAL)
3976 x = count_partial(n, count_total);
3977 else if (flags & SO_OBJECTS)
3978 x = count_partial(n, count_inuse);
3979 else
3980 x = n->nr_partial;
3981 total += x;
3982 nodes[node] += x;
3985 x = sprintf(buf, "%lu", total);
3986 #ifdef CONFIG_NUMA
3987 for_each_node_state(node, N_NORMAL_MEMORY)
3988 if (nodes[node])
3989 x += sprintf(buf + x, " N%d=%lu",
3990 node, nodes[node]);
3991 #endif
3992 kfree(nodes);
3993 return x + sprintf(buf + x, "\n");
3996 static int any_slab_objects(struct kmem_cache *s)
3998 int node;
4000 for_each_online_node(node) {
4001 struct kmem_cache_node *n = get_node(s, node);
4003 if (!n)
4004 continue;
4006 if (atomic_long_read(&n->total_objects))
4007 return 1;
4009 return 0;
4012 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4013 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4015 struct slab_attribute {
4016 struct attribute attr;
4017 ssize_t (*show)(struct kmem_cache *s, char *buf);
4018 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4021 #define SLAB_ATTR_RO(_name) \
4022 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4024 #define SLAB_ATTR(_name) \
4025 static struct slab_attribute _name##_attr = \
4026 __ATTR(_name, 0644, _name##_show, _name##_store)
4028 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4030 return sprintf(buf, "%d\n", s->size);
4032 SLAB_ATTR_RO(slab_size);
4034 static ssize_t align_show(struct kmem_cache *s, char *buf)
4036 return sprintf(buf, "%d\n", s->align);
4038 SLAB_ATTR_RO(align);
4040 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4042 return sprintf(buf, "%d\n", s->objsize);
4044 SLAB_ATTR_RO(object_size);
4046 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", oo_objects(s->oo));
4050 SLAB_ATTR_RO(objs_per_slab);
4052 static ssize_t order_store(struct kmem_cache *s,
4053 const char *buf, size_t length)
4055 unsigned long order;
4056 int err;
4058 err = strict_strtoul(buf, 10, &order);
4059 if (err)
4060 return err;
4062 if (order > slub_max_order || order < slub_min_order)
4063 return -EINVAL;
4065 calculate_sizes(s, order);
4066 return length;
4069 static ssize_t order_show(struct kmem_cache *s, char *buf)
4071 return sprintf(buf, "%d\n", oo_order(s->oo));
4073 SLAB_ATTR(order);
4075 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4077 return sprintf(buf, "%lu\n", s->min_partial);
4080 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4081 size_t length)
4083 unsigned long min;
4084 int err;
4086 err = strict_strtoul(buf, 10, &min);
4087 if (err)
4088 return err;
4090 set_min_partial(s, min);
4091 return length;
4093 SLAB_ATTR(min_partial);
4095 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4097 if (s->ctor) {
4098 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4100 return n + sprintf(buf + n, "\n");
4102 return 0;
4104 SLAB_ATTR_RO(ctor);
4106 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4108 return sprintf(buf, "%d\n", s->refcount - 1);
4110 SLAB_ATTR_RO(aliases);
4112 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4114 return show_slab_objects(s, buf, SO_ALL);
4116 SLAB_ATTR_RO(slabs);
4118 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4120 return show_slab_objects(s, buf, SO_PARTIAL);
4122 SLAB_ATTR_RO(partial);
4124 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4126 return show_slab_objects(s, buf, SO_CPU);
4128 SLAB_ATTR_RO(cpu_slabs);
4130 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4132 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4134 SLAB_ATTR_RO(objects);
4136 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4138 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4140 SLAB_ATTR_RO(objects_partial);
4142 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4144 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4146 SLAB_ATTR_RO(total_objects);
4148 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4153 static ssize_t sanity_checks_store(struct kmem_cache *s,
