2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name
= DM_NAME
;
37 static unsigned int major
= 0;
38 static unsigned int _major
= 0;
40 static DEFINE_SPINLOCK(_minor_lock
);
43 * One of these is allocated per bio.
46 struct mapped_device
*md
;
50 unsigned long start_time
;
51 spinlock_t endio_lock
;
56 * One of these is allocated per target within a bio. Hopefully
57 * this will be simplified out one day.
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io
{
70 struct mapped_device
*md
;
72 struct request
*orig
, clone
;
78 * For request-based dm.
79 * One of these is allocated per bio.
81 struct dm_rq_clone_bio_info
{
83 struct dm_rq_target_io
*tio
;
86 union map_info
*dm_get_mapinfo(struct bio
*bio
)
88 if (bio
&& bio
->bi_private
)
89 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
93 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
95 if (rq
&& rq
->end_io_data
)
96 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
101 #define MINOR_ALLOCED ((void *)-1)
104 * Bits for the md->flags field.
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
114 * Work processed by per-device workqueue.
116 struct mapped_device
{
117 struct rw_semaphore io_lock
;
118 struct mutex suspend_lock
;
125 struct request_queue
*queue
;
127 /* Protect queue and type against concurrent access. */
128 struct mutex type_lock
;
130 struct gendisk
*disk
;
136 * A list of ios that arrived while we were suspended.
139 wait_queue_head_t wait
;
140 struct work_struct work
;
141 struct bio_list deferred
;
142 spinlock_t deferred_lock
;
145 * Processing queue (flush)
147 struct workqueue_struct
*wq
;
150 * The current mapping.
152 struct dm_table
*map
;
155 * io objects are allocated from here.
166 wait_queue_head_t eventq
;
168 struct list_head uevent_list
;
169 spinlock_t uevent_lock
; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block
*frozen_sb
;
175 struct block_device
*bdev
;
177 /* forced geometry settings */
178 struct hd_geometry geometry
;
180 /* For saving the address of __make_request for request based dm */
181 make_request_fn
*saved_make_request_fn
;
186 /* zero-length flush that will be cloned and submitted to targets */
187 struct bio flush_bio
;
191 * For mempools pre-allocation at the table loading time.
193 struct dm_md_mempools
{
200 static struct kmem_cache
*_io_cache
;
201 static struct kmem_cache
*_tio_cache
;
202 static struct kmem_cache
*_rq_tio_cache
;
203 static struct kmem_cache
*_rq_bio_info_cache
;
205 static int __init
local_init(void)
209 /* allocate a slab for the dm_ios */
210 _io_cache
= KMEM_CACHE(dm_io
, 0);
214 /* allocate a slab for the target ios */
215 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
217 goto out_free_io_cache
;
219 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
221 goto out_free_tio_cache
;
223 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
224 if (!_rq_bio_info_cache
)
225 goto out_free_rq_tio_cache
;
227 r
= dm_uevent_init();
229 goto out_free_rq_bio_info_cache
;
232 r
= register_blkdev(_major
, _name
);
234 goto out_uevent_exit
;
243 out_free_rq_bio_info_cache
:
244 kmem_cache_destroy(_rq_bio_info_cache
);
245 out_free_rq_tio_cache
:
246 kmem_cache_destroy(_rq_tio_cache
);
248 kmem_cache_destroy(_tio_cache
);
250 kmem_cache_destroy(_io_cache
);
255 static void local_exit(void)
257 kmem_cache_destroy(_rq_bio_info_cache
);
258 kmem_cache_destroy(_rq_tio_cache
);
259 kmem_cache_destroy(_tio_cache
);
260 kmem_cache_destroy(_io_cache
);
261 unregister_blkdev(_major
, _name
);
266 DMINFO("cleaned up");
269 static int (*_inits
[])(void) __initdata
= {
279 static void (*_exits
[])(void) = {
289 static int __init
dm_init(void)
291 const int count
= ARRAY_SIZE(_inits
);
295 for (i
= 0; i
< count
; i
++) {
310 static void __exit
dm_exit(void)
312 int i
= ARRAY_SIZE(_exits
);
319 * Block device functions
321 int dm_deleting_md(struct mapped_device
*md
)
323 return test_bit(DMF_DELETING
, &md
->flags
);
326 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
328 struct mapped_device
*md
;
330 spin_lock(&_minor_lock
);
332 md
= bdev
->bd_disk
->private_data
;
336 if (test_bit(DMF_FREEING
, &md
->flags
) ||
337 dm_deleting_md(md
)) {
343 atomic_inc(&md
->open_count
);
346 spin_unlock(&_minor_lock
);
348 return md
? 0 : -ENXIO
;
351 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
353 struct mapped_device
*md
= disk
->private_data
;
355 spin_lock(&_minor_lock
);
357 atomic_dec(&md
->open_count
);
360 spin_unlock(&_minor_lock
);
365 int dm_open_count(struct mapped_device
*md
)
367 return atomic_read(&md
->open_count
);
371 * Guarantees nothing is using the device before it's deleted.
373 int dm_lock_for_deletion(struct mapped_device
*md
)
377 spin_lock(&_minor_lock
);
379 if (dm_open_count(md
))
382 set_bit(DMF_DELETING
, &md
->flags
);
384 spin_unlock(&_minor_lock
);
389 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
391 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
393 return dm_get_geometry(md
, geo
);
396 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
397 unsigned int cmd
, unsigned long arg
)
399 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
400 struct dm_table
*map
= dm_get_live_table(md
);
401 struct dm_target
*tgt
;
404 if (!map
|| !dm_table_get_size(map
))
407 /* We only support devices that have a single target */
408 if (dm_table_get_num_targets(map
) != 1)
411 tgt
= dm_table_get_target(map
, 0);
413 if (dm_suspended_md(md
)) {
418 if (tgt
->type
->ioctl
)
419 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
427 static struct dm_io
*alloc_io(struct mapped_device
*md
)
429 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
432 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
434 mempool_free(io
, md
->io_pool
);
437 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
439 mempool_free(tio
, md
->tio_pool
);
442 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
445 return mempool_alloc(md
->tio_pool
, gfp_mask
);
448 static void free_rq_tio(struct dm_rq_target_io
*tio
)
450 mempool_free(tio
, tio
->md
->tio_pool
);
453 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
455 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
458 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
460 mempool_free(info
, info
->tio
->md
->io_pool
);
463 static int md_in_flight(struct mapped_device
*md
)
465 return atomic_read(&md
->pending
[READ
]) +
466 atomic_read(&md
->pending
[WRITE
]);
469 static void start_io_acct(struct dm_io
*io
)
471 struct mapped_device
*md
= io
->md
;
473 int rw
= bio_data_dir(io
->bio
);
475 io
->start_time
= jiffies
;
477 cpu
= part_stat_lock();
478 part_round_stats(cpu
, &dm_disk(md
)->part0
);
480 dm_disk(md
)->part0
.in_flight
[rw
] = atomic_inc_return(&md
->pending
[rw
]);
483 static void end_io_acct(struct dm_io
*io
)
485 struct mapped_device
*md
= io
->md
;
486 struct bio
*bio
= io
->bio
;
487 unsigned long duration
= jiffies
- io
->start_time
;
489 int rw
= bio_data_dir(bio
);
491 cpu
= part_stat_lock();
492 part_round_stats(cpu
, &dm_disk(md
)->part0
);
493 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
497 * After this is decremented the bio must not be touched if it is
500 dm_disk(md
)->part0
.in_flight
[rw
] = pending
=
501 atomic_dec_return(&md
->pending
[rw
]);
502 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
504 /* nudge anyone waiting on suspend queue */
510 * Add the bio to the list of deferred io.
