mm/memcontrol.c: suppress uninitialized-var warning with older gcc's
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob61ffe712afe002dc6fbf4448a80d5dfa1c278a42
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index {
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS,
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
105 enum mem_cgroup_events_target {
106 MEM_CGROUP_TARGET_THRESH,
107 MEM_CGROUP_TARGET_SOFTLIMIT,
108 MEM_CGROUP_NTARGETS,
110 #define THRESHOLDS_EVENTS_TARGET (128)
111 #define SOFTLIMIT_EVENTS_TARGET (1024)
113 struct mem_cgroup_stat_cpu {
114 long count[MEM_CGROUP_STAT_NSTATS];
115 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116 unsigned long targets[MEM_CGROUP_NTARGETS];
120 * per-zone information in memory controller.
122 struct mem_cgroup_per_zone {
124 * spin_lock to protect the per cgroup LRU
126 struct list_head lists[NR_LRU_LISTS];
127 unsigned long count[NR_LRU_LISTS];
129 struct zone_reclaim_stat reclaim_stat;
130 struct rb_node tree_node; /* RB tree node */
131 unsigned long long usage_in_excess;/* Set to the value by which */
132 /* the soft limit is exceeded*/
133 bool on_tree;
134 struct mem_cgroup *mem; /* Back pointer, we cannot */
135 /* use container_of */
137 /* Macro for accessing counter */
138 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
140 struct mem_cgroup_per_node {
141 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
144 struct mem_cgroup_lru_info {
145 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
153 struct mem_cgroup_tree_per_zone {
154 struct rb_root rb_root;
155 spinlock_t lock;
158 struct mem_cgroup_tree_per_node {
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
162 struct mem_cgroup_tree {
163 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
166 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
168 struct mem_cgroup_threshold {
169 struct eventfd_ctx *eventfd;
170 u64 threshold;
173 /* For threshold */
174 struct mem_cgroup_threshold_ary {
175 /* An array index points to threshold just below usage. */
176 int current_threshold;
177 /* Size of entries[] */
178 unsigned int size;
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries[0];
183 struct mem_cgroup_thresholds {
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary *primary;
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
191 struct mem_cgroup_threshold_ary *spare;
194 /* for OOM */
195 struct mem_cgroup_eventfd_list {
196 struct list_head list;
197 struct eventfd_ctx *eventfd;
200 static void mem_cgroup_threshold(struct mem_cgroup *mem);
201 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
214 struct mem_cgroup {
215 struct cgroup_subsys_state css;
217 * the counter to account for memory usage
219 struct res_counter res;
221 * the counter to account for mem+swap usage.
223 struct res_counter memsw;
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
228 struct mem_cgroup_lru_info info;
230 * While reclaiming in a hierarchy, we cache the last child we
231 * reclaimed from.
233 int last_scanned_child;
235 * Should the accounting and control be hierarchical, per subtree?
237 bool use_hierarchy;
238 atomic_t oom_lock;
239 atomic_t refcnt;
241 unsigned int swappiness;
242 /* OOM-Killer disable */
243 int oom_kill_disable;
245 /* set when res.limit == memsw.limit */
246 bool memsw_is_minimum;
248 /* protect arrays of thresholds */
249 struct mutex thresholds_lock;
251 /* thresholds for memory usage. RCU-protected */
252 struct mem_cgroup_thresholds thresholds;
254 /* thresholds for mem+swap usage. RCU-protected */
255 struct mem_cgroup_thresholds memsw_thresholds;
257 /* For oom notifier event fd */
258 struct list_head oom_notify;
261 * Should we move charges of a task when a task is moved into this
262 * mem_cgroup ? And what type of charges should we move ?
264 unsigned long move_charge_at_immigrate;
266 * percpu counter.
268 struct mem_cgroup_stat_cpu *stat;
270 * used when a cpu is offlined or other synchronizations
271 * See mem_cgroup_read_stat().
273 struct mem_cgroup_stat_cpu nocpu_base;
274 spinlock_t pcp_counter_lock;
277 /* Stuffs for move charges at task migration. */
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
282 enum move_type {
283 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
284 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
285 NR_MOVE_TYPE,
288 /* "mc" and its members are protected by cgroup_mutex */
289 static struct move_charge_struct {
290 spinlock_t lock; /* for from, to */
291 struct mem_cgroup *from;
292 struct mem_cgroup *to;
293 unsigned long precharge;
294 unsigned long moved_charge;
295 unsigned long moved_swap;
296 struct task_struct *moving_task; /* a task moving charges */
297 wait_queue_head_t waitq; /* a waitq for other context */
298 } mc = {
299 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
300 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
303 static bool move_anon(void)
305 return test_bit(MOVE_CHARGE_TYPE_ANON,
306 &mc.to->move_charge_at_immigrate);
309 static bool move_file(void)
311 return test_bit(MOVE_CHARGE_TYPE_FILE,
312 &mc.to->move_charge_at_immigrate);
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
319 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
320 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
322 enum charge_type {
323 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
324 MEM_CGROUP_CHARGE_TYPE_MAPPED,
325 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
326 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
327 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
328 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
329 NR_CHARGE_TYPE,
332 /* for encoding cft->private value on file */
333 #define _MEM (0)
334 #define _MEMSWAP (1)
335 #define _OOM_TYPE (2)
336 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
337 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
338 #define MEMFILE_ATTR(val) ((val) & 0xffff)
339 /* Used for OOM nofiier */
340 #define OOM_CONTROL (0)
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
345 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
346 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
348 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
349 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
350 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
352 static void mem_cgroup_get(struct mem_cgroup *mem);
353 static void mem_cgroup_put(struct mem_cgroup *mem);
354 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
355 static void drain_all_stock_async(void);
357 static struct mem_cgroup_per_zone *
358 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
360 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
363 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
365 return &mem->css;
368 static struct mem_cgroup_per_zone *
369 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
371 int nid = page_to_nid(page);
372 int zid = page_zonenum(page);
374 return mem_cgroup_zoneinfo(mem, nid, zid);
377 static struct mem_cgroup_tree_per_zone *
378 soft_limit_tree_node_zone(int nid, int zid)
380 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 static struct mem_cgroup_tree_per_zone *
384 soft_limit_tree_from_page(struct page *page)
386 int nid = page_to_nid(page);
387 int zid = page_zonenum(page);
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 static void
393 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
394 struct mem_cgroup_per_zone *mz,
395 struct mem_cgroup_tree_per_zone *mctz,
396 unsigned long long new_usage_in_excess)
398 struct rb_node **p = &mctz->rb_root.rb_node;
399 struct rb_node *parent = NULL;
400 struct mem_cgroup_per_zone *mz_node;
402 if (mz->on_tree)
403 return;
405 mz->usage_in_excess = new_usage_in_excess;
406 if (!mz->usage_in_excess)
407 return;
408 while (*p) {
409 parent = *p;
410 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
411 tree_node);
412 if (mz->usage_in_excess < mz_node->usage_in_excess)
413 p = &(*p)->rb_left;
415 * We can't avoid mem cgroups that are over their soft
416 * limit by the same amount
418 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
419 p = &(*p)->rb_right;
421 rb_link_node(&mz->tree_node, parent, p);
422 rb_insert_color(&mz->tree_node, &mctz->rb_root);
423 mz->on_tree = true;
426 static void
427 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
428 struct mem_cgroup_per_zone *mz,
429 struct mem_cgroup_tree_per_zone *mctz)
431 if (!mz->on_tree)
432 return;
433 rb_erase(&mz->tree_node, &mctz->rb_root);
434 mz->on_tree = false;
437 static void
438 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 struct mem_cgroup_per_zone *mz,
440 struct mem_cgroup_tree_per_zone *mctz)
442 spin_lock(&mctz->lock);
443 __mem_cgroup_remove_exceeded(mem, mz, mctz);
444 spin_unlock(&mctz->lock);
448 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
450 unsigned long long excess;
451 struct mem_cgroup_per_zone *mz;
452 struct mem_cgroup_tree_per_zone *mctz;
453 int nid = page_to_nid(page);
454 int zid = page_zonenum(page);
455 mctz = soft_limit_tree_from_page(page);
458 * Necessary to update all ancestors when hierarchy is used.
459 * because their event counter is not touched.
461 for (; mem; mem = parent_mem_cgroup(mem)) {
462 mz = mem_cgroup_zoneinfo(mem, nid, zid);
463 excess = res_counter_soft_limit_excess(&mem->res);
465 * We have to update the tree if mz is on RB-tree or
466 * mem is over its softlimit.
468 if (excess || mz->on_tree) {
469 spin_lock(&mctz->lock);
470 /* if on-tree, remove it */
471 if (mz->on_tree)
472 __mem_cgroup_remove_exceeded(mem, mz, mctz);
474 * Insert again. mz->usage_in_excess will be updated.
475 * If excess is 0, no tree ops.
477 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
478 spin_unlock(&mctz->lock);
483 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
485 int node, zone;
486 struct mem_cgroup_per_zone *mz;
487 struct mem_cgroup_tree_per_zone *mctz;
489 for_each_node_state(node, N_POSSIBLE) {
490 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
491 mz = mem_cgroup_zoneinfo(mem, node, zone);
492 mctz = soft_limit_tree_node_zone(node, zone);
493 mem_cgroup_remove_exceeded(mem, mz, mctz);
498 static struct mem_cgroup_per_zone *
499 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
501 struct rb_node *rightmost = NULL;
502 struct mem_cgroup_per_zone *mz;
504 retry:
505 mz = NULL;
506 rightmost = rb_last(&mctz->rb_root);
507 if (!rightmost)
508 goto done; /* Nothing to reclaim from */
510 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
512 * Remove the node now but someone else can add it back,
513 * we will to add it back at the end of reclaim to its correct
514 * position in the tree.
516 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
517 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
518 !css_tryget(&mz->mem->css))
519 goto retry;
520 done:
521 return mz;
524 static struct mem_cgroup_per_zone *
525 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
527 struct mem_cgroup_per_zone *mz;
529 spin_lock(&mctz->lock);
530 mz = __mem_cgroup_largest_soft_limit_node(mctz);
531 spin_unlock(&mctz->lock);
532 return mz;
536 * Implementation Note: reading percpu statistics for memcg.
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
552 * implemented.
554 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
555 enum mem_cgroup_stat_index idx)
557 long val = 0;
558 int cpu;
560 get_online_cpus();
561 for_each_online_cpu(cpu)
562 val += per_cpu(mem->stat->count[idx], cpu);
563 #ifdef CONFIG_HOTPLUG_CPU
564 spin_lock(&mem->pcp_counter_lock);
565 val += mem->nocpu_base.count[idx];
566 spin_unlock(&mem->pcp_counter_lock);
567 #endif
568 put_online_cpus();
569 return val;
572 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
574 long ret;
576 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
577 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
578 return ret;
581 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
582 bool charge)
584 int val = (charge) ? 1 : -1;
585 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
589 enum mem_cgroup_events_index idx)
591 unsigned long val = 0;
592 int cpu;
594 for_each_online_cpu(cpu)
595 val += per_cpu(mem->stat->events[idx], cpu);
596 #ifdef CONFIG_HOTPLUG_CPU
597 spin_lock(&mem->pcp_counter_lock);
598 val += mem->nocpu_base.events[idx];
599 spin_unlock(&mem->pcp_counter_lock);
600 #endif
601 return val;
604 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
605 bool file, int nr_pages)
607 preempt_disable();
609 if (file)
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
611 else
612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
622 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
624 preempt_enable();
627 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
628 enum lru_list idx)
630 int nid, zid;
631 struct mem_cgroup_per_zone *mz;
632 u64 total = 0;
634 for_each_online_node(nid)
635 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
636 mz = mem_cgroup_zoneinfo(mem, nid, zid);
637 total += MEM_CGROUP_ZSTAT(mz, idx);
639 return total;
642 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
644 unsigned long val, next;
646 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
647 next = this_cpu_read(mem->stat->targets[target]);
648 /* from time_after() in jiffies.h */
649 return ((long)next - (long)val < 0);
652 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
654 unsigned long val, next;
656 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
658 switch (target) {
659 case MEM_CGROUP_TARGET_THRESH:
660 next = val + THRESHOLDS_EVENTS_TARGET;
661 break;
662 case MEM_CGROUP_TARGET_SOFTLIMIT:
663 next = val + SOFTLIMIT_EVENTS_TARGET;
664 break;
665 default:
666 return;
669 this_cpu_write(mem->stat->targets[target], next);
673 * Check events in order.
676 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
678 /* threshold event is triggered in finer grain than soft limit */
679 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
680 mem_cgroup_threshold(mem);
681 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
682 if (unlikely(__memcg_event_check(mem,
683 MEM_CGROUP_TARGET_SOFTLIMIT))){
684 mem_cgroup_update_tree(mem, page);
685 __mem_cgroup_target_update(mem,
686 MEM_CGROUP_TARGET_SOFTLIMIT);
691 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
693 return container_of(cgroup_subsys_state(cont,
694 mem_cgroup_subsys_id), struct mem_cgroup,
695 css);
698 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
701 * mm_update_next_owner() may clear mm->owner to NULL
702 * if it races with swapoff, page migration, etc.
703 * So this can be called with p == NULL.
705 if (unlikely(!p))
706 return NULL;
708 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
709 struct mem_cgroup, css);
712 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
714 struct mem_cgroup *mem = NULL;
716 if (!mm)
717 return NULL;
719 * Because we have no locks, mm->owner's may be being moved to other
720 * cgroup. We use css_tryget() here even if this looks
721 * pessimistic (rather than adding locks here).
723 rcu_read_lock();
724 do {
725 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
726 if (unlikely(!mem))
727 break;
728 } while (!css_tryget(&mem->css));
729 rcu_read_unlock();
730 return mem;
733 /* The caller has to guarantee "mem" exists before calling this */
734 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
736 struct cgroup_subsys_state *css;
737 int found;
739 if (!mem) /* ROOT cgroup has the smallest ID */
740 return root_mem_cgroup; /*css_put/get against root is ignored*/
741 if (!mem->use_hierarchy) {
742 if (css_tryget(&mem->css))
743 return mem;
744 return NULL;
746 rcu_read_lock();
748 * searching a memory cgroup which has the smallest ID under given
749 * ROOT cgroup. (ID >= 1)
751 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
752 if (css && css_tryget(css))
753 mem = container_of(css, struct mem_cgroup, css);
754 else
755 mem = NULL;
756 rcu_read_unlock();
757 return mem;
760 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
761 struct mem_cgroup *root,
762 bool cond)
764 int nextid = css_id(&iter->css) + 1;
765 int found;
766 int hierarchy_used;
767 struct cgroup_subsys_state *css;
769 hierarchy_used = iter->use_hierarchy;
771 css_put(&iter->css);
772 /* If no ROOT, walk all, ignore hierarchy */
773 if (!cond || (root && !hierarchy_used))
774 return NULL;
776 if (!root)
777 root = root_mem_cgroup;
779 do {
780 iter = NULL;
781 rcu_read_lock();
783 css = css_get_next(&mem_cgroup_subsys, nextid,
784 &root->css, &found);
785 if (css && css_tryget(css))
786 iter = container_of(css, struct mem_cgroup, css);
787 rcu_read_unlock();
788 /* If css is NULL, no more cgroups will be found */
789 nextid = found + 1;
790 } while (css && !iter);
792 return iter;
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
799 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
800 for (iter = mem_cgroup_start_loop(root);\
801 iter != NULL;\
802 iter = mem_cgroup_get_next(iter, root, cond))
804 #define for_each_mem_cgroup_tree(iter, root) \
805 for_each_mem_cgroup_tree_cond(iter, root, true)
807 #define for_each_mem_cgroup_all(iter) \
808 for_each_mem_cgroup_tree_cond(iter, NULL, true)
811 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
813 return (mem == root_mem_cgroup);
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
821 * Changes to pc->mem_cgroup happens when
822 * 1. charge
823 * 2. moving account
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
830 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
832 struct page_cgroup *pc;
833 struct mem_cgroup_per_zone *mz;
835 if (mem_cgroup_disabled())
836 return;
837 pc = lookup_page_cgroup(page);
838 /* can happen while we handle swapcache. */
839 if (!TestClearPageCgroupAcctLRU(pc))
840 return;
841 VM_BUG_ON(!pc->mem_cgroup);
843 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844 * removed from global LRU.
