[SPARC64]: Privatize sun4u_get_pte() and fix name.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / mm / init.c
blob3cacea5da6cec970b14f28dabcac9799598cdebe
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45 #include <asm/prom.h>
47 extern void device_scan(void);
49 #define MAX_PHYS_ADDRESS (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES \
52 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings. */
64 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
65 #endif
67 #define MAX_BANKS 32
69 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
70 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
71 static int pavail_ents __initdata;
72 static int pavail_rescan_ents __initdata;
74 static int cmp_p64(const void *a, const void *b)
76 const struct linux_prom64_registers *x = a, *y = b;
78 if (x->phys_addr > y->phys_addr)
79 return 1;
80 if (x->phys_addr < y->phys_addr)
81 return -1;
82 return 0;
85 static void __init read_obp_memory(const char *property,
86 struct linux_prom64_registers *regs,
87 int *num_ents)
89 int node = prom_finddevice("/memory");
90 int prop_size = prom_getproplen(node, property);
91 int ents, ret, i;
93 ents = prop_size / sizeof(struct linux_prom64_registers);
94 if (ents > MAX_BANKS) {
95 prom_printf("The machine has more %s property entries than "
96 "this kernel can support (%d).\n",
97 property, MAX_BANKS);
98 prom_halt();
101 ret = prom_getproperty(node, property, (char *) regs, prop_size);
102 if (ret == -1) {
103 prom_printf("Couldn't get %s property from /memory.\n");
104 prom_halt();
107 /* Sanitize what we got from the firmware, by page aligning
108 * everything.
110 for (i = 0; i < ents; i++) {
111 unsigned long base, size;
113 base = regs[i].phys_addr;
114 size = regs[i].reg_size;
116 size &= PAGE_MASK;
117 if (base & ~PAGE_MASK) {
118 unsigned long new_base = PAGE_ALIGN(base);
120 size -= new_base - base;
121 if ((long) size < 0L)
122 size = 0UL;
123 base = new_base;
125 if (size == 0UL) {
126 /* If it is empty, simply get rid of it.
127 * This simplifies the logic of the other
128 * functions that process these arrays.
130 memmove(&regs[i], &regs[i + 1],
131 (ents - i - 1) * sizeof(regs[0]));
132 i--;
133 ents--;
134 continue;
136 regs[i].phys_addr = base;
137 regs[i].reg_size = size;
140 *num_ents = ents;
142 sort(regs, ents, sizeof(struct linux_prom64_registers),
143 cmp_p64, NULL);
146 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
148 /* Kernel physical address base and size in bytes. */
149 unsigned long kern_base __read_mostly;
150 unsigned long kern_size __read_mostly;
152 /* get_new_mmu_context() uses "cache + 1". */
153 DEFINE_SPINLOCK(ctx_alloc_lock);
154 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
155 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
156 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
158 /* Initial ramdisk setup */
159 extern unsigned long sparc_ramdisk_image64;
160 extern unsigned int sparc_ramdisk_image;
161 extern unsigned int sparc_ramdisk_size;
163 struct page *mem_map_zero __read_mostly;
165 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
167 unsigned long sparc64_kern_pri_context __read_mostly;
168 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
169 unsigned long sparc64_kern_sec_context __read_mostly;
171 int bigkernel = 0;
173 struct kmem_cache *pgtable_cache __read_mostly;
175 static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
177 clear_page(addr);
180 extern void tsb_cache_init(void);
182 void pgtable_cache_init(void)
184 pgtable_cache = kmem_cache_create("pgtable_cache",
185 PAGE_SIZE, PAGE_SIZE,
186 SLAB_HWCACHE_ALIGN |
187 SLAB_MUST_HWCACHE_ALIGN,
188 zero_ctor,
189 NULL);
190 if (!pgtable_cache) {
191 prom_printf("Could not create pgtable_cache\n");
192 prom_halt();
194 tsb_cache_init();
197 #ifdef CONFIG_DEBUG_DCFLUSH
198 atomic_t dcpage_flushes = ATOMIC_INIT(0);
199 #ifdef CONFIG_SMP
200 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
201 #endif
202 #endif
204 inline void flush_dcache_page_impl(struct page *page)
206 BUG_ON(tlb_type == hypervisor);
207 #ifdef CONFIG_DEBUG_DCFLUSH
208 atomic_inc(&dcpage_flushes);
209 #endif
211 #ifdef DCACHE_ALIASING_POSSIBLE
212 __flush_dcache_page(page_address(page),
213 ((tlb_type == spitfire) &&
214 page_mapping(page) != NULL));
215 #else
216 if (page_mapping(page) != NULL &&
217 tlb_type == spitfire)
218 __flush_icache_page(__pa(page_address(page)));
219 #endif
222 #define PG_dcache_dirty PG_arch_1
223 #define PG_dcache_cpu_shift 24UL
224 #define PG_dcache_cpu_mask (256UL - 1UL)
226 #if NR_CPUS > 256
227 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
228 #endif
230 #define dcache_dirty_cpu(page) \
231 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
233 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
235 unsigned long mask = this_cpu;
236 unsigned long non_cpu_bits;
238 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
239 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
241 __asm__ __volatile__("1:\n\t"
242 "ldx [%2], %%g7\n\t"
243 "and %%g7, %1, %%g1\n\t"
244 "or %%g1, %0, %%g1\n\t"
245 "casx [%2], %%g7, %%g1\n\t"
246 "cmp %%g7, %%g1\n\t"
247 "membar #StoreLoad | #StoreStore\n\t"
248 "bne,pn %%xcc, 1b\n\t"
249 " nop"
250 : /* no outputs */
251 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
252 : "g1", "g7");
255 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
257 unsigned long mask = (1UL << PG_dcache_dirty);
259 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
260 "1:\n\t"
261 "ldx [%2], %%g7\n\t"
262 "srlx %%g7, %4, %%g1\n\t"
263 "and %%g1, %3, %%g1\n\t"
264 "cmp %%g1, %0\n\t"
265 "bne,pn %%icc, 2f\n\t"
266 " andn %%g7, %1, %%g1\n\t"
267 "casx [%2], %%g7, %%g1\n\t"
268 "cmp %%g7, %%g1\n\t"
269 "membar #StoreLoad | #StoreStore\n\t"
270 "bne,pn %%xcc, 1b\n\t"
271 " nop\n"
272 "2:"
273 : /* no outputs */
274 : "r" (cpu), "r" (mask), "r" (&page->flags),
275 "i" (PG_dcache_cpu_mask),
276 "i" (PG_dcache_cpu_shift)
277 : "g1", "g7");
280 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
282 unsigned long tsb_addr = (unsigned long) ent;
284 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
285 tsb_addr = __pa(tsb_addr);
287 __tsb_insert(tsb_addr, tag, pte);
290 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
291 unsigned long _PAGE_SZBITS __read_mostly;
293 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
295 struct mm_struct *mm;
296 struct tsb *tsb;
297 unsigned long tag, flags;
298 unsigned long tsb_index, tsb_hash_shift;
300 if (tlb_type != hypervisor) {
301 unsigned long pfn = pte_pfn(pte);
302 unsigned long pg_flags;
303 struct page *page;
305 if (pfn_valid(pfn) &&
306 (page = pfn_to_page(pfn), page_mapping(page)) &&
307 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
308 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
309 PG_dcache_cpu_mask);
310 int this_cpu = get_cpu();
312 /* This is just to optimize away some function calls
313 * in the SMP case.