4154 const char *buf, size_t length)
4156 s->flags &= ~SLAB_DEBUG_FREE;
4157 if (buf[0] == '1')
4158 s->flags |= SLAB_DEBUG_FREE;
4159 return length;
4161 SLAB_ATTR(sanity_checks);
4163 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4165 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4168 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4169 size_t length)
4171 s->flags &= ~SLAB_TRACE;
4172 if (buf[0] == '1')
4173 s->flags |= SLAB_TRACE;
4174 return length;
4176 SLAB_ATTR(trace);
4178 #ifdef CONFIG_FAILSLAB
4179 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4184 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4185 size_t length)
4187 s->flags &= ~SLAB_FAILSLAB;
4188 if (buf[0] == '1')
4189 s->flags |= SLAB_FAILSLAB;
4190 return length;
4192 SLAB_ATTR(failslab);
4193 #endif
4195 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4200 static ssize_t reclaim_account_store(struct kmem_cache *s,
4201 const char *buf, size_t length)
4203 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4204 if (buf[0] == '1')
4205 s->flags |= SLAB_RECLAIM_ACCOUNT;
4206 return length;
4208 SLAB_ATTR(reclaim_account);
4210 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4214 SLAB_ATTR_RO(hwcache_align);
4216 #ifdef CONFIG_ZONE_DMA
4217 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4221 SLAB_ATTR_RO(cache_dma);
4222 #endif
4224 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4228 SLAB_ATTR_RO(destroy_by_rcu);
4230 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4232 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4235 static ssize_t red_zone_store(struct kmem_cache *s,
4236 const char *buf, size_t length)
4238 if (any_slab_objects(s))
4239 return -EBUSY;
4241 s->flags &= ~SLAB_RED_ZONE;
4242 if (buf[0] == '1')
4243 s->flags |= SLAB_RED_ZONE;
4244 calculate_sizes(s, -1);
4245 return length;
4247 SLAB_ATTR(red_zone);
4249 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4254 static ssize_t poison_store(struct kmem_cache *s,
4255 const char *buf, size_t length)
4257 if (any_slab_objects(s))
4258 return -EBUSY;
4260 s->flags &= ~SLAB_POISON;
4261 if (buf[0] == '1')
4262 s->flags |= SLAB_POISON;
4263 calculate_sizes(s, -1);
4264 return length;
4266 SLAB_ATTR(poison);
4268 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4270 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4273 static ssize_t store_user_store(struct kmem_cache *s,
4274 const char *buf, size_t length)
4276 if (any_slab_objects(s))
4277 return -EBUSY;
4279 s->flags &= ~SLAB_STORE_USER;
4280 if (buf[0] == '1')
4281 s->flags |= SLAB_STORE_USER;
4282 calculate_sizes(s, -1);
4283 return length;
4285 SLAB_ATTR(store_user);
4287 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4289 return 0;
4292 static ssize_t validate_store(struct kmem_cache *s,
4293 const char *buf, size_t length)
4295 int ret = -EINVAL;
4297 if (buf[0] == '1') {
4298 ret = validate_slab_cache(s);
4299 if (ret >= 0)
4300 ret = length;
4302 return ret;
4304 SLAB_ATTR(validate);
4306 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4308 return 0;
4311 static ssize_t shrink_store(struct kmem_cache *s,
4312 const char *buf, size_t length)
4314 if (buf[0] == '1') {
4315 int rc = kmem_cache_shrink(s);
4317 if (rc)
4318 return rc;
4319 } else
4320 return -EINVAL;
4321 return length;
4323 SLAB_ATTR(shrink);
4325 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4327 if (!(s->flags & SLAB_STORE_USER))
4328 return -ENOSYS;
4329 return list_locations(s, buf, TRACK_ALLOC);
4331 SLAB_ATTR_RO(alloc_calls);
4333 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4335 if (!(s->flags & SLAB_STORE_USER))
4336 return -ENOSYS;
4337 return list_locations(s, buf, TRACK_FREE);
4339 SLAB_ATTR_RO(free_calls);
4341 #ifdef CONFIG_NUMA
4342 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4344 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4347 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4348 const char *buf, size_t length)