846 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
847 /* huge page split is done under lru_lock. so, we have no races. */
848 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
849 if (mem_cgroup_is_root(pc->mem_cgroup))
850 return;
851 VM_BUG_ON(list_empty(&pc->lru));
852 list_del_init(&pc->lru);
855 void mem_cgroup_del_lru(struct page *page)
857 mem_cgroup_del_lru_list(page, page_lru(page));
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim. If it still appears to be reclaimable, move it to the tail of the
863 * inactive list.
865 void mem_cgroup_rotate_reclaimable_page(struct page *page)
867 struct mem_cgroup_per_zone *mz;
868 struct page_cgroup *pc;
869 enum lru_list lru = page_lru(page);
871 if (mem_cgroup_disabled())
872 return;
874 pc = lookup_page_cgroup(page);
875 /* unused or root page is not rotated. */
876 if (!PageCgroupUsed(pc))
877 return;
878 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
879 smp_rmb();
880 if (mem_cgroup_is_root(pc->mem_cgroup))
881 return;
882 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
883 list_move_tail(&pc->lru, &mz->lists[lru]);
886 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
888 struct mem_cgroup_per_zone *mz;
889 struct page_cgroup *pc;
891 if (mem_cgroup_disabled())
892 return;
894 pc = lookup_page_cgroup(page);
895 /* unused or root page is not rotated. */
896 if (!PageCgroupUsed(pc))
897 return;
898 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
899 smp_rmb();
900 if (mem_cgroup_is_root(pc->mem_cgroup))
901 return;
902 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
903 list_move(&pc->lru, &mz->lists[lru]);
906 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
908 struct page_cgroup *pc;
909 struct mem_cgroup_per_zone *mz;
911 if (mem_cgroup_disabled())
912 return;
913 pc = lookup_page_cgroup(page);
914 VM_BUG_ON(PageCgroupAcctLRU(pc));
915 if (!PageCgroupUsed(pc))
916 return;
917 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
918 smp_rmb();
919 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
920 /* huge page split is done under lru_lock. so, we have no races. */
921 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
922 SetPageCgroupAcctLRU(pc);
923 if (mem_cgroup_is_root(pc->mem_cgroup))
924 return;
925 list_add(&pc->lru, &mz->lists[lru]);
929 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
930 * lru because the page may.be reused after it's fully uncharged (because of
931 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
932 * it again. This function is only used to charge SwapCache. It's done under
933 * lock_page and expected that zone->lru_lock is never held.
935 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
937 unsigned long flags;
938 struct zone *zone = page_zone(page);
939 struct page_cgroup *pc = lookup_page_cgroup(page);
941 spin_lock_irqsave(&zone->lru_lock, flags);
943 * Forget old LRU when this page_cgroup is *not* used. This Used bit
944 * is guarded by lock_page() because the page is SwapCache.
946 if (!PageCgroupUsed(pc))
947 mem_cgroup_del_lru_list(page, page_lru(page));
948 spin_unlock_irqrestore(&zone->lru_lock, flags);
951 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
953 unsigned long flags;
954 struct zone *zone = page_zone(page);
955 struct page_cgroup *pc = lookup_page_cgroup(page);
957 spin_lock_irqsave(&zone->lru_lock, flags);
958 /* link when the page is linked to LRU but page_cgroup isn't */
959 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
960 mem_cgroup_add_lru_list(page, page_lru(page));
961 spin_unlock_irqrestore(&zone->lru_lock, flags);
965 void mem_cgroup_move_lists(struct page *page,
966 enum lru_list from, enum lru_list to)
968 if (mem_cgroup_disabled())
969 return;
970 mem_cgroup_del_lru_list(page, from);
971 mem_cgroup_add_lru_list(page, to);
974 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
976 int ret;
977 struct mem_cgroup *curr = NULL;
978 struct task_struct *p;
980 p = find_lock_task_mm(task);
981 if (!p)
982 return 0;
983 curr = try_get_mem_cgroup_from_mm(p->mm);
984 task_unlock(p);
985 if (!curr)
986 return 0;
988 * We should check use_hierarchy of "mem" not "curr". Because checking
989 * use_hierarchy of "curr" here make this function true if hierarchy is
990 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
991 * hierarchy(even if use_hierarchy is disabled in "mem").
993 if (mem->use_hierarchy)
994 ret = css_is_ancestor(&curr->css, &mem->css);
995 else
996 ret = (curr == mem);
997 css_put(&curr->css);
998 return ret;
1001 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1003 unsigned long active;
1004 unsigned long inactive;
1005 unsigned long gb;
1006 unsigned long inactive_ratio;
1008 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1009 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1011 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1012 if (gb)
1013 inactive_ratio = int_sqrt(10 * gb);
1014 else
1015 inactive_ratio = 1;
1017 if (present_pages) {
1018 present_pages[0] = inactive;
1019 present_pages[1] = active;
1022 return inactive_ratio;
1025 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1027 unsigned long active;
1028 unsigned long inactive;
1029 unsigned long present_pages[2];
1030 unsigned long inactive_ratio;
1032 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1034 inactive = present_pages[0];
1035 active = present_pages[1];
1037 if (inactive * inactive_ratio < active)
1038 return 1;
1040 return 0;
1043 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1045 unsigned long active;
1046 unsigned long inactive;
1048 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1049 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1051 return (active > inactive);
1054 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1055 struct zone *zone,
1056 enum lru_list lru)
1058 int nid = zone_to_nid(zone);
1059 int zid = zone_idx(zone);
1060 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1062 return MEM_CGROUP_ZSTAT(mz, lru);
1065 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1066 struct zone *zone)
1068 int nid = zone_to_nid(zone);
1069 int zid = zone_idx(zone);
1070 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1072 return &mz->reclaim_stat;
1075 struct zone_reclaim_stat *
1076 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1078 struct page_cgroup *pc;
1079 struct mem_cgroup_per_zone *mz;
1081 if (mem_cgroup_disabled())
1082 return NULL;
1084 pc = lookup_page_cgroup(page);
1085 if (!PageCgroupUsed(pc))
1086 return NULL;
1087 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1088 smp_rmb();
1089 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1090 return &mz->reclaim_stat;
1093 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1094 struct list_head *dst,
1095 unsigned long *scanned, int order,
1096 int mode, struct zone *z,
1097 struct mem_cgroup *mem_cont,
1098 int active, int file)
1100 unsigned long nr_taken = 0;
1101 struct page *page;
1102 unsigned long scan;
1103 LIST_HEAD(pc_list);
1104 struct list_head *src;
1105 struct page_cgroup *pc, *tmp;
1106 int nid = zone_to_nid(z);
1107 int zid = zone_idx(z);
1108 struct mem_cgroup_per_zone *mz;
1109 int lru = LRU_FILE * file + active;
1110 int ret;
1112 BUG_ON(!mem_cont);
1113 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1114 src = &mz->lists[lru];
1116 scan = 0;
1117 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1118 if (scan >= nr_to_scan)
1119 break;
1121 if (unlikely(!PageCgroupUsed(pc)))
1122 continue;
1124 page = lookup_cgroup_page(pc);
1126 if (unlikely(!PageLRU(page)))
1127 continue;
1129 scan++;
1130 ret = __isolate_lru_page(page, mode, file);
1131 switch (ret) {
1132 case 0:
1133 list_move(&page->lru, dst);
1134 mem_cgroup_del_lru(page);
1135 nr_taken += hpage_nr_pages(page);
1136 break;
1137 case -EBUSY:
1138 /* we don't affect global LRU but rotate in our LRU */
1139 mem_cgroup_rotate_lru_list(page, page_lru(page));
1140 break;
1141 default:
1142 break;
1146 *scanned = scan;
1148 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1149 0, 0, 0, mode);
1151 return nr_taken;
1154 #define mem_cgroup_from_res_counter(counter, member) \
1155 container_of(counter, struct mem_cgroup, member)
1158 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1159 * @mem: the memory cgroup
1161 * Returns the maximum amount of memory @mem can be charged with, in
1162 * pages.
1164 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1166 unsigned long long margin;
1168 margin = res_counter_margin(&mem->res);
1169 if (do_swap_account)
1170 margin = min(margin, res_counter_margin(&mem->memsw));
1171 return margin >> PAGE_SHIFT;
1174 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1176 struct cgroup *cgrp = memcg->css.cgroup;
1178 /* root ? */
1179 if (cgrp->parent == NULL)
1180 return vm_swappiness;
1182 return memcg->swappiness;
1185 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1187 int cpu;
1189 get_online_cpus();
1190 spin_lock(&mem->pcp_counter_lock);
1191 for_each_online_cpu(cpu)
1192 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1193 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1194 spin_unlock(&mem->pcp_counter_lock);
1195 put_online_cpus();
1197 synchronize_rcu();
1200 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1202 int cpu;
1204 if (!mem)
1205 return;
1206 get_online_cpus();
1207 spin_lock(&mem->pcp_counter_lock);
1208 for_each_online_cpu(cpu)
1209 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1210 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1211 spin_unlock(&mem->pcp_counter_lock);
1212 put_online_cpus();
1215 * 2 routines for checking "mem" is under move_account() or not.
1217 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1218 * for avoiding race in accounting. If true,
1219 * pc->mem_cgroup may be overwritten.
1221 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1222 * under hierarchy of moving cgroups. This is for
1223 * waiting at hith-memory prressure caused by "move".
1226 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1228 VM_BUG_ON(!rcu_read_lock_held());
1229 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1232 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1234 struct mem_cgroup *from;
1235 struct mem_cgroup *to;
1236 bool ret = false;
1238 * Unlike task_move routines, we access mc.to, mc.from not under
1239 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1241 spin_lock(&mc.lock);
1242 from = mc.from;
1243 to = mc.to;
1244 if (!from)
1245 goto unlock;
1246 if (from == mem || to == mem
1247 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1248 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1249 ret = true;
1250 unlock:
1251 spin_unlock(&mc.lock);
1252 return ret;
1255 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1257 if (mc.moving_task && current != mc.moving_task) {
1258 if (mem_cgroup_under_move(mem)) {
1259 DEFINE_WAIT(wait);
1260 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1261 /* moving charge context might have finished. */
1262 if (mc.moving_task)
1263 schedule();
1264 finish_wait(&mc.waitq, &wait);
1265 return true;
1268 return false;
1272 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1273 * @memcg: The memory cgroup that went over limit
1274 * @p: Task that is going to be killed
1276 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1277 * enabled
1279 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1281 struct cgroup *task_cgrp;
1282 struct cgroup *mem_cgrp;
1284 * Need a buffer in BSS, can't rely on allocations. The code relies
1285 * on the assumption that OOM is serialized for memory controller.
1286 * If this assumption is broken, revisit this code.
1288 static char memcg_name[PATH_MAX];
1289 int ret;
1291 if (!memcg || !p)
1292 return;
1295 rcu_read_lock();
1297 mem_cgrp = memcg->css.cgroup;
1298 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1300 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1301 if (ret < 0) {
1303 * Unfortunately, we are unable to convert to a useful name
1304 * But we'll still print out the usage information
1306 rcu_read_unlock();
1307 goto done;
1309 rcu_read_unlock();
1311 printk(KERN_INFO "Task in %s killed", memcg_name);
1313 rcu_read_lock();
1314 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1315 if (ret < 0) {
1316 rcu_read_unlock();
1317 goto done;
1319 rcu_read_unlock();
1322 * Continues from above, so we don't need an KERN_ level
1324 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1325 done:
1327 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1328 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1329 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1330 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1331 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1332 "failcnt %llu\n",
1333 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1334 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1335 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1339 * This function returns the number of memcg under hierarchy tree. Returns
1340 * 1(self count) if no children.
1342 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1344 int num = 0;
1345 struct mem_cgroup *iter;
1347 for_each_mem_cgroup_tree(iter, mem)
1348 num++;
1349 return num;
1353 * Return the memory (and swap, if configured) limit for a memcg.
1355 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1357 u64 limit;
1358 u64 memsw;
1360 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1361 limit += total_swap_pages << PAGE_SHIFT;
1363 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1365 * If memsw is finite and limits the amount of swap space available
1366 * to this memcg, return that limit.
1368 return min(limit, memsw);
1372 * Visit the first child (need not be the first child as per the ordering
1373 * of the cgroup list, since we track last_scanned_child) of @mem and use
1374 * that to reclaim free pages from.
1376 static struct mem_cgroup *
1377 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1379 struct mem_cgroup *ret = NULL;
1380 struct cgroup_subsys_state *css;
1381 int nextid, found;
1383 if (!root_mem->use_hierarchy) {
1384 css_get(&root_mem->css);
1385 ret = root_mem;
1388 while (!ret) {
1389 rcu_read_lock();
1390 nextid = root_mem->last_scanned_child + 1;
1391 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1392 &found);
1393 if (css && css_tryget(css))
1394 ret = container_of(css, struct mem_cgroup, css);
1396 rcu_read_unlock();
1397 /* Updates scanning parameter */
1398 if (!css) {
1399 /* this means start scan from ID:1 */
1400 root_mem->last_scanned_child = 0;
1401 } else
1402 root_mem->last_scanned_child = found;
1405 return ret;
1409 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1410 * we reclaimed from, so that we don't end up penalizing one child extensively
1411 * based on its position in the children list.
1413 * root_mem is the original ancestor that we've been reclaim from.
1415 * We give up and return to the caller when we visit root_mem twice.
1416 * (other groups can be removed while we're walking....)
1418 * If shrink==true, for avoiding to free too much, this returns immedieately.
1420 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1421 struct zone *zone,
1422 gfp_t gfp_mask,
1423 unsigned long reclaim_options)
1425 struct mem_cgroup *victim;
1426 int ret, total = 0;
1427 int loop = 0;
1428 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1429 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1430 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1431 unsigned long excess;
1433 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1435 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1436 if (root_mem->memsw_is_minimum)
1437 noswap = true;
1439 while (1) {
1440 victim = mem_cgroup_select_victim(root_mem);
1441 if (victim == root_mem) {
1442 loop++;
1443 if (loop >= 1)
1444 drain_all_stock_async();
1445 if (loop >= 2) {
1447 * If we have not been able to reclaim
1448 * anything, it might because there are
1449 * no reclaimable pages under this hierarchy
1451 if (!check_soft || !total) {
1452 css_put(&victim->css);
1453 break;
1456 * We want to do more targetted reclaim.
1457 * excess >> 2 is not to excessive so as to
1458 * reclaim too much, nor too less that we keep
1459 * coming back to reclaim from this cgroup
1461 if (total >= (excess >> 2) ||
1462 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1463 css_put(&victim->css);
1464 break;
1468 if (!mem_cgroup_local_usage(victim)) {
1469 /* this cgroup's local usage == 0 */
1470 css_put(&victim->css);
1471 continue;
1473 /* we use swappiness of local cgroup */
1474 if (check_soft)
1475 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1476 noswap, get_swappiness(victim), zone);
1477 else
1478 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1479 noswap, get_swappiness(victim));
1480 css_put(&victim->css);
1482 * At shrinking usage, we can't check we should stop here or
1483 * reclaim more. It's depends on callers. last_scanned_child
1484 * will work enough for keeping fairness under tree.
1486 if (shrink)
1487 return ret;
1488 total += ret;
1489 if (check_soft) {
1490 if (!res_counter_soft_limit_excess(&root_mem->res))
1491 return total;
1492 } else if (mem_cgroup_margin(root_mem))
1493 return 1 + total;
1495 return total;
1499 * Check OOM-Killer is already running under our hierarchy.
1500 * If someone is running, return false.
1502 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1504 int x, lock_count = 0;
1505 struct mem_cgroup *iter;
1507 for_each_mem_cgroup_tree(iter, mem) {
1508 x = atomic_inc_return(&iter->oom_lock);
1509 lock_count = max(x, lock_count);
1512 if (lock_count == 1)
1513 return true;
1514 return false;
1517 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1519 struct mem_cgroup *iter;
1522 * When a new child is created while the hierarchy is under oom,
1523 * mem_cgroup_oom_lock() may not be called. We have to use
1524 * atomic_add_unless() here.