315 if (cpu == this_cpu)
316 flush_dcache_page_impl(page);
317 else
318 smp_flush_dcache_page_impl(page, cpu);
320 clear_dcache_dirty_cpu(page, cpu);
322 put_cpu();
326 mm = vma->vm_mm;
328 tsb_index = MM_TSB_BASE;
329 tsb_hash_shift = PAGE_SHIFT;
331 spin_lock_irqsave(&mm->context.lock, flags);
333 #ifdef CONFIG_HUGETLB_PAGE
334 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
335 if ((tlb_type == hypervisor &&
336 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
337 (tlb_type != hypervisor &&
338 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
339 tsb_index = MM_TSB_HUGE;
340 tsb_hash_shift = HPAGE_SHIFT;
343 #endif
345 tsb = mm->context.tsb_block[tsb_index].tsb;
346 tsb += ((address >> tsb_hash_shift) &
347 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
348 tag = (address >> 22UL);
349 tsb_insert(tsb, tag, pte_val(pte));
351 spin_unlock_irqrestore(&mm->context.lock, flags);
354 void flush_dcache_page(struct page *page)
356 struct address_space *mapping;
357 int this_cpu;
359 if (tlb_type == hypervisor)
360 return;
362 /* Do not bother with the expensive D-cache flush if it
363 * is merely the zero page. The 'bigcore' testcase in GDB
364 * causes this case to run millions of times.
366 if (page == ZERO_PAGE(0))
367 return;
369 this_cpu = get_cpu();
371 mapping = page_mapping(page);
372 if (mapping && !mapping_mapped(mapping)) {
373 int dirty = test_bit(PG_dcache_dirty, &page->flags);
374 if (dirty) {
375 int dirty_cpu = dcache_dirty_cpu(page);
377 if (dirty_cpu == this_cpu)
378 goto out;
379 smp_flush_dcache_page_impl(page, dirty_cpu);
381 set_dcache_dirty(page, this_cpu);
382 } else {
383 /* We could delay the flush for the !page_mapping
384 * case too. But that case is for exec env/arg
385 * pages and those are %99 certainly going to get
386 * faulted into the tlb (and thus flushed) anyways.
388 flush_dcache_page_impl(page);
391 out:
392 put_cpu();
395 struct linux_prom_translation {
396 unsigned long virt;
397 unsigned long size;
398 unsigned long data;
401 /* Exported for kernel TLB miss handling in ktlb.S */
402 struct linux_prom_translation prom_trans[512] __read_mostly;
403 unsigned int prom_trans_ents __read_mostly;
406 * Translate PROM's mapping we capture at boot time into physical address.
407 * The second parameter is only set from prom_callback() invocations.
409 static unsigned long prom_virt_to_phys(unsigned long promva)
411 unsigned long mask;
412 int i;
414 mask = _PAGE_PADDR_4U;
415 if (tlb_type == hypervisor)
416 mask = _PAGE_PADDR_4V;
418 for (i = 0; i < prom_trans_ents; i++) {
419 struct linux_prom_translation *p = &prom_trans[i];
421 if (promva >= p->virt &&
422 promva < (p->virt + p->size)) {
423 unsigned long base = p->data & mask;
425 return base + (promva & (8192 - 1));
428 return 0UL;
431 static unsigned long kvaddr_to_phys(unsigned long addr)
433 pgd_t *pgdp;
434 pud_t *pudp;
435 pmd_t *pmdp;
436 pte_t *ptep;
437 unsigned long mask = _PAGE_PADDR_4U;
439 if (tlb_type == hypervisor)
440 mask = _PAGE_PADDR_4V;
442 if (addr >= PAGE_OFFSET)
443 return addr & mask;
445 if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
446 return prom_virt_to_phys(addr);
448 pgdp = pgd_offset_k(addr);
449 pudp = pud_offset(pgdp, addr);
450 pmdp = pmd_offset(pudp, addr);
451 ptep = pte_offset_kernel(pmdp, addr);
453 return pte_val(*ptep) & mask;
456 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
458 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
459 if (tlb_type == spitfire) {
460 unsigned long kaddr;
462 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
463 __flush_icache_page(kvaddr_to_phys(kaddr));
467 void show_mem(void)
469 printk("Mem-info:\n");
470 show_free_areas();
471 printk("Free swap: %6ldkB\n",
472 nr_swap_pages << (PAGE_SHIFT-10));
473 printk("%ld pages of RAM\n", num_physpages);
474 printk("%lu free pages\n", nr_free_pages());
477 void mmu_info(struct seq_file *m)
479 if (tlb_type == cheetah)
480 seq_printf(m, "MMU Type\t: Cheetah\n");
481 else if (tlb_type == cheetah_plus)
482 seq_printf(m, "MMU Type\t: Cheetah+\n");
483 else if (tlb_type == spitfire)
484 seq_printf(m, "MMU Type\t: Spitfire\n");
485 else if (tlb_type == hypervisor)
486 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
487 else
488 seq_printf(m, "MMU Type\t: ???\n");
490 #ifdef CONFIG_DEBUG_DCFLUSH
491 seq_printf(m, "DCPageFlushes\t: %d\n",
492 atomic_read(&dcpage_flushes));
493 #ifdef CONFIG_SMP
494 seq_printf(m, "DCPageFlushesXC\t: %d\n",
495 atomic_read(&dcpage_flushes_xcall));
496 #endif /* CONFIG_SMP */
497 #endif /* CONFIG_DEBUG_DCFLUSH */
500 /* Exported for SMP bootup purposes. */
501 unsigned long kern_locked_tte_data;
503 /* The obp translations are saved based on 8k pagesize, since obp can
504 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
505 * HI_OBP_ADDRESS range are handled in ktlb.S.