4350 unsigned long ratio;
4351 int err;
4353 err = strict_strtoul(buf, 10, &ratio);
4354 if (err)
4355 return err;
4357 if (ratio <= 100)
4358 s->remote_node_defrag_ratio = ratio * 10;
4360 return length;
4362 SLAB_ATTR(remote_node_defrag_ratio);
4363 #endif
4365 #ifdef CONFIG_SLUB_STATS
4366 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4368 unsigned long sum = 0;
4369 int cpu;
4370 int len;
4371 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4373 if (!data)
4374 return -ENOMEM;
4376 for_each_online_cpu(cpu) {
4377 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4379 data[cpu] = x;
4380 sum += x;
4383 len = sprintf(buf, "%lu", sum);
4385 #ifdef CONFIG_SMP
4386 for_each_online_cpu(cpu) {
4387 if (data[cpu] && len < PAGE_SIZE - 20)
4388 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4390 #endif
4391 kfree(data);
4392 return len + sprintf(buf + len, "\n");
4395 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4397 int cpu;
4399 for_each_online_cpu(cpu)
4400 get_cpu_slab(s, cpu)->stat[si] = 0;
4403 #define STAT_ATTR(si, text) \
4404 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4406 return show_stat(s, buf, si); \
4408 static ssize_t text##_store(struct kmem_cache *s, \
4409 const char *buf, size_t length) \
4411 if (buf[0] != '0') \
4412 return -EINVAL; \
4413 clear_stat(s, si); \
4414 return length; \
4416 SLAB_ATTR(text); \
4418 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4419 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4420 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4421 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4422 STAT_ATTR(FREE_FROZEN, free_frozen);
4423 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4424 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4425 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4426 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4427 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4428 STAT_ATTR(FREE_SLAB, free_slab);
4429 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4430 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4431 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4432 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4433 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4434 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4435 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4436 #endif
4438 static struct attribute *slab_attrs[] = {
4439 &slab_size_attr.attr,
4440 &object_size_attr.attr,
4441 &objs_per_slab_attr.attr,
4442 &order_attr.attr,
4443 &min_partial_attr.attr,
4444 &objects_attr.attr,
4445 &objects_partial_attr.attr,
4446 &total_objects_attr.attr,
4447 &slabs_attr.attr,
4448 &partial_attr.attr,
4449 &cpu_slabs_attr.attr,
4450 &ctor_attr.attr,
4451 &aliases_attr.attr,
4452 &align_attr.attr,
4453 &sanity_checks_attr.attr,
4454 &trace_attr.attr,
4455 &hwcache_align_attr.attr,
4456 &reclaim_account_attr.attr,
4457 &destroy_by_rcu_attr.attr,
4458 &red_zone_attr.attr,
4459 &poison_attr.attr,
4460 &store_user_attr.attr,
4461 &validate_attr.attr,
4462 &shrink_attr.attr,
4463 &alloc_calls_attr.attr,
4464 &free_calls_attr.attr,
4465 #ifdef CONFIG_ZONE_DMA
4466 &cache_dma_attr.attr,
4467 #endif
4468 #ifdef CONFIG_NUMA
4469 &remote_node_defrag_ratio_attr.attr,
4470 #endif
4471 #ifdef CONFIG_SLUB_STATS
4472 &alloc_fastpath_attr.attr,
4473 &alloc_slowpath_attr.attr,
4474 &free_fastpath_attr.attr,
4475 &free_slowpath_attr.attr,
4476 &free_frozen_attr.attr,
4477 &free_add_partial_attr.attr,
4478 &free_remove_partial_attr.attr,
4479 &alloc_from_partial_attr.attr,
4480 &alloc_slab_attr.attr,
4481 &alloc_refill_attr.attr,
4482 &free_slab_attr.attr,
4483 &cpuslab_flush_attr.attr,
4484 &deactivate_full_attr.attr,
4485 &deactivate_empty_attr.attr,
4486 &deactivate_to_head_attr.attr,