1526 for_each_mem_cgroup_tree(iter, mem)
1527 atomic_add_unless(&iter->oom_lock, -1, 0);
1528 return 0;
1532 static DEFINE_MUTEX(memcg_oom_mutex);
1533 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1535 struct oom_wait_info {
1536 struct mem_cgroup *mem;
1537 wait_queue_t wait;
1540 static int memcg_oom_wake_function(wait_queue_t *wait,
1541 unsigned mode, int sync, void *arg)
1543 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1544 struct oom_wait_info *oom_wait_info;
1546 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1548 if (oom_wait_info->mem == wake_mem)
1549 goto wakeup;
1550 /* if no hierarchy, no match */
1551 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1552 return 0;
1554 * Both of oom_wait_info->mem and wake_mem are stable under us.
1555 * Then we can use css_is_ancestor without taking care of RCU.
1557 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1558 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1559 return 0;
1561 wakeup:
1562 return autoremove_wake_function(wait, mode, sync, arg);
1565 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1567 /* for filtering, pass "mem" as argument. */
1568 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1571 static void memcg_oom_recover(struct mem_cgroup *mem)
1573 if (mem && atomic_read(&mem->oom_lock))
1574 memcg_wakeup_oom(mem);
1578 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1580 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1582 struct oom_wait_info owait;
1583 bool locked, need_to_kill;
1585 owait.mem = mem;
1586 owait.wait.flags = 0;
1587 owait.wait.func = memcg_oom_wake_function;
1588 owait.wait.private = current;
1589 INIT_LIST_HEAD(&owait.wait.task_list);
1590 need_to_kill = true;
1591 /* At first, try to OOM lock hierarchy under mem.*/
1592 mutex_lock(&memcg_oom_mutex);
1593 locked = mem_cgroup_oom_lock(mem);
1595 * Even if signal_pending(), we can't quit charge() loop without
1596 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1597 * under OOM is always welcomed, use TASK_KILLABLE here.
1599 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1600 if (!locked || mem->oom_kill_disable)
1601 need_to_kill = false;
1602 if (locked)
1603 mem_cgroup_oom_notify(mem);
1604 mutex_unlock(&memcg_oom_mutex);
1606 if (need_to_kill) {
1607 finish_wait(&memcg_oom_waitq, &owait.wait);
1608 mem_cgroup_out_of_memory(mem, mask);
1609 } else {
1610 schedule();
1611 finish_wait(&memcg_oom_waitq, &owait.wait);
1613 mutex_lock(&memcg_oom_mutex);
1614 mem_cgroup_oom_unlock(mem);
1615 memcg_wakeup_oom(mem);
1616 mutex_unlock(&memcg_oom_mutex);
1618 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1619 return false;
1620 /* Give chance to dying process */
1621 schedule_timeout(1);
1622 return true;
1626 * Currently used to update mapped file statistics, but the routine can be
1627 * generalized to update other statistics as well.
1629 * Notes: Race condition
1631 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1632 * it tends to be costly. But considering some conditions, we doesn't need
1633 * to do so _always_.
1635 * Considering "charge", lock_page_cgroup() is not required because all
1636 * file-stat operations happen after a page is attached to radix-tree. There
1637 * are no race with "charge".
1639 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1640 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1641 * if there are race with "uncharge". Statistics itself is properly handled
1642 * by flags.
1644 * Considering "move", this is an only case we see a race. To make the race
1645 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1646 * possibility of race condition. If there is, we take a lock.
1649 void mem_cgroup_update_page_stat(struct page *page,
1650 enum mem_cgroup_page_stat_item idx, int val)
1652 struct mem_cgroup *mem;
1653 struct page_cgroup *pc = lookup_page_cgroup(page);
1654 bool need_unlock = false;
1655 unsigned long uninitialized_var(flags);
1657 if (unlikely(!pc))
1658 return;
1660 rcu_read_lock();
1661 mem = pc->mem_cgroup;
1662 if (unlikely(!mem || !PageCgroupUsed(pc)))
1663 goto out;
1664 /* pc->mem_cgroup is unstable ? */
1665 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1666 /* take a lock against to access pc->mem_cgroup */
1667 move_lock_page_cgroup(pc, &flags);
1668 need_unlock = true;
1669 mem = pc->mem_cgroup;
1670 if (!mem || !PageCgroupUsed(pc))
1671 goto out;
1674 switch (idx) {
1675 case MEMCG_NR_FILE_MAPPED:
1676 if (val > 0)
1677 SetPageCgroupFileMapped(pc);
1678 else if (!page_mapped(page))
1679 ClearPageCgroupFileMapped(pc);
1680 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1681 break;
1682 default:
1683 BUG();
1686 this_cpu_add(mem->stat->count[idx], val);
1688 out:
1689 if (unlikely(need_unlock))
1690 move_unlock_page_cgroup(pc, &flags);
1691 rcu_read_unlock();
1692 return;
1694 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1700 #define CHARGE_BATCH 32U
1701 struct memcg_stock_pcp {
1702 struct mem_cgroup *cached; /* this never be root cgroup */
1703 unsigned int nr_pages;
1704 struct work_struct work;
1706 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1707 static atomic_t memcg_drain_count;
1710 * Try to consume stocked charge on this cpu. If success, one page is consumed
1711 * from local stock and true is returned. If the stock is 0 or charges from a
1712 * cgroup which is not current target, returns false. This stock will be
1713 * refilled.
1715 static bool consume_stock(struct mem_cgroup *mem)
1717 struct memcg_stock_pcp *stock;
1718 bool ret = true;
1720 stock = &get_cpu_var(memcg_stock);
1721 if (mem == stock->cached && stock->nr_pages)
1722 stock->nr_pages--;
1723 else /* need to call res_counter_charge */
1724 ret = false;
1725 put_cpu_var(memcg_stock);
1726 return ret;
1730 * Returns stocks cached in percpu to res_counter and reset cached information.
1732 static void drain_stock(struct memcg_stock_pcp *stock)
1734 struct mem_cgroup *old = stock->cached;
1736 if (stock->nr_pages) {
1737 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1739 res_counter_uncharge(&old->res, bytes);
1740 if (do_swap_account)
1741 res_counter_uncharge(&old->memsw, bytes);
1742 stock->nr_pages = 0;
1744 stock->cached = NULL;
1748 * This must be called under preempt disabled or must be called by
1749 * a thread which is pinned to local cpu.
1751 static void drain_local_stock(struct work_struct *dummy)
1753 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1754 drain_stock(stock);
1758 * Cache charges(val) which is from res_counter, to local per_cpu area.
1759 * This will be consumed by consume_stock() function, later.
1761 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1763 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1765 if (stock->cached != mem) { /* reset if necessary */
1766 drain_stock(stock);
1767 stock->cached = mem;
1769 stock->nr_pages += nr_pages;
1770 put_cpu_var(memcg_stock);
1774 * Tries to drain stocked charges in other cpus. This function is asynchronous
1775 * and just put a work per cpu for draining localy on each cpu. Caller can
1776 * expects some charges will be back to res_counter later but cannot wait for
1777 * it.
1779 static void drain_all_stock_async(void)
1781 int cpu;
1782 /* This function is for scheduling "drain" in asynchronous way.
1783 * The result of "drain" is not directly handled by callers. Then,
1784 * if someone is calling drain, we don't have to call drain more.
1785 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1786 * there is a race. We just do loose check here.
1788 if (atomic_read(&memcg_drain_count))
1789 return;
1790 /* Notify other cpus that system-wide "drain" is running */
1791 atomic_inc(&memcg_drain_count);
1792 get_online_cpus();
1793 for_each_online_cpu(cpu) {
1794 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1795 schedule_work_on(cpu, &stock->work);
1797 put_online_cpus();
1798 atomic_dec(&memcg_drain_count);
1799 /* We don't wait for flush_work */
1802 /* This is a synchronous drain interface. */
1803 static void drain_all_stock_sync(void)
1805 /* called when force_empty is called */
1806 atomic_inc(&memcg_drain_count);
1807 schedule_on_each_cpu(drain_local_stock);
1808 atomic_dec(&memcg_drain_count);
1812 * This function drains percpu counter value from DEAD cpu and
1813 * move it to local cpu. Note that this function can be preempted.
1815 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1817 int i;
1819 spin_lock(&mem->pcp_counter_lock);
1820 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1821 long x = per_cpu(mem->stat->count[i], cpu);
1823 per_cpu(mem->stat->count[i], cpu) = 0;
1824 mem->nocpu_base.count[i] += x;
1826 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1827 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1829 per_cpu(mem->stat->events[i], cpu) = 0;
1830 mem->nocpu_base.events[i] += x;
1832 /* need to clear ON_MOVE value, works as a kind of lock. */
1833 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1834 spin_unlock(&mem->pcp_counter_lock);
1837 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1839 int idx = MEM_CGROUP_ON_MOVE;
1841 spin_lock(&mem->pcp_counter_lock);
1842 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1843 spin_unlock(&mem->pcp_counter_lock);
1846 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1847 unsigned long action,
1848 void *hcpu)
1850 int cpu = (unsigned long)hcpu;
1851 struct memcg_stock_pcp *stock;
1852 struct mem_cgroup *iter;
1854 if ((action == CPU_ONLINE)) {
1855 for_each_mem_cgroup_all(iter)
1856 synchronize_mem_cgroup_on_move(iter, cpu);
1857 return NOTIFY_OK;
1860 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1861 return NOTIFY_OK;
1863 for_each_mem_cgroup_all(iter)
1864 mem_cgroup_drain_pcp_counter(iter, cpu);
1866 stock = &per_cpu(memcg_stock, cpu);
1867 drain_stock(stock);
1868 return NOTIFY_OK;
1872 /* See __mem_cgroup_try_charge() for details */
1873 enum {
1874 CHARGE_OK, /* success */
1875 CHARGE_RETRY, /* need to retry but retry is not bad */
1876 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1877 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1878 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1881 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1882 unsigned int nr_pages, bool oom_check)
1884 unsigned long csize = nr_pages * PAGE_SIZE;
1885 struct mem_cgroup *mem_over_limit;
1886 struct res_counter *fail_res;
1887 unsigned long flags = 0;
1888 int ret;
1890 ret = res_counter_charge(&mem->res, csize, &fail_res);
1892 if (likely(!ret)) {
1893 if (!do_swap_account)
1894 return CHARGE_OK;
1895 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1896 if (likely(!ret))
1897 return CHARGE_OK;
1899 res_counter_uncharge(&mem->res, csize);
1900 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1901 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1902 } else
1903 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1905 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1906 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1908 * Never reclaim on behalf of optional batching, retry with a
1909 * single page instead.
1911 if (nr_pages == CHARGE_BATCH)
1912 return CHARGE_RETRY;
1914 if (!(gfp_mask & __GFP_WAIT))
1915 return CHARGE_WOULDBLOCK;
1917 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1918 gfp_mask, flags);
1919 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1920 return CHARGE_RETRY;
1922 * Even though the limit is exceeded at this point, reclaim
1923 * may have been able to free some pages. Retry the charge
1924 * before killing the task.
1926 * Only for regular pages, though: huge pages are rather
1927 * unlikely to succeed so close to the limit, and we fall back
1928 * to regular pages anyway in case of failure.
1930 if (nr_pages == 1 && ret)
1931 return CHARGE_RETRY;
1934 * At task move, charge accounts can be doubly counted. So, it's
1935 * better to wait until the end of task_move if something is going on.
1937 if (mem_cgroup_wait_acct_move(mem_over_limit))
1938 return CHARGE_RETRY;
1940 /* If we don't need to call oom-killer at el, return immediately */
1941 if (!oom_check)
1942 return CHARGE_NOMEM;
1943 /* check OOM */
1944 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1945 return CHARGE_OOM_DIE;
1947 return CHARGE_RETRY;
1951 * Unlike exported interface, "oom" parameter is added. if oom==true,
1952 * oom-killer can be invoked.
1954 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1955 gfp_t gfp_mask,
1956 unsigned int nr_pages,
1957 struct mem_cgroup **memcg,
1958 bool oom)
1960 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1961 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1962 struct mem_cgroup *mem = NULL;
1963 int ret;
1966 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1967 * in system level. So, allow to go ahead dying process in addition to
1968 * MEMDIE process.
1970 if (unlikely(test_thread_flag(TIF_MEMDIE)
1971 || fatal_signal_pending(current)))
1972 goto bypass;
1975 * We always charge the cgroup the mm_struct belongs to.
1976 * The mm_struct's mem_cgroup changes on task migration if the
1977 * thread group leader migrates. It's possible that mm is not
1978 * set, if so charge the init_mm (happens for pagecache usage).
1980 if (!*memcg && !mm)
1981 goto bypass;
1982 again:
1983 if (*memcg) { /* css should be a valid one */
1984 mem = *memcg;
1985 VM_BUG_ON(css_is_removed(&mem->css));
1986 if (mem_cgroup_is_root(mem))
1987 goto done;
1988 if (nr_pages == 1 && consume_stock(mem))
1989 goto done;
1990 css_get(&mem->css);
1991 } else {
1992 struct task_struct *p;
1994 rcu_read_lock();
1995 p = rcu_dereference(mm->owner);
1997 * Because we don't have task_lock(), "p" can exit.
1998 * In that case, "mem" can point to root or p can be NULL with
1999 * race with swapoff. Then, we have small risk of mis-accouning.
2000 * But such kind of mis-account by race always happens because
2001 * we don't have cgroup_mutex(). It's overkill and we allo that
2002 * small race, here.
2003 * (*) swapoff at el will charge against mm-struct not against
2004 * task-struct. So, mm->owner can be NULL.
2006 mem = mem_cgroup_from_task(p);
2007 if (!mem || mem_cgroup_is_root(mem)) {
2008 rcu_read_unlock();
2009 goto done;
2011 if (nr_pages == 1 && consume_stock(mem)) {
2013 * It seems dagerous to access memcg without css_get().
2014 * But considering how consume_stok works, it's not
2015 * necessary. If consume_stock success, some charges
2016 * from this memcg are cached on this cpu. So, we
2017 * don't need to call css_get()/css_tryget() before
2018 * calling consume_stock().
2020 rcu_read_unlock();
2021 goto done;
2023 /* after here, we may be blocked. we need to get refcnt */
2024 if (!css_tryget(&mem->css)) {
2025 rcu_read_unlock();
2026 goto again;
2028 rcu_read_unlock();
2031 do {
2032 bool oom_check;
2034 /* If killed, bypass charge */
2035 if (fatal_signal_pending(current)) {
2036 css_put(&mem->css);
2037 goto bypass;
2040 oom_check = false;
2041 if (oom && !nr_oom_retries) {
2042 oom_check = true;
2043 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2046 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2047 switch (ret) {
2048 case CHARGE_OK:
2049 break;
2050 case CHARGE_RETRY: /* not in OOM situation but retry */
2051 batch = nr_pages;
2052 css_put(&mem->css);
2053 mem = NULL;
2054 goto again;
2055 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2056 css_put(&mem->css);
2057 goto nomem;
2058 case CHARGE_NOMEM: /* OOM routine works */
2059 if (!oom) {
2060 css_put(&mem->css);
2061 goto nomem;
2063 /* If oom, we never return -ENOMEM */
2064 nr_oom_retries--;
2065 break;
2066 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2067 css_put(&mem->css);
2068 goto bypass;
2070 } while (ret != CHARGE_OK);
2072 if (batch > nr_pages)
2073 refill_stock(mem, batch - nr_pages);
2074 css_put(&mem->css);
2075 done:
2076 *memcg = mem;
2077 return 0;
2078 nomem:
2079 *memcg = NULL;
2080 return -ENOMEM;
2081 bypass:
2082 *memcg = NULL;
2083 return 0;
2087 * Somemtimes we have to undo a charge we got by try_charge().
2088 * This function is for that and do uncharge, put css's refcnt.
2089 * gotten by try_charge().
2091 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2092 unsigned int nr_pages)
2094 if (!mem_cgroup_is_root(mem)) {
2095 unsigned long bytes = nr_pages * PAGE_SIZE;
2097 res_counter_uncharge(&mem->res, bytes);
2098 if (do_swap_account)
2099 res_counter_uncharge(&mem->memsw, bytes);
2104 * A helper function to get mem_cgroup from ID. must be called under
2105 * rcu_read_lock(). The caller must check css_is_removed() or some if
2106 * it's concern. (dropping refcnt from swap can be called against removed
2107 * memcg.)