507 static inline int in_obp_range(unsigned long vaddr)
509 return (vaddr >= LOW_OBP_ADDRESS &&
510 vaddr < HI_OBP_ADDRESS);
513 static int cmp_ptrans(const void *a, const void *b)
515 const struct linux_prom_translation *x = a, *y = b;
517 if (x->virt > y->virt)
518 return 1;
519 if (x->virt < y->virt)
520 return -1;
521 return 0;
524 /* Read OBP translations property into 'prom_trans[]'. */
525 static void __init read_obp_translations(void)
527 int n, node, ents, first, last, i;
529 node = prom_finddevice("/virtual-memory");
530 n = prom_getproplen(node, "translations");
531 if (unlikely(n == 0 || n == -1)) {
532 prom_printf("prom_mappings: Couldn't get size.\n");
533 prom_halt();
535 if (unlikely(n > sizeof(prom_trans))) {
536 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
537 prom_halt();
540 if ((n = prom_getproperty(node, "translations",
541 (char *)&prom_trans[0],
542 sizeof(prom_trans))) == -1) {
543 prom_printf("prom_mappings: Couldn't get property.\n");
544 prom_halt();
547 n = n / sizeof(struct linux_prom_translation);
549 ents = n;
551 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
552 cmp_ptrans, NULL);
554 /* Now kick out all the non-OBP entries. */
555 for (i = 0; i < ents; i++) {
556 if (in_obp_range(prom_trans[i].virt))
557 break;
559 first = i;
560 for (; i < ents; i++) {
561 if (!in_obp_range(prom_trans[i].virt))
562 break;
564 last = i;
566 for (i = 0; i < (last - first); i++) {
567 struct linux_prom_translation *src = &prom_trans[i + first];
568 struct linux_prom_translation *dest = &prom_trans[i];
570 *dest = *src;
572 for (; i < ents; i++) {
573 struct linux_prom_translation *dest = &prom_trans[i];
574 dest->virt = dest->size = dest->data = 0x0UL;
577 prom_trans_ents = last - first;
579 if (tlb_type == spitfire) {
580 /* Clear diag TTE bits. */
581 for (i = 0; i < prom_trans_ents; i++)
582 prom_trans[i].data &= ~0x0003fe0000000000UL;
586 static void __init hypervisor_tlb_lock(unsigned long vaddr,
587 unsigned long pte,
588 unsigned long mmu)
590 register unsigned long func asm("%o5");
591 register unsigned long arg0 asm("%o0");
592 register unsigned long arg1 asm("%o1");
593 register unsigned long arg2 asm("%o2");
594 register unsigned long arg3 asm("%o3");
596 func = HV_FAST_MMU_MAP_PERM_ADDR;
597 arg0 = vaddr;
598 arg1 = 0;
599 arg2 = pte;
600 arg3 = mmu;
601 __asm__ __volatile__("ta 0x80"
602 : "=&r" (func), "=&r" (arg0),
603 "=&r" (arg1), "=&r" (arg2),
604 "=&r" (arg3)
605 : "0" (func), "1" (arg0), "2" (arg1),
606 "3" (arg2), "4" (arg3));
607 if (arg0 != 0) {
608 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
609 "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
610 prom_halt();
614 static unsigned long kern_large_tte(unsigned long paddr);
616 static void __init remap_kernel(void)
618 unsigned long phys_page, tte_vaddr, tte_data;
619 int tlb_ent = sparc64_highest_locked_tlbent();
621 tte_vaddr = (unsigned long) KERNBASE;
622 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
623 tte_data = kern_large_tte(phys_page);
625 kern_locked_tte_data = tte_data;
627 /* Now lock us into the TLBs via Hypervisor or OBP. */
628 if (tlb_type == hypervisor) {
629 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
630 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
631 if (bigkernel) {
632 tte_vaddr += 0x400000;
633 tte_data += 0x400000;
634 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
635 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
637 } else {
638 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
639 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
640 if (bigkernel) {
641 tlb_ent -= 1;
642 prom_dtlb_load(tlb_ent,
643 tte_data + 0x400000,
644 tte_vaddr + 0x400000);
645 prom_itlb_load(tlb_ent,
646 tte_data + 0x400000,
647 tte_vaddr + 0x400000);
649 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
651 if (tlb_type == cheetah_plus) {
652 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
653 CTX_CHEETAH_PLUS_NUC);
654 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
655 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
660 static void __init inherit_prom_mappings(void)
662 read_obp_translations();
664 /* Now fixup OBP's idea about where we really are mapped. */
665 prom_printf("Remapping the kernel... ");
666 remap_kernel();
667 prom_printf("done.\n");
670 void prom_world(int enter)
672 if (!enter)
673 set_fs((mm_segment_t) { get_thread_current_ds() });
675 __asm__ __volatile__("flushw");
678 #ifdef DCACHE_ALIASING_POSSIBLE
679 void __flush_dcache_range(unsigned long start, unsigned long end)
681 unsigned long va;
683 if (tlb_type == spitfire) {
684 int n = 0;
686 for (va = start; va < end; va += 32) {
687 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
688 if (++n >= 512)
689 break;
691 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
692 start = __pa(start);
693 end = __pa(end);
694 for (va = start; va < end; va += 32)
695 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
696 "membar #Sync"
697 : /* no outputs */
698 : "r" (va),
699 "i" (ASI_DCACHE_INVALIDATE));
702 #endif /* DCACHE_ALIASING_POSSIBLE */
704 /* Caller does TLB context flushing on local CPU if necessary.
705 * The caller also ensures that CTX_VALID(mm->context) is false.
707 * We must be careful about boundary cases so that we never
708 * let the user have CTX 0 (nucleus) or we ever use a CTX
709 * version of zero (and thus NO_CONTEXT would not be caught
710 * by version mis-match tests in mmu_context.h).
712 * Always invoked with interrupts disabled.
714 void get_new_mmu_context(struct mm_struct *mm)
716 unsigned long ctx, new_ctx;
717 unsigned long orig_pgsz_bits;
718 unsigned long flags;
719 int new_version;
721 spin_lock_irqsave(&ctx_alloc_lock, flags);
722 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
723 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
724 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
725 new_version = 0;
726 if (new_ctx >= (1 << CTX_NR_BITS)) {
727 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
728 if (new_ctx >= ctx) {
729 int i;
730 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
731 CTX_FIRST_VERSION;
732 if (new_ctx == 1)
733 new_ctx = CTX_FIRST_VERSION;
735 /* Don't call memset, for 16 entries that's just
736 * plain silly...