512 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
516 spin_lock_irqsave(&md
->deferred_lock
, flags
);
517 bio_list_add(&md
->deferred
, bio
);
518 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
519 queue_work(md
->wq
, &md
->work
);
523 * Everyone (including functions in this file), should use this
524 * function to access the md->map field, and make sure they call
525 * dm_table_put() when finished.
527 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
532 read_lock_irqsave(&md
->map_lock
, flags
);
536 read_unlock_irqrestore(&md
->map_lock
, flags
);
542 * Get the geometry associated with a dm device
544 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
552 * Set the geometry of a device.
554 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
556 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
558 if (geo
->start
> sz
) {
559 DMWARN("Start sector is beyond the geometry limits.");
568 /*-----------------------------------------------------------------
570 * A more elegant soln is in the works that uses the queue
571 * merge fn, unfortunately there are a couple of changes to
572 * the block layer that I want to make for this. So in the
573 * interests of getting something for people to use I give
574 * you this clearly demarcated crap.
575 *---------------------------------------------------------------*/
577 static int __noflush_suspending(struct mapped_device
*md
)
579 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
583 * Decrements the number of outstanding ios that a bio has been
584 * cloned into, completing the original io if necc.
586 static void dec_pending(struct dm_io
*io
, int error
)
591 struct mapped_device
*md
= io
->md
;
593 /* Push-back supersedes any I/O errors */
594 if (unlikely(error
)) {
595 spin_lock_irqsave(&io
->endio_lock
, flags
);
596 if (!(io
->error
> 0 && __noflush_suspending(md
)))
598 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
601 if (atomic_dec_and_test(&io
->io_count
)) {
602 if (io
->error
== DM_ENDIO_REQUEUE
) {
604 * Target requested pushing back the I/O.
606 spin_lock_irqsave(&md
->deferred_lock
, flags
);
607 if (__noflush_suspending(md
))
608 bio_list_add_head(&md
->deferred
, io
->bio
);
610 /* noflush suspend was interrupted. */
612 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
615 io_error
= io
->error
;
620 if (io_error
== DM_ENDIO_REQUEUE
)
623 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
625 * Preflush done for flush with data, reissue
628 bio
->bi_rw
&= ~REQ_FLUSH
;
631 /* done with normal IO or empty flush */
632 trace_block_bio_complete(md
->queue
, bio
, io_error
);
633 bio_endio(bio
, io_error
);
638 static void clone_endio(struct bio
*bio
, int error
)
641 struct dm_target_io
*tio
= bio
->bi_private
;
642 struct dm_io
*io
= tio
->io
;
643 struct mapped_device
*md
= tio
->io
->md
;
644 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
646 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
650 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
651 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
653 * error and requeue request are handled
657 else if (r
== DM_ENDIO_INCOMPLETE
)
658 /* The target will handle the io */
661 DMWARN("unimplemented target endio return value: %d", r
);
667 * Store md for cleanup instead of tio which is about to get freed.
669 bio
->bi_private
= md
->bs
;
673 dec_pending(io
, error
);
677 * Partial completion handling for request-based dm
679 static void end_clone_bio(struct bio
*clone
, int error
)
681 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
682 struct dm_rq_target_io
*tio
= info
->tio
;
683 struct bio
*bio
= info
->orig
;
684 unsigned int nr_bytes
= info
->orig
->bi_size
;
690 * An error has already been detected on the request.
691 * Once error occurred, just let clone->end_io() handle
697 * Don't notice the error to the upper layer yet.
698 * The error handling decision is made by the target driver,
699 * when the request is completed.
706 * I/O for the bio successfully completed.
707 * Notice the data completion to the upper layer.
711 * bios are processed from the head of the list.
712 * So the completing bio should always be rq->bio.
713 * If it's not, something wrong is happening.
715 if (tio
->orig
->bio
!= bio
)
716 DMERR("bio completion is going in the middle of the request");
719 * Update the original request.
720 * Do not use blk_end_request() here, because it may complete
721 * the original request before the clone, and break the ordering.
723 blk_update_request(tio
->orig
, 0, nr_bytes
);
727 * Don't touch any member of the md after calling this function because
728 * the md may be freed in dm_put() at the end of this function.
729 * Or do dm_get() before calling this function and dm_put() later.
731 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
733 atomic_dec(&md
->pending
[rw
]);
735 /* nudge anyone waiting on suspend queue */
736 if (!md_in_flight(md
))
740 blk_run_queue(md
->queue
);
743 * dm_put() must be at the end of this function. See the comment above
748 static void free_rq_clone(struct request
*clone
)
750 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
752 blk_rq_unprep_clone(clone
);
757 * Complete the clone and the original request.
758 * Must be called without queue lock.
760 static void dm_end_request(struct request
*clone
, int error
)
762 int rw
= rq_data_dir(clone
);
763 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
764 struct mapped_device
*md
= tio
->md
;
765 struct request
*rq
= tio
->orig
;
767 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
768 rq
->errors
= clone
->errors
;
769 rq
->resid_len
= clone
->resid_len
;
773 * We are using the sense buffer of the original
775 * So setting the length of the sense data is enough.
777 rq
->sense_len
= clone
->sense_len
;
780 free_rq_clone(clone
);
781 blk_end_request_all(rq
, error
);
782 rq_completed(md
, rw
, true);
785 static void dm_unprep_request(struct request
*rq
)
787 struct request
*clone
= rq
->special
;
790 rq
->cmd_flags
&= ~REQ_DONTPREP
;
792 free_rq_clone(clone
);
796 * Requeue the original request of a clone.