2109 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2111 struct cgroup_subsys_state *css;
2113 /* ID 0 is unused ID */
2114 if (!id)
2115 return NULL;
2116 css = css_lookup(&mem_cgroup_subsys, id);
2117 if (!css)
2118 return NULL;
2119 return container_of(css, struct mem_cgroup, css);
2122 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2124 struct mem_cgroup *mem = NULL;
2125 struct page_cgroup *pc;
2126 unsigned short id;
2127 swp_entry_t ent;
2129 VM_BUG_ON(!PageLocked(page));
2131 pc = lookup_page_cgroup(page);
2132 lock_page_cgroup(pc);
2133 if (PageCgroupUsed(pc)) {
2134 mem = pc->mem_cgroup;
2135 if (mem && !css_tryget(&mem->css))
2136 mem = NULL;
2137 } else if (PageSwapCache(page)) {
2138 ent.val = page_private(page);
2139 id = lookup_swap_cgroup(ent);
2140 rcu_read_lock();
2141 mem = mem_cgroup_lookup(id);
2142 if (mem && !css_tryget(&mem->css))
2143 mem = NULL;
2144 rcu_read_unlock();
2146 unlock_page_cgroup(pc);
2147 return mem;
2150 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2151 struct page *page,
2152 unsigned int nr_pages,
2153 struct page_cgroup *pc,
2154 enum charge_type ctype)
2156 lock_page_cgroup(pc);
2157 if (unlikely(PageCgroupUsed(pc))) {
2158 unlock_page_cgroup(pc);
2159 __mem_cgroup_cancel_charge(mem, nr_pages);
2160 return;
2163 * we don't need page_cgroup_lock about tail pages, becase they are not
2164 * accessed by any other context at this point.
2166 pc->mem_cgroup = mem;
2168 * We access a page_cgroup asynchronously without lock_page_cgroup().
2169 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2170 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2171 * before USED bit, we need memory barrier here.
2172 * See mem_cgroup_add_lru_list(), etc.
2174 smp_wmb();
2175 switch (ctype) {
2176 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2177 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2178 SetPageCgroupCache(pc);
2179 SetPageCgroupUsed(pc);
2180 break;
2181 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2182 ClearPageCgroupCache(pc);
2183 SetPageCgroupUsed(pc);
2184 break;
2185 default:
2186 break;
2189 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2190 unlock_page_cgroup(pc);
2192 * "charge_statistics" updated event counter. Then, check it.
2193 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2194 * if they exceeds softlimit.
2196 memcg_check_events(mem, page);
2199 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2201 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2202 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2204 * Because tail pages are not marked as "used", set it. We're under
2205 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2207 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2209 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2210 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2211 unsigned long flags;
2213 if (mem_cgroup_disabled())
2214 return;
2216 * We have no races with charge/uncharge but will have races with
2217 * page state accounting.
2219 move_lock_page_cgroup(head_pc, &flags);
2221 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2222 smp_wmb(); /* see __commit_charge() */
2223 if (PageCgroupAcctLRU(head_pc)) {
2224 enum lru_list lru;
2225 struct mem_cgroup_per_zone *mz;
2228 * LRU flags cannot be copied because we need to add tail
2229 *.page to LRU by generic call and our hook will be called.
2230 * We hold lru_lock, then, reduce counter directly.
2232 lru = page_lru(head);
2233 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2234 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2236 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2237 move_unlock_page_cgroup(head_pc, &flags);
2239 #endif
2242 * mem_cgroup_move_account - move account of the page
2243 * @page: the page
2244 * @nr_pages: number of regular pages (>1 for huge pages)
2245 * @pc: page_cgroup of the page.
2246 * @from: mem_cgroup which the page is moved from.
2247 * @to: mem_cgroup which the page is moved to. @from != @to.
2248 * @uncharge: whether we should call uncharge and css_put against @from.
2250 * The caller must confirm following.
2251 * - page is not on LRU (isolate_page() is useful.)
2252 * - compound_lock is held when nr_pages > 1
2254 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2255 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2256 * true, this function does "uncharge" from old cgroup, but it doesn't if
2257 * @uncharge is false, so a caller should do "uncharge".
2259 static int mem_cgroup_move_account(struct page *page,
2260 unsigned int nr_pages,
2261 struct page_cgroup *pc,
2262 struct mem_cgroup *from,
2263 struct mem_cgroup *to,
2264 bool uncharge)
2266 unsigned long flags;
2267 int ret;
2269 VM_BUG_ON(from == to);
2270 VM_BUG_ON(PageLRU(page));
2272 * The page is isolated from LRU. So, collapse function
2273 * will not handle this page. But page splitting can happen.
2274 * Do this check under compound_page_lock(). The caller should
2275 * hold it.
2277 ret = -EBUSY;
2278 if (nr_pages > 1 && !PageTransHuge(page))
2279 goto out;
2281 lock_page_cgroup(pc);
2283 ret = -EINVAL;
2284 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2285 goto unlock;
2287 move_lock_page_cgroup(pc, &flags);
2289 if (PageCgroupFileMapped(pc)) {
2290 /* Update mapped_file data for mem_cgroup */
2291 preempt_disable();
2292 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2293 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2294 preempt_enable();
2296 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2297 if (uncharge)
2298 /* This is not "cancel", but cancel_charge does all we need. */
2299 __mem_cgroup_cancel_charge(from, nr_pages);
2301 /* caller should have done css_get */
2302 pc->mem_cgroup = to;
2303 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2305 * We charges against "to" which may not have any tasks. Then, "to"
2306 * can be under rmdir(). But in current implementation, caller of
2307 * this function is just force_empty() and move charge, so it's
2308 * garanteed that "to" is never removed. So, we don't check rmdir
2309 * status here.
2311 move_unlock_page_cgroup(pc, &flags);
2312 ret = 0;
2313 unlock:
2314 unlock_page_cgroup(pc);
2316 * check events
2318 memcg_check_events(to, page);
2319 memcg_check_events(from, page);
2320 out:
2321 return ret;
2325 * move charges to its parent.
2328 static int mem_cgroup_move_parent(struct page *page,
2329 struct page_cgroup *pc,
2330 struct mem_cgroup *child,
2331 gfp_t gfp_mask)
2333 struct cgroup *cg = child->css.cgroup;
2334 struct cgroup *pcg = cg->parent;
2335 struct mem_cgroup *parent;
2336 unsigned int nr_pages;
2337 unsigned long uninitialized_var(flags);
2338 int ret;
2340 /* Is ROOT ? */
2341 if (!pcg)
2342 return -EINVAL;
2344 ret = -EBUSY;
2345 if (!get_page_unless_zero(page))
2346 goto out;
2347 if (isolate_lru_page(page))
2348 goto put;
2350 nr_pages = hpage_nr_pages(page);
2352 parent = mem_cgroup_from_cont(pcg);
2353 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2354 if (ret || !parent)
2355 goto put_back;
2357 if (nr_pages > 1)
2358 flags = compound_lock_irqsave(page);
2360 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2361 if (ret)
2362 __mem_cgroup_cancel_charge(parent, nr_pages);
2364 if (nr_pages > 1)
2365 compound_unlock_irqrestore(page, flags);
2366 put_back:
2367 putback_lru_page(page);
2368 put:
2369 put_page(page);
2370 out:
2371 return ret;
2375 * Charge the memory controller for page usage.
2376 * Return
2377 * 0 if the charge was successful
2378 * < 0 if the cgroup is over its limit
2380 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2381 gfp_t gfp_mask, enum charge_type ctype)
2383 struct mem_cgroup *mem = NULL;
2384 unsigned int nr_pages = 1;
2385 struct page_cgroup *pc;
2386 bool oom = true;
2387 int ret;
2389 if (PageTransHuge(page)) {
2390 nr_pages <<= compound_order(page);
2391 VM_BUG_ON(!PageTransHuge(page));
2393 * Never OOM-kill a process for a huge page. The
2394 * fault handler will fall back to regular pages.
2396 oom = false;
2399 pc = lookup_page_cgroup(page);
2400 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2402 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2403 if (ret || !mem)
2404 return ret;
2406 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2407 return 0;
2410 int mem_cgroup_newpage_charge(struct page *page,
2411 struct mm_struct *mm, gfp_t gfp_mask)
2413 if (mem_cgroup_disabled())
2414 return 0;
2416 * If already mapped, we don't have to account.
2417 * If page cache, page->mapping has address_space.
2418 * But page->mapping may have out-of-use anon_vma pointer,
2419 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2420 * is NULL.
2422 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2423 return 0;
2424 if (unlikely(!mm))
2425 mm = &init_mm;
2426 return mem_cgroup_charge_common(page, mm, gfp_mask,
2427 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2430 static void
2431 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2432 enum charge_type ctype);
2434 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2435 gfp_t gfp_mask)
2437 int ret;
2439 if (mem_cgroup_disabled())
2440 return 0;
2441 if (PageCompound(page))
2442 return 0;
2444 * Corner case handling. This is called from add_to_page_cache()
2445 * in usual. But some FS (shmem) precharges this page before calling it
2446 * and call add_to_page_cache() with GFP_NOWAIT.
2448 * For GFP_NOWAIT case, the page may be pre-charged before calling
2449 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2450 * charge twice. (It works but has to pay a bit larger cost.)
2451 * And when the page is SwapCache, it should take swap information
2452 * into account. This is under lock_page() now.
2454 if (!(gfp_mask & __GFP_WAIT)) {
2455 struct page_cgroup *pc;
2457 pc = lookup_page_cgroup(page);
2458 if (!pc)
2459 return 0;
2460 lock_page_cgroup(pc);
2461 if (PageCgroupUsed(pc)) {
2462 unlock_page_cgroup(pc);
2463 return 0;
2465 unlock_page_cgroup(pc);
2468 if (unlikely(!mm))
2469 mm = &init_mm;
2471 if (page_is_file_cache(page))
2472 return mem_cgroup_charge_common(page, mm, gfp_mask,
2473 MEM_CGROUP_CHARGE_TYPE_CACHE);
2475 /* shmem */
2476 if (PageSwapCache(page)) {
2477 struct mem_cgroup *mem;
2479 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2480 if (!ret)
2481 __mem_cgroup_commit_charge_swapin(page, mem,
2482 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2483 } else
2484 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2485 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2487 return ret;
2491 * While swap-in, try_charge -> commit or cancel, the page is locked.
2492 * And when try_charge() successfully returns, one refcnt to memcg without
2493 * struct page_cgroup is acquired. This refcnt will be consumed by
2494 * "commit()" or removed by "cancel()"
2496 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2497 struct page *page,
2498 gfp_t mask, struct mem_cgroup **ptr)
2500 struct mem_cgroup *mem;
2501 int ret;
2503 *ptr = NULL;
2505 if (mem_cgroup_disabled())
2506 return 0;
2508 if (!do_swap_account)
2509 goto charge_cur_mm;
2511 * A racing thread's fault, or swapoff, may have already updated
2512 * the pte, and even removed page from swap cache: in those cases
2513 * do_swap_page()'s pte_same() test will fail; but there's also a
2514 * KSM case which does need to charge the page.
2516 if (!PageSwapCache(page))
2517 goto charge_cur_mm;
2518 mem = try_get_mem_cgroup_from_page(page);
2519 if (!mem)
2520 goto charge_cur_mm;
2521 *ptr = mem;
2522 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2523 css_put(&mem->css);
2524 return ret;
2525 charge_cur_mm:
2526 if (unlikely(!mm))
2527 mm = &init_mm;
2528 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2531 static void
2532 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2533 enum charge_type ctype)
2535 struct page_cgroup *pc;
2537 if (mem_cgroup_disabled())
2538 return;
2539 if (!ptr)
2540 return;
2541 cgroup_exclude_rmdir(&ptr->css);
2542 pc = lookup_page_cgroup(page);
2543 mem_cgroup_lru_del_before_commit_swapcache(page);
2544 __mem_cgroup_commit_charge(ptr, page, 1, pc, ctype);
2545 mem_cgroup_lru_add_after_commit_swapcache(page);
2547 * Now swap is on-memory. This means this page may be
2548 * counted both as mem and swap....double count.
2549 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2550 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2551 * may call delete_from_swap_cache() before reach here.
2553 if (do_swap_account && PageSwapCache(page)) {
2554 swp_entry_t ent = {.val = page_private(page)};
2555 unsigned short id;
2556 struct mem_cgroup *memcg;
2558 id = swap_cgroup_record(ent, 0);
2559 rcu_read_lock();
2560 memcg = mem_cgroup_lookup(id);
2561 if (memcg) {
2563 * This recorded memcg can be obsolete one. So, avoid
2564 * calling css_tryget
2566 if (!mem_cgroup_is_root(memcg))
2567 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2568 mem_cgroup_swap_statistics(memcg, false);
2569 mem_cgroup_put(memcg);
2571 rcu_read_unlock();
2574 * At swapin, we may charge account against cgroup which has no tasks.
2575 * So, rmdir()->pre_destroy() can be called while we do this charge.
2576 * In that case, we need to call pre_destroy() again. check it here.
2578 cgroup_release_and_wakeup_rmdir(&ptr->css);
2581 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2583 __mem_cgroup_commit_charge_swapin(page, ptr,
2584 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2587 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2589 if (mem_cgroup_disabled())
2590 return;
2591 if (!mem)
2592 return;
2593 __mem_cgroup_cancel_charge(mem, 1);
2596 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2597 unsigned int nr_pages,
2598 const enum charge_type ctype)
2600 struct memcg_batch_info *batch = NULL;
2601 bool uncharge_memsw = true;
2603 /* If swapout, usage of swap doesn't decrease */
2604 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2605 uncharge_memsw = false;
2607 batch = &current->memcg_batch;
2609 * In usual, we do css_get() when we remember memcg pointer.
2610 * But in this case, we keep res->usage until end of a series of
2611 * uncharges. Then, it's ok to ignore memcg's refcnt.
2613 if (!batch->memcg)
2614 batch->memcg = mem;
2616 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2617 * In those cases, all pages freed continously can be expected to be in
2618 * the same cgroup and we have chance to coalesce uncharges.
2619 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2620 * because we want to do uncharge as soon as possible.
2623 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2624 goto direct_uncharge;
2626 if (nr_pages > 1)
2627 goto direct_uncharge;
2630 * In typical case, batch->memcg == mem. This means we can
2631 * merge a series of uncharges to an uncharge of res_counter.
2632 * If not, we uncharge res_counter ony by one.
2634 if (batch->memcg != mem)
2635 goto direct_uncharge;
2636 /* remember freed charge and uncharge it later */
2637 batch->nr_pages++;
2638 if (uncharge_memsw)
2639 batch->memsw_nr_pages++;
2640 return;
2641 direct_uncharge:
2642 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2643 if (uncharge_memsw)
2644 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2645 if (unlikely(batch->memcg != mem))
2646 memcg_oom_recover(mem);
2647 return;
2651 * uncharge if !page_mapped(page)
2653 static struct mem_cgroup *
2654 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2656 struct mem_cgroup *mem = NULL;
2657 unsigned int nr_pages = 1;
2658 struct page_cgroup *pc;
2660 if (mem_cgroup_disabled())
2661 return NULL;
2663 if (PageSwapCache(page))
2664 return NULL;
2666 if (PageTransHuge(page)) {
2667 nr_pages <<= compound_order(page);
2668 VM_BUG_ON(!PageTransHuge(page));
2671 * Check if our page_cgroup is valid
2673 pc = lookup_page_cgroup(page);
2674 if (unlikely(!pc || !PageCgroupUsed(pc)))
2675 return NULL;
2677 lock_page_cgroup(pc);
2679 mem = pc->mem_cgroup;
2681 if (!PageCgroupUsed(pc))
2682 goto unlock_out;
2684 switch (ctype) {
2685 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2686 case MEM_CGROUP_CHARGE_TYPE_DROP:
2687 /* See mem_cgroup_prepare_migration() */
2688 if (page_mapped(page) || PageCgroupMigration(pc))
2689 goto unlock_out;
2690 break;
2691 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2692 if (!PageAnon(page)) { /* Shared memory */
2693 if (page->mapping && !page_is_file_cache(page))
2694 goto unlock_out;
2695 } else if (page_mapped(page)) /* Anon */
2696 goto unlock_out;
2697 break;
2698 default:
2699 break;
2702 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2704 ClearPageCgroupUsed(pc);
2706 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2707 * freed from LRU. This is safe because uncharged page is expected not
2708 * to be reused (freed soon). Exception is SwapCache, it's handled by
2709 * special functions.