738 mmu_context_bmap[0] = 3;
739 mmu_context_bmap[1] = 0;
740 mmu_context_bmap[2] = 0;
741 mmu_context_bmap[3] = 0;
742 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
743 mmu_context_bmap[i + 0] = 0;
744 mmu_context_bmap[i + 1] = 0;
745 mmu_context_bmap[i + 2] = 0;
746 mmu_context_bmap[i + 3] = 0;
748 new_version = 1;
749 goto out;
752 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
753 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
754 out:
755 tlb_context_cache = new_ctx;
756 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
757 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
759 if (unlikely(new_version))
760 smp_new_mmu_context_version();
763 void sparc_ultra_dump_itlb(void)
765 int slot;
767 if (tlb_type == spitfire) {
768 printk ("Contents of itlb: ");
769 for (slot = 0; slot < 14; slot++) printk (" ");
770 printk ("%2x:%016lx,%016lx\n",
772 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
773 for (slot = 1; slot < 64; slot+=3) {
774 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
775 slot,
776 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
777 slot+1,
778 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
779 slot+2,
780 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
782 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
783 printk ("Contents of itlb0:\n");
784 for (slot = 0; slot < 16; slot+=2) {
785 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
786 slot,
787 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
788 slot+1,
789 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
791 printk ("Contents of itlb2:\n");
792 for (slot = 0; slot < 128; slot+=2) {
793 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
794 slot,
795 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
796 slot+1,
797 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
802 void sparc_ultra_dump_dtlb(void)
804 int slot;
806 if (tlb_type == spitfire) {
807 printk ("Contents of dtlb: ");
808 for (slot = 0; slot < 14; slot++) printk (" ");
809 printk ("%2x:%016lx,%016lx\n", 0,
810 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
811 for (slot = 1; slot < 64; slot+=3) {
812 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
813 slot,
814 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
815 slot+1,
816 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
817 slot+2,
818 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
820 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
821 printk ("Contents of dtlb0:\n");
822 for (slot = 0; slot < 16; slot+=2) {
823 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
824 slot,
825 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
826 slot+1,
827 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
829 printk ("Contents of dtlb2:\n");
830 for (slot = 0; slot < 512; slot+=2) {
831 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
832 slot,
833 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
834 slot+1,
835 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
837 if (tlb_type == cheetah_plus) {
838 printk ("Contents of dtlb3:\n");
839 for (slot = 0; slot < 512; slot+=2) {
840 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
841 slot,
842 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
843 slot+1,
844 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
850 extern unsigned long cmdline_memory_size;
852 /* Find a free area for the bootmem map, avoiding the kernel image
853 * and the initial ramdisk.
855 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
856 unsigned long end_pfn)
858 unsigned long avoid_start, avoid_end, bootmap_size;
859 int i;
861 bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
862 bootmap_size = ALIGN(bootmap_size, sizeof(long));
864 avoid_start = avoid_end = 0;
865 #ifdef CONFIG_BLK_DEV_INITRD
866 avoid_start = initrd_start;
867 avoid_end = PAGE_ALIGN(initrd_end);
868 #endif
870 #ifdef CONFIG_DEBUG_BOOTMEM
871 prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
872 kern_base, PAGE_ALIGN(kern_base + kern_size),
873 avoid_start, avoid_end);
874 #endif
875 for (i = 0; i < pavail_ents; i++) {
876 unsigned long start, end;
878 start = pavail[i].phys_addr;
879 end = start + pavail[i].reg_size;
881 while (start < end) {
882 if (start >= kern_base &&
883 start < PAGE_ALIGN(kern_base + kern_size)) {
884 start = PAGE_ALIGN(kern_base + kern_size);
885 continue;
887 if (start >= avoid_start && start < avoid_end) {
888 start = avoid_end;
889 continue;
892 if ((end - start) < bootmap_size)
893 break;
895 if (start < kern_base &&
896 (start + bootmap_size) > kern_base) {
897 start = PAGE_ALIGN(kern_base + kern_size);
898 continue;
901 if (start < avoid_start &&
902 (start + bootmap_size) > avoid_start) {
903 start = avoid_end;
904 continue;
907 /* OK, it doesn't overlap anything, use it. */
908 #ifdef CONFIG_DEBUG_BOOTMEM
909 prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
910 start >> PAGE_SHIFT, start);
911 #endif
912 return start >> PAGE_SHIFT;
916 prom_printf("Cannot find free area for bootmap, aborting.\n");
917 prom_halt();
920 static void __init trim_pavail(unsigned long *cur_size_p,
921 unsigned long *end_of_phys_p)
923 unsigned long to_trim = *cur_size_p - cmdline_memory_size;
924 unsigned long avoid_start, avoid_end;
925 int i;
927 to_trim = PAGE_ALIGN(to_trim);
929 avoid_start = avoid_end = 0;
930 #ifdef CONFIG_BLK_DEV_INITRD
931 avoid_start = initrd_start;
932 avoid_end = PAGE_ALIGN(initrd_end);
933 #endif
935 /* Trim some pavail[] entries in order to satisfy the
936 * requested "mem=xxx" kernel command line specification.
938 * We must not trim off the kernel image area nor the
939 * initial ramdisk range (if any). Also, we must not trim
940 * any pavail[] entry down to zero in order to preserve
941 * the invariant that all pavail[] entries have a non-zero
942 * size which is assumed by all of the code in here.
944 for (i = 0; i < pavail_ents; i++) {
945 unsigned long start, end, kern_end;
946 unsigned long trim_low, trim_high, n;
948 kern_end = PAGE_ALIGN(kern_base + kern_size);
950 trim_low = start = pavail[i].phys_addr;
951 trim_high = end = start + pavail[i].reg_size;
953 if (kern_base >= start &&
954 kern_base < end) {
955 trim_low = kern_base;
956 if (kern_end >= end)
957 continue;
959 if (kern_end >= start &&
960 kern_end < end) {
961 trim_high = kern_end;
963 if (avoid_start &&
964 avoid_start >= start &&
965 avoid_start < end) {
966 if (trim_low > avoid_start)
967 trim_low = avoid_start;
968 if (avoid_end >= end)
969 continue;
971 if (avoid_end &&
972 avoid_end >= start &&
973 avoid_end < end) {
974 if (trim_high < avoid_end)
975 trim_high = avoid_end;
978 if (trim_high <= trim_low)
979 continue;
981 if (trim_low == start && trim_high == end) {
982 /* Whole chunk is available for trimming.
983 * Trim all except one page, in order to keep
984 * entry non-empty.