798 void dm_requeue_unmapped_request(struct request
*clone
)
800 int rw
= rq_data_dir(clone
);
801 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
802 struct mapped_device
*md
= tio
->md
;
803 struct request
*rq
= tio
->orig
;
804 struct request_queue
*q
= rq
->q
;
807 dm_unprep_request(rq
);
809 spin_lock_irqsave(q
->queue_lock
, flags
);
810 if (elv_queue_empty(q
))
812 blk_requeue_request(q
, rq
);
813 spin_unlock_irqrestore(q
->queue_lock
, flags
);
815 rq_completed(md
, rw
, 0);
817 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
819 static void __stop_queue(struct request_queue
*q
)
824 static void stop_queue(struct request_queue
*q
)
828 spin_lock_irqsave(q
->queue_lock
, flags
);
830 spin_unlock_irqrestore(q
->queue_lock
, flags
);
833 static void __start_queue(struct request_queue
*q
)
835 if (blk_queue_stopped(q
))
839 static void start_queue(struct request_queue
*q
)
843 spin_lock_irqsave(q
->queue_lock
, flags
);
845 spin_unlock_irqrestore(q
->queue_lock
, flags
);
848 static void dm_done(struct request
*clone
, int error
, bool mapped
)
851 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
852 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
854 if (mapped
&& rq_end_io
)
855 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
858 /* The target wants to complete the I/O */
859 dm_end_request(clone
, r
);
860 else if (r
== DM_ENDIO_INCOMPLETE
)
861 /* The target will handle the I/O */
863 else if (r
== DM_ENDIO_REQUEUE
)
864 /* The target wants to requeue the I/O */
865 dm_requeue_unmapped_request(clone
);
867 DMWARN("unimplemented target endio return value: %d", r
);
873 * Request completion handler for request-based dm
875 static void dm_softirq_done(struct request
*rq
)
878 struct request
*clone
= rq
->completion_data
;
879 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
881 if (rq
->cmd_flags
& REQ_FAILED
)
884 dm_done(clone
, tio
->error
, mapped
);
888 * Complete the clone and the original request with the error status
889 * through softirq context.
891 static void dm_complete_request(struct request
*clone
, int error
)
893 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
894 struct request
*rq
= tio
->orig
;
897 rq
->completion_data
= clone
;
898 blk_complete_request(rq
);
902 * Complete the not-mapped clone and the original request with the error status
903 * through softirq context.
904 * Target's rq_end_io() function isn't called.
905 * This may be used when the target's map_rq() function fails.
907 void dm_kill_unmapped_request(struct request
*clone
, int error
)
909 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
910 struct request
*rq
= tio
->orig
;
912 rq
->cmd_flags
|= REQ_FAILED
;
913 dm_complete_request(clone
, error
);
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
918 * Called with the queue lock held
920 static void end_clone_request(struct request
*clone
, int error
)
923 * For just cleaning up the information of the queue in which
924 * the clone was dispatched.
925 * The clone is *NOT* freed actually here because it is alloced from
926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 __blk_put_request(clone
->q
, clone
);
931 * Actual request completion is done in a softirq context which doesn't
932 * hold the queue lock. Otherwise, deadlock could occur because:
933 * - another request may be submitted by the upper level driver
934 * of the stacking during the completion
935 * - the submission which requires queue lock may be done
938 dm_complete_request(clone
, error
);
942 * Return maximum size of I/O possible at the supplied sector up to the current
945 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
947 sector_t target_offset
= dm_target_offset(ti
, sector
);
949 return ti
->len
- target_offset
;
952 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
954 sector_t len
= max_io_len_target_boundary(sector
, ti
);
957 * Does the target need to split even further ?
961 sector_t offset
= dm_target_offset(ti
, sector
);
962 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
971 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
972 struct dm_target_io
*tio
)
976 struct mapped_device
*md
;
978 clone
->bi_end_io
= clone_endio
;
979 clone
->bi_private
= tio
;
982 * Map the clone. If r == 0 we don't need to do
983 * anything, the target has assumed ownership of
986 atomic_inc(&tio
->io
->io_count
);
987 sector
= clone
->bi_sector
;
988 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
989 if (r
== DM_MAPIO_REMAPPED
) {
990 /* the bio has been remapped so dispatch it */
992 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
993 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
995 generic_make_request(clone
);
996 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
997 /* error the io and bail out, or requeue it if needed */
999 dec_pending(tio
->io
, r
);
1001 * Store bio_set for cleanup.
1003 clone
->bi_private
= md
->bs
;
1007 DMWARN("unimplemented target map return value: %d", r
);
1013 struct mapped_device
*md
;
1014 struct dm_table
*map
;
1018 sector_t sector_count
;
1022 static void dm_bio_destructor(struct bio
*bio
)
1024 struct bio_set
*bs
= bio
->bi_private
;
1030 * Creates a little bio that just does part of a bvec.
1032 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1033 unsigned short idx
, unsigned int offset
,
1034 unsigned int len
, struct bio_set
*bs
)
1037 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1039 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1040 clone
->bi_destructor
= dm_bio_destructor
;
1041 *clone
->bi_io_vec
= *bv
;
1043 clone
->bi_sector
= sector
;
1044 clone
->bi_bdev
= bio
->bi_bdev
;
1045 clone
->bi_rw
= bio
->bi_rw
;
1047 clone
->bi_size
= to_bytes(len
);
1048 clone
->bi_io_vec
->bv_offset
= offset
;
1049 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1050 clone
->bi_flags
|= 1 << BIO_CLONED
;
1052 if (bio_integrity(bio
)) {
1053 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1054 bio_integrity_trim(clone
,
1055 bio_sector_offset(bio
, idx
, offset
), len
);
1062 * Creates a bio that consists of range of complete bvecs.
1064 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1065 unsigned short idx
, unsigned short bv_count
,
1066 unsigned int len
, struct bio_set
*bs
)
1070 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1071 __bio_clone(clone
, bio
);
1072 clone
->bi_destructor
= dm_bio_destructor
;
1073 clone
->bi_sector
= sector
;
1074 clone
->bi_idx
= idx
;
1075 clone
->bi_vcnt
= idx
+ bv_count
;
1076 clone
->bi_size
= to_bytes(len
);
1077 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1079 if (bio_integrity(bio
)) {
1080 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1082 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1083 bio_integrity_trim(clone
,
1084 bio_sector_offset(bio
, idx
, 0), len
);
1090 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1091 struct dm_target
*ti
)
1093 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1097 memset(&tio
->info
, 0, sizeof(tio
->info
));
1102 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1103 unsigned request_nr
, sector_t len
)
1105 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1108 tio
->info
.target_request_nr
= request_nr
;
1111 * Discard requests require the bio's inline iovecs be initialized.