2712 unlock_page_cgroup(pc);
2714 * even after unlock, we have mem->res.usage here and this memcg
2715 * will never be freed.
2717 memcg_check_events(mem, page);
2718 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2719 mem_cgroup_swap_statistics(mem, true);
2720 mem_cgroup_get(mem);
2722 if (!mem_cgroup_is_root(mem))
2723 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2725 return mem;
2727 unlock_out:
2728 unlock_page_cgroup(pc);
2729 return NULL;
2732 void mem_cgroup_uncharge_page(struct page *page)
2734 /* early check. */
2735 if (page_mapped(page))
2736 return;
2737 if (page->mapping && !PageAnon(page))
2738 return;
2739 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2742 void mem_cgroup_uncharge_cache_page(struct page *page)
2744 VM_BUG_ON(page_mapped(page));
2745 VM_BUG_ON(page->mapping);
2746 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2750 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2751 * In that cases, pages are freed continuously and we can expect pages
2752 * are in the same memcg. All these calls itself limits the number of
2753 * pages freed at once, then uncharge_start/end() is called properly.
2754 * This may be called prural(2) times in a context,
2757 void mem_cgroup_uncharge_start(void)
2759 current->memcg_batch.do_batch++;
2760 /* We can do nest. */
2761 if (current->memcg_batch.do_batch == 1) {
2762 current->memcg_batch.memcg = NULL;
2763 current->memcg_batch.nr_pages = 0;
2764 current->memcg_batch.memsw_nr_pages = 0;
2768 void mem_cgroup_uncharge_end(void)
2770 struct memcg_batch_info *batch = &current->memcg_batch;
2772 if (!batch->do_batch)
2773 return;
2775 batch->do_batch--;
2776 if (batch->do_batch) /* If stacked, do nothing. */
2777 return;
2779 if (!batch->memcg)
2780 return;
2782 * This "batch->memcg" is valid without any css_get/put etc...
2783 * bacause we hide charges behind us.
2785 if (batch->nr_pages)
2786 res_counter_uncharge(&batch->memcg->res,
2787 batch->nr_pages * PAGE_SIZE);
2788 if (batch->memsw_nr_pages)
2789 res_counter_uncharge(&batch->memcg->memsw,
2790 batch->memsw_nr_pages * PAGE_SIZE);
2791 memcg_oom_recover(batch->memcg);
2792 /* forget this pointer (for sanity check) */
2793 batch->memcg = NULL;
2796 #ifdef CONFIG_SWAP
2798 * called after __delete_from_swap_cache() and drop "page" account.
2799 * memcg information is recorded to swap_cgroup of "ent"
2801 void
2802 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2804 struct mem_cgroup *memcg;
2805 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2807 if (!swapout) /* this was a swap cache but the swap is unused ! */
2808 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2810 memcg = __mem_cgroup_uncharge_common(page, ctype);
2813 * record memcg information, if swapout && memcg != NULL,
2814 * mem_cgroup_get() was called in uncharge().
2816 if (do_swap_account && swapout && memcg)
2817 swap_cgroup_record(ent, css_id(&memcg->css));
2819 #endif
2821 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2823 * called from swap_entry_free(). remove record in swap_cgroup and
2824 * uncharge "memsw" account.
2826 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2828 struct mem_cgroup *memcg;
2829 unsigned short id;
2831 if (!do_swap_account)
2832 return;
2834 id = swap_cgroup_record(ent, 0);
2835 rcu_read_lock();
2836 memcg = mem_cgroup_lookup(id);
2837 if (memcg) {
2839 * We uncharge this because swap is freed.
2840 * This memcg can be obsolete one. We avoid calling css_tryget
2842 if (!mem_cgroup_is_root(memcg))
2843 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2844 mem_cgroup_swap_statistics(memcg, false);
2845 mem_cgroup_put(memcg);
2847 rcu_read_unlock();
2851 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2852 * @entry: swap entry to be moved
2853 * @from: mem_cgroup which the entry is moved from
2854 * @to: mem_cgroup which the entry is moved to
2855 * @need_fixup: whether we should fixup res_counters and refcounts.
2857 * It succeeds only when the swap_cgroup's record for this entry is the same
2858 * as the mem_cgroup's id of @from.
2860 * Returns 0 on success, -EINVAL on failure.
2862 * The caller must have charged to @to, IOW, called res_counter_charge() about
2863 * both res and memsw, and called css_get().
2865 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2866 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2868 unsigned short old_id, new_id;
2870 old_id = css_id(&from->css);
2871 new_id = css_id(&to->css);
2873 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2874 mem_cgroup_swap_statistics(from, false);
2875 mem_cgroup_swap_statistics(to, true);
2877 * This function is only called from task migration context now.
2878 * It postpones res_counter and refcount handling till the end
2879 * of task migration(mem_cgroup_clear_mc()) for performance
2880 * improvement. But we cannot postpone mem_cgroup_get(to)
2881 * because if the process that has been moved to @to does
2882 * swap-in, the refcount of @to might be decreased to 0.
2884 mem_cgroup_get(to);
2885 if (need_fixup) {
2886 if (!mem_cgroup_is_root(from))
2887 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2888 mem_cgroup_put(from);
2890 * we charged both to->res and to->memsw, so we should
2891 * uncharge to->res.
2893 if (!mem_cgroup_is_root(to))
2894 res_counter_uncharge(&to->res, PAGE_SIZE);
2896 return 0;
2898 return -EINVAL;
2900 #else
2901 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2902 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2904 return -EINVAL;
2906 #endif
2909 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2910 * page belongs to.
2912 int mem_cgroup_prepare_migration(struct page *page,
2913 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2915 struct mem_cgroup *mem = NULL;
2916 struct page_cgroup *pc;
2917 enum charge_type ctype;
2918 int ret = 0;
2920 *ptr = NULL;
2922 VM_BUG_ON(PageTransHuge(page));
2923 if (mem_cgroup_disabled())
2924 return 0;
2926 pc = lookup_page_cgroup(page);
2927 lock_page_cgroup(pc);
2928 if (PageCgroupUsed(pc)) {
2929 mem = pc->mem_cgroup;
2930 css_get(&mem->css);
2932 * At migrating an anonymous page, its mapcount goes down
2933 * to 0 and uncharge() will be called. But, even if it's fully
2934 * unmapped, migration may fail and this page has to be
2935 * charged again. We set MIGRATION flag here and delay uncharge
2936 * until end_migration() is called
2938 * Corner Case Thinking
2939 * A)
2940 * When the old page was mapped as Anon and it's unmap-and-freed
2941 * while migration was ongoing.
2942 * If unmap finds the old page, uncharge() of it will be delayed
2943 * until end_migration(). If unmap finds a new page, it's
2944 * uncharged when it make mapcount to be 1->0. If unmap code
2945 * finds swap_migration_entry, the new page will not be mapped
2946 * and end_migration() will find it(mapcount==0).
2948 * B)
2949 * When the old page was mapped but migraion fails, the kernel
2950 * remaps it. A charge for it is kept by MIGRATION flag even
2951 * if mapcount goes down to 0. We can do remap successfully
2952 * without charging it again.
2954 * C)
2955 * The "old" page is under lock_page() until the end of
2956 * migration, so, the old page itself will not be swapped-out.
2957 * If the new page is swapped out before end_migraton, our
2958 * hook to usual swap-out path will catch the event.
2960 if (PageAnon(page))
2961 SetPageCgroupMigration(pc);
2963 unlock_page_cgroup(pc);
2965 * If the page is not charged at this point,
2966 * we return here.
2968 if (!mem)
2969 return 0;
2971 *ptr = mem;
2972 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
2973 css_put(&mem->css);/* drop extra refcnt */
2974 if (ret || *ptr == NULL) {
2975 if (PageAnon(page)) {
2976 lock_page_cgroup(pc);
2977 ClearPageCgroupMigration(pc);
2978 unlock_page_cgroup(pc);
2980 * The old page may be fully unmapped while we kept it.
2982 mem_cgroup_uncharge_page(page);
2984 return -ENOMEM;
2987 * We charge new page before it's used/mapped. So, even if unlock_page()
2988 * is called before end_migration, we can catch all events on this new
2989 * page. In the case new page is migrated but not remapped, new page's
2990 * mapcount will be finally 0 and we call uncharge in end_migration().
2992 pc = lookup_page_cgroup(newpage);
2993 if (PageAnon(page))
2994 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2995 else if (page_is_file_cache(page))
2996 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2997 else
2998 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2999 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3000 return ret;
3003 /* remove redundant charge if migration failed*/
3004 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3005 struct page *oldpage, struct page *newpage, bool migration_ok)
3007 struct page *used, *unused;
3008 struct page_cgroup *pc;
3010 if (!mem)
3011 return;
3012 /* blocks rmdir() */
3013 cgroup_exclude_rmdir(&mem->css);
3014 if (!migration_ok) {
3015 used = oldpage;
3016 unused = newpage;
3017 } else {
3018 used = newpage;
3019 unused = oldpage;
3022 * We disallowed uncharge of pages under migration because mapcount
3023 * of the page goes down to zero, temporarly.
3024 * Clear the flag and check the page should be charged.
3026 pc = lookup_page_cgroup(oldpage);
3027 lock_page_cgroup(pc);
3028 ClearPageCgroupMigration(pc);
3029 unlock_page_cgroup(pc);
3031 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3034 * If a page is a file cache, radix-tree replacement is very atomic
3035 * and we can skip this check. When it was an Anon page, its mapcount
3036 * goes down to 0. But because we added MIGRATION flage, it's not
3037 * uncharged yet. There are several case but page->mapcount check
3038 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3039 * check. (see prepare_charge() also)
3041 if (PageAnon(used))
3042 mem_cgroup_uncharge_page(used);
3044 * At migration, we may charge account against cgroup which has no
3045 * tasks.
3046 * So, rmdir()->pre_destroy() can be called while we do this charge.
3047 * In that case, we need to call pre_destroy() again. check it here.
3049 cgroup_release_and_wakeup_rmdir(&mem->css);
3053 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3054 * Calling hierarchical_reclaim is not enough because we should update
3055 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3056 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3057 * not from the memcg which this page would be charged to.
3058 * try_charge_swapin does all of these works properly.
3060 int mem_cgroup_shmem_charge_fallback(struct page *page,
3061 struct mm_struct *mm,
3062 gfp_t gfp_mask)
3064 struct mem_cgroup *mem;
3065 int ret;
3067 if (mem_cgroup_disabled())
3068 return 0;
3070 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3071 if (!ret)
3072 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3074 return ret;
3077 #ifdef CONFIG_DEBUG_VM
3078 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3080 struct page_cgroup *pc;
3082 pc = lookup_page_cgroup(page);
3083 if (likely(pc) && PageCgroupUsed(pc))
3084 return pc;
3085 return NULL;
3088 bool mem_cgroup_bad_page_check(struct page *page)
3090 if (mem_cgroup_disabled())
3091 return false;
3093 return lookup_page_cgroup_used(page) != NULL;
3096 void mem_cgroup_print_bad_page(struct page *page)
3098 struct page_cgroup *pc;
3100 pc = lookup_page_cgroup_used(page);
3101 if (pc) {
3102 int ret = -1;
3103 char *path;
3105 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3106 pc, pc->flags, pc->mem_cgroup);
3108 path = kmalloc(PATH_MAX, GFP_KERNEL);
3109 if (path) {
3110 rcu_read_lock();
3111 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3112 path, PATH_MAX);
3113 rcu_read_unlock();
3116 printk(KERN_CONT "(%s)\n",
3117 (ret < 0) ? "cannot get the path" : path);
3118 kfree(path);
3121 #endif
3123 static DEFINE_MUTEX(set_limit_mutex);
3125 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3126 unsigned long long val)
3128 int retry_count;
3129 u64 memswlimit, memlimit;
3130 int ret = 0;
3131 int children = mem_cgroup_count_children(memcg);
3132 u64 curusage, oldusage;
3133 int enlarge;
3136 * For keeping hierarchical_reclaim simple, how long we should retry
3137 * is depends on callers. We set our retry-count to be function
3138 * of # of children which we should visit in this loop.
3140 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3142 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3144 enlarge = 0;
3145 while (retry_count) {
3146 if (signal_pending(current)) {
3147 ret = -EINTR;
3148 break;
3151 * Rather than hide all in some function, I do this in
3152 * open coded manner. You see what this really does.
3153 * We have to guarantee mem->res.limit < mem->memsw.limit.
3155 mutex_lock(&set_limit_mutex);
3156 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3157 if (memswlimit < val) {
3158 ret = -EINVAL;
3159 mutex_unlock(&set_limit_mutex);
3160 break;
3163 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3164 if (memlimit < val)
3165 enlarge = 1;
3167 ret = res_counter_set_limit(&memcg->res, val);
3168 if (!ret) {
3169 if (memswlimit == val)
3170 memcg->memsw_is_minimum = true;
3171 else
3172 memcg->memsw_is_minimum = false;
3174 mutex_unlock(&set_limit_mutex);
3176 if (!ret)
3177 break;
3179 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3180 MEM_CGROUP_RECLAIM_SHRINK);
3181 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3182 /* Usage is reduced ? */
3183 if (curusage >= oldusage)
3184 retry_count--;
3185 else
3186 oldusage = curusage;
3188 if (!ret && enlarge)
3189 memcg_oom_recover(memcg);
3191 return ret;
3194 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3195 unsigned long long val)
3197 int retry_count;
3198 u64 memlimit, memswlimit, oldusage, curusage;
3199 int children = mem_cgroup_count_children(memcg);
3200 int ret = -EBUSY;
3201 int enlarge = 0;
3203 /* see mem_cgroup_resize_res_limit */
3204 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3205 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3206 while (retry_count) {
3207 if (signal_pending(current)) {
3208 ret = -EINTR;
3209 break;
3212 * Rather than hide all in some function, I do this in
3213 * open coded manner. You see what this really does.
3214 * We have to guarantee mem->res.limit < mem->memsw.limit.
3216 mutex_lock(&set_limit_mutex);
3217 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3218 if (memlimit > val) {
3219 ret = -EINVAL;
3220 mutex_unlock(&set_limit_mutex);
3221 break;
3223 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3224 if (memswlimit < val)
3225 enlarge = 1;
3226 ret = res_counter_set_limit(&memcg->memsw, val);
3227 if (!ret) {
3228 if (memlimit == val)
3229 memcg->memsw_is_minimum = true;
3230 else
3231 memcg->memsw_is_minimum = false;
3233 mutex_unlock(&set_limit_mutex);
3235 if (!ret)
3236 break;
3238 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3239 MEM_CGROUP_RECLAIM_NOSWAP |
3240 MEM_CGROUP_RECLAIM_SHRINK);
3241 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3242 /* Usage is reduced ? */
3243 if (curusage >= oldusage)
3244 retry_count--;
3245 else
3246 oldusage = curusage;
3248 if (!ret && enlarge)
3249 memcg_oom_recover(memcg);
3250 return ret;
3253 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3254 gfp_t gfp_mask)
3256 unsigned long nr_reclaimed = 0;
3257 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3258 unsigned long reclaimed;
3259 int loop = 0;
3260 struct mem_cgroup_tree_per_zone *mctz;
3261 unsigned long long excess;
3263 if (order > 0)
3264 return 0;
3266 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3268 * This loop can run a while, specially if mem_cgroup's continuously
3269 * keep exceeding their soft limit and putting the system under
3270 * pressure
3272 do {
3273 if (next_mz)
3274 mz = next_mz;
3275 else
3276 mz = mem_cgroup_largest_soft_limit_node(mctz);
3277 if (!mz)
3278 break;
3280 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3281 gfp_mask,
3282 MEM_CGROUP_RECLAIM_SOFT);
3283 nr_reclaimed += reclaimed;
3284 spin_lock(&mctz->lock);
3287 * If we failed to reclaim anything from this memory cgroup
3288 * it is time to move on to the next cgroup
3290 next_mz = NULL;
3291 if (!reclaimed) {
3292 do {
3294 * Loop until we find yet another one.