986 n = (end - start) - PAGE_SIZE;
987 if (n > to_trim)
988 n = to_trim;
990 if (n) {
991 pavail[i].phys_addr += n;
992 pavail[i].reg_size -= n;
993 to_trim -= n;
995 } else {
996 n = (trim_low - start);
997 if (n > to_trim)
998 n = to_trim;
1000 if (n) {
1001 pavail[i].phys_addr += n;
1002 pavail[i].reg_size -= n;
1003 to_trim -= n;
1005 if (to_trim) {
1006 n = end - trim_high;
1007 if (n > to_trim)
1008 n = to_trim;
1009 if (n) {
1010 pavail[i].reg_size -= n;
1011 to_trim -= n;
1016 if (!to_trim)
1017 break;
1020 /* Recalculate. */
1021 *cur_size_p = 0UL;
1022 for (i = 0; i < pavail_ents; i++) {
1023 *end_of_phys_p = pavail[i].phys_addr +
1024 pavail[i].reg_size;
1025 *cur_size_p += pavail[i].reg_size;
1029 static unsigned long __init bootmem_init(unsigned long *pages_avail,
1030 unsigned long phys_base)
1032 unsigned long bootmap_size, end_pfn;
1033 unsigned long end_of_phys_memory = 0UL;
1034 unsigned long bootmap_pfn, bytes_avail, size;
1035 int i;
1037 #ifdef CONFIG_DEBUG_BOOTMEM
1038 prom_printf("bootmem_init: Scan pavail, ");
1039 #endif
1041 bytes_avail = 0UL;
1042 for (i = 0; i < pavail_ents; i++) {
1043 end_of_phys_memory = pavail[i].phys_addr +
1044 pavail[i].reg_size;
1045 bytes_avail += pavail[i].reg_size;
1048 /* Determine the location of the initial ramdisk before trying
1049 * to honor the "mem=xxx" command line argument. We must know
1050 * where the kernel image and the ramdisk image are so that we
1051 * do not trim those two areas from the physical memory map.
1054 #ifdef CONFIG_BLK_DEV_INITRD
1055 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1056 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
1057 unsigned long ramdisk_image = sparc_ramdisk_image ?
1058 sparc_ramdisk_image : sparc_ramdisk_image64;
1059 ramdisk_image -= KERNBASE;
1060 initrd_start = ramdisk_image + phys_base;
1061 initrd_end = initrd_start + sparc_ramdisk_size;
1062 if (initrd_end > end_of_phys_memory) {
1063 printk(KERN_CRIT "initrd extends beyond end of memory "
1064 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1065 initrd_end, end_of_phys_memory);
1066 initrd_start = 0;
1067 initrd_end = 0;
1070 #endif
1072 if (cmdline_memory_size &&
1073 bytes_avail > cmdline_memory_size)
1074 trim_pavail(&bytes_avail,
1075 &end_of_phys_memory);
1077 *pages_avail = bytes_avail >> PAGE_SHIFT;
1079 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1081 /* Initialize the boot-time allocator. */
1082 max_pfn = max_low_pfn = end_pfn;
1083 min_low_pfn = (phys_base >> PAGE_SHIFT);
1085 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
1087 #ifdef CONFIG_DEBUG_BOOTMEM
1088 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1089 min_low_pfn, bootmap_pfn, max_low_pfn);
1090 #endif
1091 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
1092 min_low_pfn, end_pfn);
1094 /* Now register the available physical memory with the
1095 * allocator.
1097 for (i = 0; i < pavail_ents; i++) {
1098 #ifdef CONFIG_DEBUG_BOOTMEM
1099 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1100 i, pavail[i].phys_addr, pavail[i].reg_size);
1101 #endif
1102 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
1105 #ifdef CONFIG_BLK_DEV_INITRD
1106 if (initrd_start) {
1107 size = initrd_end - initrd_start;
1109 /* Resert the initrd image area. */
1110 #ifdef CONFIG_DEBUG_BOOTMEM
1111 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1112 initrd_start, initrd_end);
1113 #endif
1114 reserve_bootmem(initrd_start, size);
1115 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1117 initrd_start += PAGE_OFFSET;
1118 initrd_end += PAGE_OFFSET;
1120 #endif
1121 /* Reserve the kernel text/data/bss. */
1122 #ifdef CONFIG_DEBUG_BOOTMEM
1123 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1124 #endif
1125 reserve_bootmem(kern_base, kern_size);
1126 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1128 /* Reserve the bootmem map. We do not account for it
1129 * in pages_avail because we will release that memory
1130 * in free_all_bootmem.
1132 size = bootmap_size;
1133 #ifdef CONFIG_DEBUG_BOOTMEM
1134 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1135 (bootmap_pfn << PAGE_SHIFT), size);
1136 #endif
1137 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1138 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1140 for (i = 0; i < pavail_ents; i++) {
1141 unsigned long start_pfn, end_pfn;
1143 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1144 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1145 #ifdef CONFIG_DEBUG_BOOTMEM
1146 prom_printf("memory_present(0, %lx, %lx)\n",
1147 start_pfn, end_pfn);
1148 #endif
1149 memory_present(0, start_pfn, end_pfn);
1152 sparse_init();
1154 return end_pfn;
1157 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1158 static int pall_ents __initdata;
1160 #ifdef CONFIG_DEBUG_PAGEALLOC
1161 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1163 unsigned long vstart = PAGE_OFFSET + pstart;
1164 unsigned long vend = PAGE_OFFSET + pend;
1165 unsigned long alloc_bytes = 0UL;
1167 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1168 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1169 vstart, vend);
1170 prom_halt();
1173 while (vstart < vend) {
1174 unsigned long this_end, paddr = __pa(vstart);
1175 pgd_t *pgd = pgd_offset_k(vstart);
1176 pud_t *pud;
1177 pmd_t *pmd;
1178 pte_t *pte;
1180 pud = pud_offset(pgd, vstart);
1181 if (pud_none(*pud)) {
1182 pmd_t *new;
1184 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1185 alloc_bytes += PAGE_SIZE;
1186 pud_populate(&init_mm, pud, new);
1189 pmd = pmd_offset(pud, vstart);
1190 if (!pmd_present(*pmd)) {
1191 pte_t *new;
1193 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1194 alloc_bytes += PAGE_SIZE;
1195 pmd_populate_kernel(&init_mm, pmd, new);
1198 pte = pte_offset_kernel(pmd, vstart);
1199 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1200 if (this_end > vend)
1201 this_end = vend;
1203 while (vstart < this_end) {
1204 pte_val(*pte) = (paddr | pgprot_val(prot));
1206 vstart += PAGE_SIZE;
1207 paddr += PAGE_SIZE;
1208 pte++;
1212 return alloc_bytes;
1215 extern unsigned int kvmap_linear_patch[1];
1216 #endif /* CONFIG_DEBUG_PAGEALLOC */
1218 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1220 const unsigned long shift_256MB = 28;
1221 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1222 const unsigned long size_256MB = (1UL << shift_256MB);
1224 while (start < end) {
1225 long remains;
1227 remains = end - start;
1228 if (remains < size_256MB)
1229 break;
1231 if (start & mask_256MB) {
1232 start = (start + size_256MB) & ~mask_256MB;
1233 continue;
1236 while (remains >= size_256MB) {
1237 unsigned long index = start >> shift_256MB;
1239 __set_bit(index, kpte_linear_bitmap);
1241 start += size_256MB;
1242 remains -= size_256MB;
1247 static void __init kernel_physical_mapping_init(void)
1249 unsigned long i;
1250 #ifdef CONFIG_DEBUG_PAGEALLOC
1251 unsigned long mem_alloced = 0UL;
1252 #endif
1254 read_obp_memory("reg", &pall[0], &pall_ents);
1256 for (i = 0; i < pall_ents; i++) {
1257 unsigned long phys_start, phys_end;
1259 phys_start = pall[i].phys_addr;
1260 phys_end = phys_start + pall[i].reg_size;
1262 mark_kpte_bitmap(phys_start, phys_end);
1264 #ifdef CONFIG_DEBUG_PAGEALLOC
1265 mem_alloced += kernel_map_range(phys_start, phys_end,
1266 PAGE_KERNEL);
1267 #endif
1270 #ifdef CONFIG_DEBUG_PAGEALLOC
1271 printk("Allocated %ld bytes for kernel page tables.\n",
1272 mem_alloced);
1274 kvmap_linear_patch[0] = 0x01000000; /* nop */
1275 flushi(&kvmap_linear_patch[0]);
1277 __flush_tlb_all();
1278 #endif
1281 #ifdef CONFIG_DEBUG_PAGEALLOC
1282 void kernel_map_pages(struct page *page, int numpages, int enable)
1284 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1285 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1287 kernel_map_range(phys_start, phys_end,
1288 (enable ? PAGE_KERNEL : __pgprot(0)));
1290 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1291 PAGE_OFFSET + phys_end);
1293 /* we should perform an IPI and flush all tlbs,
1294 * but that can deadlock->flush only current cpu.