1112 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1113 * and discard, so no need for concern about wasted bvec allocations.
1115 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1116 __bio_clone(clone
, ci
->bio
);
1117 clone
->bi_destructor
= dm_bio_destructor
;
1119 clone
->bi_sector
= ci
->sector
;
1120 clone
->bi_size
= to_bytes(len
);
1123 __map_bio(ti
, clone
, tio
);
1126 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1127 unsigned num_requests
, sector_t len
)
1129 unsigned request_nr
;
1131 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1132 __issue_target_request(ci
, ti
, request_nr
, len
);
1135 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1137 unsigned target_nr
= 0;
1138 struct dm_target
*ti
;
1140 BUG_ON(bio_has_data(ci
->bio
));
1141 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1142 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1148 * Perform all io with a single clone.
1150 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1152 struct bio
*clone
, *bio
= ci
->bio
;
1153 struct dm_target_io
*tio
;
1155 tio
= alloc_tio(ci
, ti
);
1156 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1157 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1159 __map_bio(ti
, clone
, tio
);
1160 ci
->sector_count
= 0;
1163 static int __clone_and_map_discard(struct clone_info
*ci
)
1165 struct dm_target
*ti
;
1169 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1170 if (!dm_target_is_valid(ti
))
1174 * Even though the device advertised discard support,
1175 * reconfiguration might have changed that since the
1176 * check was performed.
1178 if (!ti
->num_discard_requests
)
1181 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1183 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1186 } while (ci
->sector_count
-= len
);
1191 static int __clone_and_map(struct clone_info
*ci
)
1193 struct bio
*clone
, *bio
= ci
->bio
;
1194 struct dm_target
*ti
;
1195 sector_t len
= 0, max
;
1196 struct dm_target_io
*tio
;
1198 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1199 return __clone_and_map_discard(ci
);
1201 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1202 if (!dm_target_is_valid(ti
))
1205 max
= max_io_len(ci
->sector
, ti
);
1207 if (ci
->sector_count
<= max
) {
1209 * Optimise for the simple case where we can do all of
1210 * the remaining io with a single clone.
1212 __clone_and_map_simple(ci
, ti
);
1214 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1216 * There are some bvecs that don't span targets.
1217 * Do as many of these as possible.
1220 sector_t remaining
= max
;
1223 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1224 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1226 if (bv_len
> remaining
)
1229 remaining
-= bv_len
;
1233 tio
= alloc_tio(ci
, ti
);
1234 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1236 __map_bio(ti
, clone
, tio
);
1239 ci
->sector_count
-= len
;
1244 * Handle a bvec that must be split between two or more targets.
1246 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1247 sector_t remaining
= to_sector(bv
->bv_len
);
1248 unsigned int offset
= 0;
1252 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1253 if (!dm_target_is_valid(ti
))
1256 max
= max_io_len(ci
->sector
, ti
);
1259 len
= min(remaining
, max
);
1261 tio
= alloc_tio(ci
, ti
);
1262 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1263 bv
->bv_offset
+ offset
, len
,
1266 __map_bio(ti
, clone
, tio
);
1269 ci
->sector_count
-= len
;
1270 offset
+= to_bytes(len
);
1271 } while (remaining
-= len
);
1280 * Split the bio into several clones and submit it to targets.
1282 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1284 struct clone_info ci
;
1287 ci
.map
= dm_get_live_table(md
);
1288 if (unlikely(!ci
.map
)) {
1294 ci
.io
= alloc_io(md
);
1296 atomic_set(&ci
.io
->io_count
, 1);
1299 spin_lock_init(&ci
.io
->endio_lock
);
1300 ci
.sector
= bio
->bi_sector
;
1301 ci
.idx
= bio
->bi_idx
;
1303 start_io_acct(ci
.io
);
1304 if (bio
->bi_rw
& REQ_FLUSH
) {
1305 ci
.bio
= &ci
.md
->flush_bio
;
1306 ci
.sector_count
= 0;
1307 error
= __clone_and_map_empty_flush(&ci
);
1308 /* dec_pending submits any data associated with flush */
1311 ci
.sector_count
= bio_sectors(bio
);
1312 while (ci
.sector_count
&& !error
)
1313 error
= __clone_and_map(&ci
);
1316 /* drop the extra reference count */
1317 dec_pending(ci
.io
, error
);
1318 dm_table_put(ci
.map
);
1320 /*-----------------------------------------------------------------
1322 *---------------------------------------------------------------*/
1324 static int dm_merge_bvec(struct request_queue
*q
,
1325 struct bvec_merge_data
*bvm
,
1326 struct bio_vec
*biovec
)
1328 struct mapped_device
*md
= q
->queuedata
;
1329 struct dm_table
*map
= dm_get_live_table(md
);
1330 struct dm_target
*ti
;
1331 sector_t max_sectors
;
1337 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1338 if (!dm_target_is_valid(ti
))
1342 * Find maximum amount of I/O that won't need splitting
1344 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1345 (sector_t
) BIO_MAX_SECTORS
);
1346 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1351 * merge_bvec_fn() returns number of bytes
1352 * it can accept at this offset
1353 * max is precomputed maximal io size
1355 if (max_size
&& ti
->type
->merge
)
1356 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1358 * If the target doesn't support merge method and some of the devices
1359 * provided their merge_bvec method (we know this by looking at
1360 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1361 * entries. So always set max_size to 0, and the code below allows
1364 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1373 * Always allow an entire first page
1375 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1376 max_size
= biovec
->bv_len
;
1382 * The request function that just remaps the bio built up by
1385 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1387 int rw
= bio_data_dir(bio
);
1388 struct mapped_device
*md
= q
->queuedata
;
1391 down_read(&md
->io_lock
);
1393 cpu
= part_stat_lock();
1394 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1395 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1398 /* if we're suspended, we have to queue this io for later */
1399 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1400 up_read(&md
->io_lock
);
1402 if (bio_rw(bio
) != READA
)
1409 __split_and_process_bio(md
, bio
);
1410 up_read(&md
->io_lock
);