3296 * By the time we get the soft_limit lock
3297 * again, someone might have aded the
3298 * group back on the RB tree. Iterate to
3299 * make sure we get a different mem.
3300 * mem_cgroup_largest_soft_limit_node returns
3301 * NULL if no other cgroup is present on
3302 * the tree
3304 next_mz =
3305 __mem_cgroup_largest_soft_limit_node(mctz);
3306 if (next_mz == mz) {
3307 css_put(&next_mz->mem->css);
3308 next_mz = NULL;
3309 } else /* next_mz == NULL or other memcg */
3310 break;
3311 } while (1);
3313 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3314 excess = res_counter_soft_limit_excess(&mz->mem->res);
3316 * One school of thought says that we should not add
3317 * back the node to the tree if reclaim returns 0.
3318 * But our reclaim could return 0, simply because due
3319 * to priority we are exposing a smaller subset of
3320 * memory to reclaim from. Consider this as a longer
3321 * term TODO.
3323 /* If excess == 0, no tree ops */
3324 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3325 spin_unlock(&mctz->lock);
3326 css_put(&mz->mem->css);
3327 loop++;
3329 * Could not reclaim anything and there are no more
3330 * mem cgroups to try or we seem to be looping without
3331 * reclaiming anything.
3333 if (!nr_reclaimed &&
3334 (next_mz == NULL ||
3335 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3336 break;
3337 } while (!nr_reclaimed);
3338 if (next_mz)
3339 css_put(&next_mz->mem->css);
3340 return nr_reclaimed;
3344 * This routine traverse page_cgroup in given list and drop them all.
3345 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3347 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3348 int node, int zid, enum lru_list lru)
3350 struct zone *zone;
3351 struct mem_cgroup_per_zone *mz;
3352 struct page_cgroup *pc, *busy;
3353 unsigned long flags, loop;
3354 struct list_head *list;
3355 int ret = 0;
3357 zone = &NODE_DATA(node)->node_zones[zid];
3358 mz = mem_cgroup_zoneinfo(mem, node, zid);
3359 list = &mz->lists[lru];
3361 loop = MEM_CGROUP_ZSTAT(mz, lru);
3362 /* give some margin against EBUSY etc...*/
3363 loop += 256;
3364 busy = NULL;
3365 while (loop--) {
3366 struct page *page;
3368 ret = 0;
3369 spin_lock_irqsave(&zone->lru_lock, flags);
3370 if (list_empty(list)) {
3371 spin_unlock_irqrestore(&zone->lru_lock, flags);
3372 break;
3374 pc = list_entry(list->prev, struct page_cgroup, lru);
3375 if (busy == pc) {
3376 list_move(&pc->lru, list);
3377 busy = NULL;
3378 spin_unlock_irqrestore(&zone->lru_lock, flags);
3379 continue;
3381 spin_unlock_irqrestore(&zone->lru_lock, flags);
3383 page = lookup_cgroup_page(pc);
3385 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3386 if (ret == -ENOMEM)
3387 break;
3389 if (ret == -EBUSY || ret == -EINVAL) {
3390 /* found lock contention or "pc" is obsolete. */
3391 busy = pc;
3392 cond_resched();
3393 } else
3394 busy = NULL;
3397 if (!ret && !list_empty(list))
3398 return -EBUSY;
3399 return ret;
3403 * make mem_cgroup's charge to be 0 if there is no task.
3404 * This enables deleting this mem_cgroup.
3406 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3408 int ret;
3409 int node, zid, shrink;
3410 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3411 struct cgroup *cgrp = mem->css.cgroup;
3413 css_get(&mem->css);
3415 shrink = 0;
3416 /* should free all ? */
3417 if (free_all)
3418 goto try_to_free;
3419 move_account:
3420 do {
3421 ret = -EBUSY;
3422 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3423 goto out;
3424 ret = -EINTR;
3425 if (signal_pending(current))
3426 goto out;
3427 /* This is for making all *used* pages to be on LRU. */
3428 lru_add_drain_all();
3429 drain_all_stock_sync();
3430 ret = 0;
3431 mem_cgroup_start_move(mem);
3432 for_each_node_state(node, N_HIGH_MEMORY) {
3433 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3434 enum lru_list l;
3435 for_each_lru(l) {
3436 ret = mem_cgroup_force_empty_list(mem,
3437 node, zid, l);
3438 if (ret)
3439 break;
3442 if (ret)
3443 break;
3445 mem_cgroup_end_move(mem);
3446 memcg_oom_recover(mem);
3447 /* it seems parent cgroup doesn't have enough mem */
3448 if (ret == -ENOMEM)
3449 goto try_to_free;
3450 cond_resched();
3451 /* "ret" should also be checked to ensure all lists are empty. */
3452 } while (mem->res.usage > 0 || ret);
3453 out:
3454 css_put(&mem->css);
3455 return ret;
3457 try_to_free:
3458 /* returns EBUSY if there is a task or if we come here twice. */
3459 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3460 ret = -EBUSY;
3461 goto out;
3463 /* we call try-to-free pages for make this cgroup empty */
3464 lru_add_drain_all();
3465 /* try to free all pages in this cgroup */
3466 shrink = 1;
3467 while (nr_retries && mem->res.usage > 0) {
3468 int progress;
3470 if (signal_pending(current)) {
3471 ret = -EINTR;
3472 goto out;
3474 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3475 false, get_swappiness(mem));
3476 if (!progress) {
3477 nr_retries--;
3478 /* maybe some writeback is necessary */
3479 congestion_wait(BLK_RW_ASYNC, HZ/10);
3483 lru_add_drain();
3484 /* try move_account...there may be some *locked* pages. */
3485 goto move_account;
3488 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3490 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3494 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3496 return mem_cgroup_from_cont(cont)->use_hierarchy;
3499 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3500 u64 val)
3502 int retval = 0;
3503 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3504 struct cgroup *parent = cont->parent;
3505 struct mem_cgroup *parent_mem = NULL;
3507 if (parent)
3508 parent_mem = mem_cgroup_from_cont(parent);
3510 cgroup_lock();
3512 * If parent's use_hierarchy is set, we can't make any modifications
3513 * in the child subtrees. If it is unset, then the change can
3514 * occur, provided the current cgroup has no children.
3516 * For the root cgroup, parent_mem is NULL, we allow value to be
3517 * set if there are no children.
3519 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3520 (val == 1 || val == 0)) {
3521 if (list_empty(&cont->children))
3522 mem->use_hierarchy = val;
3523 else
3524 retval = -EBUSY;
3525 } else
3526 retval = -EINVAL;
3527 cgroup_unlock();
3529 return retval;
3533 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3534 enum mem_cgroup_stat_index idx)
3536 struct mem_cgroup *iter;
3537 long val = 0;
3539 /* Per-cpu values can be negative, use a signed accumulator */
3540 for_each_mem_cgroup_tree(iter, mem)
3541 val += mem_cgroup_read_stat(iter, idx);
3543 if (val < 0) /* race ? */
3544 val = 0;
3545 return val;
3548 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3550 u64 val;
3552 if (!mem_cgroup_is_root(mem)) {
3553 if (!swap)
3554 return res_counter_read_u64(&mem->res, RES_USAGE);
3555 else
3556 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3559 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3560 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3562 if (swap)
3563 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3565 return val << PAGE_SHIFT;
3568 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3570 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3571 u64 val;
3572 int type, name;
3574 type = MEMFILE_TYPE(cft->private);
3575 name = MEMFILE_ATTR(cft->private);
3576 switch (type) {
3577 case _MEM:
3578 if (name == RES_USAGE)
3579 val = mem_cgroup_usage(mem, false);
3580 else
3581 val = res_counter_read_u64(&mem->res, name);
3582 break;
3583 case _MEMSWAP:
3584 if (name == RES_USAGE)
3585 val = mem_cgroup_usage(mem, true);
3586 else
3587 val = res_counter_read_u64(&mem->memsw, name);
3588 break;
3589 default:
3590 BUG();
3591 break;
3593 return val;
3596 * The user of this function is...
3597 * RES_LIMIT.
3599 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3600 const char *buffer)
3602 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3603 int type, name;
3604 unsigned long long val;
3605 int ret;
3607 type = MEMFILE_TYPE(cft->private);
3608 name = MEMFILE_ATTR(cft->private);
3609 switch (name) {
3610 case RES_LIMIT:
3611 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3612 ret = -EINVAL;
3613 break;
3615 /* This function does all necessary parse...reuse it */
3616 ret = res_counter_memparse_write_strategy(buffer, &val);
3617 if (ret)
3618 break;
3619 if (type == _MEM)
3620 ret = mem_cgroup_resize_limit(memcg, val);
3621 else
3622 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3623 break;
3624 case RES_SOFT_LIMIT:
3625 ret = res_counter_memparse_write_strategy(buffer, &val);
3626 if (ret)
3627 break;
3629 * For memsw, soft limits are hard to implement in terms
3630 * of semantics, for now, we support soft limits for
3631 * control without swap
3633 if (type == _MEM)
3634 ret = res_counter_set_soft_limit(&memcg->res, val);
3635 else
3636 ret = -EINVAL;
3637 break;
3638 default:
3639 ret = -EINVAL; /* should be BUG() ? */
3640 break;
3642 return ret;
3645 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3646 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3648 struct cgroup *cgroup;
3649 unsigned long long min_limit, min_memsw_limit, tmp;
3651 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3652 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3653 cgroup = memcg->css.cgroup;
3654 if (!memcg->use_hierarchy)
3655 goto out;
3657 while (cgroup->parent) {
3658 cgroup = cgroup->parent;
3659 memcg = mem_cgroup_from_cont(cgroup);
3660 if (!memcg->use_hierarchy)
3661 break;
3662 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3663 min_limit = min(min_limit, tmp);
3664 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3665 min_memsw_limit = min(min_memsw_limit, tmp);
3667 out:
3668 *mem_limit = min_limit;
3669 *memsw_limit = min_memsw_limit;
3670 return;
3673 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3675 struct mem_cgroup *mem;
3676 int type, name;
3678 mem = mem_cgroup_from_cont(cont);
3679 type = MEMFILE_TYPE(event);
3680 name = MEMFILE_ATTR(event);
3681 switch (name) {
3682 case RES_MAX_USAGE:
3683 if (type == _MEM)
3684 res_counter_reset_max(&mem->res);
3685 else
3686 res_counter_reset_max(&mem->memsw);
3687 break;
3688 case RES_FAILCNT:
3689 if (type == _MEM)
3690 res_counter_reset_failcnt(&mem->res);
3691 else
3692 res_counter_reset_failcnt(&mem->memsw);
3693 break;
3696 return 0;
3699 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3700 struct cftype *cft)
3702 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3705 #ifdef CONFIG_MMU
3706 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3707 struct cftype *cft, u64 val)
3709 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3711 if (val >= (1 << NR_MOVE_TYPE))
3712 return -EINVAL;
3714 * We check this value several times in both in can_attach() and
3715 * attach(), so we need cgroup lock to prevent this value from being
3716 * inconsistent.
3718 cgroup_lock();
3719 mem->move_charge_at_immigrate = val;
3720 cgroup_unlock();
3722 return 0;
3724 #else
3725 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3726 struct cftype *cft, u64 val)
3728 return -ENOSYS;
3730 #endif
3733 /* For read statistics */
3734 enum {
3735 MCS_CACHE,
3736 MCS_RSS,
3737 MCS_FILE_MAPPED,
3738 MCS_PGPGIN,
3739 MCS_PGPGOUT,
3740 MCS_SWAP,
3741 MCS_INACTIVE_ANON,
3742 MCS_ACTIVE_ANON,
3743 MCS_INACTIVE_FILE,
3744 MCS_ACTIVE_FILE,
3745 MCS_UNEVICTABLE,
3746 NR_MCS_STAT,
3749 struct mcs_total_stat {
3750 s64 stat[NR_MCS_STAT];
3753 struct {
3754 char *local_name;
3755 char *total_name;
3756 } memcg_stat_strings[NR_MCS_STAT] = {
3757 {"cache", "total_cache"},
3758 {"rss", "total_rss"},
3759 {"mapped_file", "total_mapped_file"},
3760 {"pgpgin", "total_pgpgin"},
3761 {"pgpgout", "total_pgpgout"},
3762 {"swap", "total_swap"},
3763 {"inactive_anon", "total_inactive_anon"},
3764 {"active_anon", "total_active_anon"},
3765 {"inactive_file", "total_inactive_file"},
3766 {"active_file", "total_active_file"},
3767 {"unevictable", "total_unevictable"}
3771 static void
3772 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3774 s64 val;
3776 /* per cpu stat */
3777 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3778 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3779 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3780 s->stat[MCS_RSS] += val * PAGE_SIZE;
3781 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3782 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3783 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3784 s->stat[MCS_PGPGIN] += val;
3785 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3786 s->stat[MCS_PGPGOUT] += val;
3787 if (do_swap_account) {
3788 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3789 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3792 /* per zone stat */
3793 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3794 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3795 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3796 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3797 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3798 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3799 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3800 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3801 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3802 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3805 static void
3806 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3808 struct mem_cgroup *iter;
3810 for_each_mem_cgroup_tree(iter, mem)
3811 mem_cgroup_get_local_stat(iter, s);
3814 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3815 struct cgroup_map_cb *cb)
3817 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3818 struct mcs_total_stat mystat;
3819 int i;
3821 memset(&mystat, 0, sizeof(mystat));
3822 mem_cgroup_get_local_stat(mem_cont, &mystat);
3824 for (i = 0; i < NR_MCS_STAT; i++) {
3825 if (i == MCS_SWAP && !do_swap_account)
3826 continue;
3827 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3830 /* Hierarchical information */
3832 unsigned long long limit, memsw_limit;
3833 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3834 cb->fill(cb, "hierarchical_memory_limit", limit);
3835 if (do_swap_account)
3836 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3839 memset(&mystat, 0, sizeof(mystat));
3840 mem_cgroup_get_total_stat(mem_cont, &mystat);
3841 for (i = 0; i < NR_MCS_STAT; i++) {
3842 if (i == MCS_SWAP && !do_swap_account)
3843 continue;
3844 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3847 #ifdef CONFIG_DEBUG_VM
3848 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3851 int nid, zid;
3852 struct mem_cgroup_per_zone *mz;
3853 unsigned long recent_rotated[2] = {0, 0};
3854 unsigned long recent_scanned[2] = {0, 0};
3856 for_each_online_node(nid)
3857 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3858 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3860 recent_rotated[0] +=
3861 mz->reclaim_stat.recent_rotated[0];
3862 recent_rotated[1] +=
3863 mz->reclaim_stat.recent_rotated[1];
3864 recent_scanned[0] +=
3865 mz->reclaim_stat.recent_scanned[0];
3866 recent_scanned[1] +=
3867 mz->reclaim_stat.recent_scanned[1];
3869 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3870 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3871 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3872 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3874 #endif
3876 return 0;
3879 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3883 return get_swappiness(memcg);
3886 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3887 u64 val)
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890 struct mem_cgroup *parent;
3892 if (val > 100)
3893 return -EINVAL;
3895 if (cgrp->parent == NULL)
3896 return -EINVAL;
3898 parent = mem_cgroup_from_cont(cgrp->parent);
3900 cgroup_lock();
3902 /* If under hierarchy, only empty-root can set this value */
3903 if ((parent->use_hierarchy) ||
3904 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3905 cgroup_unlock();
3906 return -EINVAL;
3909 memcg->swappiness = val;
3911 cgroup_unlock();
3913 return 0;
3916 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3918 struct mem_cgroup_threshold_ary *t;
3919 u64 usage;
3920 int i;
3922 rcu_read_lock();
3923 if (!swap)
3924 t = rcu_dereference(memcg->thresholds.primary);
3925 else
3926 t = rcu_dereference(memcg->memsw_thresholds.primary);
3928 if (!t)
3929 goto unlock;
3931 usage = mem_cgroup_usage(memcg, swap);
3934 * current_threshold points to threshold just below usage.
3935 * If it's not true, a threshold was crossed after last
3936 * call of __mem_cgroup_threshold().