1296 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1297 PAGE_OFFSET + phys_end);
1299 #endif
1301 unsigned long __init find_ecache_flush_span(unsigned long size)
1303 int i;
1305 for (i = 0; i < pavail_ents; i++) {
1306 if (pavail[i].reg_size >= size)
1307 return pavail[i].phys_addr;
1310 return ~0UL;
1313 static void __init tsb_phys_patch(void)
1315 struct tsb_ldquad_phys_patch_entry *pquad;
1316 struct tsb_phys_patch_entry *p;
1318 pquad = &__tsb_ldquad_phys_patch;
1319 while (pquad < &__tsb_ldquad_phys_patch_end) {
1320 unsigned long addr = pquad->addr;
1322 if (tlb_type == hypervisor)
1323 *(unsigned int *) addr = pquad->sun4v_insn;
1324 else
1325 *(unsigned int *) addr = pquad->sun4u_insn;
1326 wmb();
1327 __asm__ __volatile__("flush %0"
1328 : /* no outputs */
1329 : "r" (addr));
1331 pquad++;
1334 p = &__tsb_phys_patch;
1335 while (p < &__tsb_phys_patch_end) {
1336 unsigned long addr = p->addr;
1338 *(unsigned int *) addr = p->insn;
1339 wmb();
1340 __asm__ __volatile__("flush %0"
1341 : /* no outputs */
1342 : "r" (addr));
1344 p++;
1348 /* Don't mark as init, we give this to the Hypervisor. */
1349 #ifndef CONFIG_DEBUG_PAGEALLOC
1350 #define NUM_KTSB_DESCR 2
1351 #else
1352 #define NUM_KTSB_DESCR 1
1353 #endif
1354 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1355 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1357 static void __init sun4v_ktsb_init(void)
1359 unsigned long ktsb_pa;
1361 /* First KTSB for PAGE_SIZE mappings. */
1362 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1364 switch (PAGE_SIZE) {
1365 case 8 * 1024:
1366 default:
1367 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1368 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1369 break;
1371 case 64 * 1024:
1372 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1373 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1374 break;
1376 case 512 * 1024:
1377 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1378 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1379 break;
1381 case 4 * 1024 * 1024:
1382 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1383 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1384 break;
1387 ktsb_descr[0].assoc = 1;
1388 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1389 ktsb_descr[0].ctx_idx = 0;
1390 ktsb_descr[0].tsb_base = ktsb_pa;
1391 ktsb_descr[0].resv = 0;
1393 #ifndef CONFIG_DEBUG_PAGEALLOC
1394 /* Second KTSB for 4MB/256MB mappings. */
1395 ktsb_pa = (kern_base +
1396 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1398 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1399 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1400 HV_PGSZ_MASK_256MB);
1401 ktsb_descr[1].assoc = 1;
1402 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1403 ktsb_descr[1].ctx_idx = 0;
1404 ktsb_descr[1].tsb_base = ktsb_pa;
1405 ktsb_descr[1].resv = 0;
1406 #endif
1409 void __cpuinit sun4v_ktsb_register(void)
1411 register unsigned long func asm("%o5");
1412 register unsigned long arg0 asm("%o0");
1413 register unsigned long arg1 asm("%o1");
1414 unsigned long pa;
1416 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1418 func = HV_FAST_MMU_TSB_CTX0;
1419 arg0 = NUM_KTSB_DESCR;
1420 arg1 = pa;
1421 __asm__ __volatile__("ta %6"
1422 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1423 : "0" (func), "1" (arg0), "2" (arg1),
1424 "i" (HV_FAST_TRAP));
1427 /* paging_init() sets up the page tables */
1429 extern void cheetah_ecache_flush_init(void);
1430 extern void sun4v_patch_tlb_handlers(void);
1432 static unsigned long last_valid_pfn;
1433 pgd_t swapper_pg_dir[2048];
1435 static void sun4u_pgprot_init(void);
1436 static void sun4v_pgprot_init(void);
1438 void __init paging_init(void)
1440 unsigned long end_pfn, pages_avail, shift, phys_base;
1441 unsigned long real_end, i;
1443 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1444 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1446 /* Invalidate both kernel TSBs. */
1447 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1448 #ifndef CONFIG_DEBUG_PAGEALLOC
1449 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1450 #endif
1452 if (tlb_type == hypervisor)
1453 sun4v_pgprot_init();
1454 else
1455 sun4u_pgprot_init();
1457 if (tlb_type == cheetah_plus ||
1458 tlb_type == hypervisor)
1459 tsb_phys_patch();
1461 if (tlb_type == hypervisor) {
1462 sun4v_patch_tlb_handlers();
1463 sun4v_ktsb_init();
1466 /* Find available physical memory... */
1467 read_obp_memory("available", &pavail[0], &pavail_ents);
1469 phys_base = 0xffffffffffffffffUL;
1470 for (i = 0; i < pavail_ents; i++)
1471 phys_base = min(phys_base, pavail[i].phys_addr);
1473 set_bit(0, mmu_context_bmap);
1475 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1477 real_end = (unsigned long)_end;
1478 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1479 bigkernel = 1;
1480 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1481 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1482 prom_halt();
1485 /* Set kernel pgd to upper alias so physical page computations
1486 * work.