1414 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1416 struct mapped_device
*md
= q
->queuedata
;
1418 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1421 static int dm_request_based(struct mapped_device
*md
)
1423 return blk_queue_stackable(md
->queue
);
1426 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1428 struct mapped_device
*md
= q
->queuedata
;
1430 if (dm_request_based(md
))
1431 return dm_make_request(q
, bio
);
1433 return _dm_request(q
, bio
);
1436 void dm_dispatch_request(struct request
*rq
)
1440 if (blk_queue_io_stat(rq
->q
))
1441 rq
->cmd_flags
|= REQ_IO_STAT
;
1443 rq
->start_time
= jiffies
;
1444 r
= blk_insert_cloned_request(rq
->q
, rq
);
1446 dm_complete_request(rq
, r
);
1448 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1450 static void dm_rq_bio_destructor(struct bio
*bio
)
1452 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1453 struct mapped_device
*md
= info
->tio
->md
;
1455 free_bio_info(info
);
1456 bio_free(bio
, md
->bs
);
1459 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1462 struct dm_rq_target_io
*tio
= data
;
1463 struct mapped_device
*md
= tio
->md
;
1464 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1469 info
->orig
= bio_orig
;
1471 bio
->bi_end_io
= end_clone_bio
;
1472 bio
->bi_private
= info
;
1473 bio
->bi_destructor
= dm_rq_bio_destructor
;
1478 static int setup_clone(struct request
*clone
, struct request
*rq
,
1479 struct dm_rq_target_io
*tio
)
1483 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1484 dm_rq_bio_constructor
, tio
);
1488 clone
->cmd
= rq
->cmd
;
1489 clone
->cmd_len
= rq
->cmd_len
;
1490 clone
->sense
= rq
->sense
;
1491 clone
->buffer
= rq
->buffer
;
1492 clone
->end_io
= end_clone_request
;
1493 clone
->end_io_data
= tio
;
1498 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1501 struct request
*clone
;
1502 struct dm_rq_target_io
*tio
;
1504 tio
= alloc_rq_tio(md
, gfp_mask
);
1512 memset(&tio
->info
, 0, sizeof(tio
->info
));
1514 clone
= &tio
->clone
;
1515 if (setup_clone(clone
, rq
, tio
)) {
1525 * Called with the queue lock held.
1527 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1529 struct mapped_device
*md
= q
->queuedata
;
1530 struct request
*clone
;
1532 if (unlikely(rq
->special
)) {
1533 DMWARN("Already has something in rq->special.");
1534 return BLKPREP_KILL
;
1537 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1539 return BLKPREP_DEFER
;
1541 rq
->special
= clone
;
1542 rq
->cmd_flags
|= REQ_DONTPREP
;
1549 * 0 : the request has been processed (not requeued)
1550 * !0 : the request has been requeued
1552 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1553 struct mapped_device
*md
)
1555 int r
, requeued
= 0;
1556 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1559 * Hold the md reference here for the in-flight I/O.
1560 * We can't rely on the reference count by device opener,
1561 * because the device may be closed during the request completion
1562 * when all bios are completed.
1563 * See the comment in rq_completed() too.
1568 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1570 case DM_MAPIO_SUBMITTED
:
1571 /* The target has taken the I/O to submit by itself later */
1573 case DM_MAPIO_REMAPPED
:
1574 /* The target has remapped the I/O so dispatch it */
1575 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1576 blk_rq_pos(tio
->orig
));
1577 dm_dispatch_request(clone
);
1579 case DM_MAPIO_REQUEUE
:
1580 /* The target wants to requeue the I/O */
1581 dm_requeue_unmapped_request(clone
);
1586 DMWARN("unimplemented target map return value: %d", r
);
1590 /* The target wants to complete the I/O */
1591 dm_kill_unmapped_request(clone
, r
);
1599 * q->request_fn for request-based dm.
1600 * Called with the queue lock held.
1602 static void dm_request_fn(struct request_queue
*q
)
1604 struct mapped_device
*md
= q
->queuedata
;
1605 struct dm_table
*map
= dm_get_live_table(md
);
1606 struct dm_target
*ti
;
1607 struct request
*rq
, *clone
;
1611 * For suspend, check blk_queue_stopped() and increment
1612 * ->pending within a single queue_lock not to increment the
1613 * number of in-flight I/Os after the queue is stopped in
1616 while (!blk_queue_plugged(q
) && !blk_queue_stopped(q
)) {
1617 rq
= blk_peek_request(q
);
1621 /* always use block 0 to find the target for flushes for now */
1623 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1624 pos
= blk_rq_pos(rq
);
1626 ti
= dm_table_find_target(map
, pos
);
1627 BUG_ON(!dm_target_is_valid(ti
));
1629 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1632 blk_start_request(rq
);
1633 clone
= rq
->special
;
1634 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1636 spin_unlock(q
->queue_lock
);
1637 if (map_request(ti
, clone
, md
))
1640 BUG_ON(!irqs_disabled());
1641 spin_lock(q
->queue_lock
);
1647 BUG_ON(!irqs_disabled());
1648 spin_lock(q
->queue_lock
);
1651 if (!elv_queue_empty(q
))
1652 /* Some requests still remain, retry later */
1661 int dm_underlying_device_busy(struct request_queue
*q
)
1663 return blk_lld_busy(q
);
1665 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1667 static int dm_lld_busy(struct request_queue
*q
)
1670 struct mapped_device
*md
= q
->queuedata
;
1671 struct dm_table
*map
= dm_get_live_table(md
);
1673 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1676 r
= dm_table_any_busy_target(map
);
1683 static void dm_unplug_all(struct request_queue
*q
)
1685 struct mapped_device
*md
= q
->queuedata
;
1686 struct dm_table
*map
= dm_get_live_table(md
);
1689 if (dm_request_based(md
))
1690 generic_unplug_device(q
);
1692 dm_table_unplug_all(map
);
1697 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1700 struct mapped_device
*md
= congested_data
;
1701 struct dm_table
*map
;
1703 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1704 map
= dm_get_live_table(md
);
1707 * Request-based dm cares about only own queue for
1708 * the query about congestion status of request_queue
1710 if (dm_request_based(md
))
1711 r
= md
->queue
->backing_dev_info
.state
&
1714 r
= dm_table_any_congested(map
, bdi_bits
);
1723 /*-----------------------------------------------------------------
1724 * An IDR is used to keep track of allocated minor numbers.
1725 *---------------------------------------------------------------*/
1726 static DEFINE_IDR(_minor_idr
);
1728 static void free_minor(int minor
)
1730 spin_lock(&_minor_lock
);
1731 idr_remove(&_minor_idr
, minor
);
1732 spin_unlock(&_minor_lock
);
1736 * See if the device with a specific minor # is free.