3938 i = t->current_threshold;
3941 * Iterate backward over array of thresholds starting from
3942 * current_threshold and check if a threshold is crossed.
3943 * If none of thresholds below usage is crossed, we read
3944 * only one element of the array here.
3946 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3947 eventfd_signal(t->entries[i].eventfd, 1);
3949 /* i = current_threshold + 1 */
3950 i++;
3953 * Iterate forward over array of thresholds starting from
3954 * current_threshold+1 and check if a threshold is crossed.
3955 * If none of thresholds above usage is crossed, we read
3956 * only one element of the array here.
3958 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3959 eventfd_signal(t->entries[i].eventfd, 1);
3961 /* Update current_threshold */
3962 t->current_threshold = i - 1;
3963 unlock:
3964 rcu_read_unlock();
3967 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3969 while (memcg) {
3970 __mem_cgroup_threshold(memcg, false);
3971 if (do_swap_account)
3972 __mem_cgroup_threshold(memcg, true);
3974 memcg = parent_mem_cgroup(memcg);
3978 static int compare_thresholds(const void *a, const void *b)
3980 const struct mem_cgroup_threshold *_a = a;
3981 const struct mem_cgroup_threshold *_b = b;
3983 return _a->threshold - _b->threshold;
3986 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3988 struct mem_cgroup_eventfd_list *ev;
3990 list_for_each_entry(ev, &mem->oom_notify, list)
3991 eventfd_signal(ev->eventfd, 1);
3992 return 0;
3995 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3997 struct mem_cgroup *iter;
3999 for_each_mem_cgroup_tree(iter, mem)
4000 mem_cgroup_oom_notify_cb(iter);
4003 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4004 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4007 struct mem_cgroup_thresholds *thresholds;
4008 struct mem_cgroup_threshold_ary *new;
4009 int type = MEMFILE_TYPE(cft->private);
4010 u64 threshold, usage;
4011 int i, size, ret;
4013 ret = res_counter_memparse_write_strategy(args, &threshold);
4014 if (ret)
4015 return ret;
4017 mutex_lock(&memcg->thresholds_lock);
4019 if (type == _MEM)
4020 thresholds = &memcg->thresholds;
4021 else if (type == _MEMSWAP)
4022 thresholds = &memcg->memsw_thresholds;
4023 else
4024 BUG();
4026 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4028 /* Check if a threshold crossed before adding a new one */
4029 if (thresholds->primary)
4030 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4032 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4034 /* Allocate memory for new array of thresholds */
4035 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4036 GFP_KERNEL);
4037 if (!new) {
4038 ret = -ENOMEM;
4039 goto unlock;
4041 new->size = size;
4043 /* Copy thresholds (if any) to new array */
4044 if (thresholds->primary) {
4045 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4046 sizeof(struct mem_cgroup_threshold));
4049 /* Add new threshold */
4050 new->entries[size - 1].eventfd = eventfd;
4051 new->entries[size - 1].threshold = threshold;
4053 /* Sort thresholds. Registering of new threshold isn't time-critical */
4054 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4055 compare_thresholds, NULL);
4057 /* Find current threshold */
4058 new->current_threshold = -1;
4059 for (i = 0; i < size; i++) {
4060 if (new->entries[i].threshold < usage) {
4062 * new->current_threshold will not be used until
4063 * rcu_assign_pointer(), so it's safe to increment
4064 * it here.
4066 ++new->current_threshold;
4070 /* Free old spare buffer and save old primary buffer as spare */
4071 kfree(thresholds->spare);
4072 thresholds->spare = thresholds->primary;
4074 rcu_assign_pointer(thresholds->primary, new);
4076 /* To be sure that nobody uses thresholds */
4077 synchronize_rcu();
4079 unlock:
4080 mutex_unlock(&memcg->thresholds_lock);
4082 return ret;
4085 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4086 struct cftype *cft, struct eventfd_ctx *eventfd)
4088 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089 struct mem_cgroup_thresholds *thresholds;
4090 struct mem_cgroup_threshold_ary *new;
4091 int type = MEMFILE_TYPE(cft->private);
4092 u64 usage;
4093 int i, j, size;
4095 mutex_lock(&memcg->thresholds_lock);
4096 if (type == _MEM)
4097 thresholds = &memcg->thresholds;
4098 else if (type == _MEMSWAP)
4099 thresholds = &memcg->memsw_thresholds;
4100 else
4101 BUG();
4104 * Something went wrong if we trying to unregister a threshold
4105 * if we don't have thresholds
4107 BUG_ON(!thresholds);
4109 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4111 /* Check if a threshold crossed before removing */
4112 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4114 /* Calculate new number of threshold */
4115 size = 0;
4116 for (i = 0; i < thresholds->primary->size; i++) {
4117 if (thresholds->primary->entries[i].eventfd != eventfd)
4118 size++;
4121 new = thresholds->spare;
4123 /* Set thresholds array to NULL if we don't have thresholds */
4124 if (!size) {
4125 kfree(new);
4126 new = NULL;
4127 goto swap_buffers;
4130 new->size = size;
4132 /* Copy thresholds and find current threshold */
4133 new->current_threshold = -1;
4134 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4135 if (thresholds->primary->entries[i].eventfd == eventfd)
4136 continue;
4138 new->entries[j] = thresholds->primary->entries[i];
4139 if (new->entries[j].threshold < usage) {
4141 * new->current_threshold will not be used
4142 * until rcu_assign_pointer(), so it's safe to increment
4143 * it here.
4145 ++new->current_threshold;
4147 j++;
4150 swap_buffers:
4151 /* Swap primary and spare array */
4152 thresholds->spare = thresholds->primary;
4153 rcu_assign_pointer(thresholds->primary, new);
4155 /* To be sure that nobody uses thresholds */
4156 synchronize_rcu();
4158 mutex_unlock(&memcg->thresholds_lock);
4161 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4162 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4164 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4165 struct mem_cgroup_eventfd_list *event;
4166 int type = MEMFILE_TYPE(cft->private);
4168 BUG_ON(type != _OOM_TYPE);
4169 event = kmalloc(sizeof(*event), GFP_KERNEL);
4170 if (!event)
4171 return -ENOMEM;
4173 mutex_lock(&memcg_oom_mutex);
4175 event->eventfd = eventfd;
4176 list_add(&event->list, &memcg->oom_notify);
4178 /* already in OOM ? */
4179 if (atomic_read(&memcg->oom_lock))
4180 eventfd_signal(eventfd, 1);
4181 mutex_unlock(&memcg_oom_mutex);
4183 return 0;
4186 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4187 struct cftype *cft, struct eventfd_ctx *eventfd)
4189 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4190 struct mem_cgroup_eventfd_list *ev, *tmp;
4191 int type = MEMFILE_TYPE(cft->private);
4193 BUG_ON(type != _OOM_TYPE);
4195 mutex_lock(&memcg_oom_mutex);
4197 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4198 if (ev->eventfd == eventfd) {
4199 list_del(&ev->list);
4200 kfree(ev);
4204 mutex_unlock(&memcg_oom_mutex);
4207 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4208 struct cftype *cft, struct cgroup_map_cb *cb)
4210 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4212 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4214 if (atomic_read(&mem->oom_lock))
4215 cb->fill(cb, "under_oom", 1);
4216 else
4217 cb->fill(cb, "under_oom", 0);
4218 return 0;
4221 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4222 struct cftype *cft, u64 val)
4224 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4225 struct mem_cgroup *parent;
4227 /* cannot set to root cgroup and only 0 and 1 are allowed */
4228 if (!cgrp->parent || !((val == 0) || (val == 1)))
4229 return -EINVAL;
4231 parent = mem_cgroup_from_cont(cgrp->parent);
4233 cgroup_lock();
4234 /* oom-kill-disable is a flag for subhierarchy. */
4235 if ((parent->use_hierarchy) ||
4236 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4237 cgroup_unlock();
4238 return -EINVAL;
4240 mem->oom_kill_disable = val;
4241 if (!val)
4242 memcg_oom_recover(mem);
4243 cgroup_unlock();
4244 return 0;
4247 static struct cftype mem_cgroup_files[] = {
4249 .name = "usage_in_bytes",
4250 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4251 .read_u64 = mem_cgroup_read,
4252 .register_event = mem_cgroup_usage_register_event,
4253 .unregister_event = mem_cgroup_usage_unregister_event,
4256 .name = "max_usage_in_bytes",
4257 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4258 .trigger = mem_cgroup_reset,
4259 .read_u64 = mem_cgroup_read,
4262 .name = "limit_in_bytes",
4263 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4264 .write_string = mem_cgroup_write,
4265 .read_u64 = mem_cgroup_read,
4268 .name = "soft_limit_in_bytes",
4269 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4270 .write_string = mem_cgroup_write,
4271 .read_u64 = mem_cgroup_read,
4274 .name = "failcnt",
4275 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4276 .trigger = mem_cgroup_reset,
4277 .read_u64 = mem_cgroup_read,
4280 .name = "stat",
4281 .read_map = mem_control_stat_show,
4284 .name = "force_empty",
4285 .trigger = mem_cgroup_force_empty_write,
4288 .name = "use_hierarchy",
4289 .write_u64 = mem_cgroup_hierarchy_write,
4290 .read_u64 = mem_cgroup_hierarchy_read,
4293 .name = "swappiness",
4294 .read_u64 = mem_cgroup_swappiness_read,
4295 .write_u64 = mem_cgroup_swappiness_write,
4298 .name = "move_charge_at_immigrate",
4299 .read_u64 = mem_cgroup_move_charge_read,
4300 .write_u64 = mem_cgroup_move_charge_write,
4303 .name = "oom_control",
4304 .read_map = mem_cgroup_oom_control_read,
4305 .write_u64 = mem_cgroup_oom_control_write,
4306 .register_event = mem_cgroup_oom_register_event,
4307 .unregister_event = mem_cgroup_oom_unregister_event,
4308 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4312 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4313 static struct cftype memsw_cgroup_files[] = {
4315 .name = "memsw.usage_in_bytes",
4316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4317 .read_u64 = mem_cgroup_read,
4318 .register_event = mem_cgroup_usage_register_event,
4319 .unregister_event = mem_cgroup_usage_unregister_event,
4322 .name = "memsw.max_usage_in_bytes",
4323 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4324 .trigger = mem_cgroup_reset,
4325 .read_u64 = mem_cgroup_read,
4328 .name = "memsw.limit_in_bytes",
4329 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4330 .write_string = mem_cgroup_write,
4331 .read_u64 = mem_cgroup_read,
4334 .name = "memsw.failcnt",
4335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4336 .trigger = mem_cgroup_reset,
4337 .read_u64 = mem_cgroup_read,
4341 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4343 if (!do_swap_account)
4344 return 0;
4345 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4346 ARRAY_SIZE(memsw_cgroup_files));
4348 #else
4349 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4351 return 0;
4353 #endif
4355 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4357 struct mem_cgroup_per_node *pn;
4358 struct mem_cgroup_per_zone *mz;
4359 enum lru_list l;
4360 int zone, tmp = node;
4362 * This routine is called against possible nodes.
4363 * But it's BUG to call kmalloc() against offline node.
4365 * TODO: this routine can waste much memory for nodes which will
4366 * never be onlined. It's better to use memory hotplug callback
4367 * function.
4369 if (!node_state(node, N_NORMAL_MEMORY))
4370 tmp = -1;
4371 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4372 if (!pn)
4373 return 1;
4375 mem->info.nodeinfo[node] = pn;
4376 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4377 mz = &pn->zoneinfo[zone];
4378 for_each_lru(l)
4379 INIT_LIST_HEAD(&mz->lists[l]);
4380 mz->usage_in_excess = 0;
4381 mz->on_tree = false;
4382 mz->mem = mem;
4384 return 0;
4387 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4389 kfree(mem->info.nodeinfo[node]);
4392 static struct mem_cgroup *mem_cgroup_alloc(void)
4394 struct mem_cgroup *mem;
4395 int size = sizeof(struct mem_cgroup);
4397 /* Can be very big if MAX_NUMNODES is very big */
4398 if (size < PAGE_SIZE)
4399 mem = kzalloc(size, GFP_KERNEL);
4400 else
4401 mem = vzalloc(size);
4403 if (!mem)
4404 return NULL;
4406 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4407 if (!mem->stat)
4408 goto out_free;
4409 spin_lock_init(&mem->pcp_counter_lock);
4410 return mem;
4412 out_free:
4413 if (size < PAGE_SIZE)
4414 kfree(mem);
4415 else
4416 vfree(mem);
4417 return NULL;
4421 * At destroying mem_cgroup, references from swap_cgroup can remain.
4422 * (scanning all at force_empty is too costly...)
4424 * Instead of clearing all references at force_empty, we remember
4425 * the number of reference from swap_cgroup and free mem_cgroup when
4426 * it goes down to 0.
4428 * Removal of cgroup itself succeeds regardless of refs from swap.
4431 static void __mem_cgroup_free(struct mem_cgroup *mem)
4433 int node;
4435 mem_cgroup_remove_from_trees(mem);
4436 free_css_id(&mem_cgroup_subsys, &mem->css);
4438 for_each_node_state(node, N_POSSIBLE)
4439 free_mem_cgroup_per_zone_info(mem, node);
4441 free_percpu(mem->stat);
4442 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4443 kfree(mem);
4444 else
4445 vfree(mem);
4448 static void mem_cgroup_get(struct mem_cgroup *mem)
4450 atomic_inc(&mem->refcnt);
4453 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4455 if (atomic_sub_and_test(count, &mem->refcnt)) {
4456 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4457 __mem_cgroup_free(mem);
4458 if (parent)
4459 mem_cgroup_put(parent);
4463 static void mem_cgroup_put(struct mem_cgroup *mem)
4465 __mem_cgroup_put(mem, 1);
4469 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4471 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4473 if (!mem->res.parent)
4474 return NULL;
4475 return mem_cgroup_from_res_counter(mem->res.parent, res);
4478 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4479 static void __init enable_swap_cgroup(void)
4481 if (!mem_cgroup_disabled() && really_do_swap_account)
4482 do_swap_account = 1;
4484 #else
4485 static void __init enable_swap_cgroup(void)
4488 #endif
4490 static int mem_cgroup_soft_limit_tree_init(void)
4492 struct mem_cgroup_tree_per_node *rtpn;
4493 struct mem_cgroup_tree_per_zone *rtpz;
4494 int tmp, node, zone;
4496 for_each_node_state(node, N_POSSIBLE) {
4497 tmp = node;
4498 if (!node_state(node, N_NORMAL_MEMORY))
4499 tmp = -1;
4500 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4501 if (!rtpn)
4502 return 1;
4504 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4506 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4507 rtpz = &rtpn->rb_tree_per_zone[zone];
4508 rtpz->rb_root = RB_ROOT;
4509 spin_lock_init(&rtpz->lock);
4512 return 0;
4515 static struct cgroup_subsys_state * __ref
4516 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4518 struct mem_cgroup *mem, *parent;
4519 long error = -ENOMEM;
4520 int node;
4522 mem = mem_cgroup_alloc();
4523 if (!mem)
4524 return ERR_PTR(error);
4526 for_each_node_state(node, N_POSSIBLE)
4527 if (alloc_mem_cgroup_per_zone_info(mem, node))
4528 goto free_out;
4530 /* root ? */
4531 if (cont->parent == NULL) {
4532 int cpu;
4533 enable_swap_cgroup();
4534 parent = NULL;
4535 root_mem_cgroup = mem;
4536 if (mem_cgroup_soft_limit_tree_init())
4537 goto free_out;
4538 for_each_possible_cpu(cpu) {
4539 struct memcg_stock_pcp *stock =
4540 &per_cpu(memcg_stock, cpu);
4541 INIT_WORK(&stock->work, drain_local_stock);
4543 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4544 } else {
4545 parent = mem_cgroup_from_cont(cont->parent);
4546 mem->use_hierarchy = parent->use_hierarchy;
4547 mem->oom_kill_disable = parent->oom_kill_disable;
4550 if (parent && parent->use_hierarchy) {
4551 res_counter_init(&mem->res, &parent->res);
4552 res_counter_init(&mem->memsw, &parent->memsw);
4554 * We increment refcnt of the parent to ensure that we can
4555 * safely access it on res_counter_charge/uncharge.