1488 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1490 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1492 /* Now can init the kernel/bad page tables. */
1493 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1494 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1496 inherit_prom_mappings();
1498 /* Ok, we can use our TLB miss and window trap handlers safely. */
1499 setup_tba();
1501 __flush_tlb_all();
1503 if (tlb_type == hypervisor)
1504 sun4v_ktsb_register();
1506 /* Setup bootmem... */
1507 pages_avail = 0;
1508 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1510 max_mapnr = last_valid_pfn;
1512 kernel_physical_mapping_init();
1514 prom_build_devicetree();
1517 unsigned long zones_size[MAX_NR_ZONES];
1518 unsigned long zholes_size[MAX_NR_ZONES];
1519 int znum;
1521 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1522 zones_size[znum] = zholes_size[znum] = 0;
1524 zones_size[ZONE_NORMAL] = end_pfn;
1525 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1527 free_area_init_node(0, &contig_page_data, zones_size,
1528 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1529 zholes_size);
1532 device_scan();
1535 static void __init taint_real_pages(void)
1537 int i;
1539 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1541 /* Find changes discovered in the physmem available rescan and
1542 * reserve the lost portions in the bootmem maps.
1544 for (i = 0; i < pavail_ents; i++) {
1545 unsigned long old_start, old_end;
1547 old_start = pavail[i].phys_addr;
1548 old_end = old_start +
1549 pavail[i].reg_size;
1550 while (old_start < old_end) {
1551 int n;
1553 for (n = 0; n < pavail_rescan_ents; n++) {
1554 unsigned long new_start, new_end;
1556 new_start = pavail_rescan[n].phys_addr;
1557 new_end = new_start +
1558 pavail_rescan[n].reg_size;
1560 if (new_start <= old_start &&
1561 new_end >= (old_start + PAGE_SIZE)) {
1562 set_bit(old_start >> 22,
1563 sparc64_valid_addr_bitmap);
1564 goto do_next_page;
1567 reserve_bootmem(old_start, PAGE_SIZE);
1569 do_next_page:
1570 old_start += PAGE_SIZE;
1575 int __init page_in_phys_avail(unsigned long paddr)
1577 int i;
1579 paddr &= PAGE_MASK;
1581 for (i = 0; i < pavail_rescan_ents; i++) {
1582 unsigned long start, end;
1584 start = pavail_rescan[i].phys_addr;
1585 end = start + pavail_rescan[i].reg_size;
1587 if (paddr >= start && paddr < end)
1588 return 1;
1590 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1591 return 1;
1592 #ifdef CONFIG_BLK_DEV_INITRD
1593 if (paddr >= __pa(initrd_start) &&
1594 paddr < __pa(PAGE_ALIGN(initrd_end)))
1595 return 1;
1596 #endif
1598 return 0;
1601 void __init mem_init(void)
1603 unsigned long codepages, datapages, initpages;
1604 unsigned long addr, last;
1605 int i;
1607 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1608 i += 1;
1609 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1610 if (sparc64_valid_addr_bitmap == NULL) {
1611 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1612 prom_halt();
1614 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1616 addr = PAGE_OFFSET + kern_base;
1617 last = PAGE_ALIGN(kern_size) + addr;
1618 while (addr < last) {
1619 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1620 addr += PAGE_SIZE;
1623 taint_real_pages();
1625 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1627 #ifdef CONFIG_DEBUG_BOOTMEM
1628 prom_printf("mem_init: Calling free_all_bootmem().\n");
1629 #endif
1630 totalram_pages = num_physpages = free_all_bootmem() - 1;
1633 * Set up the zero page, mark it reserved, so that page count
1634 * is not manipulated when freeing the page from user ptes.
1636 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1637 if (mem_map_zero == NULL) {
1638 prom_printf("paging_init: Cannot alloc zero page.\n");
1639 prom_halt();
1641 SetPageReserved(mem_map_zero);
1643 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1644 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1645 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1646 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1647 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1648 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1650 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1651 nr_free_pages() << (PAGE_SHIFT-10),
1652 codepages << (PAGE_SHIFT-10),
1653 datapages << (PAGE_SHIFT-10),
1654 initpages << (PAGE_SHIFT-10),
1655 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1657 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1658 cheetah_ecache_flush_init();
1661 void free_initmem(void)
1663 unsigned long addr, initend;
1666 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1668 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1669 initend = (unsigned long)(__init_end) & PAGE_MASK;
1670 for (; addr < initend; addr += PAGE_SIZE) {
1671 unsigned long page;
1672 struct page *p;
1674 page = (addr +
1675 ((unsigned long) __va(kern_base)) -
1676 ((unsigned long) KERNBASE));
1677 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1678 p = virt_to_page(page);
1680 ClearPageReserved(p);
1681 init_page_count(p);
1682 __free_page(p);
1683 num_physpages++;
1684 totalram_pages++;
1688 #ifdef CONFIG_BLK_DEV_INITRD
1689 void free_initrd_mem(unsigned long start, unsigned long end)
1691 if (start < end)
1692 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1693 for (; start < end; start += PAGE_SIZE) {
1694 struct page *p = virt_to_page(start);
1696 ClearPageReserved(p);
1697 init_page_count(p);
1698 __free_page(p);
1699 num_physpages++;
1700 totalram_pages++;
1703 #endif
1705 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1706 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1707 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1708 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1709 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1710 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1712 pgprot_t PAGE_KERNEL __read_mostly;
1713 EXPORT_SYMBOL(PAGE_KERNEL);
1715 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1716 pgprot_t PAGE_COPY __read_mostly;
1718 pgprot_t PAGE_SHARED __read_mostly;
1719 EXPORT_SYMBOL(PAGE_SHARED);
1721 pgprot_t PAGE_EXEC __read_mostly;
1722 unsigned long pg_iobits __read_mostly;
1724 unsigned long _PAGE_IE __read_mostly;
1725 EXPORT_SYMBOL(_PAGE_IE);
1727 unsigned long _PAGE_E __read_mostly;
1728 EXPORT_SYMBOL(_PAGE_E);
1730 unsigned long _PAGE_CACHE __read_mostly;
1731 EXPORT_SYMBOL(_PAGE_CACHE);
1733 static void prot_init_common(unsigned long page_none,
1734 unsigned long page_shared,
1735 unsigned long page_copy,
1736 unsigned long page_readonly,
1737 unsigned long page_exec_bit)
1739 PAGE_COPY = __pgprot(page_copy);
1740 PAGE_SHARED = __pgprot(page_shared);
1742 protection_map[0x0] = __pgprot(page_none);
1743 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1744 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1745 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1746 protection_map[0x4] = __pgprot(page_readonly);
1747 protection_map[0x5] = __pgprot(page_readonly);
1748 protection_map[0x6] = __pgprot(page_copy);
1749 protection_map[0x7] = __pgprot(page_copy);
1750 protection_map[0x8] = __pgprot(page_none);
1751 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1752 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1753 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1754 protection_map[0xc] = __pgprot(page_readonly);