1738 static int specific_minor(int minor
)
1742 if (minor
>= (1 << MINORBITS
))
1745 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1749 spin_lock(&_minor_lock
);
1751 if (idr_find(&_minor_idr
, minor
)) {
1756 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1761 idr_remove(&_minor_idr
, m
);
1767 spin_unlock(&_minor_lock
);
1771 static int next_free_minor(int *minor
)
1775 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1779 spin_lock(&_minor_lock
);
1781 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1785 if (m
>= (1 << MINORBITS
)) {
1786 idr_remove(&_minor_idr
, m
);
1794 spin_unlock(&_minor_lock
);
1798 static const struct block_device_operations dm_blk_dops
;
1800 static void dm_wq_work(struct work_struct
*work
);
1802 static void dm_init_md_queue(struct mapped_device
*md
)
1805 * Request-based dm devices cannot be stacked on top of bio-based dm
1806 * devices. The type of this dm device has not been decided yet.
1807 * The type is decided at the first table loading time.
1808 * To prevent problematic device stacking, clear the queue flag
1809 * for request stacking support until then.
1811 * This queue is new, so no concurrency on the queue_flags.
1813 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1815 md
->queue
->queuedata
= md
;
1816 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1817 md
->queue
->backing_dev_info
.congested_data
= md
;
1818 blk_queue_make_request(md
->queue
, dm_request
);
1819 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1820 md
->queue
->unplug_fn
= dm_unplug_all
;
1821 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1822 blk_queue_flush(md
->queue
, REQ_FLUSH
| REQ_FUA
);
1826 * Allocate and initialise a blank device with a given minor.
1828 static struct mapped_device
*alloc_dev(int minor
)
1831 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1835 DMWARN("unable to allocate device, out of memory.");
1839 if (!try_module_get(THIS_MODULE
))
1840 goto bad_module_get
;
1842 /* get a minor number for the dev */
1843 if (minor
== DM_ANY_MINOR
)
1844 r
= next_free_minor(&minor
);
1846 r
= specific_minor(minor
);
1850 md
->type
= DM_TYPE_NONE
;
1851 init_rwsem(&md
->io_lock
);
1852 mutex_init(&md
->suspend_lock
);
1853 mutex_init(&md
->type_lock
);
1854 spin_lock_init(&md
->deferred_lock
);
1855 rwlock_init(&md
->map_lock
);
1856 atomic_set(&md
->holders
, 1);
1857 atomic_set(&md
->open_count
, 0);
1858 atomic_set(&md
->event_nr
, 0);
1859 atomic_set(&md
->uevent_seq
, 0);
1860 INIT_LIST_HEAD(&md
->uevent_list
);
1861 spin_lock_init(&md
->uevent_lock
);
1863 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1867 dm_init_md_queue(md
);
1869 md
->disk
= alloc_disk(1);
1873 atomic_set(&md
->pending
[0], 0);
1874 atomic_set(&md
->pending
[1], 0);
1875 init_waitqueue_head(&md
->wait
);
1876 INIT_WORK(&md
->work
, dm_wq_work
);
1877 init_waitqueue_head(&md
->eventq
);
1879 md
->disk
->major
= _major
;
1880 md
->disk
->first_minor
= minor
;
1881 md
->disk
->fops
= &dm_blk_dops
;
1882 md
->disk
->queue
= md
->queue
;
1883 md
->disk
->private_data
= md
;
1884 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1886 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1888 md
->wq
= alloc_workqueue("kdmflush",
1889 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1893 md
->bdev
= bdget_disk(md
->disk
, 0);
1897 bio_init(&md
->flush_bio
);
1898 md
->flush_bio
.bi_bdev
= md
->bdev
;
1899 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1901 /* Populate the mapping, nobody knows we exist yet */
1902 spin_lock(&_minor_lock
);
1903 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1904 spin_unlock(&_minor_lock
);
1906 BUG_ON(old_md
!= MINOR_ALLOCED
);
1911 destroy_workqueue(md
->wq
);
1913 del_gendisk(md
->disk
);
1916 blk_cleanup_queue(md
->queue
);
1920 module_put(THIS_MODULE
);
1926 static void unlock_fs(struct mapped_device
*md
);
1928 static void free_dev(struct mapped_device
*md
)
1930 int minor
= MINOR(disk_devt(md
->disk
));
1934 destroy_workqueue(md
->wq
);
1936 mempool_destroy(md
->tio_pool
);
1938 mempool_destroy(md
->io_pool
);
1940 bioset_free(md
->bs
);
1941 blk_integrity_unregister(md
->disk
);
1942 del_gendisk(md
->disk
);
1945 spin_lock(&_minor_lock
);
1946 md
->disk
->private_data
= NULL
;
1947 spin_unlock(&_minor_lock
);
1950 blk_cleanup_queue(md
->queue
);
1951 module_put(THIS_MODULE
);
1955 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1957 struct dm_md_mempools
*p
;
1959 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1960 /* the md already has necessary mempools */
1963 p
= dm_table_get_md_mempools(t
);
1964 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1966 md
->io_pool
= p
->io_pool
;
1968 md
->tio_pool
= p
->tio_pool
;
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t
);
1979 * Bind a table to the device.
1981 static void event_callback(void *context
)
1983 unsigned long flags
;
1985 struct mapped_device
*md
= (struct mapped_device
*) context
;
1987 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1988 list_splice_init(&md
->uevent_list
, &uevents
);
1989 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1991 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1993 atomic_inc(&md
->event_nr
);
1994 wake_up(&md
->eventq
);
1998 * Protected by md->suspend_lock obtained by dm_swap_table().
2000 static void __set_size(struct mapped_device
*md
, sector_t size
)
2002 set_capacity(md
->disk
, size
);
2004 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2008 * Returns old map, which caller must destroy.
2010 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2011 struct queue_limits
*limits
)
2013 struct dm_table
*old_map
;
2014 struct request_queue
*q
= md
->queue
;
2016 unsigned long flags
;
2018 size
= dm_table_get_size(t
);
2021 * Wipe any geometry if the size of the table changed.
2023 if (size
!= get_capacity(md
->disk
))
2024 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2026 __set_size(md
, size
);
2028 dm_table_event_callback(t
, event_callback
, md
);
2031 * The queue hasn't been stopped yet, if the old table type wasn't
2032 * for request-based during suspension. So stop it to prevent
2033 * I/O mapping before resume.
2034 * This must be done before setting the queue restrictions,
2035 * because request-based dm may be run just after the setting.
2037 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2040 __bind_mempools(md
, t
);
2042 write_lock_irqsave(&md
->map_lock
, flags
);
2045 dm_table_set_restrictions(t
, q
, limits
);
2046 write_unlock_irqrestore(&md
->map_lock
, flags
);
2052 * Returns unbound table for the caller to free.