4556 * This refcnt will be decremented when freeing this
4557 * mem_cgroup(see mem_cgroup_put).
4559 mem_cgroup_get(parent);
4560 } else {
4561 res_counter_init(&mem->res, NULL);
4562 res_counter_init(&mem->memsw, NULL);
4564 mem->last_scanned_child = 0;
4565 INIT_LIST_HEAD(&mem->oom_notify);
4567 if (parent)
4568 mem->swappiness = get_swappiness(parent);
4569 atomic_set(&mem->refcnt, 1);
4570 mem->move_charge_at_immigrate = 0;
4571 mutex_init(&mem->thresholds_lock);
4572 return &mem->css;
4573 free_out:
4574 __mem_cgroup_free(mem);
4575 root_mem_cgroup = NULL;
4576 return ERR_PTR(error);
4579 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4580 struct cgroup *cont)
4582 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4584 return mem_cgroup_force_empty(mem, false);
4587 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4588 struct cgroup *cont)
4590 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4592 mem_cgroup_put(mem);
4595 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4596 struct cgroup *cont)
4598 int ret;
4600 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4601 ARRAY_SIZE(mem_cgroup_files));
4603 if (!ret)
4604 ret = register_memsw_files(cont, ss);
4605 return ret;
4608 #ifdef CONFIG_MMU
4609 /* Handlers for move charge at task migration. */
4610 #define PRECHARGE_COUNT_AT_ONCE 256
4611 static int mem_cgroup_do_precharge(unsigned long count)
4613 int ret = 0;
4614 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4615 struct mem_cgroup *mem = mc.to;
4617 if (mem_cgroup_is_root(mem)) {
4618 mc.precharge += count;
4619 /* we don't need css_get for root */
4620 return ret;
4622 /* try to charge at once */
4623 if (count > 1) {
4624 struct res_counter *dummy;
4626 * "mem" cannot be under rmdir() because we've already checked
4627 * by cgroup_lock_live_cgroup() that it is not removed and we
4628 * are still under the same cgroup_mutex. So we can postpone
4629 * css_get().
4631 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4632 goto one_by_one;
4633 if (do_swap_account && res_counter_charge(&mem->memsw,
4634 PAGE_SIZE * count, &dummy)) {
4635 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4636 goto one_by_one;
4638 mc.precharge += count;
4639 return ret;
4641 one_by_one:
4642 /* fall back to one by one charge */
4643 while (count--) {
4644 if (signal_pending(current)) {
4645 ret = -EINTR;
4646 break;
4648 if (!batch_count--) {
4649 batch_count = PRECHARGE_COUNT_AT_ONCE;
4650 cond_resched();
4652 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4653 if (ret || !mem)
4654 /* mem_cgroup_clear_mc() will do uncharge later */
4655 return -ENOMEM;
4656 mc.precharge++;
4658 return ret;
4662 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4663 * @vma: the vma the pte to be checked belongs
4664 * @addr: the address corresponding to the pte to be checked
4665 * @ptent: the pte to be checked
4666 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4668 * Returns
4669 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4670 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4671 * move charge. if @target is not NULL, the page is stored in target->page
4672 * with extra refcnt got(Callers should handle it).
4673 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4674 * target for charge migration. if @target is not NULL, the entry is stored
4675 * in target->ent.
4677 * Called with pte lock held.
4679 union mc_target {
4680 struct page *page;
4681 swp_entry_t ent;
4684 enum mc_target_type {
4685 MC_TARGET_NONE, /* not used */
4686 MC_TARGET_PAGE,
4687 MC_TARGET_SWAP,
4690 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4691 unsigned long addr, pte_t ptent)
4693 struct page *page = vm_normal_page(vma, addr, ptent);
4695 if (!page || !page_mapped(page))
4696 return NULL;
4697 if (PageAnon(page)) {
4698 /* we don't move shared anon */
4699 if (!move_anon() || page_mapcount(page) > 2)
4700 return NULL;
4701 } else if (!move_file())
4702 /* we ignore mapcount for file pages */
4703 return NULL;
4704 if (!get_page_unless_zero(page))
4705 return NULL;
4707 return page;
4710 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4711 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4713 int usage_count;
4714 struct page *page = NULL;
4715 swp_entry_t ent = pte_to_swp_entry(ptent);
4717 if (!move_anon() || non_swap_entry(ent))
4718 return NULL;
4719 usage_count = mem_cgroup_count_swap_user(ent, &page);
4720 if (usage_count > 1) { /* we don't move shared anon */
4721 if (page)
4722 put_page(page);
4723 return NULL;
4725 if (do_swap_account)
4726 entry->val = ent.val;
4728 return page;
4731 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4732 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4734 struct page *page = NULL;
4735 struct inode *inode;
4736 struct address_space *mapping;
4737 pgoff_t pgoff;
4739 if (!vma->vm_file) /* anonymous vma */
4740 return NULL;
4741 if (!move_file())
4742 return NULL;
4744 inode = vma->vm_file->f_path.dentry->d_inode;
4745 mapping = vma->vm_file->f_mapping;
4746 if (pte_none(ptent))
4747 pgoff = linear_page_index(vma, addr);
4748 else /* pte_file(ptent) is true */
4749 pgoff = pte_to_pgoff(ptent);
4751 /* page is moved even if it's not RSS of this task(page-faulted). */
4752 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4753 page = find_get_page(mapping, pgoff);
4754 } else { /* shmem/tmpfs file. we should take account of swap too. */
4755 swp_entry_t ent;
4756 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4757 if (do_swap_account)
4758 entry->val = ent.val;
4761 return page;
4764 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4765 unsigned long addr, pte_t ptent, union mc_target *target)
4767 struct page *page = NULL;
4768 struct page_cgroup *pc;
4769 int ret = 0;
4770 swp_entry_t ent = { .val = 0 };
4772 if (pte_present(ptent))
4773 page = mc_handle_present_pte(vma, addr, ptent);
4774 else if (is_swap_pte(ptent))
4775 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4776 else if (pte_none(ptent) || pte_file(ptent))
4777 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4779 if (!page && !ent.val)
4780 return 0;
4781 if (page) {
4782 pc = lookup_page_cgroup(page);
4784 * Do only loose check w/o page_cgroup lock.
4785 * mem_cgroup_move_account() checks the pc is valid or not under
4786 * the lock.
4788 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4789 ret = MC_TARGET_PAGE;
4790 if (target)
4791 target->page = page;
4793 if (!ret || !target)
4794 put_page(page);
4796 /* There is a swap entry and a page doesn't exist or isn't charged */
4797 if (ent.val && !ret &&
4798 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4799 ret = MC_TARGET_SWAP;
4800 if (target)
4801 target->ent = ent;
4803 return ret;
4806 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4807 unsigned long addr, unsigned long end,
4808 struct mm_walk *walk)
4810 struct vm_area_struct *vma = walk->private;
4811 pte_t *pte;
4812 spinlock_t *ptl;
4814 split_huge_page_pmd(walk->mm, pmd);
4816 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4817 for (; addr != end; pte++, addr += PAGE_SIZE)
4818 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4819 mc.precharge++; /* increment precharge temporarily */
4820 pte_unmap_unlock(pte - 1, ptl);
4821 cond_resched();
4823 return 0;
4826 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4828 unsigned long precharge;
4829 struct vm_area_struct *vma;
4831 down_read(&mm->mmap_sem);
4832 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4833 struct mm_walk mem_cgroup_count_precharge_walk = {
4834 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4835 .mm = mm,
4836 .private = vma,
4838 if (is_vm_hugetlb_page(vma))
4839 continue;
4840 walk_page_range(vma->vm_start, vma->vm_end,
4841 &mem_cgroup_count_precharge_walk);
4843 up_read(&mm->mmap_sem);
4845 precharge = mc.precharge;
4846 mc.precharge = 0;
4848 return precharge;
4851 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4853 unsigned long precharge = mem_cgroup_count_precharge(mm);
4855 VM_BUG_ON(mc.moving_task);
4856 mc.moving_task = current;
4857 return mem_cgroup_do_precharge(precharge);
4860 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4861 static void __mem_cgroup_clear_mc(void)
4863 struct mem_cgroup *from = mc.from;
4864 struct mem_cgroup *to = mc.to;
4866 /* we must uncharge all the leftover precharges from mc.to */
4867 if (mc.precharge) {
4868 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4869 mc.precharge = 0;
4872 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4873 * we must uncharge here.
4875 if (mc.moved_charge) {
4876 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4877 mc.moved_charge = 0;
4879 /* we must fixup refcnts and charges */
4880 if (mc.moved_swap) {
4881 /* uncharge swap account from the old cgroup */
4882 if (!mem_cgroup_is_root(mc.from))
4883 res_counter_uncharge(&mc.from->memsw,
4884 PAGE_SIZE * mc.moved_swap);
4885 __mem_cgroup_put(mc.from, mc.moved_swap);
4887 if (!mem_cgroup_is_root(mc.to)) {
4889 * we charged both to->res and to->memsw, so we should
4890 * uncharge to->res.
4892 res_counter_uncharge(&mc.to->res,
4893 PAGE_SIZE * mc.moved_swap);
4895 /* we've already done mem_cgroup_get(mc.to) */
4896 mc.moved_swap = 0;
4898 memcg_oom_recover(from);
4899 memcg_oom_recover(to);
4900 wake_up_all(&mc.waitq);
4903 static void mem_cgroup_clear_mc(void)
4905 struct mem_cgroup *from = mc.from;
4908 * we must clear moving_task before waking up waiters at the end of
4909 * task migration.
4911 mc.moving_task = NULL;
4912 __mem_cgroup_clear_mc();
4913 spin_lock(&mc.lock);
4914 mc.from = NULL;
4915 mc.to = NULL;
4916 spin_unlock(&mc.lock);
4917 mem_cgroup_end_move(from);
4920 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4921 struct cgroup *cgroup,
4922 struct task_struct *p,
4923 bool threadgroup)
4925 int ret = 0;
4926 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4928 if (mem->move_charge_at_immigrate) {
4929 struct mm_struct *mm;
4930 struct mem_cgroup *from = mem_cgroup_from_task(p);
4932 VM_BUG_ON(from == mem);
4934 mm = get_task_mm(p);
4935 if (!mm)
4936 return 0;
4937 /* We move charges only when we move a owner of the mm */
4938 if (mm->owner == p) {
4939 VM_BUG_ON(mc.from);
4940 VM_BUG_ON(mc.to);
4941 VM_BUG_ON(mc.precharge);
4942 VM_BUG_ON(mc.moved_charge);
4943 VM_BUG_ON(mc.moved_swap);
4944 mem_cgroup_start_move(from);
4945 spin_lock(&mc.lock);
4946 mc.from = from;
4947 mc.to = mem;
4948 spin_unlock(&mc.lock);
4949 /* We set mc.moving_task later */
4951 ret = mem_cgroup_precharge_mc(mm);
4952 if (ret)
4953 mem_cgroup_clear_mc();
4955 mmput(mm);
4957 return ret;
4960 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4961 struct cgroup *cgroup,
4962 struct task_struct *p,
4963 bool threadgroup)
4965 mem_cgroup_clear_mc();
4968 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4969 unsigned long addr, unsigned long end,
4970 struct mm_walk *walk)
4972 int ret = 0;
4973 struct vm_area_struct *vma = walk->private;
4974 pte_t *pte;
4975 spinlock_t *ptl;
4977 split_huge_page_pmd(walk->mm, pmd);
4978 retry:
4979 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4980 for (; addr != end; addr += PAGE_SIZE) {
4981 pte_t ptent = *(pte++);
4982 union mc_target target;
4983 int type;
4984 struct page *page;
4985 struct page_cgroup *pc;
4986 swp_entry_t ent;
4988 if (!mc.precharge)
4989 break;
4991 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4992 switch (type) {
4993 case MC_TARGET_PAGE:
4994 page = target.page;
4995 if (isolate_lru_page(page))
4996 goto put;
4997 pc = lookup_page_cgroup(page);
4998 if (!mem_cgroup_move_account(page, 1, pc,
4999 mc.from, mc.to, false)) {
5000 mc.precharge--;
5001 /* we uncharge from mc.from later. */
5002 mc.moved_charge++;
5004 putback_lru_page(page);
5005 put: /* is_target_pte_for_mc() gets the page */
5006 put_page(page);
5007 break;
5008 case MC_TARGET_SWAP:
5009 ent = target.ent;
5010 if (!mem_cgroup_move_swap_account(ent,
5011 mc.from, mc.to, false)) {
5012 mc.precharge--;
5013 /* we fixup refcnts and charges later. */
5014 mc.moved_swap++;
5016 break;
5017 default:
5018 break;
5021 pte_unmap_unlock(pte - 1, ptl);
5022 cond_resched();
5024 if (addr != end) {
5026 * We have consumed all precharges we got in can_attach().
5027 * We try charge one by one, but don't do any additional
5028 * charges to mc.to if we have failed in charge once in attach()
5029 * phase.
5031 ret = mem_cgroup_do_precharge(1);
5032 if (!ret)
5033 goto retry;
5036 return ret;
5039 static void mem_cgroup_move_charge(struct mm_struct *mm)
5041 struct vm_area_struct *vma;
5043 lru_add_drain_all();
5044 retry:
5045 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5047 * Someone who are holding the mmap_sem might be waiting in
5048 * waitq. So we cancel all extra charges, wake up all waiters,
5049 * and retry. Because we cancel precharges, we might not be able
5050 * to move enough charges, but moving charge is a best-effort
5051 * feature anyway, so it wouldn't be a big problem.
5053 __mem_cgroup_clear_mc();
5054 cond_resched();
5055 goto retry;
5057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5058 int ret;
5059 struct mm_walk mem_cgroup_move_charge_walk = {
5060 .pmd_entry = mem_cgroup_move_charge_pte_range,
5061 .mm = mm,
5062 .private = vma,
5064 if (is_vm_hugetlb_page(vma))
5065 continue;
5066 ret = walk_page_range(vma->vm_start, vma->vm_end,
5067 &mem_cgroup_move_charge_walk);
5068 if (ret)
5070 * means we have consumed all precharges and failed in
5071 * doing additional charge. Just abandon here.
5073 break;
5075 up_read(&mm->mmap_sem);
5078 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5079 struct cgroup *cont,
5080 struct cgroup *old_cont,
5081 struct task_struct *p,
5082 bool threadgroup)
5084 struct mm_struct *mm;
5086 if (!mc.to)
5087 /* no need to move charge */
5088 return;
5090 mm = get_task_mm(p);
5091 if (mm) {
5092 mem_cgroup_move_charge(mm);
5093 mmput(mm);
5095 mem_cgroup_clear_mc();
5097 #else /* !CONFIG_MMU */
5098 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5099 struct cgroup *cgroup,
5100 struct task_struct *p,
5101 bool threadgroup)
5103 return 0;
5105 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5106 struct cgroup *cgroup,
5107 struct task_struct *p,
5108 bool threadgroup)
5111 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5112 struct cgroup *cont,
5113 struct cgroup *old_cont,
5114 struct task_struct *p,
5115 bool threadgroup)
5118 #endif
5120 struct cgroup_subsys mem_cgroup_subsys = {
5121 .name = "memory",
5122 .subsys_id = mem_cgroup_subsys_id,
5123 .create = mem_cgroup_create,
5124 .pre_destroy = mem_cgroup_pre_destroy,
5125 .destroy = mem_cgroup_destroy,
5126 .populate = mem_cgroup_populate,
5127 .can_attach = mem_cgroup_can_attach,
5128 .cancel_attach = mem_cgroup_cancel_attach,
5129 .attach = mem_cgroup_move_task,
5130 .early_init = 0,
5131 .use_id = 1,
5134 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5135 static int __init enable_swap_account(char *s)
5137 /* consider enabled if no parameter or 1 is given */
5138 if (!(*s) || !strcmp(s, "=1"))
5139 really_do_swap_account = 1;
5140 else if (!strcmp(s, "=0"))
5141 really_do_swap_account = 0;
5142 return 1;
5144 __setup("swapaccount", enable_swap_account);
5146 static int __init disable_swap_account(char *s)
5148 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5149 enable_swap_account("=0");
5150 return 1;
5152 __setup("noswapaccount", disable_swap_account);
5153 #endif