4487 &deactivate_to_tail_attr.attr,
4488 &deactivate_remote_frees_attr.attr,
4489 &order_fallback_attr.attr,
4490 #endif
4491 #ifdef CONFIG_FAILSLAB
4492 &failslab_attr.attr,
4493 #endif
4495 NULL
4498 static struct attribute_group slab_attr_group = {
4499 .attrs = slab_attrs,
4502 static ssize_t slab_attr_show(struct kobject *kobj,
4503 struct attribute *attr,
4504 char *buf)
4506 struct slab_attribute *attribute;
4507 struct kmem_cache *s;
4508 int err;
4510 attribute = to_slab_attr(attr);
4511 s = to_slab(kobj);
4513 if (!attribute->show)
4514 return -EIO;
4516 err = attribute->show(s, buf);
4518 return err;
4521 static ssize_t slab_attr_store(struct kobject *kobj,
4522 struct attribute *attr,
4523 const char *buf, size_t len)
4525 struct slab_attribute *attribute;
4526 struct kmem_cache *s;
4527 int err;
4529 attribute = to_slab_attr(attr);
4530 s = to_slab(kobj);
4532 if (!attribute->store)
4533 return -EIO;
4535 err = attribute->store(s, buf, len);
4537 return err;
4540 static void kmem_cache_release(struct kobject *kobj)
4542 struct kmem_cache *s = to_slab(kobj);
4544 kfree(s);
4547 static struct sysfs_ops slab_sysfs_ops = {
4548 .show = slab_attr_show,
4549 .store = slab_attr_store,
4552 static struct kobj_type slab_ktype = {
4553 .sysfs_ops = &slab_sysfs_ops,
4554 .release = kmem_cache_release
4557 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4559 struct kobj_type *ktype = get_ktype(kobj);
4561 if (ktype == &slab_ktype)
4562 return 1;
4563 return 0;
4566 static struct kset_uevent_ops slab_uevent_ops = {
4567 .filter = uevent_filter,
4570 static struct kset *slab_kset;
4572 #define ID_STR_LENGTH 64
4574 /* Create a unique string id for a slab cache:
4576 * Format :[flags-]size
4578 static char *create_unique_id(struct kmem_cache *s)
4580 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4581 char *p = name;
4583 BUG_ON(!name);
4585 *p++ = ':';
4587 * First flags affecting slabcache operations. We will only
4588 * get here for aliasable slabs so we do not need to support
4589 * too many flags. The flags here must cover all flags that
4590 * are matched during merging to guarantee that the id is
4591 * unique.
4593 if (s->flags & SLAB_CACHE_DMA)
4594 *p++ = 'd';
4595 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4596 *p++ = 'a';
4597 if (s->flags & SLAB_DEBUG_FREE)
4598 *p++ = 'F';
4599 if (!(s->flags & SLAB_NOTRACK))
4600 *p++ = 't';
4601 if (p != name + 1)
4602 *p++ = '-';
4603 p += sprintf(p, "%07d", s->size);
4604 BUG_ON(p > name + ID_STR_LENGTH - 1);
4605 return name;
4608 static int sysfs_slab_add(struct kmem_cache *s)
4610 int err;
4611 const char *name;
4612 int unmergeable;
4614 if (slab_state < SYSFS)
4615 /* Defer until later */
4616 return 0;
4618 unmergeable = slab_unmergeable(s);
4619 if (unmergeable) {
4621 * Slabcache can never be merged so we can use the name proper.
4622 * This is typically the case for debug situations. In that
4623 * case we can catch duplicate names easily.
4625 sysfs_remove_link(&slab_kset->kobj, s->name);
4626 name = s->name;
4627 } else {
4629 * Create a unique name for the slab as a target
4630 * for the symlinks.
4632 name = create_unique_id(s);
4635 s->kobj.kset = slab_kset;
4636 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4637 if (err) {
4638 kobject_put(&s->kobj);
4639 return err;
4642 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4643 if (err) {
4644 kobject_del(&s->kobj);
4645 kobject_put(&s->kobj);
4646 return err;
4648 kobject_uevent(&s->kobj, KOBJ_ADD);
4649 if (!unmergeable) {
4650 /* Setup first alias */
4651 sysfs_slab_alias(s, s->name);
4652 kfree(name);
4654 return 0;
4657 static void sysfs_slab_remove(struct kmem_cache *s)
4659 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4660 kobject_del(&s->kobj);
4661 kobject_put(&s->kobj);
4665 * Need to buffer aliases during bootup until sysfs becomes
4666 * available lest we lose that information.