2054 static struct dm_table
*__unbind(struct mapped_device
*md
)
2056 struct dm_table
*map
= md
->map
;
2057 unsigned long flags
;
2062 dm_table_event_callback(map
, NULL
, NULL
);
2063 write_lock_irqsave(&md
->map_lock
, flags
);
2065 write_unlock_irqrestore(&md
->map_lock
, flags
);
2071 * Constructor for a new device.
2073 int dm_create(int minor
, struct mapped_device
**result
)
2075 struct mapped_device
*md
;
2077 md
= alloc_dev(minor
);
2088 * Functions to manage md->type.
2089 * All are required to hold md->type_lock.
2091 void dm_lock_md_type(struct mapped_device
*md
)
2093 mutex_lock(&md
->type_lock
);
2096 void dm_unlock_md_type(struct mapped_device
*md
)
2098 mutex_unlock(&md
->type_lock
);
2101 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2106 unsigned dm_get_md_type(struct mapped_device
*md
)
2112 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2114 static int dm_init_request_based_queue(struct mapped_device
*md
)
2116 struct request_queue
*q
= NULL
;
2118 if (md
->queue
->elevator
)
2121 /* Fully initialize the queue */
2122 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2127 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
2128 dm_init_md_queue(md
);
2129 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2130 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2131 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2133 elv_register_queue(md
->queue
);
2139 * Setup the DM device's queue based on md's type
2141 int dm_setup_md_queue(struct mapped_device
*md
)
2143 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2144 !dm_init_request_based_queue(md
)) {
2145 DMWARN("Cannot initialize queue for request-based mapped device");
2152 static struct mapped_device
*dm_find_md(dev_t dev
)
2154 struct mapped_device
*md
;
2155 unsigned minor
= MINOR(dev
);
2157 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2160 spin_lock(&_minor_lock
);
2162 md
= idr_find(&_minor_idr
, minor
);
2163 if (md
&& (md
== MINOR_ALLOCED
||
2164 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2165 dm_deleting_md(md
) ||
2166 test_bit(DMF_FREEING
, &md
->flags
))) {
2172 spin_unlock(&_minor_lock
);
2177 struct mapped_device
*dm_get_md(dev_t dev
)
2179 struct mapped_device
*md
= dm_find_md(dev
);
2187 void *dm_get_mdptr(struct mapped_device
*md
)
2189 return md
->interface_ptr
;
2192 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2194 md
->interface_ptr
= ptr
;
2197 void dm_get(struct mapped_device
*md
)
2199 atomic_inc(&md
->holders
);
2200 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2203 const char *dm_device_name(struct mapped_device
*md
)
2207 EXPORT_SYMBOL_GPL(dm_device_name
);
2209 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2211 struct dm_table
*map
;
2215 spin_lock(&_minor_lock
);
2216 map
= dm_get_live_table(md
);
2217 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2218 set_bit(DMF_FREEING
, &md
->flags
);
2219 spin_unlock(&_minor_lock
);
2221 if (!dm_suspended_md(md
)) {
2222 dm_table_presuspend_targets(map
);
2223 dm_table_postsuspend_targets(map
);
2227 * Rare, but there may be I/O requests still going to complete,
2228 * for example. Wait for all references to disappear.
2229 * No one should increment the reference count of the mapped_device,
2230 * after the mapped_device state becomes DMF_FREEING.
2233 while (atomic_read(&md
->holders
))
2235 else if (atomic_read(&md
->holders
))
2236 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2237 dm_device_name(md
), atomic_read(&md
->holders
));
2241 dm_table_destroy(__unbind(md
));
2245 void dm_destroy(struct mapped_device
*md
)
2247 __dm_destroy(md
, true);
2250 void dm_destroy_immediate(struct mapped_device
*md
)
2252 __dm_destroy(md
, false);
2255 void dm_put(struct mapped_device
*md
)
2257 atomic_dec(&md
->holders
);
2259 EXPORT_SYMBOL_GPL(dm_put
);
2261 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2264 DECLARE_WAITQUEUE(wait
, current
);
2266 dm_unplug_all(md
->queue
);
2268 add_wait_queue(&md
->wait
, &wait
);
2271 set_current_state(interruptible
);
2274 if (!md_in_flight(md
))
2277 if (interruptible
== TASK_INTERRUPTIBLE
&&
2278 signal_pending(current
)) {
2285 set_current_state(TASK_RUNNING
);
2287 remove_wait_queue(&md
->wait
, &wait
);
2293 * Process the deferred bios
2295 static void dm_wq_work(struct work_struct
*work
)
2297 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2301 down_read(&md
->io_lock
);
2303 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2304 spin_lock_irq(&md
->deferred_lock
);
2305 c
= bio_list_pop(&md
->deferred
);
2306 spin_unlock_irq(&md
->deferred_lock
);
2311 up_read(&md
->io_lock
);
2313 if (dm_request_based(md
))
2314 generic_make_request(c
);
2316 __split_and_process_bio(md
, c
);
2318 down_read(&md
->io_lock
);
2321 up_read(&md
->io_lock
);
2324 static void dm_queue_flush(struct mapped_device
*md
)
2326 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2327 smp_mb__after_clear_bit();
2328 queue_work(md
->wq
, &md
->work
);
2332 * Swap in a new table, returning the old one for the caller to destroy.
2334 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2336 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2337 struct queue_limits limits
;
2340 mutex_lock(&md
->suspend_lock
);
2342 /* device must be suspended */
2343 if (!dm_suspended_md(md
))
2346 r
= dm_calculate_queue_limits(table
, &limits
);
2352 map
= __bind(md
, table
, &limits
);
2355 mutex_unlock(&md
->suspend_lock
);
2360 * Functions to lock and unlock any filesystem running on the
2363 static int lock_fs(struct mapped_device
*md
)
2367 WARN_ON(md
->frozen_sb
);
2369 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2370 if (IS_ERR(md
->frozen_sb
)) {
2371 r
= PTR_ERR(md
->frozen_sb
);
2372 md
->frozen_sb
= NULL
;
2376 set_bit(DMF_FROZEN
, &md
->flags
);
2381 static void unlock_fs(struct mapped_device
*md
)
2383 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2386 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2387 md
->frozen_sb
= NULL
;
2388 clear_bit(DMF_FROZEN
, &md
->flags
);
2392 * We need to be able to change a mapping table under a mounted
2393 * filesystem. For example we might want to move some data in
2394 * the background. Before the table can be swapped with
2395 * dm_bind_table, dm_suspend must be called to flush any in
2396 * flight bios and ensure that any further io gets deferred.