1755 protection_map[0xd] = __pgprot(page_readonly);
1756 protection_map[0xe] = __pgprot(page_shared);
1757 protection_map[0xf] = __pgprot(page_shared);
1760 static void __init sun4u_pgprot_init(void)
1762 unsigned long page_none, page_shared, page_copy, page_readonly;
1763 unsigned long page_exec_bit;
1765 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1766 _PAGE_CACHE_4U | _PAGE_P_4U |
1767 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1768 _PAGE_EXEC_4U);
1769 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1770 _PAGE_CACHE_4U | _PAGE_P_4U |
1771 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1772 _PAGE_EXEC_4U | _PAGE_L_4U);
1773 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1775 _PAGE_IE = _PAGE_IE_4U;
1776 _PAGE_E = _PAGE_E_4U;
1777 _PAGE_CACHE = _PAGE_CACHE_4U;
1779 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1780 __ACCESS_BITS_4U | _PAGE_E_4U);
1782 #ifdef CONFIG_DEBUG_PAGEALLOC
1783 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1784 0xfffff80000000000;
1785 #else
1786 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1787 0xfffff80000000000;
1788 #endif
1789 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1790 _PAGE_P_4U | _PAGE_W_4U);
1792 /* XXX Should use 256MB on Panther. XXX */
1793 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1795 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1796 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1797 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1798 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1801 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1802 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1803 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1804 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1805 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1806 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1807 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1809 page_exec_bit = _PAGE_EXEC_4U;
1811 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1812 page_exec_bit);
1815 static void __init sun4v_pgprot_init(void)
1817 unsigned long page_none, page_shared, page_copy, page_readonly;
1818 unsigned long page_exec_bit;
1820 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1821 _PAGE_CACHE_4V | _PAGE_P_4V |
1822 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1823 _PAGE_EXEC_4V);
1824 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1825 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1827 _PAGE_IE = _PAGE_IE_4V;
1828 _PAGE_E = _PAGE_E_4V;
1829 _PAGE_CACHE = _PAGE_CACHE_4V;
1831 #ifdef CONFIG_DEBUG_PAGEALLOC
1832 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1833 0xfffff80000000000;
1834 #else
1835 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1836 0xfffff80000000000;
1837 #endif
1838 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1839 _PAGE_P_4V | _PAGE_W_4V);
1841 #ifdef CONFIG_DEBUG_PAGEALLOC
1842 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1843 0xfffff80000000000;
1844 #else
1845 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1846 0xfffff80000000000;
1847 #endif
1848 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1849 _PAGE_P_4V | _PAGE_W_4V);
1851 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1852 __ACCESS_BITS_4V | _PAGE_E_4V);
1854 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1855 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1856 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1857 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1858 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1860 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1861 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1862 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1863 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1864 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1865 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1866 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1868 page_exec_bit = _PAGE_EXEC_4V;
1870 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1871 page_exec_bit);
1874 unsigned long pte_sz_bits(unsigned long sz)
1876 if (tlb_type == hypervisor) {
1877 switch (sz) {
1878 case 8 * 1024:
1879 default:
1880 return _PAGE_SZ8K_4V;
1881 case 64 * 1024:
1882 return _PAGE_SZ64K_4V;
1883 case 512 * 1024:
1884 return _PAGE_SZ512K_4V;
1885 case 4 * 1024 * 1024:
1886 return _PAGE_SZ4MB_4V;
1888 } else {
1889 switch (sz) {
1890 case 8 * 1024:
1891 default:
1892 return _PAGE_SZ8K_4U;
1893 case 64 * 1024:
1894 return _PAGE_SZ64K_4U;
1895 case 512 * 1024:
1896 return _PAGE_SZ512K_4U;
1897 case 4 * 1024 * 1024:
1898 return _PAGE_SZ4MB_4U;
1903 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1905 pte_t pte;
1907 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1908 pte_val(pte) |= (((unsigned long)space) << 32);
1909 pte_val(pte) |= pte_sz_bits(page_size);
1911 return pte;
1914 static unsigned long kern_large_tte(unsigned long paddr)
1916 unsigned long val;
1918 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1919 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1920 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1921 if (tlb_type == hypervisor)
1922 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1923 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1924 _PAGE_EXEC_4V | _PAGE_W_4V);
1926 return val | paddr;
1929 /* If not locked, zap it. */
1930 void __flush_tlb_all(void)
1932 unsigned long pstate;
1933 int i;
1935 __asm__ __volatile__("flushw\n\t"
1936 "rdpr %%pstate, %0\n\t"
1937 "wrpr %0, %1, %%pstate"
1938 : "=r" (pstate)
1939 : "i" (PSTATE_IE));
1940 if (tlb_type == spitfire) {
1941 for (i = 0; i < 64; i++) {
1942 /* Spitfire Errata #32 workaround */
1943 /* NOTE: Always runs on spitfire, so no
1944 * cheetah+ page size encodings.
1946 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1947 "flush %%g6"
1948 : /* No outputs */
1949 : "r" (0),
1950 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1952 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1953 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1954 "membar #Sync"
1955 : /* no outputs */
1956 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1957 spitfire_put_dtlb_data(i, 0x0UL);
1960 /* Spitfire Errata #32 workaround */
1961 /* NOTE: Always runs on spitfire, so no
1962 * cheetah+ page size encodings.
1964 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1965 "flush %%g6"
1966 : /* No outputs */
1967 : "r" (0),
1968 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1970 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1971 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1972 "membar #Sync"
1973 : /* no outputs */
1974 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1975 spitfire_put_itlb_data(i, 0x0UL);
1978 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1979 cheetah_flush_dtlb_all();
1980 cheetah_flush_itlb_all();
1982 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1983 : : "r" (pstate));
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1988 void online_page(struct page *page)
1990 ClearPageReserved(page);
1991 init_page_count(page);
1992 __free_page(page);
1993 totalram_pages++;
1994 num_physpages++;
1997 int remove_memory(u64 start, u64 size)
1999 return -EINVAL;
2002 #endif /* CONFIG_MEMORY_HOTPLUG */