4668 struct saved_alias {
4669 struct kmem_cache *s;
4670 const char *name;
4671 struct saved_alias *next;
4674 static struct saved_alias *alias_list;
4676 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4678 struct saved_alias *al;
4680 if (slab_state == SYSFS) {
4682 * If we have a leftover link then remove it.
4684 sysfs_remove_link(&slab_kset->kobj, name);
4685 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4688 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4689 if (!al)
4690 return -ENOMEM;
4692 al->s = s;
4693 al->name = name;
4694 al->next = alias_list;
4695 alias_list = al;
4696 return 0;
4699 static int __init slab_sysfs_init(void)
4701 struct kmem_cache *s;
4702 int err;
4704 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4705 if (!slab_kset) {
4706 printk(KERN_ERR "Cannot register slab subsystem.\n");
4707 return -ENOSYS;
4710 slab_state = SYSFS;
4712 list_for_each_entry(s, &slab_caches, list) {
4713 err = sysfs_slab_add(s);
4714 if (err)
4715 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4716 " to sysfs\n", s->name);
4719 while (alias_list) {
4720 struct saved_alias *al = alias_list;
4722 alias_list = alias_list->next;
4723 err = sysfs_slab_alias(al->s, al->name);
4724 if (err)
4725 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4726 " %s to sysfs\n", s->name);
4727 kfree(al);
4730 resiliency_test();
4731 return 0;
4734 __initcall(slab_sysfs_init);
4735 #endif
4738 * The /proc/slabinfo ABI
4740 #ifdef CONFIG_SLABINFO
4741 static void print_slabinfo_header(struct seq_file *m)
4743 seq_puts(m, "slabinfo - version: 2.1\n");
4744 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4745 "<objperslab> <pagesperslab>");
4746 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4747 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4748 seq_putc(m, '\n');
4751 static void *s_start(struct seq_file *m, loff_t *pos)
4753 loff_t n = *pos;
4755 down_read(&slub_lock);
4756 if (!n)
4757 print_slabinfo_header(m);
4759 return seq_list_start(&slab_caches, *pos);
4762 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4764 return seq_list_next(p, &slab_caches, pos);
4767 static void s_stop(struct seq_file *m, void *p)
4769 up_read(&slub_lock);
4772 static int s_show(struct seq_file *m, void *p)
4774 unsigned long nr_partials = 0;
4775 unsigned long nr_slabs = 0;
4776 unsigned long nr_inuse = 0;
4777 unsigned long nr_objs = 0;
4778 unsigned long nr_free = 0;
4779 struct kmem_cache *s;
4780 int node;
4782 s = list_entry(p, struct kmem_cache, list);
4784 for_each_online_node(node) {
4785 struct kmem_cache_node *n = get_node(s, node);
4787 if (!n)
4788 continue;
4790 nr_partials += n->nr_partial;
4791 nr_slabs += atomic_long_read(&n->nr_slabs);
4792 nr_objs += atomic_long_read(&n->total_objects);
4793 nr_free += count_partial(n, count_free);
4796 nr_inuse = nr_objs - nr_free;
4798 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4799 nr_objs, s->size, oo_objects(s->oo),
4800 (1 << oo_order(s->oo)));
4801 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4802 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4803 0UL);
4804 seq_putc(m, '\n');
4805 return 0;
4808 static const struct seq_operations slabinfo_op = {
4809 .start = s_start,
4810 .next = s_next,
4811 .stop = s_stop,
4812 .show = s_show,
4815 static int slabinfo_open(struct inode *inode, struct file *file)
4817 return seq_open(file, &slabinfo_op);
4820 static const struct file_operations proc_slabinfo_operations = {
4821 .open = slabinfo_open,
4822 .read = seq_read,
4823 .llseek = seq_lseek,
4824 .release = seq_release,
4827 static int __init slab_proc_init(void)
4829 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4830 return 0;
4832 module_init(slab_proc_init);
4833 #endif /* CONFIG_SLABINFO */