2399 * Suspend mechanism in request-based dm.
2401 * 1. Flush all I/Os by lock_fs() if needed.
2402 * 2. Stop dispatching any I/O by stopping the request_queue.
2403 * 3. Wait for all in-flight I/Os to be completed or requeued.
2405 * To abort suspend, start the request_queue.
2407 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2409 struct dm_table
*map
= NULL
;
2411 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2412 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2414 mutex_lock(&md
->suspend_lock
);
2416 if (dm_suspended_md(md
)) {
2421 map
= dm_get_live_table(md
);
2424 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2425 * This flag is cleared before dm_suspend returns.
2428 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2430 /* This does not get reverted if there's an error later. */
2431 dm_table_presuspend_targets(map
);
2434 * Flush I/O to the device.
2435 * Any I/O submitted after lock_fs() may not be flushed.
2436 * noflush takes precedence over do_lockfs.
2437 * (lock_fs() flushes I/Os and waits for them to complete.)
2439 if (!noflush
&& do_lockfs
) {
2446 * Here we must make sure that no processes are submitting requests
2447 * to target drivers i.e. no one may be executing
2448 * __split_and_process_bio. This is called from dm_request and
2451 * To get all processes out of __split_and_process_bio in dm_request,
2452 * we take the write lock. To prevent any process from reentering
2453 * __split_and_process_bio from dm_request and quiesce the thread
2454 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2455 * flush_workqueue(md->wq).
2457 down_write(&md
->io_lock
);
2458 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2459 up_write(&md
->io_lock
);
2462 * Stop md->queue before flushing md->wq in case request-based
2463 * dm defers requests to md->wq from md->queue.
2465 if (dm_request_based(md
))
2466 stop_queue(md
->queue
);
2468 flush_workqueue(md
->wq
);
2471 * At this point no more requests are entering target request routines.
2472 * We call dm_wait_for_completion to wait for all existing requests
2475 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2477 down_write(&md
->io_lock
);
2479 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2480 up_write(&md
->io_lock
);
2482 /* were we interrupted ? */
2486 if (dm_request_based(md
))
2487 start_queue(md
->queue
);
2490 goto out
; /* pushback list is already flushed, so skip flush */
2494 * If dm_wait_for_completion returned 0, the device is completely
2495 * quiescent now. There is no request-processing activity. All new
2496 * requests are being added to md->deferred list.
2499 set_bit(DMF_SUSPENDED
, &md
->flags
);
2501 dm_table_postsuspend_targets(map
);
2507 mutex_unlock(&md
->suspend_lock
);
2511 int dm_resume(struct mapped_device
*md
)
2514 struct dm_table
*map
= NULL
;
2516 mutex_lock(&md
->suspend_lock
);
2517 if (!dm_suspended_md(md
))
2520 map
= dm_get_live_table(md
);
2521 if (!map
|| !dm_table_get_size(map
))
2524 r
= dm_table_resume_targets(map
);
2531 * Flushing deferred I/Os must be done after targets are resumed
2532 * so that mapping of targets can work correctly.
2533 * Request-based dm is queueing the deferred I/Os in its request_queue.
2535 if (dm_request_based(md
))
2536 start_queue(md
->queue
);
2540 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2542 dm_table_unplug_all(map
);
2546 mutex_unlock(&md
->suspend_lock
);
2551 /*-----------------------------------------------------------------
2552 * Event notification.
2553 *---------------------------------------------------------------*/
2554 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2557 char udev_cookie
[DM_COOKIE_LENGTH
];
2558 char *envp
[] = { udev_cookie
, NULL
};
2561 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2563 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2564 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2565 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2570 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2572 return atomic_add_return(1, &md
->uevent_seq
);
2575 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2577 return atomic_read(&md
->event_nr
);
2580 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2582 return wait_event_interruptible(md
->eventq
,
2583 (event_nr
!= atomic_read(&md
->event_nr
)));
2586 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2588 unsigned long flags
;
2590 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2591 list_add(elist
, &md
->uevent_list
);
2592 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2596 * The gendisk is only valid as long as you have a reference
2599 struct gendisk
*dm_disk(struct mapped_device
*md
)
2604 struct kobject
*dm_kobject(struct mapped_device
*md
)
2610 * struct mapped_device should not be exported outside of dm.c
2611 * so use this check to verify that kobj is part of md structure
2613 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2615 struct mapped_device
*md
;
2617 md
= container_of(kobj
, struct mapped_device
, kobj
);
2618 if (&md
->kobj
!= kobj
)
2621 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2629 int dm_suspended_md(struct mapped_device
*md
)
2631 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2634 int dm_suspended(struct dm_target
*ti
)
2636 return dm_suspended_md(dm_table_get_md(ti
->table
));
2638 EXPORT_SYMBOL_GPL(dm_suspended
);
2640 int dm_noflush_suspending(struct dm_target
*ti
)
2642 return __noflush_suspending(dm_table_get_md(ti
->table
));
2644 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2646 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
)
2648 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2653 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2654 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2655 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2656 if (!pools
->io_pool
)
2657 goto free_pools_and_out
;
2659 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2660 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2661 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2662 if (!pools
->tio_pool
)
2663 goto free_io_pool_and_out
;
2665 pools
->bs
= (type
== DM_TYPE_BIO_BASED
) ?
2666 bioset_create(16, 0) : bioset_create(MIN_IOS
, 0);
2668 goto free_tio_pool_and_out
;
2672 free_tio_pool_and_out
:
2673 mempool_destroy(pools
->tio_pool
);
2675 free_io_pool_and_out
:
2676 mempool_destroy(pools
->io_pool
);
2684 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2690 mempool_destroy(pools
->io_pool
);
2692 if (pools
->tio_pool
)
2693 mempool_destroy(pools
->tio_pool
);
2696 bioset_free(pools
->bs
);
2701 static const struct block_device_operations dm_blk_dops
= {
2702 .open
= dm_blk_open
,
2703 .release
= dm_blk_close
,
2704 .ioctl
= dm_blk_ioctl
,
2705 .getgeo
= dm_blk_getgeo
,
2706 .owner
= THIS_MODULE
2709 EXPORT_SYMBOL(dm_get_mapinfo
);
2714 module_init(dm_init
);
2715 module_exit(dm_exit
);
2717 module_param(major
, uint
, 0);
2718 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2719 MODULE_DESCRIPTION(DM_NAME
" driver");
2720 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2721 MODULE_LICENSE("GPL");